
COMPUTING THE SVD OF A GENERAL MATRIX
PRODUCT/QUOTIENT∗

GENE GOLUB† , KNUT SØLNA‡ , AND PAUL VAN DOOREN§

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 1–19

Abstract. In this paper we derive a new algorithm for constructing a unitary decomposition of
a sequence of matrices in product or quotient form. The unitary decomposition requires only unitary
left and right transformations on the individual matrices and amounts to computing the generalized
singular value decomposition of the sequence. The proposed algorithm is related to the classical
Golub–Kahan procedure for computing the singular value decomposition (SVD) of a single matrix in
that it constructs a bidiagonal form of the sequence as an intermediate result. When applied to two
matrices this new method is an alternative way of computing the quotient and product SVD and is
more economical than current methods.

Key words. mumerical methods, generalized singular values, products of matrices, quotients
of matrices

AMS subject classification. 65F15

PII. S0895479897325578

Introduction. The two basic unitary decompositions of a matrix A yielding
some spectral information are the Schur form A = UTU∗—where U is unitary and T
is upper triangular—and the singular value decomposition (SVD) A = UΣV ∗—where
U and V are unitary and Σ is diagonal (for the latter A does not need to be square). It
is interesting to note that both forms are usually computed by a QR-like iteration [7].
The SVD algorithm of Golub–Kahan [6] is indeed an implicit QR algorithm applied
to the Hermitian matrix A∗A. When looking at unitary decompositions involving
two matrices, say, A and B, a similar implicit algorithm was given in [10] and is
known as the QZ algorithm. It computes A = QTaZ

∗ and B = QTbZ
∗, where Q

and Z are unitary and Ta and Tb are upper triangular. This algorithm is in fact the
QR algorithm again performed implicitly on the quotient B−1A. The corresponding
decomposition is therefore also known as the generalized Schur form.

When considering the generalized SVD of two matrices, appearing as a quotient
B−1A or a product BA, the currently used algorithm is not of QR type but of a Jacobi
type. The reason for this choice is that Jacobi methods easily extend to products and
quotients. Unfortunately, the Jacobi algorithm typically has a (moderately) higher
complexity than the QR algorithm. Yet, so far, nobody proposed an implicit QR-like
method for the SVD of a product or quotient of two matrices.

∗Received by the editors August 20, 1997; accepted for publication (in revised form) by L. Eldén
November 15, 1999; published electronically May 31, 2000. This paper contains research results of
the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime
Minister’s Office for Science, Technology and Culture. The scientific responsibility rests with its
authors.

http://www.siam.org/journals/simax/22-1/32557.html
†Computer Science Department, Stanford University, Stanford, CA 94305-9025 (golub@

sccm.stanford.edu). This author was partially supported by the National Science Foundation under
grants DMS-9105192 and DMS-9403899.

‡SC-CM, Stanford University, Stanford, CA 94305-9025 (solna@sccm.stanford.edu). This author
was partially supported by The Research Council of Norway.

§Cesame, Université Catholique de Louvain, Louvain-la-Neuve B1348, Belgium (vdooren@
anma.ucl.ac.be). This author was partially supported by the National Science Foundation under
grant CCR-96-19596.

1

2 GENE GOLUB, KNUT SØLNA, AND PAUL VAN DOOREN

In this paper we show that, in fact, such an implicit algorithm is easy to de-
rive and that it even extends straightforwardly to sequences of products/quotients of
several matrices. Moreover, the complexity will be shown to be lower than for the
corresponding Jacobi-like methods.

1. Implicit SVD. Consider the problem of computing the SVD of a matrix A
that is an expression of the following type:

A = AsKK · · ·As22 ·As11 ,(1)

where si = ±1, i.e., a sequence of products or quotients of matrices. For simplicity
we assume that the Ai matrices are square n × n and invertible. It was pointed
out in [3] that one can always perform a preliminary QR-like reduction that extracts
from a sequence of matrices with compatible dimensions another sequence of square
invertible matrices with the same generalized singular values as the original sequence.
We refer to [3] for the details of this reduction and will treat here only the case of
square invertible matrices. While it is clear that one has to perform left and right
transformations on A to get U∗AV = Σ, these transformations will affect only AK
and A1. Beyond this, one can insert an expression Q∗

iQi = In between every pair
A
si+1

i+1 Asii in (1). If we also define QK
.
= U and Q0

.
= V , we arrive at the following

expression:

U∗AV = (Q∗
KAsKK QK−1) · · · (Q∗

2A
s2
2 Q1) · (Q∗

1A
s1
1 Q0).(2)

With the degrees of freedom present in these K + 1 unitary transformations Qi at
hand, one can now choose each expression Q∗

iA
si
i Qi−1 to be upper triangular. Note

that the expression Q∗
iA

si
i Qi−1 = T sii with Ti upper triangular can be rewritten as

Q∗
iAiQi−1 = Ti for si = 1 , Q∗

j−1AjQj = Tj for sj = −1.(3)

From the construction of a normal QR decomposition, it is clear that while making
the matrix A upper triangular, this “freezes” only one matrix Qi per matrix Ai. The
remaining unitary matrix leaves enough freedom to finally diagonalize the matrix A
as well. Since (2) computes the singular values of (1), it is clear that such a result
can be obtained only by an iterative procedure. On the other hand, one intermediate
form that is used in the Golub–Kahan SVD algorithm [6] is the bidiagonalization of A
and this can be obtained in a finite recurrence. We show in the next section that the
matrices Qi in (2) can be constructed in a finite number of steps in order to obtain
a bidiagonal Q∗

KAQ0 in (2). In carrying out this task one should try to do as much
as possible implicitly. Moreover, one would like the total complexity of the algorithm
to be comparable to, or less than, the cost of K singular value decompositions. This
means that the complexity should be O(Kn3) for the whole process.

2. Implicit bidiagonalization. We now derive such an implicit reduction to
bidiagonal form. Below H(i, j) denotes the group of Householder transformations
having (i, j) as the range of rows/columns they operate on. Similarly G(i, i + 1)
denotes the group of Givens transformations operating on rows/columns i and i+ 1.
We first consider the case where all si = 1. We thus have only a product of matrices
Ai and in order to illustrate the procedure we show its evolution operating on a
product of three matrices only, i.e., A3A2A1. Below is a sequence of displays of the
matrix product that illustrates the evolution of the bidiagonal reduction. Each display
indicates the pattern of zeros (“0”) and nonzeros (“x”) in the three matrices.

SVD OF A GENERAL PRODUCT/QUOTIENT 3

First perform a Householder transformation Q
(1)
1 ∈ H(1, n) on the rows of A1 and

the columns of A2. Choose Q
(1)
1 to annihilate all but one element in the first column

of A1:

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x

 .

Then perform a Householder transformation Q
(1)
2 ∈ H(1, n) on the rows of A2

and the columns of A3. Choose Q
(1)
2 to annihilate all but one element in the first

column of A2:

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x

x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x

 .

Then perform a Householder transformation Q
(1)
3 ∈ H(1, n) on the rows of A3.

Choose Q
(1)
3 to annihilate all but one element in the first column of A3:

x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x

x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x

x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x

 .

Note that this third transformation yields the same form also for the product of
the three matrices:

x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x

x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x

x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x

 =

x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x

 .

At this stage we are interested in the first row of this product (indicated by
boldface x’s above). This row can be constructed as the product of the first row of A3

with the matrices to the right of it, and this requires only O(Kn2) flops. Once this

row is constructed we can find a Householder transformation Q
(1)
0 ∈ H(2, n) operating

on the last (n− 1) elements which annihilates all but two elements (the colon,“:”, is
used as it is in MATLAB):

A3(1, :)A2A1Q
(1)
0 =

[
x x 0 0 0

]
.(4)

This transformation is then applied to A1 only and completes the first stage of the
bidiagonalization since

4 GENE GOLUB, KNUT SØLNA, AND PAUL VAN DOOREN

Q
(1)∗
K AQ

(1)
0 =

x x 0 0 0

0 x x x x

0 x x x x

0 x x x x

0 x x x x

 .

The second stage of the bidiagonalization is analogous to the first; it differs only
in that the transformations operate only on rows/columns 2 to n. The Householder

transformations Q
(2)
i ∈ H(2, n) for 1 ≤ i ≤ 3 are chosen to eliminate elements 3 to

n in the second columns of Ai in the manner described above. The transformation
Q

(2)
0 ∈ H(3, n) operates on the last (n− 2) elements of the second row of the product

and annihilates all but two elements:

A3(2, :)A2A1Q
(2)
0 =

[
0 x x 0 0

]
.(5)

This transformation is applied to A1 only, completing the second step of the bidiag-
onalization of A:

Q
(2)∗
K Q

(1)∗
K AQ

(1)
0 Q

(2)
0 =

x x 0 0 0

0 x x 0 0

0 0 x x x

0 0 x x x

0 0 x x x

 .

It is now clear from the context how to proceed further with this algorithm to
obtain after n− 1 stages:

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x

 =

x x 0 0 0

0 x x 0 0

0 0 x x 0

0 0 0 x x

0 0 0 0 x

 .

Note that we never construct the whole product A = A3A2A1, but rather compute

one of its rows when needed for constructing the transformations Q
(i)
0 . The only

matrices that are kept in memory and updated are the Ai matrices and possibly QK

and Q0 if we require the singular vectors of A afterwards.
The complexity of this bidiagonalization step is easy to evaluate. Each matrix

Ai gets pre- and postmultiplied with essentially n Householder transformations of
decreasing range. For updating all Ai we therefore need 10Kn3/3 flops, and for
updating QK and Q0 we need 4n3 flops. For constructing the required row vectors of
A we need (K− 1)n3/3 flops. Overall we thus need on the order of 11Kn3/3 flops for
the construction of the triangular Ti and 4n3 for the outer transformations QK and
Q0. Essentially this is 11n3/3 flops per updated matrix.

If we now have some of the si = −1, we cannot use Householder transformations
anymore on all matrices. Indeed, in order to construct the rows of A when needed,
the matrices Ai for which si = −1 have to be triangularized first, say, with a QR fac-
torization. The QR factorization is performed in an initial step and uses Householder
transformations. From there on the same procedure as above is followed, but this im-
plies using Givens rotations in certain steps of the bidiagonalization. For simplicity,
we illustrate this on a matrix A = A3A

−1
2 A1. We first apply a left transformation

SVD OF A GENERAL PRODUCT/QUOTIENT 5

Q
(0)
2 (using a sequence of Householder transformations) that triangularizes A2 from

the left and also apply this to the rows of A1. The resulting triple then has the form

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

 .

We then apply a unitary transformation Q
(1)
1 to the rows of A1 to eliminate

elements 2 to n in its first column using Givens transformations G1 ∈ G(n − 1, n)
until Gn−1 ∈ G(1, 2). Below we indicate in which order these zeros are created in the
first column of A1 by their index:

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x

x x x x x

04 x x x x

03 x x x x

02 x x x x

01 x x x x

 .

These transformations also have to be applied to the left of A2, but the use of
Givens rotations allows us to update the triangularized matrix A2, while keeping it
upper triangular: each time a Givens rotation applied to the left of A2 destroys its
triangular form, another Givens rotation is applied to the right of A2 in order to
restore its triangular form. (The same technique is used, for instance, in keeping

the B matrix upper triangular in the QZ algorithm applied to B−1A.) Let Q
(1)
2

be the product of the Givens rotations applied to the right of A2, then Q
(1)
2 also

has to be applied to the right of A3. Finally, for the column transformation Q
(1)
3 of

A3 eliminating elements 2 to n of its first column, we can again use a Householder
transformation H5 ∈ H(1, n). After this fifth transformation, the resulting triple has
the form

x x x x x

05 x x x x

05 x x x x

05 x x x x

05 x x x x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x

x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x

 ,

which clearly has a first column with only its leading element different from 0. Its
first row can easily be constructed, and we then apply a Householder transformation

Q
(1)
0 ∈ H(2, n) annihilating all but two elements as indicated in (4). This completes

the first stage of the bidiagonalization of A = A3A
−1
2 A1. Subsequent steps are similar

but operate on matrices of decreasing dimensions.
Notice that all transformations Qi and Qi−1 applied to a matrix Ai with in-

dex si = −1 have to be of Givens type, which require more flops than Householder
transformations for the same number of annihilated elements. So the more negative
exponents we have, the more expensive the overall algorithm becomes. Without loss
of generality, we can assume that at most half of the indices are equal to −1, since
otherwise we can compute the SVD of A−1 rather than that of A (all matrices Ai
were assumed to be invertible). The situation with the highest computational com-
plexity is thus when every other index si is negative, since then all transformations

6 GENE GOLUB, KNUT SØLNA, AND PAUL VAN DOOREN

but one have to be of Givens type. Let us analyze the case where K is even and
s2i = −1, s2i−1 = 1, i = 1, . . . , K2 . The preliminary QR reduction of the matrices

A2i requires
4
3n

3K
2 flops and 2n3K

2 flops for also updating the matrices A2i−1 with

these transformations. From there on, each matrix undergoes n(n−1)
2 Givens rotations

on the left and on the right. For the triangular matrices A2i this requires a total of
3n2K

2 flops, whereas for the (originally dense) matrices A2i−1 this requires a total of

5n3K
2 flops. For constructing the required row vectors of A we need (K−1)n3/3 flops

as before. Finally, updating the matrix Q0 via Givens transformations and QK via
Householder transformations requires 2n2 and 3n3 flops, respectively. The worst-case
complexity of the general case is thus 6n3K flops for obtaining the triangular matrices
Ti and 5n3 flops for the outer transformations Q0 and QK . This is about 60% more
than for the product case.

3. Error analysis. In the previous section we showed how to obtain an esti-
mate of a bidiagonal decomposition of the matrix product/quotient. We now turn to
the problem of obtaining accurate estimates of the singular values. This warrants a
discussion of the errors committed in the bidiagonalization step.

The use of Householder and Givens transformations for all operations in the
bidiagonalization step guarantees that the obtained matrices Ti in fact correspond to
slightly perturbed data as follows:

Ti = Q∗
i (Ai + δAi)Qi−1, si = 1, Tj = Q∗

j−1(Aj + δAj)Qj , sj = −1,(6)

where

‖δAi‖ ≤ εcn‖Ai‖ , ‖Q∗
iQi − In‖ ≤ εdn,(7)

with ε the machine precision and cn, dn moderate constants depending on the problem
size n. This is obvious since each element transformed to zero can indeed be put equal
to zero without affecting the ε bound (see [11], [7]).

The situation is different for the elements of A since they are not stored explicitly
in the computer. How does one proceed further to compute the generalized singular
values of A? Once the triangular matrices Ti are obtained, it is easy and cheap to
reconstruct the bidiagonal:

T skK · · ·T s22 · T s11 = B =

q1 e2 o1,3 . . . o1,n

q2 e3
. . .

...
. . .

. . . on−2,n

. . . en
qn

,(8)

and then compute the singular values of the bidiagonal in a standard way. The
diagonal elements qi are indeed just a product of the corresponding diagonal elements
of the Tj matrices, possibly inverted:

qi = tsKKi,i
· · · ts22i,i

· ts11i,i
,

and the off-diagonal elements ei can be computed from the corresponding 2 × 2 di-
agonal blocks (with index i − 1 and i) of the Tj matrices. It is clear that the qi can
be computed in a backward stable way since all errors can be superimposed on the

SVD OF A GENERAL PRODUCT/QUOTIENT 7

diagonal elements tji,i of the matrices Tj . For the errors incurred when computing
the ei one needs a more detailed analysis. We show below that the backward errors
can be superimposed on the off-diagonal elements tji−1,i of Tj without creating any
conflicts with previously constructed backward errors, and we derive bounds for these
backward errors. From the vector recurrence[

e
q

]
:=

[
tji−1,i−1 tji−1,i

0 tji,i

]sj
·
[

e
q

]
(9)

we easily derive the following algorithm used for computing qi and ei for i = 1, . . . , n.
q := 1; e := 0;

for j = 1 : K
if sj = 1, then e := e ∗ tji−1,i−1 + q ∗ tji−1,i ; q := q ∗ tji,i ;

else q := q/tji,i ; e := (e− q ∗ tji−1,i)/tji−1,i−1 ;
end
qi := q; ei := e;

Note that for i = 1 the same recurrence holds without the expressions involving e.
From these recurrences it is clear that the calculation of qi involves one flop per step
j and hence a total of K rounding errors which can be superimposed on the diagonal
elements tji,i :

qi = comp(tsKKi,i
· · · ts11i,i

)

= t
sK
Ki,i
· · · ts11i,i

with tji,i = tji,i(1 + εi,j), |εi,j | < ε
(10)

with comp denoting a floating point operator. For the calculation of ei there are 3
flops per step j and hence a total of 3K roundings which have to be superimposed on
the tji−1,i elements. Fortunately, ej is a sum of K terms which contain each a different
element tji−1,i as a factor. We illustrate this for K = 4 and sj = 1, highlighting the
relevant elements:

ei = comp(t4i−1,i · t3i,i · t2i,i · t1i,i

+ t4i−1,i−1
· t3i−1,i

· t2i,i
· t1i,i

+ t4i−1,i−1
· t3i−1,i−1

· t2i−1,i
· t1i,i

+ t4i−1,i−1 · t3i−1,i−1
· t2i−1,i−1

· t1i−1,i
).

(11)

The 3K rounding errors can thus easily be superimposed on these different elements
tji−1,i , j = 1, . . . ,K. But since we have already superimposed errors on the all-
diagonal elements tji,i we have to add these perturbations here as well. For sj = 1
we thus have

ei = t4i−1,i · t3i,i · t2i,i · t1i,i

+ t4i−1,i−1
· t3i−1,i

· t2i,i
· t1i,i

+ t4i−1,i−1 · t3i−1,i−1 · t2i−1,i · t1i,i

+ t4i−1,i−1 · t3i−1,i−1 · t2i−1,i−1 · t1i−1,i ,

(12)

where (K − 1) additional roundings are induced for each factor. Therefore, we have
tji−1,i = tji−1,i(1 + ηi,j), |ηi,j | < (4K − 1)ε/(1 − (4K − 1)ε). When some of the
sj = −1 the above expression is similar: the tji,i then appear as inverses, some +
signs change to − signs, and an additional factor 1/(tji−1,i−1tji,i) appears in the jth
term if sj = −1. So in the worst case (K + 1) additional roundings are introduced
for each factor and the obtained bound is then |ηi,j | < (4K +1)ε/(1− (4K +1)ε). In
the worst case the errors yield a backward perturbation ‖δTj‖ which is thus bounded

8 GENE GOLUB, KNUT SØLNA, AND PAUL VAN DOOREN

by 5Kε‖Tj‖ and hence much smaller than the errors δAj incurred in the triangu-
larization process. The perturbation effect of computing the elements qi and ei is
thus negligible compared to that of the triangularization. We thus showed that the
computed bidiagonal corresponds exactly to the bidiagonal of the product of slightly
perturbed triangular matrices Tj , that in turn satisfy the bounds (6)–(7). Unfortu-
nately, nothing of the kind can be guaranteed for the elements oi,j in (8), which are
supposed to be zero in exact arithmetic. Notice that the element ei+1 is obtained as
the norm of the vector on which a Householder transformation is applied:

|ei+1| = ‖T sKK (i, i : n)T
sK−1

K−1 (i : n, i : n) · · ·T s11 (i : n, i+ 1 : n)‖,
where we used the MATLAB notation for subarrays: T s11 (i : n, i + 1 : n) is thus the
submatrix of T s11 with row indices i to n and column indices i+ 1 to n. If all si = 1
we can obtain by straightforward perturbation results of matrix vector products, a
bound of the type

|oi,j | ≤ εcn‖TK(i, i : n)‖ · ‖TK−1(i : n, i : n)‖ · · · ‖T1(i : n, i : n)‖.
If not all si = 1 we need to also use perturbation results of solutions of systems of
equations, since we need to evaluate the last n− i components of the vector e∗i T

sK
K (i :

n, i : n)T
sK−1

K−1 (i : n, i : n) · · ·T s11 (i : n, i : n) and this requires a solution of a triangular
system of equations each time a power sj = −1 is encountered. In this case the bound
would become

|oi,j | ≤ εcn‖T sKK (i, i : n)‖ · ‖T sK−1

K−1 (i : n, i : n)‖ · · · ‖T s11 (i : n, i : n)‖κ,
where κ is the product of all condition numbers of the inverted triangular systems
(and hence much larger than 1). These are much weaker bounds than asking the off-
diagonal elements of A to be ε smaller than the ones on the bidiagonal. This would
be the case, e.g., if instead we had

|oi,j | ≤ εcn‖T sKK (i, i : n)T
sK−1

K−1 (i : n, i : n) · · ·T s11 (i : n, i+ 1 : n)‖ = εcn|ei+1|.
Such a bound would guarantee high relative accuracy in the singular values computed
from the bidiagonal only [4]. Hence, this is the kind of result one would hope for.
These two bounds can in fact be very different when significant cancellations occur
between the individual matrices, e.g., if

‖A‖ << ‖AsKK ‖ · · · ‖As22 ‖ · ‖As11 ‖.
One could observe that the bidiagonalization procedure is in fact a Lanczos proce-
dure [6]. Therefore, there is a tendency to find first the dominant directions of the
expression AsKK · · ·As11 and hence also those directions where there is less cancella-
tion between the different factors. We will see in the examples below that such a
phenomenon indeed occurs which is a plausible explanation for the good accuracy
obtained. One way to test the performance of the algorithm in cases with very small
singular values is to generate powers of a symmetric matrix A = SK . The singular
values will be the powers of the absolute values of the eigenvalues of S:

σi(A) = |λi(S)|K ,

and hence will have a large dynamic range. The same should be true for the bidiagonal
of A and the size of the oi,j will then become critical for the accuracy of the singular

SVD OF A GENERAL PRODUCT/QUOTIENT 9

values when computed from the bidiagonal elements qi, ei. This and several other
examples are discussed in the next section. There we observe a very high relative
accuracy even for the smallest singular values. The only explanation we can give
for this is that as the bidiagonalization proceeds, it progressively finds the largest
singular values first and creates submatrices that are of smaller norm. These then
do not really have cancellation between them, but instead the decreasing size of the
bidiagonal elements is the result of decreasing elements in each transformed matrix
Ai. In other words, a grading is created in each of the transformed matrices. We
believe this could be explained by the fact that the bidiagonalization is a Lanczos
procedure and that such grading is often observed there when the matrix has a large
dynamic range of eigenvalues. In practice it is of course always possible to evaluate
bounds for the elements |oi,j | and thereby obtain estimates of the accuracy of the
computed singular values.

The consequence of the above is that the singular values of such sequences can be
computed (or better, “estimated”) at high relative accuracy from the bidiagonal only!
Notice that the bidiagonalization requires 4 to 6Kn3 flops but that the subsequent
SVD of the bidiagonal is essentially free since it is O(n2).

4. Singular vectors and iterative refinement. If one wants the singular
vectors as well as the singular values at a guaranteed accuracy, one can start from the
bidiagonal B as follows. First compute the bidiagonal,

B = Q∗
KAQ0 = T sKK · · ·T s22 · T s11 ,

and then the SVD of B,

B = UΣV ∗,

where we choose the diagonal elements of Σ to be ordered in decreasing order. We
then proceed by propagating the transformation U (or V) and updating each Ti so
that they remain upper triangular. Since the neglected elements oi,j were small, the
new form

Q̂∗
KAQ̂0 = T̂ sKK · · · T̂ s22 · T̂ s11

will be upper triangular, and nearly diagonal. This is the ideal situation to apply one
sweep of Kogbetliantz’s algorithm. Since this algorithm is quadratically convergent
when the diagonal is ordered [2], one sweep should be enough to obtain ε-small off-
diagonal elements.

The complexity of this procedure is as follows. If we use only Givens transforma-
tions, we can keep all matrices upper triangular by a subsequent Givens correction.
Such a pair takes 6n flops per matrix and we need to propagate n2/2 of those. That
means 3n3 per matrix. The cost of one Kogbetliantz sweep is exactly the same since
we propagate the same amount of Givens rotations. We therefore arrive at the fol-
lowing total count for our algorithm:

4 to 6Kn3 for triangularizing Ai → Ti,
4 to 5n3 for constructing QK and Q0,
8n3 for computing U and V ,
3Kn3 for updating Ti → T̂i,
3Kn3 for one last Kogbetliantz sweep.

The total amount of flops after the bidiagonalization is thus comparable to applying 2
Kogbetliantz sweeps, whereas the Jacobi-like methods typically require 5 to 10 sweeps!

10 GENE GOLUB, KNUT SØLNA, AND PAUL VAN DOOREN

Moreover, our method allows us to select a few singular values and only compute the
corresponding singular vectors. The matrices QK and Q0 can be stored in factored
form and inverse iteration performed on B to find its selected singular vector pairs
and then transformed back to pairs of A using QK and Q0.

5. Numerical examples. Computing the SVD of a general product/quotient
of matrices is, as suggested above, a delicate numerical problem. In this section we
analyze the accuracy of the QR-like algorithm described in this paper using several
examples of varying degree of difficulty. The examples are chosen in order to illustrate
the following points already discussed in the paper.

(a) Implicit methods are more reliable than explicit methods. This is of course
well known, but we illustrate it with some striking examples.

(b) The bidiagonal computed by the QR-like method yields singular values com-
puted to high relative accuracy even when their dynamical range is very large.

(c) The bidiagonal has a typical “graded” structure when the singular values
have a wide dynamical range and its “off-bidiagonal” elements are negligible
with respect to the bidiagonal elements in the same row. This is due to its
connection to the Lanczos procedure as discussed earlier.

(d) The connection with the Lanczos procedure also allows us to terminate the
bidiagonalization early and yet has a good estimate of the dominant singular
values.

Points (a)–(d) illustrate the good (relative) accuracy that can be obtained from this
procedure even without using iterative refinement based on Kogbetliantz’s algorithm.
The following points now compare the QR-like and Kogbetliantz approaches.

(e) The bidiagonalization and Kogbetliantz methods have comparable accuracy
in “difficult” examples with strong cancellation in the product.

(f) The typical number of Kogbetliantz steps (6 to 10) needed for convergence
yields a much slower method than mere bidiagonalization. Moreover, the
results are comparable, even when the Kogbetliantz iteration is continued
further.

(g) The accuracy obtained from the bidiagonal only is already better on average
than that of Kogbetliantz.

Finally, we illustrate that good (relative) accuracy is obtained also for a matrix quo-
tient.

(h) The accuracy obtained by bidiagonalization of a matrix quotient is high, even
when compared to the accuracy obtained if the inverted factors are explicitly
known.

These points illustrate the power of this QR-like method. Note that in all examples
we use only the basic part of the algorithm without the iterative refinement step. All
calculations were carried out in MATLAB on a Silicon Graphics Indigo workstation
with IEEE floating point standard. For computing the singular values of the computed
bidiagonal we use the method due to Fernando and Parlett [5].

(a) Implicit versus explicit. Let us consider the following products:

A1[n,m] = Tmn ,

where Tn is a n×n symmetric Toeplitz matrix whose first column is [2,−1, 0, 0, . . . , 0]
(singular values and singular vectors of such matrices are known [8]). Since it contains
only integers we can form these powers of Tn without any rounding errors, which is
important for our comparison. The accuracy obtained by computing the SVD of this
explicitly formed product is displayed in Figure 1. The interpretation of the figure is

SVD OF A GENERAL PRODUCT/QUOTIENT 11

10
–40

10
–20

10
0

10
20

10
–20

10
0

10
20

10
40

singular value

re
la

tiv
e

er
ro

r

a: Accuracy singular values.

10
–40

10
–20

10
0

10
20

10
–20

10
–15

10
–10

10
–5

10
0

singular value

m
ax

 a
bs

 e
rr

or

b: Accuracy singular vectors.

10
–20

10
–10

10
0

10
10

10
–20

10
–10

10
0

10
10

singular value

re
la

tiv
e

er
ro

r

c: Accuracy singular value.

10
–20

10
–10

10
0

10
10

10
– 20

10
–15

10
–10

10
–5

10
0

singular value

m
ax

 a
bs

 e
rr

or

d: Accuracy singular vectors.

Fig. 1. The relative accuracy obtained by computing the SVD for the explicitly formed product
of Toeplitz matrices. In (a) and (b) solid, dashed, and dotted lines correspond to A1[n,m] for n = 10
and m ∈ {8, 16, 32}; in (c) and (d), n ∈ {10, 20, 40} and m = 8. The lines interpolate the relative
accuracies for the different singular values.

as follows. Figures 1(a) and 1(b) correspond to n = 10 and m ∈ {8, 16, 32}, whereas
Figures 1(c) and 1(d) correspond to n ∈ {10, 20, 40} andm = 8. The associated results
are indicated by the solid, dashed, and dotted lines, respectively. Notice that each line
corresponds to a different range of singular values as expected for matrices Tmn with
different values of m and n. In Figures 1(a) and 1(c) we plot the relative accuracy of
the singular values as a function of the actual magnitude of the singular value. The
lines interpolate the observed relative accuracies, that is, the values |σi − σ̂i|/σi. In
Figures 1(b) and 1(d) we plot the maximum absolute error in the left singular vector
elements, that is, maxj [|uji − ûji|], with uji being the elements of the ith singular
vector, also as a function of the magnitude of the corresponding singular value. From
the figure it is clear that the relative accuracy of the computed decomposition is
quickly lost as we form powers of the matrix. Moreover, the situation is aggravated
as we increase the dimension, and hence the condition number, of the matrix. The
explanation lies of course in the fact that roundoff errors in a matrix A are typically
proportional to ε||A||. For the product A1[n,m] this tends to have a catastrophic effect
on the accuracy of the smallest singular values since they are smaller than ε||A1||.

Let us now use the QR-like SVD algorithm. The result is shown in Figure 2 and
illustrates that we have obtained a relative accuracy which is essentially independent
of the magnitude of the associated singular value. This shows the need for implicit
methods.

(b) Relative accuracy of implicit methods. A nonsymmetric example along the
same vein is given in Figure 3. The interpretation of the figure is as for Figure 2, but
now we consider the product

12 GENE GOLUB, KNUT SØLNA, AND PAUL VAN DOOREN

10
–40

10
–20

10
0

10
20

10
–16

10
–15

10
–14

10
–13

singular value

re
la

tiv
e

er
ro

r
a: Accuracy singular value.

10
–40

10
–20

10
0

10
20

10
–16

10
–15

10
–14

singular value

m
ax

 a
bs

 e
rr

or

b: Accuracy singular vector.

10
–20

10
–10

10
0

10
10

10
–16

10
–15

10
–14

10
–13

10
–12

singular value

re
la

tiv
e

er
ro

r

c: Accuracy singular value.

10
–20

10
–10

10
0

10
10

10
–16

10
–15

10
–14

10
–13

singular value

m
ax

 a
bs

 e
rr

or

d: Accuracy singular vector.

Fig. 2. Relative accuracy of the SVD estimate obtained by the QR-like algorithm for the product
of Toeplitz matrices. In (a) and (b) solid, dashed, and dotted lines correspond to A1[n,m] for n = 10
and m ∈ {8, 16, 32}; in (c) and (d), n ∈ {10, 20, 40} and m = 8. Note that also the smallest singular
values are computed with high relative accuracy.

10
–50

10
0

10
–16

10
–15

10
–14

10
–13

singular value

re
la

tiv
e

er
ro

r

a: Accuracy singular value.

10
–50

10
0

10
–16

10
–15

10
–14

10
–13

singular value

m
ax

 a
bs

 e
rr

or

b: Accuracy singular vector.

10
–60

10
–40

10
–20

10
0

10
–16

10
–15

10
–14

10
–13

10
–12

singular value

re
la

tiv
e

er
ro

r

c: Accuracy singular value.

10
–60

10
–40

10
–20

10
0

10
–16

10
–15

10
–14

10
–13

10
–12

singular value

m
ax

 a
bs

 e
rr

or

d: Accuracy singular vectors.

Fig. 3. Relative accuracy of the SVD estimate obtained by the QR-like algorithm for the product
of nonsymmetric matrices. In (a) and (b) solid, dashed, and dotted lines correspond to A2[n,m] for
n = 10 and m ∈ {8, 16, 32}; in (c) and (d), n ∈ {10, 20, 40} and m = 8.

SVD OF A GENERAL PRODUCT/QUOTIENT 13

0 5 10 15 20
10

–30

10
–20

10
–10

10
0

10
10

bidiagonal row

co
ef

fic
ie

nt
 m

ag
ni

tu
de

a: Magnitude bidiagonal.

0 5 10 15 20
10

–60

10
–50

10
–40

10
–30

10
–20

10
–10

10
0

bidiagonal row

co
ef

fic
ie

nt
 m

ag
ni

tu
de

b: Magnitude bidiagonal.

Fig. 4. Grading in the bidiagonal decomposition computed by the QR-like algorithm. Figure
(a) corresponds to A1[20, 16] and (b) to A2[20, 16]. The ∗’s show the magnitude of the diagonal
coefficients, the o’s the magnitude of the upper bidiagonal coefficients.

A2[n,m] = (Dn D∗
n)
m.

Thus, there are 2m matrices in the matrix product. The matrix Dn is obtained by
explicitly forming

Dn ≡ Un Σn V ∗
n ,(13)

where the matrices Un and Vn are randomly chosen orthogonal matrices. They are
defined by the singular vectors of a matrix with independent mean zero unit variance
Gaussian entries. Furthermore, Σn is the leading part of a 10k× 10k diagonal matrix
with diagonal equal to the Kronecker product:

[10, 9.9, 9, 8, 7, 6, 5, 4, 3, 2]⊗ [10−1, 10−2, . . . , 10−k].

The motivation for choosing the product in this way is that we obtain an example in
which the matrices involved are nonsymmetric and for which we “know” the actual
singular values and can examine the obtained relative accuracy. The result is much as
above. Using the implicit procedure for computing the singular values returns singular
values whose relative accuracies are rather insensitive to the actual magnitude of the
corresponding singular value.

(c) Graded bidiagonal. That the merits of the algorithm can be understood in
terms of the Lanczos connection is confirmed by the next example explained in Figure
4. Here we have plotted the magnitude of the coefficients of the computed bidiagonal
for the products A1[20, 16] and A2[20, 16], respectively, in Figures 4(a) and 4(b). The
∗’s show the absolute values of the diagonal coefficients and the o’s the absolute values
of the upper bidiagonal coefficients in the computed bidiagonal. We see that in both
cases a grading has indeed been obtained. The algorithm picks out the dominant
directions first, leading to a grading in the computed decomposition. The “effective
condition number” of remaining subproblems are therefore successively reduced, and
the associated singular values can apparently be obtained with high relative accuracy.

The high accuracy obtained above suggests that the “off-bidiagonal” elements in
the transformed product are indeed small relative to the bidiagonal. This is confirmed
by the next figure. In Figure 5 we plot, indicated by ∗, the norm of the off-bidiagonal
elements normalized by the norm of the bidiagonal elements. That is, after the trans-
formation to upper triangular form we explicitly form the product of the matrices in
the product and compute for each row j, ||oj,(j+2):n||/||oj,j:(j+1)||, with oi,j being the

14 GENE GOLUB, KNUT SØLNA, AND PAUL VAN DOOREN

0 5 10 15 20
10

–17

10
–16

10
–15

10
–14

10
–13

10
–12

singular value/row #

re
la

tiv
e

er
ro

r

a: Accuracy bidiagonal.

0 5 10 15 20
10

–17

10
–16

10
–15

10
–14

10
–13

singular value/row #

re
la

tiv
e

er
ro

r

b: Accuracy bidiagonal.

Fig. 5. Relative accuracies of the bidiagonal elements (∗) and of the computed singular values
(o). Figure (a) corresponds to A1[20, 16] and (b) to A2[20, 16].

0 10 20 30
10

–20

10
–15

10
–10

10
–5

10
0

iteration

re
la

tiv
e

ac
cu

ra
cy

a: Accuracy singular value.

0 10 20 30
10

–15

10
–10

10
–5

10
0

iteration

re
la

tiv
e

ac
cu

ra
cy

b: Accuracy singular value.

Fig. 6. Accuracy of estimate of dominant singular value obtained from leading part of computed
bidiagonal. The accuracy is plotted as a function of the dimension of the leading submatrix. Figure
(a) corresponds to A1[80, 16] and (b) to A2[80, 16].

elements in the computed product. In exact arithmetic this quantity should be zero.
The o’s in the figure are the relative accuracies in the computed singular values. Note
that the grading and relative smallness of the off-bidiagonal elements make it possible
to compute even the smallest singular values with high relative accuracy.

(d) Dominant singular value. A consequence of the Lanczos connection is fur-
thermore that we can obtain good estimates for the dominant singular values of the
product without computing the full bidiagonal. This is illustrated in Figure 6. Here
we plot the estimate of the dominant singular value we obtain by computing the corre-
sponding singular value for the leading parts of the computed bidiagonal, B̂(1 : i, 1 : i).
We plot the relative accuracy of this estimate as a function of i in Figures 6(a) and
6(b), corresponding to the products A1[80, 16] and A2[80, 16], respectively. The plots
show that we need compute only a part of the bidiagonal in order to obtain a good
estimate of the dominant singular value.

(e) Examples with strong cancellation. Here we consider examples with a sig-
nificant cancellation in the product. That is, a subsequence of the matrices in the
product is associated with a large dynamic range relative to that of the product whose
associated singular values might be only mildly, or not at all, graded. The following
example illustrates this:

A3[10,m] = Dm
10 D−m

10 ,

A4[10,m] = (D10 D−1
10)

m,

SVD OF A GENERAL PRODUCT/QUOTIENT 15

10
0

10
50

10
100

10
–15

10
–10

10
–5

10
0

product condition number

m
ax

 r
el

at
iv

e
er

ro
r

a: Accuracy singular value.

10
0

10
50

10
–15

10
–10

10
–5

10
0

product condition number

m
ax

 r
el

at
iv

e
er

ro
r

b: Accuracy singular value.

10
0

10
50

10
100

10
–15

10
14

10
–13

10
–12

product condition number

m
ax

 r
el

at
iv

e
er

ro
r

c: Accuracy singular value.

10
0

10
50

10
–14

10
–13

10
–12

product condition number

m
ax

 r
el

at
iv

e
er

ro
r

d: Accuracy singular value.

Fig. 7. The figure compares the accuracy of the computed SVD using, respectively, the QR-like
(∗) and the Kogbetliantz (o) algorithms. The considered matrix products exhibit strong cancellation.
Figures (a) and (b) correspond to A3[n,m] and (c) and (d) to A4[n,m]. In (a) and (c), n = 10
and m ∈ {2, 4, 8, 16, 32, 64}; in (b) and (d), n ∈ {10, 14, 18, 22, 26, 30} and m = 8. The QR-
like algorithm provides accurate singular value estimates at a lower computational cost than the
Kogbetliantz algorithm.

with D10 defined as in (13). Note that in this example we compute D−1
10 explicitly and

use the product form of the algorithm. In Figure 7 subplots (a) and (b) correspond
to A3 and (c) and (d) to A4. For the various product sizes we plot the maximum
relative error over the computed singular values. We do so as a function of the
“product condition number,” defined as the product of the condition numbers of the
matrices involved, in this case κ2m

D . In Figures 7(a) and 7(c) we let n = 10 and m ∈
{2, 4, 8, 16, 32, 64}, whereas in Figures 7(b) and 7(d) we let n ∈ {10, 14, 18, 22, 26, 30}
and m = 8. Note that for both of the above matrix products the product condition
number is much larger than its actual condition number. Figures 7(a) and 7(b)
show that for the matrix products which are associated with a significant cancellation
there is a loss in relative accuracy. The o’s in the plot correspond to computing the
decomposition by the Kogbetliantz algorithm, fixing the number of sweeps to 12 to
avoid issues of convergence tests. Note that the accuracy obtained thereby is not much
better than that obtained by the bidiagonalization part of the QR-like algorithm, that
is, without iterative refinement.

(f) Convergence and complexity. We next turn to the special but important
case when m = 2 and compare the performance of the algorithm with that of the
Kogbetliantz algorithm. In Figures 8(a) and 8(b) we consider the product A2[40, 1].
The dashed lines correspond to the relative accuracy obtained by 2, 4, 6, and 10 sweeps
of the Kogbetliantz algorithm. The relatively slow convergence of some singular values
corresponds to those being closely spaced. Note that even 10 sweeps of Kogbetliantz’s
algorithm do not return an approximation with accuracy beyond that obtained by the

16 GENE GOLUB, KNUT SØLNA, AND PAUL VAN DOOREN

10
–10

10
–5

10
0

10
–20

10
–15

10
–10

10
–5

10
0

singular value

re
la

tiv
e

er
ro

r

a: Accuracy singular values.

10
–10

10
–5

10
0

10
–20

10
–15

10
–10

10
–5

10
0

singular value

m
ax

 a
bs

 e
rr

or

b: Accuracy singular vector.

Fig. 8. Convergence of Kogbetliantz algorithm when computing the SVD of the pair of matrices
defined by A2[40, 1]. The accuracies after 2, 4, 6, and 10 sweeps are shown. The bottom solid line
shows the accuracy obtained with the QR-like algorithm without iterative refinement.

20 40 60 80
10

–1

10
0

10
1

10
2

matrix dimension

er
ro

r
ra

tio

a: Accuracy singular values.

20 40 60 80
10

–1

10
0

10
1

matrix dimension

er
ro

r
ra

tio
b: Accuracy singular vectors.

Fig. 9. Comparison of accuracy of the computed SVD obtained, respectively, by the QR-like
and the Kogbetliantz algorithms for the square of a collection of random matrices. For each matrix
realization the cross is the maximum relative error with the Kogbetliantz algorithm over the maximum
relative error for the QR-like algorithm.

QR-like SVD algorithm without iterative refinement as shown by the solid line.
(g) Comparison of accuracy. The two plots in Figure 9 are obtained as follows.

We consider the products defined by

A5[n, 2] = Nn N∗
n

with Nn being an n×n random matrix whose coefficients are normally distributed and
with n ∈ {20, 40, 60, 80}. The SVD was first computed (via MATLAB) and we then
reconstructed Nn from this SVD. Hence it is reasonable to assume that the singular
values of Nn and A5[n, 2] are known “exactly.” Let σ̂i and σ̃i represent the estimates
of the singular values associated with, respectively, the QR-like and the Kogbetliantz
algorithms. In the latter case we used 10 sweeps, whereas in the former we did
not include iterative refinement. Similarly let ûij and ũij represent the coefficients
in the left singular vectors. We then plot the ratio maxi[|σi − σ̃i|/σi]/maxi[|σi −
σ̂i|/σi] in Figure 9(a) and the ratio maxij [|uij − ũij |]/maxij [|uij − ûij |] in Figure
9(b). The +’s correspond to different realizations of the matrix Nn. We see that the
QR-like algorithm typically yields a more accurate approximation despite its lower
computational cost.

(h) Example with matrix quotients. In this last example we compute the SVD
of matrix quotients involving inverted matrices. As described above, we then have

SVD OF A GENERAL PRODUCT/QUOTIENT 17

10
0

10
50

10
–15

10
–14

10
–13

condition number

m
ax

 r
el

at
iv

e
er

ro
r

a: Accuracy singular value.

10
10

10
20

10
30

10
40

10
–15

10
–14

10
–13

condition number

m
ax

 r
el

at
iv

e
er

ro
r

b: Accuracy singular value.

10
0

10
50

10
–15

10
–14

10
–13

condition number

m
ax

 r
el

at
iv

e
er

ro
r

c: Accuracy singular value.

10
10

10
20

10
30

10
40

10
–15

10
–14

10
–13

condition number

m
ax

 r
el

at
iv

e
er

ro
r

d: Accuracy singular value.

Fig. 10. The figure compares the accuracy of the computed SVD when the QR-like algorithm
based on, respectively, the quotient representation (+) and the product representation (∗) of the
matrix is being used. Figures (a) and (b) correspond to A6[n,m] and (c) and (d) to A7[n,m]. In
(a) and (c), n = 10 and m ∈ {2, 4, 8, 16, 32} and in (b) and (d), n ∈ {10, 14, 18, 22, 26} and m = 8.
Note that the accuracy obtained from the quotient representation is similar to the accuracy obtained
from the product representation.

to carry out an initial step in the bidiagonalization where the QR factorizations of
the inverted matrices are computed. We construct the matrix quotients such that we
explicitly can compute the inverses and compare the accuracy of the product version of
the algorithm, based on these explicitly computed inverses, with the quotient version.

First, define the matrix quotient A6:

A6[n,m] = A−1
1 A−1

2 · · ·A−1
m Am+1Am+2 · · ·A2m,

where

Ai = Q(i)
n Σ−1

n Q(i−1)∗
n ,

Am+i = Q(m+i−1)
n ΣnQ

(m+i)∗
n

for 1 ≤ i ≤ m and with Σn defined as in (13). Moreover, the Q
(i)
n are independent

random orthogonal n×n matrices. As above these are defined by the singular vectors
of a matrix with independent mean zero unit variance Gaussian entries.

Second, define the matrix quotient A7:

A7[n,m] = A−1
1 A2A

−1
3 · · ·A2m−2A

−1
2m−1A2m

with

A2i−1 = Q(2i−1)
n Σ−1

n Q(2i−2)∗
n ,

A2i = Q(2i−1)
n ΣnQ

(2i)∗
n

18 GENE GOLUB, KNUT SØLNA, AND PAUL VAN DOOREN

10
0

10
50

10
100

10
–15

10
–10

10
–5

10
0

product condition number

m
ax

 r
el

at
iv

e
er

ro
r

a: Accuracy singular value.

10
0

10
50

10
–15

10
–10

10
–5

10
0

product condition number

m
ax

 r
el

at
iv

e
er

ro
r

b: Accuracy singular value.

10
0

10
50

10
100

10
–15

10
–14

10
–13

10
–12

product condition number

m
ax

 r
el

at
iv

e
er

ro
r

c: Accuracy singular value.

10
0

10
50

10
–15

10
–14

10
–13

10
–12

product condition number

m
ax

 r
el

at
iv

e
er

ro
r

d: Accuracy singular value.

Fig. 11. The figure compares the accuracy of the computed SVD when the QR-like algorithm
based on, respectively, the quotient representation (+) and the product representation (∗) of the
matrix is being used. The considered matrix quotients exhibit strong cancellation. Figures (a)
and (b) correspond to A3[n,m] and (c) and (d) to A4[n,m]. In (a) and (c), n = 10 and m ∈
{2, 4, 8, 16, 32, 64} and in (b) and (d), n ∈ {10, 14, 18, 22, 26, 30} and m = 8.

for 1 ≤ i ≤ m and with Σn and Q
(i)
n defined as above. Note that these quotients are

associated with a large dynamic range.

The resulting relative accuracy obtained when varying the matrix dimension and
the number of matrices in the quotient is shown in Figure 10. Figures 10(a) and
10(b) correspond to the quotient A6 and Figures 10(c) and 10(d) correspond to the
quotient A7. In Figures 10(a) and 10(c), n = 10 and m ∈ {2, 4, 8, 16, 32}, whereas
in Figures 10(b) and 10(d), n ∈ {10, 14, 18, 22, 26} and m = 8. The +’s show the
accuracy obtained with the QR-like algorithm based on the quotient and without
iterative refinement. The ∗’s show the accuracy obtained with the product form of
the QR-like algorithm without iterative refinement; note that in this case the inverses
are explicitly computed. We see that the relative accuracy obtained when we do not
assume knowledge of the inverses is comparable to, or even somewhat better than,
the accuracy obtained if these are known!

Finally, reconsider the matrices of example (e) that exhibit strong cancellation.
We compute as above the decomposition based on both the product form and the
quotient form. The result is shown in Figure 11. Figures 11(a) and 11(b) correspond
to the quotient A3 and Figures 11(c) and 11(d) correspond to the quotient A4. In
Figures 11(a) and 11(c), n = 10 and m ∈ {2, 4, 8, 16, 32, 64}, whereas in Figures 11(b)
and 11(d), n ∈ {10, 14, 18, 22, 26, 30} and m = 8. The figure shows that computation
based on the quotient form gives a relative accuracy that is in general somewhat
better than the accuracy based on the product form, at the cost of a slightly higher
flop count.

SVD OF A GENERAL PRODUCT/QUOTIENT 19

6. Concluding remarks. The algorithm presented in this paper nicely comple-
ments the unitary decompositions for sequences of matrices defined for the general-
ized QR [3] and Schur decompositions [1]. These decompositions find applications in
sequences of matrices defined from discretizations of ordinary differential equations
occurring, for instance, in 2-point boundary value problems [9] or control problems
[1]. We expect that they will lead to powerful tools for analyzing as well as solving
problems in these application areas.

We want to stress here that in all examples it turned out to be sufficient to
compute the bidiagonal B of the expression AsK · · ·As1 and then the singular values
of B, without any further iterative refinement. This is rather surprising. The bounds
obtained on the accuracy of the bidiagonal are much worse than what was observed
in the examples. This point and the connection to the Lanczos process need further
analysis. That we get accurate approximations for the leading order bidiagonals might
be useful when solving ill-posed or inverse problems.

The main advantage of the new method lies exactly in the fact that this bidiagonal
is so accurate. If no iterative refinement is needed, then the method requires 5 to 10
times less flops than Kogbetliantz! If iterative refinement is needed, then the method
should still be superior since the work then amounts essentially to the work of two
Kogbetliantz steps.

Finally, we point out that there is recent work on computing singular values to
high relative accuracy via the Kogbetliantz algorithm. This work is based on extract-
ing particular scalings from the factors. So far this has been applied to problems
involving three factors only. Extensions to several matrices and whether these meth-
ods perhaps could be combined with the bidiagonal approach in an advantageous way
are still open problems. Those methods and the ideas developed in this paper are, we
believe, related. In both methods grading in the factors, obtained either explicitly or
implicitly, is important.

REFERENCES

[1] A. Bojanczyk, G. Golub, and P. Van Dooren, The periodic Schur form. Algorithms and
applications, in Proceedings of the SPIE Conference, San Diego, CA, 1992, pp. 31–42.

[2] J. P. Charlier and P. Van Dooren, On Kogbetliantz’s SVD algorithm in the presence of
clusters, Linear Algebra Appl., 95 (1987), pp. 135–160.

[3] B. De Moor and P. Van Dooren, Generalizations of the singular value and QR decomposi-
tion, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 993–1014.

[4] J. Demmel, M. Gu, S. Eisenstat, I. Slapnicar, and K. Veselic, Computing the singular
value decomposition with high relative accuracy, Linear Algebra Appl., submitted.

[5] K. V. Fernando and B. N. Parlett, Accurate singular values and differential qd algorithms,
Numer. Math., 67 (1994), pp. 191–229.

[6] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
SIAM J. Numer. Anal., 2 (1965), pp. 205–224.

[7] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[8] R. Gregory and D. Karney, A Collection of Matrices for Testing Computational Algorithms,
Wiley-Interscience, New York, 1969.

[9] R. M. Mattheij and S. J. Wright, Parallel stabilized compactification for ODEs with param-
eters and multipoint conditions, Appl. Numer. Math., 13 (1993), pp. 305–333.

[10] C. B. Moler and G. W. Stewart, An algorithm for the generalized matrix eigenvalue problem,
SIAM J. Numer. Anal., 10 (1973), pp. 241–256.

[11] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

CONVERGENCE OF NESTED ITERATIVE METHODS FOR
SYMMETRIC P-REGULAR SPLITTINGS∗

ZHI-HAO CAO†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 20–32

Abstract. We study the convergence of nested iterative methods and present conditions on the
splittings corresponding to the iterative methods to guarantee convergence for any number of the
inner iterations. In contrast to Lanzkron, Rose, and Szyld [Numer. Math., 58 (1991), pp. 685–702],
Frommer and Szyld [Numer. Math., 63 (1992), pp. 345–356; Numer. Math., 69 (1994), pp. 141–
153], and Cao [Math. Numer. Sinica, 17 (1995), pp. 98–109; Linear Algebra Appl., 22 (1995), pp.
159–170], in which the coefficient matrices are either of monotone matrices or of H-matrices and the
splittings they set relate to regular and weak regular ones, the coefficient matrices considered in this
paper are symmetric positive definite and the splittings we set relate to P-regular ones.

Key words. solution of linear systems, iterative methods, splittings, P-regular splitting, sym-
metric positive definite

AMS subject classifications. 65F10, 65F15

PII. S0895479897331229

1. Introduction. Consider the iterative solution of a large linear system of equa-
tions

Ax = b(1.1)

on parallel computers, where A is an n× n nonsingular matrix. Lanzkron, Rose, and
Szyld [5] (see also Cao [1, 2], Frommer and Szyld [3, 4]) studied the convergence of
nested iterative methods for solving (1.1). The conditions they presented on the corre-
sponding splittings to guarantee convergence are related to regular and weak regular
splittings. As a result, they have implicitly assumed that the matrix A in (1.1) is
either a monotone matrix (i.e., A−1 ≥ 0) or an H-matrix. Their proofs are based on
the theory of nonnegative matrices. In this paper, we assume the matrix A in (1.1)
is symmetric positive definite (s.p.d.). The conditions we will assume on the corre-
sponding splittings to guarantee convergence are related to P-regular splittings. Our
proofs are based on properties of s.p.d. matrices. Recently, Migallón and Penadés [6]
also considered the convergence of two-stage iterative methods for Hermitian positive
definite matrices based on P-regular splittings.

Let us partition the s.p.d. matrix A in (1.1) into q × q blocks

A =

A11 A12 · · · A1q

A21 A22 · · · A2q

...
...

. . .
...

Aq1 Aq2 · · · Aqq

(1.2)

with diagonal blocks Aii being square of order ni, i = 1, . . . , q, and
∑q
i=1 ni = n.

Parallel computation makes block Jacobi type methods particular attractive. In such

∗Received by the editors December 5, 1997; accepted for publication (in revised form) by M.
Eiermann June 4, 1999; published electronically May 31, 2000.

http://www.siam.org/journals/simax/22-1/33122.html
†Department of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China

(zcao@fudan.edu.cn). This work was supported by China State Major Key Project for basic re-
search, the Experimental Foundation of Laboratory of Computational Physics, and the Doctoral
Point Foundation of China.

20

SYMMETRIC P-REGULAR SPLITTINGS 21

methods, a splitting A = M − N of A is used, where M is block diagonal, denoted
by M = diag(Mi), with the blocks Mi being nonsingular of order ni, i = 1, . . . , q.
The vectors x, b and other intermediate vectors are partitioned in a way consistent
with (1.2). If splittings Mi = Fi −Gi, i = 1, . . . , q, are used, then the block two-stage
iterative method is the following (cf. [4]).

Algorithm 1.1 (block two-stage).

Given an initial vector x0 = [x
(1)T

0 , . . . , x
(q)T

0]T

for k = 1, 2, . . . ,
for i = 1, . . . , q,

y
(i)
0 = x

(i)
k−1,

for j = 1, . . . , pk,i,

Fiy
(i)
j = Giy

(i)
j−1 + (Nxk−1 + b)(i),

x
(i)
k = y

(i)
pk,i ,

where positive integers pk,i, k = 1, 2, . . . , i = 1, . . . , q, are the numbers of inner itera-
tions, which may depend on k and i.

If q = 1 and pk,i = p for all k, then Algorithm 1.1 is called a (stationary) two-stage
iterative method; if q = 1, and pk,i = pk, then Algorithm 1.1 is called a nonstationary
two-stage iterative method.

2. Preliminaries. We begin with some basic notation and preliminary results
which we refer to later.

A matrix A ∈ Cn,n is called positive definite if for all x ∈ Cn, x �= 0, one has
Re(xHAx) > 0. Obviously, if A ∈ Rn,n, then A is positive definite if and only if
xTAx > 0 for all x ∈ Rn, x �= 0. We will use the notation A 	 0(A
 0) for a matrix
A to be either Hermitian or symmetric positive (semi-) definite (cf. [7]).

A representation A = M − N is called a splitting of A if M is nonsingular. A
splitting A = M − N is called convergent if ρ(M−1N) < 1; here ρ(Q) denotes the
spectral radius of a matrix Q. Ortega [8] called a splitting A = M − N P -regular if
M +N is positive definite.

Lemma 2.1 (see [5]). Given a nonsingular matrix A ∈ Rn,n and H ∈ Rn,n
such that I −H is nonsingular, there exists a unique pair of matrices F,G, such that
H = F−1G and A = F −G, where F is nonsingular.

In context of this lemma, we say that the iterative matrix H induces the splitting
A = F −G.

Lemma 2.2 (see [9]). Let A ∈ Rn,n be symmetric and let A = M − N be a
P-regular splitting of A. Then ρ(M−1N) < 1 if and only if A is s.p.d. (i.e., A 	 0).

Lemma 2.3 (see [7]). Let A ∈ Cn,n be positive definite, and let A = M −N be a
P-regular splitting of A. Then M is positive definite.

Lemma 2.4 (see [7]). Let A 	 0, and let (M1, N1), (M2, N2) be two splittings of
A. If 0 � N1 � N2, then

ρ(M−1
1 N1) ≤ ρ(M−1

2 N2) < 1.

3. Convergence of (stationary and nonstationary) two-stage and nested
iterations. We first consider stationary two-stage methods. The convergence results
for these methods are used later to analyze nested iterative methods, nonstation-
ary two-stage iterative methods, and in the next section, to analyze block two-stage
iterative methods.

22 ZHI-HAO CAO

In the case q = 1 and pk,i = p for all k, we have A = M − N and M = F − G;
Algorithm 1.1 is simplified to the following algorithm.

Algorithm 3.1 (stationary two-stage).

Given an initial vector x0,
for k = 1, 2, . . . ,

y0 = xk−1,
for j = 1, . . . , p,

Fyj = Gyj−1 +Nxk−1 + b,
xk = yp,

where the positive integer p is the number of inner iterations. From the algorithm
above, we have

xk = (F−1G)pxk−1 +

p−1∑
j=0

(F−1G)jF−1(Nxk−1 + b)

= Hpxk−1 + (I −Hp)(I −H)−1F−1(Nxk−1 + b),

(3.1)

where H = F−1G, and we have assumed I −H is nonsingular. If we assume I −Hp

is also nonsingular and use Lemma 2.1 to derive a pair of matrices B,C such that
B−1C = (F−1G)p ≡ Hp and M = B − C, then it is easy to show that

B = F (I −H)(I −Hp)−1, C = F (I −H)(I −Hp)−1Hp.(3.2)

From (3.1) and (3.2) we obtain the total (i.e., two-stage) iterative matrix of Al-
gorithm 3.1,

Tp = Hp + (I −Hp)(I −H)−1F−1N

= Hp +B−1N = B−1(C +N).
(3.3)

Then it is easy to show, by using Lemma 2.1, that the (unique) pair of matrices
MTp and NTp induced by the two-stage iterative matrix Tp on A are

MTp = B, NTp = C +N.(3.4)

Theorem 3.1. Let A be s.p.d., i.e., A 	 0, let A = M − N be a symmetric
P-regular splitting, and let M = F −G be a symmetric convergent splitting; then the
two-stage iterative method converges (i.e., ρ(Tp) < 1), provided the inner iteration
number p is even. Moreover, A = MTp −NTp is a symmetric P-regular splitting.

Proof. Since A 	 0, and A = M −N is a symmetric P-regular splitting, we have

M +N 	 0(3.5)

and Lemma 2.3 implies M is s.p.d. (i.e., M 	 0). Since ρ(H) ≡ ρ(F−1G) < 1, the
matrix I −Hp is nonsingular. Thus matrices B and C in (3.2) induced by matrix Hp

are well defined. We rewrite matrix B as

B = F (I − F−1G)(I − (F−1G)p)−1

= F (I − F−1G)

∞∑
j=0

(F−1G)pj = M(I −Hp)−1,
(3.6)

and from (3.6) we can see that B and hence C are symmetric.

SYMMETRIC P-REGULAR SPLITTINGS 23

We now consider MTp
+NTp

:

MTp +NTp = B + C +N = B +BHp +N

which is also symmetric. From (3.6) we have

MTp +NTp
= B(I +Hp) +N

= M
∞∑
j=0

(Hp)j(I +Hp) +N

= 2M

∞∑
j=1

Hpj +M +N.

(3.7)

Note that p is even and we have, for j = 1, 2, . . . ,

MHpj = (F −G)(F−1G)pj = G(F−1G)pj−1 −G(F−1G)pj

= G(F−1G)
pj
2 −1F−1G(F−1G)

pj
2 −1

− G(F−1G)
pj
2 −1F−1GF−1G(F−1G)

pj
2 −1

= G(F−1G)
pj
2 −1(F−1 − F−1GF−1)G(F−1G)

pj
2 −1

= (GF−1)
pj
2 M(F−1G)

pj
2 .

(3.8)

(3.8) implies, for all positive integers j, MHpj is symmetric positive semidefinite,
i.e., MHpj
 0. From (3.5) and (3.7) we have shown that MTp + NTp 	 0, i.e.,
A = MTp −NTp is a symmetric P-regular splitting of the s.p.d. matrix A. Lemma 2.2
implies ρ(Tp) < 1. Thus the proof is completed.

The assumption that the inner iteration number p is even is important. Otherwise,
even though we assume that M = F − G is a symmetric P-regular splitting, the
resulting two-stage iterative method may not converge if p is odd, as the following
simple example shows.

Example 3.1.

A = 5I, M = 3I, N = −2I; F = 2I, G = −I.
Obviously, A = M −N and M = F −G are both P-regular splittings. If p = 1, then

H = F−1G = −1

2
I, B = M(I −H)−1 = 2I, C = −I,

MT1 = B = 2I, NT1 = C +N = −3I.
Thus, MT1 +NT1 = −I is not s.p.d. and ρ(T1) = 3

2 > 1.
Note that in Example 3.1 we still have B + C = I 	 0, i.e., M = B − C is a

P-regular splitting of M . In the following we will give convergence results in which
the inner iteration number p can be any positive integer.

Theorem 3.2. Let A be s.p.d., i.e., A 	 0, let A = M − N be a symmetric
splitting such that N is symmetric positive semidefinite, i.e., N
 0, let M = F−G be
a P-regular splitting, and let the inner iteration number p be any positive integer. Then
the two-stage iterative method converges. Moreover, A = MTp − NTp is a P-regular
splitting. If the splitting M = F −G is symmetric P-regular, then A = MTp −NTp is
a symmetric P-regular splitting.

24 ZHI-HAO CAO

Proof. Since N
 0, we have M = A + N 	 0 and M + N = A + 2N 	 0.
Thus, A = M − N is a symmetric P-regular splitting. Lemma 2.2 implies ρ(H) ≡
ρ(F−1G) < 1 and I − Hp is nonsingular. Thus, B and C in (3.2) are well defined.
Moreover, we have

M −HTMH = M − (I − F−1M)TM(I − F−1M)

= (F−1M)T (FT +G)(F−1M) 	 0.
(3.9)

From (3.9) we deduce, for j = 1, 2, . . . ,

(HT)jMHj − (HT)j+1MHj+1 = (F−1MHj)T (FT +G)(F−1MHj)
 0.(3.10)

(3.9) and (3.10) imply

M − (Hp)TMHp =

p−1∑
j=0

(F−1MHj)T (FT +G)(F−1MHj) 	 0.(3.11)

However, we have

M − (Hp)TMHp = M − (I −B−1M)TM(I −B−1M)

= (B−1M)T (BT + C)(B−1M).
(3.12)

Combining (3.11) and (3.12) we have shown M = B −C is a P-regular splitting, i.e.,
BT + C ≡ B +BT −M 	 0.

We now have

MTp +NTp = BT + C +N 	 0.

Thus, A = MTp − NTp is a P-regular splitting. If M = F − G is a symmetric P-
regular splitting, then B and C in (3.2) are both symmetric and A = MTp −NTp is a
symmetric P-regular splitting. The proof of Theorem 3.2 is finished.

Remark 3.1. Migallón and Penadés have obtained the same result (Theorem 2.1
in [6]) as Theorem 3.2. We retain Theorem 3.2 because it is used below in Theorem
3.4, Corollary 3.6, and Theorem 5.1, and its proof is used in Theorem 4.1.

Theorem 3.3. Let A be s.p.d., i.e., A 	 0, let A = M − N be a symmetric
P-regular splitting, let M = F −G be a symmetric splitting such that G is symmetric
positive semidefinite, i.e., G
 0, and let inner iteration number p be any positive
integer. Then the two-stage iterative method converges. Moreover, A = MTp −NTp is
a symmetric P-regular splitting.

Proof. Lemma 2.3 implies M 	 0. Since G
 0, we have F = M + G 	 0 and
F +G = M + 2G 	 0. Thus, M = F −G is a symmetric P-regular splitting, Lemma
2.2 implies ρ(H) ≡ ρ(F−1G) < 1, and hence I −Hp is nonsingular. Thus B and C in
(3.2) are well defined and are symmetric.

We now consider the terms MHpj , j = 1, 2, . . . , in (3.7). If pj is even, then
(cf.(3.8))

MHpj
 0.(3.13)

SYMMETRIC P-REGULAR SPLITTINGS 25

If pj is odd, then we have

MHpj = (F −G)(F−1G)pj

= G(F−1G)pj−1 −G(F−1G)pj

= (GF−1)
pj−1

2 G(F−1G)
pj−1

2

− (GF−1)
pj−1

2 GF−1G(F−1G)
pj−1

2

= (GF−1)
pj−1

2 (G−GF−1G)(F−1G)
pj−1

2 .

(3.14)

However, we have

G−GF−1G = G
1
2 (I −G

1
2F−1G

1
2)G

1
2
 0(3.15)

since G
1
2F−1G

1
2
 0 and ρ(G

1
2F−1G

1
2) = ρ(F−1G) < 1.

Combining (3.13), (3.14), and (3.15) we deduce that, for j = 1, 2 . . . ,

MHpj
 0.(3.16)

From (3.16) and (3.7) we now have MTp +NTp 	 0. Thus, the proof is finished.
Since matrices MTp

in all three theorems above are s.p.d., i.e., MTp
	 0, the theory

we are developing can be extended to the case of recursive inner iterations. Then we get
nested iterative methods. For formal recursive definition of nested iterative methods
cf. [5]. On the convergence of nested iterative methods we have the following theorem
the proof of which is analogous to Corollary 4.7 in [5].

Theorem 3.4. Let A be s.p.d., i.e., A 	 0. At each level let the redefined
A = M −N and at the inner most level let M = F̂ − Ĝ be

(i) a symmetric P-regular splitting and a symmetric convergent splitting, respec-
tively, and at each level the “inner” iteration number (p) is an even positive
integer, or

(ii) a symmetric splitting such that N
 0 and a symmetric P-regular splitting,
respectively, or

(iii) a symmetric P-regular splitting and a symmetric splitting such that Ĝ
 0.
Then the corresponding nested iterative method converges.

We now consider convergence of nonstationary two-stage iterative methods. In
this case pk,i = pk. We have the following result.

Theorem 3.5. Let A 	 0. Assume that the stationary two-stage iterative method
converges (for any positive inner iteration number p) and ρ(F−1G) < 1, ρ(M−1N) < 1,
where A = M − N and M = F − G are the outer and inner symmetric splittings,
respectively. Then the nonstationary iterative method with any positive inner iteration
number sequence {pk} converges, too.

Proof. In nonstationary two-stage algorithms (3.1) is replaced by

xk = (F−1G)pkxk−1 +

pk−1∑
j=0

(F−1G)jF−1(Nxk−1 + b), k = 1, 2,(3.17)

Let x∗ = A−1b and εk = xk − x∗; then we have (cf. (3.3) and (3.17))

εk = Tpkεk−1 = Tpk . . . Tp1ε0,(3.18)

where (cf. (3.3) and (3.4))

Tpj = M−1
Tpj

NTpj
= I −M−1

Tpj
A,(3.19)

26 ZHI-HAO CAO

while (cf. (3.2), (3.4), and note that ρ(H) ≡ ρ(F−1G) < 1)

M−1
Tpj

= (I −Hpj)(I −H)−1F−1 = (I −Hpj)

∞∑
i=0

HiF−1

=

pj−1∑
i=0

HiF−1 =

pj−1∑
i=0

(F−1G)iF−1.

(3.20)

We now define a vector norm ‖.‖
A

1
2

by using the s.p.d. matrix A as

‖x‖
A

1
2
= ‖A 1

2x‖2 for all x ∈ Rn.(3.21)

It is easy to show that the induced matrix norm is

‖Q‖
A

1
2
= ‖A 1

2QA− 1
2 ‖2 for all Q ∈ Rn,n.(3.22)

From (3.19) we have

‖Tpj‖A 1
2
= ‖A 1

2TpjA
− 1

2 ‖2 = ρ(A
1
2TpjA

− 1
2) = ρ(Tpj)(3.23)

since A
1
2TpjA

− 1
2 is symmetric (cf. (3.19) and (3.20)):

A
1
2TpjA

− 1
2 = I −A

1
2M−1

Tpj
A

1
2

= I −A
1
2

pj−1∑
i=0

(F−1G)iF−1A
1
2 .

(3.24)

For any positive integer p, Tp can be rewritten as (cf. (3.19) and (3.20))

Tp = I − (I − (F−1G)p)(I −M−1N).(3.25)

From (3.25) immediately we have

lim
p→∞ ρ(Tp) = ρ(M−1N) < 1.(3.26)

Thus, 1
2 (1− ρ(M−1N)) > 0 and there exists a positive integer p0 such that if p ≥ p0,

then

ρ(Tp) ≤ ρ(M−1N) +
1

2
(1− ρ(M−1N)) =

1

2
(1 + ρ(M−1N)).(3.27)

Let

θ = max

(
{ρ(Tj), j = 1, . . . , p0 − 1} ∪

{
1

2
(1 + ρ(M−1N))

})
.(3.28)

Obviously, θ ∈ (0, 1). Then we have for all j

‖Tpj‖A 1
2
≡ ρ(Tpj) ≤ θ.(3.29)

Hence, (3.18) implies

‖εk‖
A

1
2
≤ θk‖ε0‖

A
1
2
→ 0(k →∞),

SYMMETRIC P-REGULAR SPLITTINGS 27

i.e., the nonstationary two-stage iterative method converges. Thus the proof of the
theorem is finished.

From Theorem 3.5 we have the following corollary the proof of which is obvious.
Corollary 3.6. Let A 	 0. If splittings A = M −N and M = F −G satisfy the

conditions in Theorem 3.2 or Theorem 3.3 or Theorem 3.1, then the corresponding
nonstationary two-stage iterative method converges. But in the last case (i.e., Theorem
3.1) the inner iteration numbers pk, k = 1, 2, . . . , in the corresponding nonstationary
two-stage iterative method have to be even positive integers.

4. Convergence of block two-stage iterations. In this section we consider
the convergence of Algorithm 1.1. From this algorithm we have (cf. (3.1) and (3.17))

x
(i)
k = (F−1

i Gi)
pk,ix

(i)
k−1 +

pk,i−1∑
j=0

(F−1
i Gi)

jF−1
i (Nxk−1 + b)(i),(4.1)

i = 1, . . . , q,

where A = M −N,M = diag(Mi),Mi = Fi −Gi, i = 1, . . . , q.
Theorem 4.1. Let A 	 0, let A = M − N be a symmetric splitting such that

M is block diagonal: M = diag(Mi) and N
 0, let Mi = Fi − Gi, i = 1, . . . , q,
be symmetric P-regular splittings, and let pk,i, k = 1, 2, . . . , i = 1, . . . , q, be arbitrary
bounded positive integers, i.e., there exists a positive integer p0 such that 1 ≤ pk,i ≤ p0,
for k = 1, 2, . . . , i = 1, . . . , q. Then Algorithm 1.1 converges.

Proof. Let Hi = Fi − Gi and for a fixed positive integer k let B
(k)
i = Mi(I −

H
pk,i

i)−1, i = 1, . . . , q, and

M(k) = diag(B
(k)
i).(4.2)

Then the kth iterative matrix of Algorithm 1.1 is (cf. (3.17), (3.19), and (4.1))

T (k) = I −M(k)−1A.(4.3)

Since I − T (k) ≡M(k)−1A is nonsingular, Lemma 2.1 implies that

A = M(k)−N(k)(4.4)

is the splitting induced by T (k), where

N(k) = diag(B
(k)
i H

pk,i

i) +N ≡ diag(C
(k)
i) +N.(4.5)

As in the proof of Theorem 3.2 we have

diag(B
(k)
i) + diag(C

(k)
i) 	 0.(4.6)

Thus

M(k) +N(k) = diag(B
(k)
i) + diag(C

(k)
i) +N 	 0(4.7)

from which we know that (4.4) is a P-regular splitting of the s.p.d. matrix A; therefore,
by Lemma 2.2 we have

ρ(T (k)) < 1.(4.8)

28 ZHI-HAO CAO

By using an analogous argument as in the proof of Theorem 3.5 and noting that
1 ≤ pk,i ≤ p0 we can show that

‖T (k)‖
A

1
2
= ρ(T (k)) ≤ θ,(4.9)

where θ ∈ (0, 1) is a constant independent of k.
Let εk = xk − x∗, where x∗ = A−1b. Since we have

‖εk‖
A

1
2
≤

k∏
j=1

‖T (j)‖
A

1
2
‖ε0‖

A
1
2
≤ θk‖ε0‖

A
1
2
,(4.10)

then

lim
k→∞

‖εk‖
A

1
2
= 0.

Thus, the proof of the theorem is completed.

5. Monotonicity. In this section we consider the following question: When
does the spectral radius ρ(Tp) (cf. (3.3)) of the stationary two-stage iterative method
become a monotonically decreasing function of p? We give the following result.

Theorem 5.1. Let A be s.p.d., i.e., A 	 0, let A = M − N be a symmetric
splitting of A such that N is symmetric positive semidefinite, i.e., N
 0, and let M =
F −G be a symmetric splitting of M such that G is symmetric positive semidefinite,
i.e., G
 0. Let two inner iterative numbers p and q satisfy q ≥ p > 0; then

ρ(Tq) ≤ ρ(Tp).

Proof. We have

M = A+N 	 0 and F = M +G 	 0.(5.1)

Thus, M = F −G is a P-regular splitting of an s.p.d. matrix M , Lemma 2.2 implies
that ρ(H) ≡ ρ(F−1G) < 1, and hence I −Hp and I −Hq are nonsingular.

From Theorem 3.2 or Theorem 3.3 we have

ρ(Tp) < 1 and ρ(Tq) < 1.(5.2)

For any positive integer l ≥ 1 we have

MTl
= M(I −H l)−1 = M

∞∑
j=0

H lj = M +

∞∑
j=1

MH lj ,

NTl
= M

∞∑
j=1

H lj +N =

∞∑
j=1

MH lj +N.

(5.3)

If lj is even, then (cf. (3.8))

MH lj = (GF−1)
lj
2 M(F−1G)

lj
2
 0.(5.4)

If lj is odd, then (cf. (3.14) and (3.15))

MH lj = (GF−1)
lj−1

2 (G−GF−1G)(F−1G)
lj−1

2

= (GF−1)
lj−1

2 G
1
2 (I −G

1
2F−1G

1
2)G

1
2 (F−1G)

lj−1
2
 0.

(5.5)

SYMMETRIC P-REGULAR SPLITTINGS 29

By (5.3)–(5.5) and N
 0 we have

NTl

 0.(5.6)

Hence

MTl
= A+NTl

	 0.(5.7)

From (5.3) we obtain

M−1
Tl

= (I −H l)(I −H)−1F−1

= (I −H l)

∞∑
j=0

HjF−1

=

l−1∑
j=0

HjF−1.

(5.8)

Obviously, we have

M−1
Tl+1

= M−1
Tl

+H lF−1 = M−1
Tl

+ (F−1G)lF−1.(5.9)

If l is even, then

(F−1G)lF−1 = (F−1G)
l
2F−1(GF−1)

l
2 	 0.(5.10)

If l is odd, then

(F−1G)lF−1 = (F−1G)
l−1
2 F−1G(F−1G)

l−1
2 F−1

= (F−1G)
l−1
2 F−1GF−1(GF−1)

l−1
2

 0.

(5.11)

By (5.9)–(5.11) we have

M−1
Tl+1

M−1

Tl
.

Therefore, if two positive integers p and q satisfy q ≥ p ≥ 1, then

M−1
Tq

M−1

Tp

which is equivalent to the expression

NTq � NTp.(5.12)

From (5.12) and Lemma 2.4 we have

ρ(Tq) ≤ ρ(Tp).

Thus, the proof is completed.
In contrast to Theorem 3.2 and Theorem 3.3, the assumptions of Theorem 5.1

seem to be restrictive. However, the following examples show that we cannot weaken
them.

30 ZHI-HAO CAO

Example 5.1. Let

A = 5I, M = 3I, N = −2I; F = 4I, G = I.

Obviously, A = M −N and M = F −G are both P-regular splittings.
If p = 1, then

H1 = F−1G =
1

4
I, B1 = M(I −H1)

−1 = 4I, C1 = B1H1 = I,

MT1 = B1 = 4I, NT1 = C1 +N = −I.

Therefore, A = MT1
−NT1 is a P-regular splitting of A, since MT1 + NT1 = 3I. We

have

ρ(T1) =
1

4
.

If p = 2, then

H2 = (F−1G)2 =
1

16
I, B2 = M(I −H2)

−1 =
16

5
I, C2 = B2H2 =

1

5
I,

MT2 = B2 =
16

5
I, NT2 = C2 +N = −9

5
I.

Therefore, A = MT2 −NT2 is a P-regular splitting of A, since MT2 +NT2 = 7
5I. We

have

ρ(T2) =
9

16
.

Thus, we have ρ(T1) < ρ(T2).
Example 5.2. Let

A = 5I, M = 6I, N = I; F = 4I, G = −2I.

Obviously, A = M −N and M = F −G are both P-regular splittings.
If p = 1, then

H1 = F−1G = −1

2
I, B1 = M(I −H1)

−1 = 4I, C1 = B1H1 = −2I,

MT1 = B1 = 4I, NT1 = C1 +N = −I.

Therefore, A = MT1 −NT1 is a P-regular splitting of A, since MT1 + NT1 = 3I. We
have

ρ(T1) =
1

4
.

If p = 2, then

H2 = (F−1G)2 =
1

4
I, B2 = M(I −H2)

−1 = 8I, C2 = B2H2 = 2I,

MT2 = B2 = 8I, NT2 = C2 +N = 3I.

SYMMETRIC P-REGULAR SPLITTINGS 31

Therefore, A = MT2
−NT2

is a P-regular splitting of A, since MT2
+NT2

= 11I. We
have

ρ(T2) =
3

8
.

Thus, we have ρ(T1) < ρ(T2).
At the end of the paper we briefly discuss the choice of the outer and inner

splittings.
An important outer splitting A = M −N is the SSOR splitting

M =
1

ω(2− ω)
(D − ωL)D−1(D − ωLT),

N =
1

ω(2− ω)
[(1− ω)D + ωL]D−1[(1− ω)D + ωLT],

where A = D − L − LT , D is the diagonal of A,−L is the lower triangular part of
A. Obviously, if ω ∈ (0, 2), then M 	 0 and N
 0. Thus, the SSOR splitting is a
symmetric P-regular splitting with N
 0.

As pointed out in [6] a simple way to construct an outer splitting A = M−N such
that M is symmetric and N
 0 is to split the s.p.d. matrix A into A = M1−N1, where
M1 is symmetric, and let D1 be a nonnegative diagonal matrix such that D1+N1
 0.
Then, the splitting A = M −N with M = M1 +D1 and N = N1 +D1 is a symmetric
P-regular splitting.

Since M is always s.p.d., the method above to construct the symmetric P-regular
outer splittings of the s.p.d. matrix A can also be used to construct the symmetric
P-regular inner splittings of the s.p.d. matrix M . For the nonsymmetric P-regular
inner splitting (e.g., in Theorem 3.2) M = F −G an important example is the SOR
splitting:

F =
1

ω
(D̃ − ωL̃),

G =
1

ω
[(1− ω)D̃ + ωL̃T],

where M = D̃ − L̃ − L̃T , D̃ is the diagonal of M , L̃ is the lower triangular part of
M . Obviously, if ω ∈ (0, 2), then FT + G = 2−ω

ω D̃ 	 0. Thus, the SOR splitting is
P-regular.

Acknowledgments. I am grateful to the referees and the editor for their helpful
comments and suggestions and also for pointing out reference [6], which significantly
improved the paper.

REFERENCES

[1] Z.-H. Cao, Convergence of two-stage iterative methods for the solution of linear systems, Math.
Numer. Sinica, 17 (1995), pp. 98–109 (in Chinese).

[2] Z.-H. Cao, On convergence of nested stationary iterative methods, Linear Algebra Appl., 221
(1995), pp. 159–170.

[3] A. Frommer and D.B. Szyld, H-splittings and two-stage iterative methods, Numer Math., 63
(1992), pp. 345–356.

[4] A. Frommer and D.B. Szyld, Asynchronous two-stage iterative methods, Numer Math., 69
(1994), pp. 141–153.

32 ZHI-HAO CAO

[5] P.J. Lanzkron, D.J. Rose, and D.B. Szyld, Convergence of nested classical iterative methods
for linear systems, Numer. Math., 58 (1991), pp. 685–702.

[6] V. Migallón and J. Penadés, Convergence of two-stage iterative method for Hermitian pos-
itive definite matrices, Appl. Math. Letters, 10 (1997), pp. 79–83.

[7] R. Nabben, A note on comparison theorems for splittings and multisplittings of Hermitian
positive definite matrices, Linear Algebra Appl., 233 (1996), pp. 67–80.

[8] J.M. Ortega, Numerical Analysis—A Second Course, Academic Press, New York, 1972.
[9] J.M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press,

New York, 1988.

HOUSEHOLDER TRANSFORMATIONS REVISITED∗

A. A. DUBRULLE†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 33–40

Abstract. A new analysis of the two types of Householder reflections shows that the second
type stably defined by Parlett has a better ability to propagate information borne by its driving
vector. The results are extended to the Davis–Kahan rotation.

Key words. Householder matrices, elementary Hermitian matrices, elementary reflectors, rota-
tors, orthogonalization

AMS subject classifications. 65F05, 65F15, 65F25, 65F30

PII. S0895479898338561

1. Introduction. Householder matrices, or elementary reflectors, seem to have
first appeared in [11], but they truly became a standard tool of numerical linear
algebra with Householder’s 1958 article on the triangularization of a nonsymmetric
matrix [7]. An elementary reflector H : C

n ↔ C
n is a rank-one modification of the

identity matrix and has the canonical form

H = I − uu∗, ‖u‖ =
√
2, u ∈ C

n,

where ‖.‖ designates the Euclidean norm. It is Hermitian, unitary, and involutory
(each of these properties is the consequence of the other two). Elementary reflectors
are used in numerical algorithms for the construction of orthogonal bases for which
problems take forms amenable to simple solutions. From a computational viewpoint,
such transformations originate in the annihilation of selected elements of vectors or
matrices and are represented by the isometric mapping of a driving vector z into a
stretching of a vector of the canonical basis:

Hkz = βek, |β| = ‖z‖, z ∈ C
n.

The transformation matrix has the expression

Hk = I − 1

β̄ (β − zk)
(z − βek)(z − βek)∗,(1.1)

where β is defined for the moment only by its modulus and the hermiticity relation

β̄zk = ±|zk| ‖z‖.(1.2)

For purposes of algorithm implementation, Hk is most commonly represented by one
or two vectors v or w as follows:

Hk = I + vw∗,

Hk = I +
1

wk
ww∗,

Hk = I + w̄kvv
∗,

 v =

z − βek
zk − β , w =

z − βek
β

.(1.3)

∗Received by the editors May 11, 1998; accepted for publication (in revised form) by G. Golub
December 6, 1999; published electronically May 31, 2000.

http://www.siam.org/journals/simax/22-1/33856.html
†215 Hillview Ave., Los Altos, CA 94022 (na.dubrulle@na-net.ornl.gov).

33

34 A. A. DUBRULLE

The above formulas verify

‖w‖2 = −2wk, ‖v‖2 = − 2

wk
.

When square roots can be computed accurately and reasonably fast, the representa-
tion

Hk = I − uu∗, u =
z − βek[

β̄ (β − zk)
]1/2 , ‖u‖ =

√
2,(1.4)

has the advantage of substituting a square root for multiple scaling operations in the
transformation of matrices.1

An important application of Householder reflectors is found in the implementation
of the implicit QR algorithm for the solution of the Hessenberg eigenvalue problem
[1], [2], [5]. There, multiple shifts of the spectrum are injected into the iteration
and carried through the QR sweep by Householder similarity transformation. As the
QR iteration makes the trailing components of the driving vectors of these transfor-
mations dwindle, it was conjectured in [5] that the inability of the common type of
Householder matrix to carry the information borne by these small components was
contributing to the instability of the algorithm for moderately large numbers of shifts.
An investigation of this conjecture—so far inconclusive—led to the consideration of
the uncommon type and the new analysis presented below.

Section 2 describes the two types of Householder matrices and summarizes known
results. Section 3 analyzes their ability to propagate information. Section 4 extends
the results of the analysis to the Davis–Kahan rotations.

2. The two types of elementary reflectors. Equation (1.2) prescribes that
β̄zk must be real and we have

β = ± zk
|zk| ‖z‖, zk �= 0,

with the arbitrary choice β = ‖z‖ when zk = 0. For the stability of formula (1.1),
it is generally recommended that the minus sign be used. Parlett showed, however,
that the other choice is not unstable at all if an appropriate formula is used for the
computation of (β−zk), and he developed a norm error analysis of the corresponding
reflector [8]. This work has been so far largely ignored, perhaps because of a lack of
obvious software application.

We thus have two types of elementary reflectors determined by the sign of β.
They are defined below.

(1) First type: β = − zk
|zk| ‖z‖.

This option maximizes |β − zk| and generates the matrix

H
(1)
k = I − 1

‖z‖(‖z‖+ |zk|) (z − βek)(z − βek)
∗.

This is the type commonly used, which is stable for the computation of (β−zk)
by straightforward subtraction. H

(1)
k is the reflection in the outer bisector of

1Taking n extra square roots saves about 0.5n2 multiplications for the QR factorization of a
matrix of order n, 1.5n2 multiplications for the reduction to Hessenberg form, and 2n2 multiplications
if the associated transformation of the eigenvectors is performed.

HOUSEHOLDER TRANSFORMATIONS REVISITED 35

the angle ∠(z, zkek). The corresponding vector u of representation (1.4) is
expressed by

u
(1)
k =

zk
|zk|

(
1 +
|zk|
‖z‖

)1/2

,

u
(1)
i =

zi
‖z‖

(
1 +
|zk|
‖z‖

)−1/2

, i �= k,

(2.1)

with ‖u‖∞ = |uk|.

(2) Second type: β =
zk
|zk| ‖z‖.

This option is practically never used. Parlett’s analysis shows that the insta-
bility is not in the choice of sign for β but in the computation of (β − zk) by
floating-point subtraction. The following formula is a stable substitute,

β − zk =
zk
|zk|
‖z − zkek‖2
‖z‖+ |zk| ,

where the squared norm in the numerator is computed as the sum of the
squares of the components of z other than zk (an intermediate step in the
calculation of ‖z‖). The corresponding expression of the matrix is

H
(2)
k = I −

1 +
|zk|
‖z‖

‖z − zkek‖2 (z − βek)(z − βek)
∗.

H
(2)
k is the reflection in the inner bisector of the angle ∠(z, zkek). The vector

u of form (1.4) is expressed by

u
(2)
k = − zk

|zk|
‖z − zkek‖
‖z‖

(
1 +
|zk|
‖z‖

)−1/2

,

u
(2)
i =

zi
‖z − zkek‖

(
1 +
|zk|
‖z‖

)1/2

, i �= k.

(2.2)

The two types are backward stable in norm [8]. The second type requires a little more
arithmetic work, which is usually negligible in the context of larger computations such
as the solutions of linear equations and eigenvalue problems. Formulas (2.1) and (2.2)
show major differences in the roles played by zk and {zi}i �=k in the two types of
transformations. The first type inflates the relative importance of zk at the expense
of {zi}i �=k through reciprocal scalings by (1+ |zk|/‖z‖)1/2 and normalization by ‖z‖.
The opposite is true for the second type where the scaling is reversed and {zi}i �=k is
normalized by ‖z − zkek‖. These differences constitute the main motivation behind
the analysis of the next section.

3. Elementary reflectors as information carriers. The transformation of a
vector or a matrix by a Householder reflector can be seen as the propagation of the
information borne by the driving vector z. This interpretation is best illustrated by
the injection of shifts in the implicit QR iteration [2] through a similarity Householder

36 A. A. DUBRULLE

transformation. In the following, we examine how well elementary reflectors carry
information.

Consider the reflector in form (1.4) defined by

Hk = I − uu∗, Hkz = βek, |β| = ‖z‖, ‖u‖ =
√
2,

and its application to some nonzero arbitrary vector x,

y = x− (u∗x)u.(3.1)

We propose to assess the ability of Hk to carry to y the information contained in z
by measuring the effects of the z components on x through u. As needed, we use the
notation u = u(i), i = 1, 2, according to the type of transformation, with

u(1)∗u(2) = 0.

Componentwise, we have

yi = xi − (u∗x)ui,(3.2)

and the floating-point invariance of xi under transformation by Hk will be construed
as a failure to transmit to yi the information borne by ui when ui �= 0. In the
following, we develop conditions for which this loss occurs, and we shall see that these
conditions substantially differ for the two types of elementary reflectors.

We first investigate the most obvious situations in which invariance takes place.
When

u∗x = 0,

no information is propagated from z to y. If the underlying transformation is of, say,
type 1 with

u = u(1),

then x and u(2) are in the subspace orthogonal to u(1). Moreover, since

xk =
1

2

[
(u(1)∗x)u(1)

k + (u(2)∗x)u(2)
k

]
,

the condition xk �= 0 necessarily implies that u(2) is not orthogonal to x and that the
transformation of type 2 will carry as much information from z to y as allowed by
other conditions to be examined later. If xk = 0, total loss of information occurs for
both types. Obviously, the same argument applies if we exchange the transformation
types.

Having disposed of these cases, we assume that

u∗x �= 0,

and we turn to the special case of yk. Using the expression (1.1) of Hk, we get the
formula2

yk =
z∗x
β̄
.

2This formula is shown in [10] to produce a smaller bound for the forward floating-point rounding
error than expression (3.2).

HOUSEHOLDER TRANSFORMATIONS REVISITED 37

Hence, to working precision, the two types equally propagate to yk the information
borne by z since the two results differ only by their signs.

For the other components, invariance to floating-point machine precision ε is
expressed by

|yi − xi|
|xi| ≤ ε, xi �= 0, i �= k,

which yields

|ui| ≤ ε |xi||u∗x| , i �= k,

from (3.2). Using the Cauchy–Schwarz inequality and ‖u‖ =
√
2, we obtain the

sufficient condition

|ui| ≤ ε√
2

|xi|
‖x‖ .

The substitution of definition (1.4) in this inequality gives the condition of invariance
in terms of the z components:

|zi|
[β̄ (β − zk)]1/2

≤ ε√
2

|xi|
‖x‖ , i �= k.(3.3)

We examine below the implications of the invariance condition for the two types of
reflections.

(1) First type: β = − zk
|zk| .

In this case,

β̄(β − zk) = ‖z‖(‖z‖+ |zk|),
and the substitution of this expression in inequality (3.3) leads to the invari-
ance condition

|zi|
‖z‖ ≤

ε√
2

√
1 +
|zk|
‖z‖

|xi|
‖x‖ , i �= k.(3.4)

This inequality is satisfied for small components of z that are not matched
by proportionately small components of x. The size of zi, i �= k, is measured
relatively to the norm of z.

(2) Second type: β =
zk
|zk| .

The identity

β̄(β − zk) = ‖z‖ ‖z − zkek‖
2

‖z‖+ |zk|
applies, and its combination with inequality (3.3) yields the invariance crite-
rion

|zi|
‖z − zkek‖

√
1 +
|zk|
‖z‖ ≤

ε√
2

|xi|
‖x‖ , i �= k.

38 A. A. DUBRULLE

function u=HVEC(z,k,type)

t=norm(z,inf);

u=z(:)/(t+(t==0));

if t∼=0
uk=u(k);

u(k)=0;

s2=u’*u;

if s2∼=0
sig=sign(uk)+(uk==0);

t=real(sig*conj(uk));

s=sqrt(t^2+s2);

t=t+s;

if type==1

u(k)=sig*t;

else

t=s2/t;

u(k)=-sig*t;

end

end

u=u/sqrt(s*t);

end

end

return

Fig. 3.1. MATLAB computation of the Householder vector u for either type of elementary
reflector Hk = I − uu∗ such that Hkz = βek.

Here, the size of zi, i �= k, is measured relatively to the norm of (z − zkek).
This condition is harder to satisfy than its first-type counterpart (3.4), partic-
ularly when zk is the dominant component of z. This advantage is maximum
when the directions of z and ek are nearly parallel and disappears when they
are orthogonal.

In summary, the second type is better at propagating the information contained in
each zi for i �= k. The following example where the Householder vectors are computed
with the MATLAB function in Figure 3.1 illustrates this phenomenon:

k = 1, z = [1 6η 2η]T , η = ε/8, x = e.

(1) First type:
The invariance criterion is satisfied for i > 1, and the information borne by
z2 and z3 is lost in the floating-point representation fε(y) of y:

fε(y) = [−1 1 1]T .

(2) Second type:
The invariance test is not satisfied, and the transformation preserves all sub-
space information:

fε(y) = [1 + ε − 1.4 0.2]T .

HOUSEHOLDER TRANSFORMATIONS REVISITED 39

4. Application to the Davis–Kahan rotations. In this section, we show
that the simple relationship between Davis–Kahan rotations and Householder reflec-
tions makes these transformations numerically equivalent, with identical properties to
propagate information.

The Davis–Kahan rotation matrix [4], [9] in C
n×n can be written in the form

R1 =

[
c −s̄ω∗

sω I − θωω∗

]
,

{
θ = 1− c̄, |c|2 + |s|2 = 1,
ω ∈ C

n−1, ‖ω‖ = 1.

The above representation conveniently expresses how the Davis–Kahan rotation gen-
eralizes the plane rotation

[
c −s̄
s c̄

]
.

It is the simple relationship between plane rotations and reflections that naturally
leads to the equally simple connection shown below between Davis–Kahan and House-
holder matrices.

R1 is a rank-two modification of the identity matrix and not an elementary matrix.
Its eigenvalues are unity, except for the pair c± is. For a vector z and its projection
z2:n on the subspace spanned by {e2, e3, . . . ,en},

R1z = βe1, β = σ‖z‖, |σ| = 1,

for the settings

c = σ
z̄1
‖z‖ , sω = −σ̄ z2:n

‖z‖ , |s| = ‖z2:n‖
‖z‖ .

Note that s is defined only by its modulus. Among the possible choices for σ,

σ = ± z1
|z1|

generates rotations that parallel the two types of Householder reflections. In fact,
R1 and H1 differ only by the signs of their first rows, and the transformations of a
vector x by R1 and H1 produce two vectors that differ only by the signs of their first
components.

More generally, Rk such that Rkz = βek derives from Hk by a sign change of
row k,

eTkRk = −eTkHk.

This relation provides a simple way to define the rotation matrix and its representation
by a single vector. It follows that the corresponding two types of rotations have exactly
the same numerical properties as their reflection homologues, including ability to carry
information. In most numerical algorithms, reflections and rotations are practically
interchangeable, but the multiplicative-group property of the latter may make them
preferable for certain applications.

5. Conclusion. Our analysis of Householder transformations reveals that the
second type has a better ability to propagate the information borne by its driving
vector. Cox and Higham [3] show, however, that the use of the second type in QR

40 A. A. DUBRULLE

factorizations with pivoting for size by row and column exchanges may lead to row-
wise instability, although the algorithm is normwise and columnwise stable. This
suggests that the two types of transformations serve different purposes and should be
used accordingly.

The use of the criteria of invariance of section 3 for the dynamic adjustment of the
iteration multiplicity of the QR algorithm is described in [6]. These tests are rather
conservative, owing to the use of the Cauchy–Schwarz inequality to bound the scalar
product. Tighter bounds that would produce laxer tests did not lead to formulas
efficient enough for practical application.

Acknowledgment. Beresford Parlett is gratefully acknowledged for his insight-
ful comments.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, 2nd ed., SIAM, Philadelphia, PA, 1995.

[2] Z. Bai and J. Demmel, On a block implementation of Hessenberg multishift QR iteration, Int.
J. High-Speed Comput., 62 (1989), pp. 209–226.

[3] A. Cox and N. Higham, Stability of Householder QR Factorization for Weighted Least-Squares
Problems, Numerical Analysis TR 301, Dept. of Mathematics, University of Manchester,
UK, 1997.

[4] C. Davis and W. Kahan, Some new bounds on perturbation of subspaces, Bull. Amer. Math.
Soc., 75 (1969), pp. 863–868.

[5] A. Dubrulle, The Multishift QR Algorithm: Is It Worth the Trouble?, TR G320-3558, IBM
Scientific Center, Palo Alto, CA, 1991 (revised 1992).

[6] A. Dubrulle, A QR algorithm with variable iteration multiplicity, J. Comp. Appl. Math., 86
(1997), pp. 125–139.

[7] A. Householder, Unitary triangularization of a nonsymmetric matrix, J. ACM, 5 (1958), pp.
339–342.

[8] B.N. Parlett, Analysis of algorithms for reflections in bisectors, SIAM Rev., 13 (1971), pp.
197–208.

[9] B.N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, PA, 1998.
[10] N.-K. Tsao, A note on implementing the Householder transformation, SIAM J. Numer. Anal.,

12 (1975), pp. 53–58.
[11] H. Turnbull and A. Aitken, An Introduction to the Theory of Canonical Matrices, Blackie,

London, Glasgow, 1932.

ON LAGRANGIAN RELAXATION OF QUADRATIC MATRIX
CONSTRAINTS∗

KURT ANSTREICHER† AND HENRY WOLKOWICZ‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 41–55

Abstract. Quadratically constrained quadratic programs (QQPs) play an important modeling
role for many diverse problems. These problems are in general NP hard and numerically intractable.
Lagrangian relaxations often provide good approximate solutions to these hard problems. Such
relaxations are equivalent to semidefinite programming relaxations.

For several special cases of QQP, e.g., convex programs and trust region subproblems, the La-
grangian relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this
is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex
objective.

In this paper we consider a certain QQP where the quadratic constraints correspond to the
matrix orthogonality condition XXT = I. For this problem we show that the Lagrangian dual based
on relaxing the constraints XXT = I and the seemingly redundant constraints XTX = I has a zero
duality gap. This result has natural applications to quadratic assignment and graph partitioning
problems, as well as the problem of minimizing the weighted sum of the largest eigenvalues of a
matrix. We also show that the technique of relaxing quadratic matrix constraints can be used to
obtain a strengthened semidefinite relaxation for the max-cut problem.

Key words. Lagrangian relaxations, quadratically constrained quadratic programs, semidefinite
programming, quadratic assignment, graph partitioning, max-cut problems

AMS subject classifications. 49M40, 52A41, 90C20, 90C27

PII. S0895479898340299

1. Introduction. Quadratically constrained quadratic programs (QQPs) play
an important modeling role for many diverse problems. They often provide a much
improved model compared to the simpler linear relaxation of a problem. However, very
large linear models can be solved efficiently, whereas QQPs are in general NP-hard
and numerically intractable. Lagrangian relaxations often provide good approximate
solutions to these hard problems. Moreover these relaxations can be shown to be
equivalent to semidefinite programming (SDP) relaxations, and SDP problems can be
solved efficiently, i.e., they are polynomial time problems; see, e.g., [31].

SDP relaxations provide a tractable approach for finding good bounds for many
hard combinatorial problems. The best example is the application of SDP to the
max-cut problem, where a 87% performance guarantee exists [11, 12]. Other examples
include matrix completion problems [23, 22], as well as graph partitioning problems
and the quadratic assignment problem (references given below).

In this paper we consider several quadratically constrained quadratic (nonconvex)
programs arising from hard combinatorial problems. In particular, we look at the
orthogonal relaxations of the quadratic assignment and graph partitioning problems.
We show that the resulting well-known eigenvalue bounds for these problems can
be obtained from the Lagrangian dual of the orthogonally constrained relaxations,

∗Received by the editors June 9, 1998; accepted for publication (in revised form) by P. Van Dooren
July 30, 1999; published electronically May 31, 2000.

http://www.siam.org/journals/simax/22-1/34029.html
†Department of Management Sciences, University of Iowa, Iowa City, IA 52242-1000

(kurt-anstreicher@uiowa.edu).
‡University of Waterloo, Department of Combinatorics and Optimization, Waterloo, Ontario N2L

3G1, Canada (henry@orion.uwaterloo.ca). This author’s research was supported by Natural Sciences
and Engineering Research Council of Canada.

41

42 KURT ANSTREICHER AND HENRY WOLKOWICZ

but only if the seemingly redundant constraint XTX = I is explicitly added to the
orthogonality constraint XXT = I. Our main analytical tool is a strong duality
result for a certain nonconvex QQP, where the quadratic constraints correspond to
the orthogonality conditions XXT = I, XTX = I. We also show that the technique
of applying Lagrangian relaxation to quadratic matrix constraints can be used to
obtain a strengthened SDP relaxation for the max-cut problem.

Our results show that current tractable (nonconvex) relaxations for the quadratic
assignment and graph partitioning problems can, in fact, be found using Lagrangian
relaxations. (A converse statement is well known, i.e., the Lagrangian dual is equiva-
lent to an (tractable) SDP relaxation.) Our results here provide further evidence to
the following conjecture: the Lagrangian relaxation of an appropriate QQP provides
the strongest tractable relaxation for QQPs.

1.1. Outline. We complete this section with the notation used in this paper.
In section 2, we present several known results on QQPs. We start with convex

QQPs where a zero duality gap always holds. Then we look at the minimum eigenvalue
problem and the trust region subproblem, where strong duality continues to hold. We
conclude with the two trust region subproblem, the max-cut problem, and general
nonconvex QQPs where nonzero duality gaps can occur.

The main results are in section 3. We show that strong duality holds for a
class of orthogonally constrained quadratic programs if we add seemingly redundant
constraints before constructing the Lagrangian dual.

In section 4 we apply this result to several problems, i.e., relaxations of quadratic
assignment and graph partitioning problems, and a weighted sum of eigenvalue prob-
lem. In section 5 we present strengthened semidefinite relaxations for the max-cut
problem. In section 6 we summarize our results and describe some promising direc-
tions for future research.

1.2. Notation. We now describe the notation used in the paper.
Let Sn denote the space of n×n symmetric matrices equipped with the trace inner

product, 〈A,B〉 = trAB, and let A � 0 (resp., A � 0) denote positive semidefiniteness
(resp., positive definiteness) and A � B denote A− B � 0, i.e., Sn is equipped with
the Löwner partial order. We let P denote the cone of symmetric positive semidefinite
matrices;Mm,n denotes the space of general m× n matrices also equipped with the
trace inner product, 〈A,B〉 = trATB, whileMm denotes the space of general m×m
matrices; O denotes the set of orthonormal (orthogonal) matrices; Π denotes the set
of permutation matrices.

We let Diag(v) be the diagonal matrix formed from the vector v; its adjoint
operator is diag(M), which is the vector formed from the diagonal of the matrix M.
For M ∈Mm,n, the vector m = vec (M) ∈ �mn is formed (columnwise) from M .

The Kronecker product of two matrices is denoted A ⊗ B, and the Hadamard
product is denoted A ◦B.

We use e to denote the vector of all ones, and E = eeT to denote the matrix of
all ones.

2. Some known results. The general QQP is

QQP min q0(x)

s.t. qk(x) ≤ 0 (or = 0), k = 1, . . . ,m,

where qi(x) = xTQix − 2gTi x. We now present several QQP problems where the
Lagrangian relaxation is important and well known. In all these cases, the Lagrangian

QUADRATIC MATRIX CONSTRAINTS 43

dual provides an important theoretical tool for algorithmic development, even where
the duality gap may be nonzero.

2.1. Convex quadratic programs. Consider the convex quadratic program

CQP µ∗ :=min q0(x)
s.t. qk(x) ≤ 0, k = 1, . . . ,m,

where all qi(x) are convex quadratic functions. The dual is

DCQP ν∗ := max
λ≥0

min
x

q0(x) +

m∑
k=1

λkqk(x).

If ν∗ is attained at λ∗, x∗, then a sufficient condition for x∗ to be optimal for CQP is
primal feasibility and complementary slackness, i.e.,

m∑
k=1

λ∗kqk(x
∗) = 0.

In addition, it is well known that the Karush–Kuhn–Tucker (KKT) conditions
are sufficient for global optimality, and under an appropriate constraint qualification
the KKT conditions are also necessary. Therefore strong duality holds if a constraint
qualification is satisfied, i.e., there is no duality gap and the dual is attained.

However, surprisingly, if the primal value of CQP is bounded, then it is attained
and there is no duality gap; see, e.g., [44, 36, 34, 35] and, more recently, [26]. However,
the dual may not be attained, e.g., consider the convex program

0 = min{x : x2 ≤ 0}
and its dual

0 = max
λ≥0

min
x

x+ λx2.

Algorithmic approaches based on Lagrangian duality appear in, e.g., [19, 25, 31].

2.2. Rayleigh quotient. Suppose that A = AT ∈ Sn. It is well known that the
smallest eigenvalue λ1 of A is obtained from the Rayleigh quotient, i.e.,

λ1 = min{xTAx : xTx = 1}.(2.1)

Since A is not necessarily positive semidefinite, this is the minimization of a nonconvex
function on a nonconvex set. However, the Rayleigh quotient forms the basis for many
algorithms for finding the smallest eigenvalue, and these algorithms are very efficient.
In fact, it is easy to see that there is no duality gap for this nonconvex problem, i.e.,

λ1 = max
λ

min
x

xTAx− λ(xTx− 1).(2.2)

To see this, note that the inner minimization problem in (2.2) is unconstrained. This
implies that the outer maximization problem has the hidden semidefinite constraint
(an ongoing theme in the paper)

A− λI � 0,
i.e., λ is at most the smallest eigenvalue of A. With λ set to the smallest eigenvalue,
the inner minimization yields the eigenvector corresponding to λ1. Thus, we have an
example of a nonconvex problem for which strong duality holds. Note that the problem
(2.1) has the special norm constraint and a homogeneous quadratic objective.

44 KURT ANSTREICHER AND HENRY WOLKOWICZ

2.3. Trust region subproblem. We will next see that strong duality holds for
a larger class of seemingly nonconvex problems. The trust region subproblem (TRS)
is the minimization of a quadratic function subject to a norm constraint. No convexity
or homogeneity of the objective function is assumed.

TRS µ∗ :=min q0(x)
s.t. xTx− δ2 ≤ 0 (or = 0).

Assuming that the constraint in TRS is written “≤,” the Lagrangian dual is

DTRS ν∗ := max
λ≥0

min
x

q0(x) + λ(xTx− δ2).

This is equivalent to (see [43]) the (concave) nonlinear semidefinite program

DTRS ν∗ :=max gT0 (Q+ λI)†g0 − λδ2

s.t. Q+ λI � 0,
λ ≥ 0.

where ·† denotes Moore–Penrose inverse. It is shown in [43] that strong duality holds
for TRS, i.e., there is a zero duality gap µ∗ = ν∗, and both the primal and dual
are attained. Thus, as in the eigenvalue case, we see that this is an example of a
nonconvex program where strong duality holds.

Extensions of this result to a two-sided general, possibly nonconvex constraint are
discussed in [43, 28]. An algorithm based on Lagrangian duality appears in [40] and
(implicitly) in [29, 41]. These algorithms are extremely efficient for the TRS problem,
i.e., they solve this problem almost as quickly as they can solve an eigenvalue problem.

2.4. Two trust region subproblem. The two trust region subproblem (TTRS)
consists of minimizing a (possibly nonconvex) quadratic function subject to a norm
and a least squares constraint, i.e., two convex quadratic constraints. This problem
arises in solving general nonlinear programs using a sequential quadratic programming
approach and is often called the Celis–Dennis–Tapia (CDT) problem; see [4].

In contrast to the above single TRS, the TTRS can have a nonzero duality gap;
see, e.g., [33, 47, 48, 49]. This is closely related to quadratic theorems of the alterna-
tive, e.g., [5]. In addition, if the constraints are not convex, then the primal may not
be attained; see, e.g., [26].

In [27], Martinez shows that the TRS can have at most one local and nonglobal
optimum, and the Lagrangian at this point has one negative eigenvalue. Therefore, if
we have such a case and add another ball constraint that contains the local, nonglobal
optimum in its interior and also makes this point the global optimum, we obtain a
TTRS where we cannot close the duality gap due to the negative eigenvalue. It is
uncertain what constraints could be added to close this duality gap. In fact, it is still
an open problem whether TTRS is an NP-hard or a polynomial-time problem.

2.5. Max-cut problem. Suppose that G = (V,E) is an undirected graph with
vertex set V = {vi}ni=1 and weights wij on the edges (vi, vj) ∈ E. Themax-cut problem
consists of finding the index set I ⊂ {1, 2, . . . , n}, in order to maximize the weight of
the edges with one end point with index in I and the other in the complement. This is
equivalent to the following discrete optimization problem with a quadratic objective:

MC max 1
2

∑
i<j wij(1− xixj), x ∈ {±1}n.

QUADRATIC MATRIX CONSTRAINTS 45

We equate xi = 1 with i ∈ I and xi = −1 otherwise. Define the homogeneous
quadratic objective

q(x) := xTQx,

where Q is an n × n symmetric matrix. Then the MC problem is equivalent to the
QQP

µ∗
MC :=max q(x)

s.t. x2
j = 1, j = 1, . . . , n.

This problem is NP-hard, i.e., intractable.
Since the above QQP has many nonconvex quadratic constraints, a duality gap

for the Lagrangian relaxation is expected and does indeed occur most of the time.
However, the Lagrangian dual is equivalent to the SDP relaxation (upper bound)

µ∗
MC ≤ µ∗

MCSDP := max trQX
s.t. diag(X) = e,

X � 0,
(2.3)

which has proven to have very strong theoretical and practical properties, i.e., the
bound has an 87% performance guarantee for the problem MC and a 97% performance
in practice; see, e.g., [12, 18, 15]. Other theoretical results for general objectives and
further relaxed constraints appear in [30, 46].

In [38], several unrelated, though tractable, bounds for MC are shown to be
equivalent. These bounds include the box relaxation −e ≤ x ≤ e, the trust region
relaxation

∑
i x

2
i = n, and an eigenvalue relaxation. Furthermore, these bounds are

all shown to be equivalent to the Lagrangian relaxation; see [37]. Thus we see that
the Lagrangian relaxation is equivalent to the best of these tractable bounds.

2.6. General QQP. The general, possibly nonconvex QQP has many appli-
cations in modeling and approximation theory; see, e.g., the applications to SQP
methods in [21]. Examples of approximations to QQPs also appear in [9].

The Lagrangian relaxation of a QQP is equivalent to the SDP relaxation and is
sometimes referred to as the Shor relaxation; see [42]. The Lagrangian relaxation can
be written as an SDP if one takes into the account the hidden semidefinite constraint,
i.e., a quadratic function is bounded below only if the Hessian is positive semidefinite.
The SDP relaxation is then the Lagrangian dual of this semidefinite program. It can
also be obtained directly by lifting the problem into matrix space using the fact that
xTQx = trxTQx = trQxxT and relaxing xxT to a semidefinite matrix X.

One can relate the geometry of the original feasible set of QQP with the feasible
set of the SDP relaxation. The connection is through valid quadratic inequalities, i.e.,
nonnegative (convex) combinations of the quadratic functions; see [10, 20].

3. Orthogonally constrained programs with zero duality gaps. Consider
the orthonormal constraint

XTX = I, X ∈Mm,n.

(The set of such X is sometimes known as the Stiefel manifold; see, e.g., [7]. Applica-
tions and algorithms for optimization on orthonormal sets of matrices are discussed
in [7].) In this section we will show that for m = n, strong duality holds for a certain

46 KURT ANSTREICHER AND HENRY WOLKOWICZ

(nonconvex) quadratic program defined over orthonormal matrices. Because of the
similarity of the orthonormality constraint to the norm constraint xTx = 1, the result
of this section can be viewed as a matrix generalization of the strong duality result
for the Rayleigh quotient problem (2.1).

Let A and B be n× n symmetric matrices, and consider the orthonormally con-
strained homogeneous QQP

QQPO µO := min trAXBXT

s.t. XXT = I.
(3.1)

This problem can be solved exactly using Lagrange multipliers (see, e.g., [14]) or using
the classical Hoffman–Wielandt inequality (see, e.g., [3]). We include a simple proof
for completeness.

Proposition 3.1. Suppose that the orthogonal diagonalizations of A,B are
A = V ΣV T and B = UΛUT , respectively, where the eigenvalues in Σ are ordered
nonincreasing and the eigenvalues in Λ are ordered nondecreasing. Then the opti-
mal value of QQPO is µO = trΣΛ and the optimal solution is obtained using the
orthogonal matrices that yield the diagonalizations, i.e., X∗ = V UT .

Proof. The constraint G(X) := XXT − I mapsMn to Sn. The Jacobian of the
constraint at X acting on the direction h is J(X)(h) = XhT + hXT . The adjoint of
the Jacobian acting on S ∈ Sn is J∗(X)(S) = 2SX, since

trSJ(X)(h) = trhTJ∗(X)(S).

But J∗(X)(S) = 0 implies S = 0, i.e., J∗ is one-one for all X orthogonal. Therefore,
J is onto, i.e., the standard constraint qualification holds at the optimum. It follows
that the necessary conditions for optimality are that the gradient of the Lagrangian

L(X,S) = trAXBXT − trS(XXT − I)(3.2)

is 0, i.e.,

AXB − SXI = 0.

Therefore,

AXBXT = S = ST ,

i.e., AXBXT is symmetric, which means that A and XBXT commute and so are
mutually diagonalizable by the orthogonal matrix U . Therefore, we can assume that
both A and B are diagonal and we choose X to be a product of permutations that
gives the correct ordering of the eigenvalues.

The Lagrangian dual of QQPO is

max
S=ST

min
X

trAXBXT − trS(XXT − I).(3.3)

However, there can be a nonzero duality gap for the Lagrangian dual; see [50] for
an example. The inner minimization in the dual problem (3.3) is an unconstrained
quadratic minimization in the variables vec (X), with Hessian

B ⊗A− I ⊗ S.

QUADRATIC MATRIX CONSTRAINTS 47

Clearly this minimization is unbounded if the Hessian is not positive semidefinite. In
order to close the duality gap, we need a larger class of quadratic functions.

Note that in QQPO the constraints XXT = I and XTX = I are equivalent.
Adding the redundant constraints XTX = I, we arrive at

QQPOO µO :=min trAXBXT

s.t. XXT = I, XTX = I.

Using symmetric matrices S and T to relax the constraints XXT = I and XTX = I,
respectively, we obtain a dual problem

DQQPOO µO ≥ µD :=max trS + trT

s.t. (I ⊗ S) + (T ⊗ I) � (B ⊗A),

S = ST , T = TT .

Theorem 3.2. Strong duality holds for QQPOO and DQQPOO, i.e., µ
D = µO

and both primal and dual are attained.
Proof. Let A = V ΣV T , B = UΛUT , where V and U are orthonormal matrices

whose columns are the eigenvectors of A and B, respectively, σ and λ are the corre-
sponding vectors of eigenvalues, and Σ = Diag(σ), Λ = Diag(λ). Then for any S and
T ,

(B ⊗A)− (I ⊗ S)− (T ⊗ I) = (U ⊗ V)
[
(Λ⊗ Σ)− (I ⊗ S̄)− (T̄ ⊗ I)

]
(UT ⊗ V T),

where S̄ = V TSV , T̄ = UTTU . Since U ⊗ V is nonsingular, trS = tr S̄, and
trT = tr T̄ , the dual problem DQQPOO is equivalent to

µD =max trS + trT

s.t. (Λ⊗ Σ)− (I ⊗ S)− (T ⊗ I) � 0,(3.4)

S = ST , T = TT .

However, since Λ and Σ are diagonal matrices, (3.4) is equivalent to the ordinary
linear program:

LD max eT s+ eT t

s.t. λiσj − sj − ti ≥ 0, i, j = 1, . . . , n.

But LD is the dual of the linear assignment problem:

LP min
∑
i,j

λiσjxij

s.t.

n∑
j=1

xij = 1, i = 1, . . . , n,

n∑
i=1

xij = 1, j = 1, . . . , n,

xij ≥ 0, i, j = 1, . . . , n.

Assume without loss of generality that λ1 ≤ λ2 ≤ · · · ≤ λn, and σ1 ≥ σ2 ≥ · · · ≥ σn.
Then LP can be interpreted as the problem of finding a permutation π(·) of {1, . . . , n}
so that

∑n
i=1 λiσπ(i) is minimized. But the minimizing permutation is then π(i) = i,

i = 1, . . . , n, and from Proposition 3.1 the solution value µD is exactly µO.

48 KURT ANSTREICHER AND HENRY WOLKOWICZ

4. Applications. We now present three applications of the above strong duality
result.

4.1. Quadratic assignment problem. Let A and B be n× n symmetric ma-
trices, and consider the homogeneous quadratic assignment problem (QAP) (see, e.g.,
[32]),

QAP min trAXBXT

s.t. X ∈ Π,

where Π is the set of n × n permutation matrices. The set of orthonormal matrices
contains the permutation matrices, and the orthonormally constrained problem (3.1)
is an important relaxation of QAP. The bounds obtained are usually called the eigen-
value bounds for QAP; see [8, 13]. Theorem 3.2 shows that the eigenvalue bounds
are in fact obtained from a Lagrangian relaxation of (3.1) after adding the seemingly
redundant constraint XXT = I.

4.2. Weighted sums of eigenvalues. Consider the problem of minimizing the
weighted sum of the k largest eigenvalues of an n × n symmetric matrix Y , subject
to linear equality constraints. An SDP formulation for this problem involving 2k
semidefiniteness constraints on n × n matrices is given in [1, section 4.3]. We will
show that the result of section 3 can be applied to obtain a new SDP formulation of
the problem having only k + 1 semidefiniteness constraints on n× n matrices.

For convenience we consider the equivalent problem of maximizing the weighted
sum of the k minimum eigenvalues of Y . Let w1 ≥ w2 ≥ · · · ≥ wk > wk+1 = wk+2 =
· · · = wn = 0, and let W = Diag(w). We are interested in the problem

WEIG max
k∑
i=1

wiλi(Y)

s.t. A vec (Y) = b,

Y = Y T ,

where λ1(Y) ≤ λ2(Y) ≤ · · · ≤ λn(Y) are the eigenvalues of Y , and A is a p × n2

matrix. From Proposition 3.1 it is clear that, for any Y ,

k∑
i=1

wiλi(Y) = min
XTX=I

trY XWXT ,

and therefore from Theorem 3.2 the problem WEIG is equivalent to the problem

max trS + trT
s.t. (W ⊗ Y)− (I ⊗ S)− (T ⊗ I) � 0,

A vec (Y) = b,
S = ST , T = TT , Y = Y T .

(4.1)

Note that, for any Y , the matrix W ⊗Y is block diagonal, with the final n− k blocks
identically zero. Since I⊗S is also block diagonal, and trT is a function of the diagonal
of T only, it is obvious that T can be assumed to be a diagonal matrix T = Diag(t).
Writing the problem (4.1) in terms of t, and separating the block diagonal constraints,

QUADRATIC MATRIX CONSTRAINTS 49

results in the SDP

max trS +
k∑
i=1

ti + (n− k)tk+1

s.t. wiY − S − tiI � 0, i = 1 . . . , k,

−S − tk+1I � 0,
A vecY = b,

S = ST.

We have thus obtained an SDP representation for the problem WEIG with k + 1
semidefiniteness constraints on n× n matrices, as claimed.

4.3. Graph partitioning problem. Let G = (N,E) be an edge-weighted un-
directed graph with node set N = {1, . . . , n}, edge set E, and weights wij , ij ∈ E.
The graph partitioning (GP) problem consists of partitioning the node set N into k

disjoint subsets S1, . . . , Sk of specified sizes m1 ≥ m2 ≥ · · · ≥ mk,
∑k
j=1 mj = n, so

as to minimize the total weight of the edges connecting nodes in distinct subsets of
the partition. This problem is well known to be NP-hard. GP can be modeled as a
quadratic problem

z :=min trXTLX

s.t. X ∈ P,

where L is the Laplacian of the graph and P is the set of n × k partition matrices
(i.e., each column of X is the indicator function of the corresponding set; Xij = 1 if
node i is in set j and 0 otherwise).

The well-known Donath–Hoffman bound [6] zDH ≤ z for GP is

zDH := max
eTu=0

k∑
i=1

miλi(L+ U),

where U = Diag(u), and λ1(L+U) ≤ λ2(L+U) ≤ · · · ≤ λn(L+U) are the eigenvalues
of L + U . We will now show that the Donath–Hoffman bound can be obtained by
applying Lagrangian relaxation to an appropriate QQP relaxation of GP. (An SDP
formulation for this bound is given in [1].) Clearly, if P is a partition matrix, then
xTi xi = 1, i = 1, . . . , n, where x

T
i is the ith row of X. Moreover, the columns of X

are orthogonal with one another, and the norm of the jth column of X is
√
mj . It

follows that if X is a partition matrix, there is an n × n orthogonal matrix X̄ such
that

X = X̄

(
M1/2

0

)
,

where M is the k × k matrix M = Diag(m), and therefore

XXT = X̄

(
M1/2

0

)
(M1/2, 0)X̄T = X̄M̄X̄T , where M̄ =

(
M 0
0 0

)
.

In addition, note that xTi xi is the ith diagonal element of XXT , so the constraint
xTi xi = 1 is equivalent to x̄

T
i M̄x̄i = 1, where x̄

T
i is the ith row of X̄. Since trX

TLX =

50 KURT ANSTREICHER AND HENRY WOLKOWICZ

trLXXT , a lower bound z1 ≤ z can be defined by

z1 :=min trLX̄M̄X̄T

s.t. X̄T X̄ = I, X̄X̄T = I,(4.2)

x̄Ti M̄x̄i = 1, i = 1, . . . , n.

We will now obtain a second bound z2 ≤ z1 by applying a Lagrangian procedure to
all of the constraints in (4.2). Using symmetric matrices S and T for the constraints
X̄X̄T = I and X̄T X̄ = I, respectively, and a vector of multipliers ui for the constraints
x̄Ti M̄x̄i = 1, i = 1, . . . , n, we obtain

z2 := max
u,S,T

min
X̄

trLX̄M̄X̄T + trS(I − X̄X̄T) + trT (I − X̄T X̄)

+

n∑
i=1

ui(x̄
T
i M̄x̄i − 1).

Theorem 4.1. z2 = zDH .
Proof. Rearranging terms and using Kronecker product notation, the definition

of z2 can be rewritten as

z2 = max
u,S,T

trS + trT − eTu

+min
X̄

vec (X̄)T ([M̄ ⊗ (L+ U)]− (I ⊗ S)− (T ⊗ I))vec (X̄),

where U = Diag(u), and we are using the fact that

n∑
i=1

uix̄
T
i M̄x̄i = trUX̄M̄X̄T .

Clearly if [M̄ ⊗ (L + U)] − (I ⊗ S) − (T ⊗ I) � 0, then X̄ = 0 solves the implicit
minimization problem in the definition of z2, and if this constraint fails to hold, the
minimum is −∞. Using this hidden semidefinite constraint, we can write

z2 =max trS + trT − eTu

s.t. [M̄ ⊗ (L+ U)]− (I ⊗ S)− (T ⊗ I) � 0,
S = ST , T = TT .

Note that if u′ = u+ λe and T ′ = T + λM̄ for any scalar λ, then

M̄ ⊗ (L+ U ′) = M̄ ⊗ (L+ U) + λ(M̄ ⊗ I),

T ′ ⊗ I = T ⊗ I + λ(M̄ ⊗ I).

In addition, trT ′ = trT + λn and eTu′ = eTu + λn. It follows that we may choose
any normalization for eTu without affecting the value of z2. Choosing e

Tu = 0, we
arrive at

z2 =max trS + trT

s.t. [M̄ ⊗ (L+ U)]− (I ⊗ S)− (T ⊗ I) � 0,
eTu = 0, S = ST , T = TT .

QUADRATIC MATRIX CONSTRAINTS 51

However, as in the previous section, Proposition 3.1 and Theorem 3.2 together imply
that for any U , the solution value in the problem

max trS + trT

s.t. [M̄ ⊗ (L+ U)]− (I ⊗ S)− (T ⊗ I) � 0,
S = ST , T = TT ,

is exactly
∑k
i=1 miλi(L+ U). Therefore, we immediately have zDH = z2.

SDP relaxations for the GP problem are obtained via Lagrangian relaxation in
[45]. A useful corollary of Theorem 4.1 is that any Lagrangian relaxation based on a
more tightly constrained problem than (4.2) will produce bounds that dominate the
Donath–Hoffman bounds.

A problem closely related to the orthogonal relaxation of GP is the orthogonal
Procrustes problem on the Stiefel manifold; see [7, section 3.5.2]. This problem has a
linear term in the objective function, and there is no known analytic solution for the
general case.

5. A strengthened relaxation for max-cut. As discussed above, the SDP
relaxation for MC performs very well in practice and has strong theoretical proper-
ties. There have been attempts at further strengthening this relaxation. For example,
a copositive relaxation is presented in [39]. Adding cuts to the SDP relaxation is dis-
cussed in [15, 16, 17, 18]. These improvements all involve heuristics, such as deciding
which cuts to choose or solving a copositive problem, which is NP-hard in itself.

The relaxation in (2.3) is obtained by lifting the vector x into matrix space using
X = xxT . Though the matrix X in the lifting is not an orthogonal matrix, it is a
partial isometry up to normalization, i.e.,

X2 − nX = 0.(5.1)

We will now show that we can improve the semidefinite relaxation presented in
section 2.5 by considering Lagrangian relaxations using the matrix quadratic con-
straint (5.1). In particular, consider the relaxation of MC

µ1 := max tr QX

s.t. diag (X) = e,

X2 −nX = 0,

where X is a symmetric matrix. Note that if X2 = nX, then trQX = (1/n) trQX2,
and diag(X2) = ne. As a result, the above relaxation is equivalent to the relaxation

µ1 =max
1

n
trQX2

s.t. xTi xi = n, i = 1, . . . , n,(5.2)

X2 − nx0X = 0,

x2
0 = 1,

where xTi , i = 1, . . . , n, denotes the ith row of X, and x0 is a scalar. (Note that if
x0 = −1, then changing x0 to 1 and replacing X with −X leaves the objective and
constraints in (5.2) unchanged.) We will obtain an upper bound µ2 ≥ µ1 by applying
a Lagrangian procedure to all of the constraints in (5.2). Using multipliers ui for the

52 KURT ANSTREICHER AND HENRY WOLKOWICZ

constraints xTi xi = n, i = 1, . . . , n, u0 for the constraint x
2
0 = 1, and a symmetric

matrix S for the matrix equality X2 − nX = 0, we obtain a Lagrangian problem

µ2 := min
u0,u,S

u0 + nuT e+max
x0,X

1

n
trQX2 − trUX2 + trSX2 − nx0 trSX − u0x

2
0,

where U = Diag(u). Letting x̄T = (x0, vec (X)
T), this problem can be written in

Kronecker product form as

µ2 = min
u0,u,S

u0 + neTu+max
x̄

x̄T Q̄x̄,

where

Q̄ =

(−u0 −n2 vec (S)T−n2 vec (S) I ⊗ (1
nQ− U + S

)
)
.

Applying the hidden semidefinite constraint Q̄ � 0, we obtain an equivalent problem,

µ2 =minu0 + neTu

s.t.

(
u0

n
2 vec (S)

T

n
2 vec (S) I ⊗ (− 1

nQ+ U − S
)
)
� 0,(5.3)

S = ST .

Note that if we take S = 0 in (5.3), then u0 = 0 is clearly optimal and the problem
reduces to

min eTu

s.t. −Q+ U � 0,

which is exactly the dual of (2.3), the usual SDP relaxation for MC. It follows that we
have obtained an upper bound µ2 which is a strengthening of the usual SDP bound,
i.e., µ2 ≤ µ∗

MCSDP .
The strengthened relaxation (5.3) involves a semidefiniteness constraint on a (n2+

1)× (n2+1) matrix, as opposed to an n×n matrix in the usual SDP relaxation (2.3).
This dimensional increase can be mitigated by taking note of the fact that X in (5.2)
must be a symmetric matrix, and therefore (5.2) can actually be written as a problem
over a vector x of dimension n(n + 1)/2. In addition, alternative relaxations can be
obtained by not making the substitutions based on (5.1) used to obtain the problem
(5.2). The effect of these alternatives on the performance of strengthened SDP bounds
for MC is the topic of ongoing research; for up-to-date developments, see the URL
http://orion.uwaterloo.ca/˜hwolkowi/henry/reports/strngthMC.ps.gz.

6. Conclusion. In this paper we have shown that a class of nonconvex quadratic
problems with orthogonal constraints can satisfy strong duality if certain seemingly re-
dundant constraints are added before the Lagrangian dual is formed. As applications
of this result we showed that well-known eigenvalue bounds for QAP and GP prob-
lems can actually be obtained from the Lagrangian dual of QQP relaxations of these
problems. We also showed that the technique of relaxing quadratic matrix constraints
can be used to obtain strengthened SDP relaxations for the max-cut problem.

Adding constraints to close the duality gap is akin to adding valid inequalities in
cutting plane methods for discrete optimization problems. In [2, 24] this approach, in

QUADRATIC MATRIX CONSTRAINTS 53

combination with a lifting procedure, is used to solve discrete optimization problems.
In our case we add quadratic constraints. The idea of quadratic valid inequalities has
been used in [10]; and closing the duality gap has been discussed in [20].

Our success in closing the duality gap for the QQPO problem considered in section
3, where we have the special Kronecker product in the objective function, raises
several interesting questions. For example, can the strong duality result for QQPO

be extended to the same problem with an added linear term in the objective, or are
there some other special classes of objective functions where this is possible? Another
outstanding question is whether it is possible to add quadratic constraints to close
the duality gap for the TTRS.

REFERENCES

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to combi-
natorial optimization, SIAM J. Optim., 5 (1995), pp. 13–51.

[2] E. Balas, S. Ceria, and G. Cornuejols, A lift-and-project cutting plane algorithm for mixed
0-1 programs, Math. Programming, 58 (1993), pp. 295–324.

[3] R. Bhatia, Perturbation Bounds for Matrix Eigenvalues, Pitman Res. Notes Math. Ser. 162,
Longman Scientific and Technical, Harlow, UK, 1987.

[4] M. Celis, J. Dennis Jr., and R. Tapia, A trust region strategy for nonlinear equality con-
strained optimization, in Proceedings of the SIAM Conference on Numerical Optimization,
Boulder, CO, 1984 , pp. 71–82. Also available as Technical Report TR84-1, Rice University,
Houston, TX.

[5] J.-P. Crouzeix, J.-E. Martinez-Legaz, and A. Seeger, An alternative theorem for quadratic
forms and extensions, Linear Algebra Appl., 215 (1995), pp. 121–134.

[6] W. Donath and A. Hoffman, Lower bounds for the partitioning of graphs, IBM J. Res.
Develop., 17 (1973), pp. 420–425.

[7] A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality
constraints, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303–353.

[8] G. Finke, R. Burkhard, and F. Rendl, Quadratic assignment problems, Ann. Discrete Math.,
31 (1987), pp. 61–82.

[9] M. Fu, Z. Luo, and Y. Ye, Approximation algorithms for quadratic programming, J. Combi-
natorial Optim., 2 (1998), pp. 29–50.

[10] T. Fujie and M. Kojima, Semidefinite programming relaxation for nonconvex quadratic pro-
grams, J. Global Optim., 10 (1997), pp. 367–380.

[11] M. X. Goemans, Semidefinite programming in combinatorial optimization, Math. Program-
ming, 79 (1997), pp. 143–162.

[12] M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach., 42
(1995), pp. 1115–1145.

[13] S. Hadley, F. Rendl, and H. Wolkowicz, Bounds for the quadratic assignment problems
using continuous optimization, in Integer Programming and Combinatorial Optimization,
University of Waterloo Press, Waterloo, Ontario, Canada, 1990, pp. 237–248.

[14] S. Hadley, F. Rendl, and H. Wolkowicz, A new lower bound via projection for the quadratic
assignment problem, Math. Oper. Res., 17 (1992), pp. 727–739.

[15] C. Helmberg, An Interior Point Method for Semidefinite Programming and Max-Cut Bounds,
Ph.D. thesis, Graz University of Technology, Austria, 1994.

[16] C. Helmberg, Fixing Variables in Semidefinite Relaxations, Lecture Notes in Comput. Sci.
1284, Springer, Berlin, 1997.

[17] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM
J. Optim, 10 (2000), pp. 673–696.

[18] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, An interior-point method
for semidefinite programming, SIAM J. Optim., 6 (1996), pp. 342–361.

[19] F. Jarre, On the convergence of the method of analytic centers when applied to convex
quadratic programs, Math. Programming, 49 (1990), pp. 341–358.

[20] M. Kojima and L. Tunçel, Cones of Matrices and Successive Convex Relaxations of Non-
convex Sets, Technical Report B-338, Tokyo Institute of Technology, Tokyo, Japan, 1998.

54 KURT ANSTREICHER AND HENRY WOLKOWICZ

[21] S. Kruk and H. Wolkowicz, SQ2P, sequential quadratic constrained quadratic programming,
in Advances in Nonlinear Programming, Y. Xiang Yuan, ed., Appl. Optim. 14, Kluwer
Academic Publishers, Dordrecht, 1998, pp. 177–204.

[22] M. Laurent, Cuts, matrix completions and graph rigidity, Math. Programming, 79 (1997),
pp. 255–284.

[23] M. Laurent, A tour d’horizon on positive semidefinite and Euclidean distance matrix comple-
tion problems, in Topics in Semidefinite and Interior-Point Methods, Fields Inst. Commun.
18, AMS, Providence, RI, 1998, pp. 51–76.

[24] L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM
J. Optim., 1 (1991), pp. 166–190.

[25] Z.-Q. Luo and J. Sun, An Analytic Center Based Column Generation Algorithm for Convex
Quadratic Feasibility Problems, Technical report, McMaster University, Hamilton, Ontario,
Canada, 1995; also available from ftp://ftp.nus.sg/pub/NUS/opt/qcut.ps.gz.

[26] Z.-Q. Luo and S. Zhang, On the Extension of Frank-Wolfe Theorem, Technical report, Eras-
mus University Rotterdam, The Netherlands, 1997.

[27] J. M. Martinez, Local minimizers of quadratic functions on Euclidean balls and spheres, SIAM
J. Optim., 4 (1994), pp. 159–176.

[28] J. J. Moré, Generalizations of the trust region problem, Optim. Methods Softw., 2 (1993),
pp. 189–209.

[29] J. Moré and D. Sorensen, Computing a trust region step, SIAM J. Sci. Stat. Comput., 4
(1983), pp. 553–572.

[30] Y. E. Nesterov, Semidefinite relaxation and nonconvex quadratic optimization, Optim. Meth-
ods Softw., 9 (1998), pp. 141–160.

[31] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Algorithms in Convex Program-
ming, SIAM Stud. Appl. Math. 13, SIAM, Philadelphia, PA, 1994.

[32] P. Pardalos, F. Rendl, and H. Wolkowicz, The quadratic assignment problem: A survey
and recent developments, in Proceedings of the DIMACS Workshop on Quadratic Assign-
ment Problems, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 16, AMS, Providence,
RI, 1994, pp. 1–41.

[33] J.-M. Peng and Y.-X. Yuan, Optimality conditions for the minimization of a quadratic with
two quadratic constraints, SIAM J. Optim., 7 (1997), pp. 579–594.

[34] E. L. Peterson and J. G. Ecker, Geometric programming: Duality in quadratic programming
and lp-approximation. I, in Proceedings of the Princeton Symposium on Mathematical
Programming, Princeton Univ., 1967, Princeton University Press, Princeton, NJ, 1970,
pp. 445–480.

[35] E. L. Peterson and J. G. Ecker, Geometric programming: Duality in quadratic programming
and lp-approximation. II. Canonical programs, SIAM J. Appl. Math., 17 (1969), pp. 317–
340.

[36] E. L. Peterson and J. G. Ecker, Geometric programming: Duality in quadratic programming
and lp-approximation. III. Degenerate programs, J. Math. Anal. Appl., 29 (1970), pp. 365–
383.

[37] S. Poljak, F. Rendl, and H. Wolkowicz, A recipe for semidefinite relaxation for (0,1)-
quadratic programming, J. Global Optim., 7 (1995), pp. 51–73.

[38] S. Poljak and H. Wolkowicz, Convex relaxations of 0-1 quadratic programming, Math. Oper.
Res., 20 (1995), pp. 550–561.

[39] A. Quist, E. D. Klerk, C. Roos, and T. Terlaky, Copositive relaxation for general quadratic
programming, Optim. Methods Softw., 9 (1998), pp. 185–208.

[40] F. Rendl and H. Wolkowicz, A semidefinite framework for trust region subproblems with
applications to large scale minimization, Math. Programming, 77 (1997), pp. 273–299.

[41] S. Santos and D. Sorensen, A New Matrix-Free Algorithm for the Large-Scale Trust-Region
Subproblem, Technical Report TR95-20, Rice University, Houston, TX, 1995.

[42] N. Shor, Quadratic optimization problems, Izv. Akad. Nauk SSSR Tekhn. Kibernet., 222
(1987), pp. 128–139.

[43] R. J. Stern and H. Wolkowicz, Indefinite trust region subproblems and nonsymmetric eigen-
value perturbations, SIAM J. Optim., 5 (1995), pp. 286–313.

[44] T. Terlaky, On lp programming, European J. Oper. Res., 22 (1985), pp. 70–100.
[45] H. Wolkowicz and Q. Zhao, Semidefinite relaxations for the graph partitioning problem,

Discrete Appl. Math., 96–97 (1999), pp. 461–479.
[46] Y. Ye, Approximating quadratic programming with bound and quadratic constraints, Math.

Programming, 84 (1999), pp. 219–226.
[47] Y. Yuan, Some Properties of Trust Region Algorithms for Nonsmooth Optimization, Technical

Report DAMTP 1983/NA14, University of Cambridge, Cambridge, UK, 1983.

QUADRATIC MATRIX CONSTRAINTS 55

[48] Y. Yuan, On a subproblem of trust region algorithms for constrained optimization, Math.
Programming, 47 (1990), pp. 53–63.

[49] Y. Yuan, A dual algorithm for minimizing a quadratic function with two quadratic constraints,
J. Comput. Math., 9 (1991), pp. 348–359.

[50] Q. Zhao, S. Karisch, F. Rendl, and H. Wolkowicz, Semidefinite programming relaxations
for the quadratic assignment problem, J. Combin. Optim., 2 (1998), pp. 71–109.

CONDITIONING OF THE STABLE, DISCRETE-TIME LYAPUNOV
OPERATOR∗

MICHAEL K. TIPPETT† , STEPHEN E. COHN‡ , RICARDO TODLING§ ,
AND DAN MARCHESIN¶

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 56–65

Abstract. The Schatten p-norm condition of the discrete-time Lyapunov operator LA defined
on matrices P ∈ Rn×n by LAP ≡ P − APAT is studied for stable matrices A ∈ Rn×n. Bounds
are obtained for the norm of LA and its inverse that depend on the spectrum, singular values,
and radius of stability of A. Since the solution P of the discrete-time algebraic Lyapunov equation
(DALE) LAP = Q can be ill-conditioned only when either LA or Q is ill-conditioned, these bounds
are useful in determining whether P admits a low-rank approximation, which is important in the
numerical solution of the DALE for large n.

Key words. Lyapunov matrix equation, condition estimates, large-scale systems, radius of
stability

AMS subject classifications. 15A12, 93C55, 93A15, 47B65

PII. S0895479899354822

1. Introduction. Properties of the solution P of the discrete algebraic Lya-
punov equation (DALE), P = APAT + Q, are closely related to the stability prop-
erties of A. For instance, the DALE has a unique solution P = PT > 0 for any
Q = QT > 0 if A is stable [11], a fact also true in infinite-dimensional Hilbert spaces
[18]. In the setting treated here with A, Q, P ∈ R

n×n, A is stable if its eigenval-
ues λi(A), i = 1, . . . , n, lie inside the unit circle; the eigenvalues are ordered so that
|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)|. Here A is always assumed to be stable.

In applications where the dimension n is very large, direct solution of the DALE
or even storage of P is impractical or impossible. For instance, in numerical weather
prediction applications A is the matrix that evolves atmospheric state perturbations.
The DALE and its continuous-time analogues can be solved directly for simplified
atmospheric models [6, 23], but in realistic models n is about 106 − 107 and even the
storage of P is impossible. Krylov subspace [5] and Monte Carlo [9] methods have
been used to find low-rank approximations of the right-hand side of the DALE and
of the solution of the DALE [10].

The solution P of the DALE can be well approximated by a rank-deficient matrix
if P has some small singular values. Therefore, it is useful to identify properties of A

∗Received by the editors April 23, 1999; accepted for publication (in revised form) by R. Bha-
tia November 1, 1999; published electronically May 31, 2000. This work was supported by Con-
selho Nacional de Desenvolvimento Cient́ıfico e Tecnológico grants 91.0029/95-4, 381737/97-7, and
30.0204/83-3, Financiadora de Estudos e Projetos grant 77.97.0315.00, and the NASA EOS Inter-
disciplinary Project on Data Assimilation. This work was performed by an employee of the U.S.
Government or under U.S. Government contract. The U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by
these rights.

http://www.siam.org/journals/simax/22-1/35482.html
†IRI, Lamont–Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000

(tippett@iri.ldeo.columbia.edu). This work was done while the author was with the Centro de Pre-
visão de Tempo e Estudos Climáticos, Cachoeira Paulista, SP, Brazil.

‡Data Assimilation Office, Code 910.3, NASA/GSFC, Greenbelt, MD 20771 (cohn@dao.gsfc.
nasa.gov).

§General Sciences Corp./SAIC, Code 910.3, NASA/GSFC/DAO, Greenbelt, MD 20771 (todling@
dao.gsfc.nasa.gov).

¶Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil (marchesi@impa.br).

56

LYAPUNOV OPERATOR CONDITIONING 57

or Q that lead to P being ill-conditioned. If A is normal, then

λ1(P)

λn(P)
≤ λ1(Q)

λn(Q)

1− |λn(A)|2
1− |λ1(A)|2 ;(1.1)

the conditioning of P is controlled by that of Q and by the spectrum of A. In the
general case, the conditioning of Q and of the discrete-time Lyapunov operator LA
defined by LAP ≡ P −APAT determine when P may be ill-conditioned.
Theorem 1.1. Let A be a stable matrix and suppose that LAP = Q for Q =

QT > 0. Then

‖P‖p ‖P−1‖p ≤ ‖LA‖p ‖L−1
A ‖p ‖Q‖p ‖Q−1‖p , p =∞ ,(1.2)

where ‖ · ‖p is the Schatten p-norm (see (2.2)).
Theorem 1.1 (see proof in the appendix) follows from L−1

A and its adjoint being
positive operators. Therefore, the same connection between rank-deficient approx-
imate solutions and operator conditioning exists for matrix equations such as the
continuous algebraic Lyapunov equation. We note that Theorem 1.1 also holds for
1 ≤ p <∞ if either A is singular or σ2

1(A) ≥ 2; σ1(A) is the largest singular value of
A.

Here we characterize the Schatten p-norm condition of LA. The main results are
the following. Theorem 3.1 bounds ‖LA‖p in terms of the singular values of A. A
lower bound for ‖L−1

A ‖p depending on λ1(A) is presented in Theorem 4.1, generalizing
results of [7]. Theorem 4.2 gives lower bounds for ‖L−1

A ‖1 and ‖L−1
A ‖∞ in terms of

the singular values of A. Theorem 4.6 gives an upper bound for ‖L−1
A ‖p depending on

the radius of stability of A and generalizes results in [20]. Three examples illustrating
the results are included. The issue of whether LA and L−1

A achieve their norms on
symmetric, positive definite matrices is addressed in the concluding remarks.

2. Preliminaries. We investigate the condition number κ(LA) = ‖LA‖ ‖L−1
A ‖,

where ‖ · ‖ is a norm on R
n2×n2

induced by a matrix norm on R
n×n. Specifically, for

M∈ R
n2×n2

we consider norms defined by

‖M‖p = max
S �=0∈Rn×n

‖MS‖p
‖S‖p , 1 ≤ p ≤ ∞ ,(2.1)

where the Schatten matrix p-norm for S ∈ R
n×n is defined by

‖S‖p =

(
n∑
i=1

(σi(S))
p

)1/p

;(2.2)

σi(S) are the singular values of S with ordering σ1(S) ≥ σ2(S) ≥ · · · ≥ σn(S) ≥ 0.
On R

n×n, ‖ · ‖2 is the Frobenius norm and ‖ · ‖∞ = σ1(·). If S = ST ≥ 0, then
‖S‖1 = trS. The following lemma about the Schatten p-norms follows from their
being unitarily invariant [1, p. 94].
Lemma 2.1. For any three matrices X, Y , and Z ∈ R

n×n,

‖XY Z‖p ≤ ‖X‖∞‖Y ‖p‖Z‖∞ , 1 ≤ p ≤ ∞ .(2.3)

The p = 2 Schatten norm on R
n×n is equivalently defined as ‖S‖22 = (S, S),

where (·, ·) is the inner product on R
n×n defined by (S1, S2) = trST1 S2 . This norm

58 TIPPETT, COHN, TODLING, AND MARCHESIN

corresponds to the usual Euclidean norm on R
n2

since ‖S‖22 is equal to the sum of
the squares of the entries of S. As a consequence κ2(LA) = σ1(LA)/σn2(LA), where
σ1(LA) and σn2(LA) are, respectively, the largest and smallest singular values of LA.
The adjoint of LA is given by L∗

AS = LAT S = S −ATSA.

We now state some lemmas about mappings M∈ R
n2×n2

and about the spectra
of LA and A.
Lemma 2.2 (see [2, equation (15)]). ‖M‖p ≤ ‖M‖1/p1 ‖M‖1−1/p

∞ , 1 ≤ p ≤ ∞.
Lemma 2.3. ‖M‖1 = ‖M∗‖∞.
Lemma 2.4 (see [2, proof of Theorem 1]). IfMS > 0 for all S ∈ R

n×n such that
S > 0, then ‖M‖∞ = ‖MI‖∞.
Lemma 2.5 (see [13, 14]). The n2 eigenvalues of LA are 1 − λi(A)λj(A), 1 ≤

i, j ≤ n.

3. The norm of the Lyapunov operator. If A is normal, then LA is normal,
and its conditioning in the p = 2 Schatten norm depends only on its eigenvalues.
Therefore, when A is normal,

‖L−1
A ‖2 =

1

σn2(LA)
=

1

|λn2(LA)| =
1

1− |λ1(A)|2(3.1)

and

‖LA‖2 = σ1(LA) = |λ1(LA)| = max
i,j
|1− λi(A)λj(A)| .(3.2)

For general A, the following theorem bounds ‖LA‖p in terms of the singular values of
A.
Theorem 3.1.

|1− σ2
1(A)| ≤ max

j
|1− σ2

j (A)| ≤ ‖LA‖p ≤ 1 + σ2
1(A) , 1 ≤ p ≤ ∞ .(3.3)

Proof. Note that LAvjvTj = vjv
T
j − σ2

juju
T
j , where uj and vj are, respectively,

the jth left and right singular vectors of A such that Avj = σjuj . The lower bound
follows from ‖ujuTj ‖p = ‖vjvTj ‖p = 1 and

‖LA‖p ≥ ‖vjvTj − σ2
juju

T
j ‖p ≥

∣∣‖vjvTj ‖p − ‖σ2
juju

T
j ‖p

∣∣ =
∣∣1− σ2

j

∣∣ .(3.4)

The upper bound follows from

‖LAP‖p ≤ ‖P‖p + ‖APAT ‖p ≤ ‖P‖p + ‖A‖2∞‖P‖p .(3.5)

If A is normal, σj(A) can be replaced by |λj(A)| in Theorem 3.1, and ‖LA‖p ≤
1 + |λ1(A)|2. If A is normal and (−λ1(A)) is an eigenvalue of A, then 1 + |λ1(A)|2 is
an eigenvalue of LA and ‖LA‖p = 1 + |λ1(A)|2.

Theorem 3.1 shows that ‖LA‖p is large and contributes to ill-conditioning if and
only if σ1(A) is large, a situation that occurs in various applications [3, 22]. If σ1(A)�
1 and |λ1(A)| < 1, A is highly nonnormal [8, p. 314] and, as Corollary 4.8 will show,
close to an unstable matrix.

4. The norm of the inverse Lyapunov operator. We first show that a
sufficient condition for ‖L−1

A ‖p to be large is that λ1(A) be near the unit circle. The
condition is necessary when A is normal.

LYAPUNOV OPERATOR CONDITIONING 59

Theorem 4.1. Let A be a stable matrix. Then

‖L−1
A ‖p ≥

1

1− |λ1(A)|2 , 1 ≤ p ≤ ∞ ,(4.1)

with equality holding if A is normal.
Proof. To obtain the lower bound, let z1 be the leading eigenvector of A, Az1 =

λ1(A)z1, and note that LAz1zH1 = (1− |λ1(A)|2)z1z
H
1 , where (·)H denotes conjugate

transpose. Either Re z1z
H
1 = 0 or Im z1z

H
1 = 0 is an eigenvector of LA, and it follows

that ‖L−1
A ‖p ≥ (1− |λ1(A)|2)−1. Finally, if A is normal, then

L−1
AT I = L−1

A I =

n∑
i=1

1

1− |λi(A)|2 ziz
H
i ,(4.2)

and ‖L−1
A ‖∞ = ‖L−1

A ‖1 = (1 − |λ1(A)|2)−1. Using Lemma 2.2 gives ‖L−1
A ‖p ≤ (1 −

|λ1(A)|2)−1 when A is normal, and therefore ‖L−1
A ‖p = (1− |λ1(A)|2)−1.

When A is nonnormal, ‖L−1
A ‖p can be large without λ1(A) being near the unit

circle. For instance, if σ1(A) is large or, more generally, if ‖Ak‖∞ converges to zero
slowly as a function of k, then ‖L−1

A ‖p is large. We show this fact first for p = 1,∞.
Theorem 4.2. Let A be a stable matrix. For all m ≥ 1,

‖L−1
A ‖1 =

∥∥∥∥∥
∞∑
k=0

(
Ak
)T

Ak

∥∥∥∥∥
∞
≥
∥∥∥∥∥
m∑
k=0

(
Ak
)T

Ak

∥∥∥∥∥
∞

+
σ

2(m+1)
n (A)

1− σ2
n(A)

,(4.3)

‖L−1
A ‖∞ =

∥∥∥∥∥
∞∑
k=0

Ak
(
Ak
)T∥∥∥∥∥

∞
≥
∥∥∥∥∥
m∑
k=0

Ak
(
Ak
)T∥∥∥∥∥

∞
+
σ

2(m+1)
n (A)

1− σ2
n(A)

.(4.4)

In particular,

‖L−1
A ‖p ≥ 1 + σ2

1(A) +
σ4
n(A)

1− σ2
n(A)

, p = 1,∞ .(4.5)

Proof. The operator L−1
A applied to S ∈ R

n×n can be expressed as [18]

L−1
A S =

∞∑
k=0

AkS
(
Ak
)T

.(4.6)

Applying Lemma 2.4 gives ‖L−1
A ‖∞ = ‖L−1

A I‖∞, with the inequality in (4.4) being a
consequence of∥∥∥∥∥

∞∑
k=0

Ak
(
Ak
)T∥∥∥∥∥

∞
≥
∥∥∥∥∥
m∑
k=0

Ak
(
Ak
)T∥∥∥∥∥

∞
+ λn

(∞∑
k=m+1

Ak
(
AT
)k)

,(4.7)

and

λn

(∞∑
k=m+1

Ak
(
AT
)k) ≥

∞∑
k=m+1

λn

(
Ak
(
AT
)k) ≥

∞∑
k=m+1

σ2k
n (A) =

σ
2(m+1)
n (A)

1− σ2
n(A)

,

(4.8)

where we have used the facts that for matrices W,X, Y ∈ R
n×n with X,Y being

symmetric positive semidefinite, λi(X + Y) ≥ λi(X) + λn(Y), and λi(WXWT) ≥
σ2
n(W)λi(X) [17]. Likewise the p = 1 results follow from ‖L−1

A ‖1 = ‖L−1
AT I‖∞.

60 TIPPETT, COHN, TODLING, AND MARCHESIN

Lower bounds for 1 < p <∞ follow trivially, e.g.,

‖L−1
A ‖p ≥

‖L−1
A I‖p
‖I‖p =

‖L−1
A I‖p
n1/p

≥ n−1/p‖L−1
A ‖∞ ,(4.9)

but give little information when n is large. A lower bound for 1 ≤ p ≤ ∞ depending
on σ1(A) and independent of n is given in Corollary 4.9.

We now relate ‖L−1
A ‖p to the distance from A to the set of unstable matrices as

measured by its radius of stability [15].
Definition 4.3. For any stable matrix A ∈ R

n×n define the radius of stability
r(A) by

r(A) ≡ min
0≤θ≤2π

‖(eiθI −A)−1‖−1
∞ = min

0≤θ≤2π
‖R(eiθ, A)‖−1

∞ ,(4.10)

where the resolvent of A is R(λ,A) = (λI −A)−1.
If A is normal and stable, then r(A) = 1−|λ1(A)|. However, if A is nonnormal and

if its eigenvalues are sensitive to perturbations, then r(A) � 1− |λ1(A)|. The sensi-
tivity of the eigenvalues of A is most completely described by its pseudospectrum [21].
The radius of stability r(A) is the largest value of ε such that the ε-pseudospectrum
of A lies inside the unit circle; r(A) being small indicates that the ε-pseudospectrum
of A is close to the unit circle for small ε. The following theorem shows that when
r(A) is small, ‖L−1

A ‖p must be large.
Theorem 4.4 (proven for p =∞ in [7]). Let A be a stable matrix. Then

‖L−1
A ‖p ≥

1

2r(A) + r2(A)
, 1 ≤ p ≤ ∞ .(4.11)

Proof. There exists a matrix E ∈ R
n×n with |λ1(A+E)| = 1 and ‖E‖∞ = r(A).

Therefore, there exists a vector x with xHx = 1 such that (A + E)x = eiθx for some
0 ≤ θ ≤ 2π. Using ‖xxH‖p = 1 and Lemma 2.1 gives

‖LAxxH‖p = ‖ − ExxHET + eiθxxHET + e−iθExxH‖
≤ ‖ExxHET ‖p + ‖xxHET ‖p + ‖ExxH‖p
≤ ‖E‖2∞ + 2‖E‖∞ = r2(A) + 2r(A) ,

(4.12)

and we have

‖L−1
A ‖p ≥

‖L−1
A LAxxH‖p
‖LAxxH‖p =

1

‖LAxxH‖p ≥
1

2r(A) + r2(A)
.(4.13)

A consequence of Theorem 4.4 is the following lower bound for r(A) in terms of
‖L−1

A ‖p.
Corollary 4.5. Let A be a stable matrix. Then

r(A) ≥ ‖L−1
A ‖−1

p

1 +
√

1 + ‖L−1
A ‖−1

p

, 1 ≤ p ≤ ∞ .(4.14)

Bounds for r(A) are useful in robust stability [12] and in the study of perturbations
of the discrete algebraic Riccati equation (DARE) [19]. In [19, Lemma 2.2] the bound

r(A) ≥ ‖L−1
A ‖−1

∞

σ1(A) +
√
σ2

1(A) + ‖L−1
A ‖−1∞

(4.15)

LYAPUNOV OPERATOR CONDITIONING 61

was used to formulate conditions under which a perturbed DARE has a unique, sym-
metric, positive definite solution. Since the lower bound in (4.14) with p = ∞ is
sharper than that in (4.15) when σ1(A) > 1, it can be used to show existence of a
unique, symmetric, positive definite solution of the perturbed DARE for a larger class
of perturbations [19, Theorem 4.1].

We generalize to Schatten p-norms the conjecture of [7] proven in [20] for the
Frobenius norm.
Theorem 4.6. Let A be a stable matrix. Then

‖L−1
A ‖p ≤

1

r2(A)
, 1 ≤ p ≤ ∞ .(4.16)

Proof. L−1
A I can be expressed as [20, 13]

L−1
A I =

1

2π

∫ 2π

0

R(eiθ, A)R(eiθ, A)H dθ.(4.17)

Therefore, from Lemma 2.4,

‖L−1
A ‖∞ = ‖L−1

A I‖∞ ≤ 1

2π

∫ 2π

0

‖R(eiθ, A)‖2∞ dθ ≤ 1

r2(A)
.(4.18)

The inequality (4.16) for p = 1 follows from ‖L−1
A ‖1 = ‖L−1

AT I‖∞ and r(A) = r(AT).
The theorem follows from Lemma 2.2.

As a consequence, any solution of the DALE can be used to obtain an upper
bound for r(A).
Corollary 4.7. Let A be a stable matrix and let LAP = Q. Then

r2(A) ≤ ‖Q‖p‖P‖p , 1 ≤ p ≤ ∞ .(4.19)

Theorem 4.6 can be combined with any lower bound for ‖L−1
A ‖p to obtain an

upper bound for r(A). For instance, from Theorem 4.2 we get the following upper
bound.
Corollary 4.8. Let A be a stable matrix. Then

r2(A) ≤ 1

1 + σ2
1(A)

.(4.20)

Combining Corollary 4.8 and Theorem 4.4 gives a lower bound for ‖L−1
A ‖p.

Corollary 4.9. Let A be a stable matrix. Then

‖L−1
A ‖p ≥

1 + σ2
1(A)

1 + 2
√

1 + σ2
1(A)

, 1 ≤ p ≤ ∞ .(4.21)

5. Examples. We present three examples that illustrate how ill-conditioning of
LA leads to low-rank approximate solutions of the DALE.

Example 1. Almost unit eigenvalues. Take A = λzzT , where λ and z are real,
0 < λ < 1, and zT z = 1. The matrix A is symmetric and LA is self-adjoint. The eigen-
values of A are (λ, 0, . . . , 0). The operator LA has singular values (and eigenvalues)
(1, . . . , 1, 1− λ2). Therefore, ‖LA‖2 = 1 and 1 ≤ ‖LA‖p ≤ 1 + λ2 from Theorem 3.1.
The norm of the inverse Lyapunov operator is

‖L−1
A ‖p =

1

1− λ2
, 1 ≤ p ≤ ∞ ,(5.1)

62 TIPPETT, COHN, TODLING, AND MARCHESIN

according to Theorem 4.1. As the eigenvalue λ approaches the unit circle, LA is
increasingly poorly conditioned. The solution of the DALE for this choice of A is

P =
λ2

1− λ2

(
zTQz

)
zzT + Q .(5.2)

A “natural” rank-1 approximation P̃ of P is P̃ = λ2(1 − λ2)−1(zTQz)zzT . As the
eigenvalue λ approaches the unit circle, if (zTQz) is nonzero, P is increasingly well
approximated by P̃ in the sense that ‖P − P̃‖p/‖P‖p approaches zero.

Example 2. Large singular values. Take A = σyzT , where σ > 0 and y and z
are real unit n-vectors. The matrix A has at most one nonzero eigenvalue, namely,
λ = σ(yT z), taken to be less than one in absolute value. The sensitivity s of the
eigenvalue λ is the cosine of the angle between y and z, i.e., s = λ/σ for λ = 0,
indicating that λ is sensitive to perturbations to A when σ is large [8].

Theorem 3.1 gives that 1 + σ2 ≥ ‖LA‖p ≥ |1 − σ2|, showing that ‖LA‖p is large
when σ is large. From Lemmas 2.3 and 2.4,

‖L−1
A ‖1 = ‖L−1

A ‖∞ = 1 +
σ2

1− λ2
,(5.3)

and it follows from Lemma 2.2 that ‖L−1
A ‖p ≤ 1 +σ2/(1−λ2). A lower bound for the

(p = 2)-norm is

‖L−1
A ‖2 ≥ ‖L−1

A zzT ‖2 =

√
1 + 2

λ2

1− λ2
+

σ4

(1− λ2)2
.(5.4)

The matrix A is near an unstable matrix either when |λ| is near unity or when σ
is large since

∥∥∥(eiθI − σyzT
)−1
∥∥∥
∞

=

∥∥∥∥e−iθI +
σe−2iθ

1− λe−iθ
yzT

∥∥∥∥
∞
≥ 1 +

2|λ|
1− |λ| +

σ2

(1− |λ|)2 .
(5.5)

Therefore, r(A) ≤ (1− |λ|)/σ and a lower bound on ‖L−1
A ‖p follows from Theorem 4.4.

When either |λ| is close to unity or σ is large, r(A) is small and κp(LA) is large.
The solution of the DALE is

P =
σ2

1− λ2

(
zTQz

)
yyT + Q .(5.6)

When LA is ill-conditioned and
(
zTQz

) = 0, the rank-1 matrix P̃ = σ2(1 − λ2)−1×
(zTQz)yyT is a good approximation of P in the sense that ‖P − P̃‖p/‖P‖p is small.

Example 3. Sensitive eigenvalues. Consider the dynamics arising from the one-
dimensional advection equation, wt +wx = 0 for 0 ≤ x ≤ n, with boundary condition
w(0, t) = 0. The matrix A that advances the n-vector w(x = 1, 2, . . . , n, t = t0)
to w(x = 1, 2, . . . , n, t = t0 + 1) is the n × n matrix with ones on the subdiagonal
and zero elsewhere, i.e., the transpose of an n× n Jordan block with zero eigenvalue.
Adding stochastic forcing with covariance Q at unit time intervals leads to the DALE,
LAP = Q, where P is the steady-state covariance of w.

Since σ1(A) = 1, Theorem 3.1 yields 1 ≤ ‖LA‖p ≤ 2. Further, since ‖LA‖1 ≥
‖LAe1eT1 ‖1 = ‖e1eT1 − e2e

T
2 ‖1 = 2, where ej is the jth column of the identity matrix,

LYAPUNOV OPERATOR CONDITIONING 63

‖LA‖1 = 2. A similar argument with LAT gives ‖LA‖∞ = 2. Calculating L−1
A I and

L−1
AT I gives ‖L−1

A ‖∞ = ‖L−1
A ‖1 = n. Therefore, using Lemma 2.2, ‖L−1

A ‖p ≤ n. Also,

‖L−1
A ‖2 ≥

‖L−1
A e1e

T
1 ‖2

‖e1eT1 ‖2
=
√
n .(5.7)

A direct calculation shows that

‖(eiθI −A)−1‖22 =

∥∥∥∥∥
n−1∑
k=0

Ake−i(k+1)θ

∥∥∥∥∥
2

2

=
n(n + 1)

2
(5.8)

for any real θ. Since
√
n‖(eiθI−A)−1‖∞ ≥ ‖(eiθI−A)−1‖2, we have r2(A) ≤ 2/(n+1).

Theorem 4.4 then gives a lower bound for ‖L−1
A ‖p, 1 ≤ p ≤ ∞. Thus as n becomes

large; that is, as the domain becomes large with respect to the advection length scale,
LA is increasingly ill-conditioned.

The elements Pij of the solution P of the DALE are

Pij = eTi Pej =

n−1∑
k=0

eTi A
kQ(AT)kej =

min (i−1,j−1)∑
k=0

Qi−k,j−k .(5.9)

Therefore, if Q = QT > 0, a “natural” rank-m approximation of P is the matrix P̃
defined by

P̃i,j =

{
Pi,j , n−m < i, j ≤ n,

0 otherwise.
(5.10)

When Q is diagonal, P is also diagonal and

Pii =

i∑
k=1

Qkk .(5.11)

In this case, each Qkk > 0 and P̃ is the best rank-m approximation of P in the sense
of minimizing ‖P − P̃‖p. We note that P̃ is associated with the left-most part of the
domain 0 ≤ x ≤ n.

6. Concluding remarks. Results about ‖L−1
A ‖p translate into bounds for so-

lutions of the DALE. For instance, the solution P of the DALE for Q = QT ≥ 0
satisfies

trP ≤ ‖L−1
A ‖1 trQ ,(6.1)

and the upper bound is achieved for Q = w1w
T
1 , where w1 is the leading eigenvector

of L−1
AT I. In the (p = ∞)-norm, L−1

A achieves its norm on the identity. In the

(p = 2)-norm, L−1
A does not in general achieve its norm on the identity, and the

question arises whether it achieves its norm on any symmetric, positive semidefinite
matrix. The forward operator LA does not in general assume its norm on a symmetric,
positive semidefinite matrix. The following theorem states that L−1

A does achieve its
(p = 2)-norm on a symmetric, positive semidefinite matrix.
Theorem 6.1. There exists a matrix S = ST ≥ 0 such that ‖L−1

A S‖2/‖S‖2 =
‖L−1

A ‖2.

64 TIPPETT, COHN, TODLING, AND MARCHESIN

Proof. Theorem 8 of [4] states that the inverse of the stable, continuous-time
Lyapunov operator achieves its (p = 2)-norm on a symmetric matrix. The proof is
easily adapted to give that L−1

A achieves its (p = 2)-norm on a symmetric matrix. We
now show that if L−1

A achieves its (p = 2)-norm on a symmetric matrix, it does so
on a symmetric, positive semidefinite matrix. Suppose that ‖L−1

A S‖2/‖S‖2 = ‖L−1
A ‖2

and S is symmetric with Schur decomposition S = UDUT . Define the symmetric,
positive semidefinite matrix S+ = U |D|UT . Then ‖S‖2 = ‖S+‖2 and −S+ ≤ S ≤
S+. The positiveness of the stable, discrete-time inverse Lyapunov operator mapping
implies that −L−1

A S+ ≤ L−1
A S ≤ L−1

A S+, which implies that ‖L−1
A S‖2 ≤ ‖L−1

A S+‖2.
Therefore,

‖L−1
A S‖2
‖S‖2 =

‖L−1
A S‖2
‖S+‖2 ≤ ‖L

−1
A S+‖2
‖S+‖2 .(6.2)

Additional information about the leading singular vectors of L−1
A could be useful

for determining low-rank approximations of P . The power method can be applied
to L−1

ATL−1
A to calculate the leading right singular vector and singular value of L−1

A

[7]. However, this approach requires solving two DALEs at each iteration, which may
be impractical for large n. If it is practical to store P and to apply LA and LAT , a
Lanczos method could be used to compute the trailing eigenvectors of LALAT while
avoiding the cost of solving any DALEs.

Appendix. Proof of Theorem 1.1. By definition, ‖P‖p ≤ ‖L−1
A ‖p ‖Q‖p, and it

remains to show that ‖P−1‖∞ ≤ ‖LA‖∞ ‖Q−1‖∞. Since P = PT > 0, there is a
nonzero x ∈ R

n such that

‖P−1‖∞ =
1

λn(P)
=

xTx

xT
(L−1

A Q
)
x

=
trxxT

tr
(L−1

A Q
)
xxT

=
trxxT

tr
(

(LAT)
−1

xxT
)
Q
.

(A.1)

Let B = L−1
AT (xxT) and note B = BT ≥ 0. Then using Lemma 2.3 and trBQ ≥

λn(Q) trB gives

‖P−1‖∞ =
trLATB

trBQ
≤ trLATB

trB

1

λn(Q)
≤ ‖LAT ‖1‖Q−1‖∞ = ‖LA‖∞‖Q−1‖∞ .

(A.2)

Theorem 1.1 holds for 1 ≤ p ≤ ∞ given some restrictions on A. From [16],
λi(P) ≥ λi(Q) + σ2

n(A)λn(P), and it follows that ‖P−1‖p ≤ ‖Q−1‖p for 1 ≤ p ≤ ∞.
From Theorem 3.1, ‖LA‖p ≥ 1 if either A is singular or σ2

1(A) ≥ 2. Therefore, if
either A is singular or σ2

1(A) ≥ 2,

‖P−1‖p ≤ ‖LA‖p‖Q−1‖p , 1 ≤ p ≤ ∞ .(A.3)

Acknowledgments. The authors thank Greg Gaspari for valuable observations
and notation suggestions and the reviewer for useful comments.

REFERENCES

[1] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[2] R. Bhatia, A note on the Lyapunov equation, Linear Algebra Appl., 259 (1997), pp. 71–76.

LYAPUNOV OPERATOR CONDITIONING 65

[3] K. M. Butler and B. F. Farrell, Three-dimensional optimal perturbations in viscous shear
flow, Phys. Fluids A, 4 (1992), pp. 1637–1650.

[4] R. Byers and S. Nash, On the singular “vectors” of the Lyapunov operator, SIAM J. Alg.
Discrete Methods, 8 (1987), pp. 59–66.

[5] S. E. Cohn and R. Todling, Approximate data assimilation schemes for stable and unstable
dynamics, J. Meteor. Soc. Japan, 74 (1996), pp. 63–75.

[6] B. F. Farrell and P. J. Ioannou, Generalized stability theory. Part I: Autonomous operators,
J. Atmospheric Sci., 53 (1996), pp. 2025–2040.

[7] P. M. Gahinet, A. J. Laub, C. S. Kenney, and G. A. Hewer, Sensitivity of the stable
discrete-time Lyapunov equation, IEEE Trans. Automat. Control, 35 (1990), pp. 1209–
1217.

[8] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[9] P. L. Houtekamer and H. L. Mitchell, Data assimilation using an ensemble Kalman filter
technique, Monthly Weather Rev., 126 (1998), pp. 796–811.

[10] I. M. Jaimoukha and E. M. Kasenally, Krylov subspace methods for solving large Lyapunov
equations, SIAM J. Numer. Anal., 31 (1994), pp. 227–251.

[11] R. E. Kalman and J. E. Bertram, Control system analysis and design via the “second
method” of Lyapunov. II. Discrete-time systems, Trans. ASME Ser. D. J. Basic Engrg., 82
(1960), pp. 394–400.

[12] S. R. Kolla, Improved stability robustness bounds for digital control systems in state-space
models, Internat. J. Control, 64 (1996), pp. 991–994.

[13] P. Lancaster, Explicit solutions of linear matrix equations, SIAM Rev., 12 (1970), pp. 544–
566.

[14] C. C. MacDuffee, The Theory of Matrices, Chelsea, New York, 1956.
[15] T. Mori, On the relationship between the spectral radius and the stability radius of discrete

systems, IEEE Trans. Automat. Control, 35 (1990), p. 835.
[16] T. Mori, N. Fukuma, and M. Kuwahara, Upper and lower bounds for the solution to the

discrete Lyapunov matrix equation, Internat. J. Control, 36 (1982), pp. 889–892.
[17] A. Ostrowski, A quantitative formulation of Sylvester’s law of inertia, Proc. Natl. Acad. Sci.

USA, 45 (1959), pp. 740–744.
[18] K. M. Przyluski, The Lyapunov equation and the problem of stability for linear bounded

discrete-time systems in Hilbert space, Appl. Math. Optim., 6 (1980), pp. 97–112.
[19] J.-G. Sun, Perturbation theory for algebraic Riccati equations, SIAM J. Matrix Anal. Appl.,

19 (1998), pp. 39–65.
[20] M. K. Tippett and D. Marchesin, Upper bounds for the solution of the discrete algebraic

Lyapunov equation, Automatica, 35 (1999), pp. 1485–1489.
[21] L. N. Trefethen, Pseudospectra of linear operators, SIAM Rev., 39 (1997), pp. 383–406.
[22] L. N. Trefethen, A. E. Trefethen, and S. C. Reddy, Hydrodynamic stability without eigen-

values, Science, 261 (1993), pp. 578–584.
[23] J. S. Whitaker and P. D. Sardeshmukh, A linear theory of extratropical synoptic Eddy

statistics, J. Atmospheric Sci., 55 (1998), pp. 237–258.

POSITIVE SUBDEFINITE MATRICES,
GENERALIZED MONOTONICITY,

AND LINEAR COMPLEMENTARITY PROBLEMS∗

J.-P. CROUZEIX† , A. HASSOUNI‡ , A. LAHLOU‡ , AND S. SCHAIBLE§

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 66–85

Abstract. Positive subdefinite matrices were introduced by Martos to characterize generalized
convex quadratic functions. This concept is extended to nonsymmetric matrices. It leads to a study
of pseudomonotone matrices and to new characterizations of generalized monotone affine maps.
Finally, some properties of linear complementarity problems involving such maps are derived.

Key words. positive subdefiniteness, copositivity, copositivity star, generalized monotonicity,
linear complementarity

AMS subject classifications. Primary, 26B25; Secondary, 90C26, 90C33

PII. S0895479897331849

1. Introduction and notation. Let F : R
n
+ → R

n, where R
n
+ denotes the

nonnegative orthant of R
n. The complementarity problem associated with F is to

find x ≥ 0 such that F(x) ≥ 0 and 〈F(x), x〉 = 0.

If F is affine, then the problem is called a linear complementarity problem (LCP); see
[1]. Complementarity problems can be considered as particular cases of variational
inequality problems (VIP) which also include optimization problems. An important
class of optimization problems assumes convexity of the objective function. In varia-
tional inequality problems, this assumption corresponds to monotonicity of the map
F .

We recall that, given a convex subset C of R
n, a map F : C �→ R

n is said to be
monotone on C if

x, y ∈ C ⇒ 〈y − x,F(y)−F(x)〉 ≥ 0;

pseudomonotone on C if

x, y ∈ C, 〈y − x,F(x)〉 > 0 ⇒ 〈y − x,F(y)〉 > 0,

or, equivalently, if

x, y ∈ C, 〈y − x,F(x)〉 ≥ 0 ⇒ 〈y − x,F(y)〉 ≥ 0 ;

and quasi-monotone on C if

x, y ∈ C, 〈y − x,F(x)〉 > 0 ⇒ 〈y − x,F(y)〉 ≥ 0.

∗Received by the editors December 8, 1997; accepted for publication (in revised form) by R.
Cottle August 4, 1999; published electronically May 31, 2000. Part of this work was done while
the third author was visiting Université Blaise Pascal. This visit was supported by Action Intégrée
Franco-Marocaine 95/0849.

http://www.siam.org/journals/simax/22-1/33184.html
†LIMOS, Université Blaise Pascal, 63177 Aubière Cedex, France (crouzeix@ucfma.univ-

bpclermont.fr).
‡Département de Mathématiques et d’Informatique, Faculté des Sciences, B.P. 1014, Rue Ibn

Batouta, Rabat, Morocco (hassouni@fsr.ac.ma, amale lahlou@usa.net).
§A. G. Anderson Graduate School of Management, University of California, Riverside, CA 92521

(siegfried.schaible@ucr.edu).

66

POSITIVE SUBDEFINITE MATRICES AND LCPs 67

Monotonicity, pseudomonotonicity, and quasi monotonicity have been introduced
by Minty [18], Karamardian [13], and Hassouni [11] and independently by Kara-
mardian and Schaible [14], respectively. Complementarity problems, together with
optimization problems, variational inequality problems, fixed point problems, saddle-
point problems, and other classical problems, can be viewed as special realizations of
an abstract equilibrium problem. Recently, the study of these various models has been
enriched by relaxing monotonicity to generalized monotonicity. The usefulness of gen-
eralized monotonicity concepts among models of such diversity is demonstrated in the
survey [10] which covers quasi-monotone and pseudomonotone variational inequality
problems and equilibrium problems.

In the symmetric case, positive subdefinite matrices have been introduced by
Martos [16] to characterize generalized convex quadratic functions on R

n
+. Section 2

extends this concept to nonsymmetric matrices. Then, in section 3, new characteriza-
tions for generalized monotone affine maps on R

n
+ are given using positive subdefinite

matrices. Section 4 is devoted to linear complementarity problems involving general-
ized monotone affine maps. Finally, section 5 relates the results further to the existing
literature.

We conclude this section with some comments on the notation used throughout
this paper. Given z ∈ R

n, z+ and z− are the vectors of R
n defined by z+

i := max{zi, 0}
and z−i := max{−zi, 0} for all i, then z = z+ − z−.

Given ∅ = C ⊆ R
n, we denote by Co the polar cone of C, i.e.,

Co = {x∗ : 〈x, x∗〉 ≤ 0 for all x ∈ C}.

It is known that C = Coo if and only if C is a closed convex cone.
Given an n × n matrix M , the kernel of M and the rank of M are denoted by

Ker(M) and rank(M), respectively. The (Moore–Penrose) pseudoinverse of M is the
uniquely defined n× n matrix M† which satisfies the following conditions:

MM†M = M, M†MM† = M†, (MM†)t = MM†, and (M†M)t = M†M.

We denote by Ms the matrix

Ms = 2M t(M +M t)†M.

Here the symbol “s” indicates symmetrization: Ms is always symmetric and Ms = M
if and only if M is symmetric.

The matrix M is said to be copositive if 〈x,Mx〉 ≥ 0 for all x ≥ 0 and conegative
if −M is copositive. M is said to be copositive star [7] if it is copositive with the
additional condition that

M tx ≤ 0 whenever x ≥ 0, Mx ≥ 0 and 〈x,Mx〉 = 0.

M ≤ 0 means that all entries of M are nonpositive.
Given a symmetric n× n matrix B, its inertia is the triple

In(B) = (ν+(B), ν−(B), ν0(B)),

where ν+(B), ν−(B), and ν0(B) denote the number of positive, negative, and zero
eigenvalues of B, respectively. Then ν+(B) + ν−(B) + ν0(B) = n.

68 J.-P. CROUZEIX, A. HASSOUNI, A. LAHLOU, AND S. SCHAIBLE

2. Positive subdefinite matrices. We call an n×n matrix M positive subdef-
inite (PSBD) if

〈z,Mz〉 < 0 implies either M tz ≤ 0 or M tz ≥ 0.

The terminology is borrowed from Martos [16, 17], who characterized pseudo-
convex and quasi-convex quadratic functions on the nonnegative orthant via such
matrices. Since Martos was considering the Hessian of quadratic functions, he was
concerned only about symmetric matrices. In this section, we study nonsymmet-
ric positive subdefinite matrices. These matrices will be used in the next section
to characterize pseudomonotone and quasi-monotone affine maps on the nonnegative
orthant.

It is clear that a positive semidefinite (PSD) matrix is PSBD. According to Mar-
tos, a matrix M is said to be merely positive subdefinite (MPSBD) if M is PSBD
but not PSD.

The particular case of PSBD matrices of rank 1 is easily studied with help of the
definitions.

Proposition 2.1. Assume that M = abt with a, b ∈ R
n, a, b = 0. Then M is

PSBD if and only if one of the following conditions holds:
(i) there is t > 0 so that b = ta;
(ii) b = ta for all t > 0 and either b ≥ 0 or b ≤ 0.

Assume that M is MPSBD; then M is copositive if and only if either (a ≥ 0 and
b ≥ 0) or (a ≤ 0 and b ≤ 0) and copositive star if and only if, in addition, ai = 0
whenever bi = 0.

Proof. Case (i) corresponds to M PSD. Let us consider the second case. Then M
is PSBD if and only if

〈a, z〉〈b, z〉 < 0 implies either 〈a, z〉b ≥ 0 or 〈a, z〉b ≤ 0,

from which the result follows easily. The other results are obvious.
For general matrices, we have the following result.
Proposition 2.2. Assume that M is MPSBD. Then
(i) ν−(M +M t) = 1;
(ii) (M +M t)z = 0⇒Mz = M tz = 0.
Proof. Set B = M +M t.
(i) B has at least one negative eigenvalue since M is not PSD. Assume, for

contradiction, that λ1, λ2, z1, and z2 exist so that

Bz1 = 2λ1z1, Bz2 = 2λ2z2, ‖z1‖2 = ‖z2‖2 = 1,

λ1 ≤ λ2 < 0 and 〈z1, z2〉 = 0.

Then both 〈z1,Mz1〉 and 〈z2,Mz2〉 are negative. Without loss of generality, we as-
sume that M tz1 ≤ 0 and M tz2 ≥ 0.

For t ∈ [0, 1], define z(t) = tz1 + (1− t)z2. Then

〈z(t), Bz(t)〉 = 2t2λ1 + 2(1− t)2λ2 < 0.

Hence 0 = M tz(t) = tM tz1 + (1 − t)M tz2 ∈ R
n
+ ∪ −R

n
+. Since M tz(0) ≥ 0 and

M tz(1) ≤ 0, there is t̄ ∈ (0, 1) such that M tz(t̄) = 0, a contradiction.

POSITIVE SUBDEFINITE MATRICES AND LCPs 69

(ii) Assume that z1, λ1 are defined as above and z0 is so that Bz0 = 0. For t ∈ R,
let us define z(t) = z1 + tz0. Then

〈z(t), Bz(t)〉 = 2λ1 < 0.

Hence for all t ∈ R

0 = M tz(t) = M tz1 + tM tz0 ∈ R
n
+ ∪ −R

n
+.

It follows that M tz0 = 0 because of M tz1 = 0. Then Mz0 = 0 as well.
It is clear that for any matrix M , the following two assertions are equivalent:
(i) (M +M t)z = 0⇒Mz = M tz = 0;
(ii) M(Rn) ⊆ (M +M t)(Rn).
For such matrices, we have the following result (see Crouzeix and Schaible [5,

Lemma 2]).
Lemma 2.1. Assume that M(Rn) ⊆ (M +M t)(Rn). Denote by k the dimension

of the kernel of M . Then

ν+(Ms) = ν+(M +M t) + ν0(M +M t)− k,
ν−(Ms) = ν−(M +M t) + ν0(M +M t)− k,
ν0(M

s) = 2k − ν0(M +M t).

Although M itself is nonsymmetric, Proposition 2.2 shows that symmetric matri-
ces having one and only one negative eigenvalue play a fundamental role. For these
matrices, we have the following result.

Proposition 2.3. Assume that B is a symmetric n× n matrix and ν−(B) = 1.
Then there exists a closed convex cone T such that

T ∪ −T = {z : 〈Bz, z〉 ≤ 0} and

int(T) ∪ −int(T) = {z : 〈Bz, z〉 < 0}.
Furthermore, T o ∩ −T o = {0} and

T o ∪ −T o = {z∗ : 〈B†z∗, z∗〉 ≤ 0} ∩B(Rn).

Proof. It follows from the assumptions that an n×n matrix P , a positive definite
diagonal q × q matrix �2 with q < n and λ1 < 0 exist so that

P tP = I and P tBP =

 λ1 0 0

0 �2 0
0 0 0

 .

Then

T ∪ −T = {z : 〈Bz, z〉 ≤ 0} =
{
z = Py : λ1y

2
1 + 〈�2y2, y2〉+ 〈0y3, y3〉 ≤ 0

}
,

where T =

{
z = Py :

√−1

λ1
〈�2y2, y2〉 ≤ y1

}
.

Then T is a closed convex cone and

int(T) =

{
z = Py :

√−1

λ1
〈�2y2, y2〉 < y1

}
.

70 J.-P. CROUZEIX, A. HASSOUNI, A. LAHLOU, AND S. SCHAIBLE

Let us determine T o. By definition, z∗ = Py∗ ∈ T o if and only if

0 = sup
z∈T
〈z, z∗〉 = sup

[
y1y

∗
1 + 〈y2, y∗2〉+ 〈y3, y∗3〉 :

√−1

λ1
〈�2y2, y2〉 ≤ y1

]
.

Hence z∗ = Py∗ ∈ T o if and only if

y∗3 = 0 ; y∗1 ≤ 0 and y∗1

√−1

λ1
〈�2y2, y2〉+ 〈y2, y∗2〉 ≤ 0 for all y2.

It follows that

T o =

{
z∗ = Py∗ : y∗3 = 0, y∗1 ≤ 0, and

1

λ1
y∗1

2 + 〈�−1
2 y∗2 , y

∗
2〉 ≤ 0

}
,

which gives the result.
Now we deduce the following characterization of nonsymmetric PSBD matrices.
Theorem 2.1. Assume that M is an n × n matrix. Then M is PSBD if and

only if exactly one of the following conditions holds:
(i) M is PSD;
(ii) M = abt = 0 with a, b ∈ R

n, a = tb for all t > 0 and
either b ≥ 0 or b ≤ 0;

(iii) rank(M) ≥ 2, ν−(M +M t) = 1, M(Rn) = M t(Rn) = (M +M t)(Rn)
and the matrix Ms is conegative.

Proof. Set B = M + M t and assume that ν−(B) = 1. Take T as in the last
proposition. A necessary and sufficient condition for M to be MPSBD is that

either T ⊆ {z : M tz ≤ 0} or − T ⊆ {z : M tz ≤ 0}.(2.1)

By polarity on closed convex cones, the last condition is equivalent to

either T o ⊇M(Rn+) or − T o ⊇M(Rn+).(2.2)

(a) Assume that M is MPSBD. Then Ms is conegative because of condition (2.2).
On the other hand, Proposition 2.2 implies that rank(M) ≤ rank(B). Hence Lemma
2.1 implies that either k = 1 + ν0(B) or k = ν0(B) since ν−(Ms) ≥ 0.

Assume that k = 1 + ν0(B). Then ν−(Ms) = 0 implies Ms is PSD, thus Ms = 0
since Ms is conegative. Hence n = ν0(M

s) = 2k − ν0(B) = k + 1 and M has rank 1.
Apply Proposition 2.1.

Assume that k = ν0(B). If the rank of Ms is 1, then apply again Proposition 2.1.
If rank(Ms) ≥ 2, then condition (2.2) is equivalent to the condition

T o ∪ −T o ⊇M(Rn+).(2.3)

Indeed T o and M(Rn+) are closed convex cones having the same dimension, and this
dimension is greater than or equal to 2. Hence (iii) holds.

(b) We already know that M is PSBD in cases (i) or (ii). Assume that (iii) holds.
Hence M is MPSBD since conditions (2.2) and (2.3) are equivalent in this case.

From Theorem 2.1, we recover the characterization of symmetric MPSBD matrices
by Martos [16, 17].

POSITIVE SUBDEFINITE MATRICES AND LCPs 71

Corollary 2.1. Assume that M is a symmetric n× n matrix and ν−(M) = 1.
Then the following three conditions are equivalent:

(i) M is MPSBD;
(ii) M is conegative;
(iii) M ≤ 0.
Proof. The symmetry of M implies that Ms = M . Furthermore, if M = abt,

then a and b are colinear. Hence, in view of Theorem 2.1, conditions (i) and (ii) above
are equivalent. Condition (iii) obviously implies condition (ii). Conversely, assume
that conditions (i) and (ii) hold. Then, for all z ≥ 0, 〈z,Mz〉 ≤ 0, hence Mz ≤ 0 or
Mz ≥ 0. It is then easily derived that M cannot have a positive entry.

Corollary 2.2. Assume that M is symmetric and copositive. Then M is PSBD
if and only if M is PSD.

Proof. A symmetric matrix which is both copositive and conegative is the null
matrix.

Theorem 2.1 sets in evidence the roles of the matrix Ms and the convex cone T
such that T ∪ −T = {z : 〈z,Mz〉 ≤ 0} in the analysis of MPSBD matrices. For such
matrices

either T ⊆ {z : M tz ≤ 0} or T ⊆ {z : M tz ≥ 0}.
Henceforth, we assume that

T ⊆ {z : M tz ≤ 0} so that int (T) = {z : 〈z,Mz〉 < 0, M tz ≤ 0}.
We begin with the analysis of Ms and T o for matrices of rank 1.

Proposition 2.4. Assume that M = abt, a, b ∈ R
n with a, b = 0. Let u, v, and

ϕ be such that

a = ‖a‖u, b = ‖b‖v, and 〈u, v〉 = cos 2ϕ.

(i) Assume that a and b are colinear. Then

2‖a‖2‖b‖2(M +M t)† = M = Ms.

(ii) Assume that a and b are noncolinear. Then Ms = 0 and

8 ‖a‖ ‖b‖ (M +M t)† =
1

cos4 ϕ
(u+ v)(u+ v)t − 1

sin4 ϕ
(u− v)(u− v)t.

(iii) If b ≥ 0, then T o = {q = λa− µb : λ ≥ 0, µ ≥ 0}.
Proof. Case (i) is trivial. Henceforth, we assume that a and b are noncolinear.

Then there is a matrix P such that

P tP = I, P tu = cosϕe1 + sinϕe2, and P tv = cosϕe1 − sinϕe2,

where e1 and e2 are the first two vectors of the canonical basis of R
n. Set R = uvt.

Then M = ‖a‖ ‖b‖R and

P t(R+Rt)†P =
1

2 cos2 ϕ
e1e

t
1 −

1

2 sin2 ϕ
e2e

t
2.

Replace e1 and e2 by their expressions in terms of u, v, and ϕ. It holds that

(R+Rt)† =

[
1

8 cos4 ϕ
(u+ v)(u+ v)t − 1

8 sin4 ϕ
(u− v)(u− v)t

]
.

72 J.-P. CROUZEIX, A. HASSOUNI, A. LAHLOU, AND S. SCHAIBLE

Next, it is easily seen that Rs = 2Rt(R+Rt)†R = 0. Then Ms = 0 as already shown
in the proof of Theorem 2.1.

Finally, the expression of T o is obtained by straight calculations.
Next, we continue the analysis of Ms and T o for matrices M such that

M(Rn) = M t(Rn) = (M +M t)(Rn).

The following lemma shows that for these matrices, the “s” symmetrization corre-
sponds to the classical symmetrization on the (pseudo)inverses.

Lemma 2.2. Assume that M(Rn) = M t(Rn) = (M +M t)(Rn). Then

(i) Ms = (M t)s = 2
(
M† + (M t)†

)†
;

(ii) 2(Ms)† = M† + (M t)†.
Proof. Since B = M +M t is symmetric and M(Rn) = M t(Rn) = B(Rn), there

exist nonsingular matrices P, �, and R so that

PP t = I, P tBP =

(� 0
0 0

)
, and P tMP =

(
R 0
0 0

)
.

Then � = R+Rt and

1

2
P tMsP = (P tM tP)(P tB†P)(P tMP) =

(
Rt�−1R 0

0 0

)
.

Next we observe that

(Rt�−1R)−1 = R−1(R+Rt)(Rt)−1 = (Rt)−1 +R−1 = (R�−1Rt)−1.

Hence the conclusions follow.
Note that the formula for (Ms)† is no longer true in case (ii) of Theorem 2.1

since then Ms = 0 according to Proposition 2.4. Now we reconsider condition (iii) of
Theorem 2.1.

Proposition 2.5. Assume that M(Rn) = M t(Rn) = (M+M t)(Rn) and ν−(M+
M t) = 1. Then

(a) M , M t, and Ms are PSBD if one of these matrices is so;
(b) assume that M is PSBD; then, either (M +M t) ≤ 0 or M is copositive star.

Furthermore,

T o = {q = Mu : 〈u,Msu〉 ≤ 0 and Msu ≤ 0}.
Proof. (a) Lemma 2.1 shows that Ms and (M +M t) have the same inertia. The

conclusion follows from Theorem 2.1, Corollary 2.1, and Lemma 2.2.
(b) Both M and M t are PSBD according to (a). Then one and only one of the

following inclusions holds:

T ⊆ {z : M tz ≤ 0 and Mz ≤ 0}
or

T ⊆ {z : M tz ≤ 0 and Mz ≥ 0}.
In the first case, (M+M t) is PSBD; hence (M+M t) ≤ 0 in view of Corollary 2.1.
Assume that we are in the second case and M is not copositive. Then u ≥ 0

exists so that 〈u,Mu〉 < 0. Hence, either u ∈ T , Mu ≥ 0 and then 〈u,Mu〉 ≥ 0 or

POSITIVE SUBDEFINITE MATRICES AND LCPs 73

u ∈ −T , M tu ≥ 0 and then 〈u,M tu〉 ≥ 0 as well. Both cases yield a contradiction.
Finally, it is easy to see that in the second case M is copositive star.

Set B = M +M t. Then

T ∪ −T = {z : 〈z,Mz〉 ≤ 0} = {z : 〈z,Bz〉 ≤ 0}.

Hence, in view of Proposition 2.3 and since B(Rn) = M(Rn), q ∈ T o ∪ −T o if and
only if there is u such that q = Mu and 〈u,Msu〉 ≤ 0. Next, Ms is PSBD in view of
(a) and symmetric. It follows that Ms ≤ 0 and T o ∪−T o = A ∪−A, where A is the
convex cone

A = {q = Mu : 〈u,Msu〉 ≤ 0 and Msu ≤ 0}.

Since T o ∩ −T o = {0}, then either A = T o or A = −T o. Let u ≥ 0 and z ∈ T ,
then Msu ≤ 0, 〈u,Msu〉 ≤ 0, M tz ≤ 0, and 〈z,Mu〉 = 〈u,M tz〉 ≤ 0. Hence, on the
one hand M(Rn+) ⊆ A and on the other hand M(Rn+) ⊆ T o. Thus A = T o.

Next, Theorem 2.1 is restated as follows.
Theorem 2.2. Assume that M is an n × n matrix. Then M is PSBD if and

only if exactly one of the following conditions holds:
(i) M is PSD;
(ii) M = abt = 0 with a, b ∈ R

n, a = tb for all t > 0 and either b ≥ 0 or b ≤ 0;
(iii) rank(M) ≥ 2, ν−(M +M t) = 1, M(Rn) = M t(Rn) = (M +M t)(Rn), and

Ms ≤ 0.
Proof. Only the conditions Theorem 2.1(iii) and Theorem 2.2(iii) differ. Assume

that ν−(M +M t) = 1 and M(Rn) = M t(Rn) = (M +M t)(Rn). Then M is PSBD if
and only if Ms is PSBD and, according to Corollary 2.1, if and only if Ms ≤ 0.

Remarks. (1) M = abt with a and b noncolinear is the only case, where M may
be PSBD and M t is not. Consider, for instance, at = (1,−1) and bt = (0, 1).

(2) Assume that M(Rn) = M t(Rn) = (M +M t)(Rn), ν−(M +M t) = 1, and M
is PSBD. Then, according to Proposition 2.5, M is copositive (and copositive star as
well) if and only if the matrix (M +M t) has a positive entry. An example of such a
matrix is

M =

(
0 11
−1 0

)
for which Ms = −11

5

(
0 1
1 0

)
.

(3) An invertible matrix can be PSBD while its inverse may not be. Consider the
matrix M of remark (2); then

(M−1)s =
1

5

(
0 1
1 0

)
,

and hence M−1 is not PSBD.

3. Generalized monotone affine maps on the nonnegative orthant. In
this section, we consider the affine map F(x) = Mx+ q, where M is an n× n matrix
and q ∈ R

n. A first result is as follows.
Proposition 3.1. F is pseudomonotone on R

n
+ if and only if

z ∈ R
n and 〈z,Mz〉 < 0⇒

M tz ≥ 0 and 〈z, q〉 ≥ 0,
or

M tz ≤ 0, 〈z, q〉 ≤ 0, and 〈z,Mz− + q〉 < 0.

74 J.-P. CROUZEIX, A. HASSOUNI, A. LAHLOU, AND S. SCHAIBLE

Proof. It follows from the definition that F is pseudomonotone on R
n
+ if and only

if for all z ∈ R
n we have

(Cz)
x ≥ 0, t ≥ 0, x+ tz ≥ 0,
〈Mx+ q, z〉 ≥ 0

}
⇒ 〈Mx+ q, z〉+ t〈Mz, z〉 ≥ 0.

Set

Z1 = {z : 〈Mz, z〉 ≥ 0}, Z2 = {z : x ≥ 0, t ≥ 0, x+ tz ≥ 0 ⇒ 〈Mx+ q, z〉 < 0}.

By duality in linear programming, we have

Z2 = {z : 〈q, z〉 < 0 and M tz ≤ 0}.

Since condition (Cz) holds when z ∈ Z1 ∪Z2, we assume now that z /∈ Z1 ∪Z2. Then
condition (Cz) is equivalent to the condition

0 ≤ 〈q, z〉+ inf
x≥0,t≥0

[〈M tz, x〉+ t〈Mz, z〉 : x+ tz ≥ 0, 〈M tz, x〉 ≥ −〈q, z〉].

The linear program is feasible. Hence, applying duality in linear programming again,
the condition is equivalent to

0 ≤ 〈q, z〉+ sup
y≥0,r≥0

[−r〈q, z〉 : y + rM tz ≤M tz, 〈z, y〉 ≤ 〈Mz, z〉].

This, in turn, is equivalent to 0 ≤ max(M1,M2,M3), where for i = 1, 2, 3

Mi = sup
r∈Ri,y≥0

[(1− r)〈q, z〉 : y ≤ (1− r)M tz, 〈z, y〉 ≤ 〈Mz, z〉],

with R1 = {1}, R2 = [0, 1), and R3 = (1,+∞).
Now M1 = −∞ since z /∈ Z1 implies 〈z,Mz〉 < 0.
M2 is nonnegative if and only if 〈q, z〉 ≥ 0, M tz ≥ 0, and r ∈ [0, 1), y exist so

that 0 ≤ y ≤ (1 − r)M tz, and 〈z, y〉 ≤ 〈z,Mz〉 < 0. Take r = 0, yi = 0 when zi ≥ 0
and yi = (1− r)(M tz)i when zi < 0. Then M tz ≥ 0 implies

〈z, y〉 = −〈M tz, z−〉 ≤ 〈M tz, z+〉 − 〈M tz, z−〉 = 〈M tz, z〉.

Hence,

M2 ≥ 0⇐⇒ 〈q, z〉 ≥ 0 and M tz ≥ 0.

In the same manner, M3 is nonnegative if and only if 〈q, z〉 ≤ 0, M tz ≤ 0 and
r > 1 exists so that (r − 1)〈M tz, z−〉 ≤ 〈Mz, z〉 < 0. Finally,

M3 ≥ 0⇐⇒ 〈q, z〉 ≤ 0, M tz ≤ 0 and 〈M tz, z−〉 < 0.

Summarizing, F is pseudomonotone on R
n
+ if and only if

z ∈ R
n, 〈z,Mz〉 < 0⇒

M tz ≥ 0 and 〈z, q〉 ≥ 0,
or

M tz ≤ 0, 〈z, q〉 ≤ 0, and 〈M tz, z−〉 < 0,
or

M tz ≤ 0 and 〈z, q〉 < 0.

POSITIVE SUBDEFINITE MATRICES AND LCPs 75

Taking into account that 〈M tz, z−〉 ≤ 0 when M tz ≤ 0, the last two conditions
are summarized in

M tz ≤ 0, 〈z, q〉 ≤ 0, and 〈z,Mz− + q〉 < 0.

This ends the proof.
A necessary and sufficient condition for F to be quasi-monotone on R

n
+ is easily

derived.
Proposition 3.2. F is quasi-monotone on R

n
+ if and only if

z ∈ R
n, 〈z,Mz〉 < 0⇒

M tz ≥ 0 and 〈z, q〉 ≥ 0,
or

M tz ≤ 0 and 〈z, q〉 ≤ 0.

Proof. It is known [5] that an affine map F is quasi-monotone on R
n
+ when

it is pseudomonotone on the interior of R
n
+. Let e be the vector of R

n
+ with all

its entries equal to 1. It is clear that F is quasi-monotone on R
n
+ if and only, for

all ε > 0, F is pseudomonotone on Kε = {x : x ≥ εe}. Set x′ = x − εe and
Fε(x′) = Mx+ q = Mx′ + (εMe+ q). Then F is pseudomonotone on Kε if and only
if Fε is so on R

n
+ or, equivalently, if and only if for all z so that 〈z,Mz〉 < 0 it follows

that

M tz ≥ 0 and ε〈M tz, e〉+ 〈z, q〉 ≥ 0,
or

M tz ≤ 0, ε〈M tz, e〉+ 〈z, q〉 ≤ 0, and 〈Mz− + q, z〉+ ε〈M tz, e〉 < 0.

If M tz ≥ 0, then 〈M tz, e〉 > 0 and if M tz ≤ 0, then 〈M tz, e〉 < 0 and 〈M tz, z−〉 ≤ 0.
Now let ε→ 0+.

This proposition shows that M is PSBD when F is quasi-monotone (and, a for-
tiori, pseudomonotone) on R

n
+. Next, we analyze the condition on the sign of 〈z, q〉.

Theorem 3.1. Assume that M is not PSD. Then F is quasi-monotone on R
n
+

if and only if exactly one of the following conditions holds:
(i) M = abt, b = ta for all t > 0, and either (b ≥ 0 and q = λa−µb with λ, µ ≥ 0)

or (b ≤ 0 and q = µb− λa with λ, µ ≥ 0);
(ii) rank(M) ≥ 2, q ∈ M(Rn) = M t(Rn) = (M +M t)(Rn), ν−(M +M t) = 1,

and Ms ≤ 0. Let x̄ be such that q = Mx̄. Then 〈Msx̄, x̄〉 ≤ 0 and Msx̄ ≤ 0.
Proof. It follows from Proposition 3.2 that a nonmonotone map F is quasi-

monotone on R
n
+ if and only if M is MPSBD and

〈z,Mz〉 ≤ 0 and M tz ≤ 0⇒ 〈z, q〉 ≤ 0.

The last condition is equivalent to q ∈ T o. Then, the results follow from Theorem 2.2
and Propositions 2.4 and 2.5.

Remark. Assume that M(Rn) = M t(Rn) = (M +M t)(Rn), ν−(M +M t) = 1,
and rank(M) ≥ 2. Let F(x) = M(x+ x̄) and G(x) = M t(x+ x̄). Since Ms = (M t)s,
then quasi monotonicity of F on R

n
+ is equivalent to quasi monotonicity of G on R

n
+.

Next, we return to pseudomonotonicity. The first result concerns the case where
F is affine, but nonlinear.

Theorem 3.2. Assume that F is quasi-monotone on R
n
+ and q = 0. Then F is

pseudomonotone on R
n
+.

76 J.-P. CROUZEIX, A. HASSOUNI, A. LAHLOU, AND S. SCHAIBLE

Proof. Assume, for contradiction, that F is not pseudomonotone on R
n
+. Then

M is MPSBD and there exists z such that

〈z,Mz〉 < 0, M tz ≤ 0, 〈q, z〉 ≤ 0, and 〈M tz, z−〉+ 〈q, z〉 = 0.

Hence

〈M tz, z−〉 = 〈q, z〉 = 0.

On the other hand

z ∈ int(T) ⊆ T ⊆ {v : M tv ≤ 0, 〈q, v〉 ≤ 0}.

Thus z + tq ∈ int(T) for t > 0 small enough. Then

0 ≥ 〈q, z + tq〉 = t ‖q‖2 > 0,

a contradiction.
We are left with the linear case. Following Gowda [7], we define a matrix M to

be pseudomonotone if the map F(x) = Mx is pseudomonotone on the nonnegative
orthant.

The following lemma gives a first characterization of pseudomonotone matrices.
Lemma 3.1. A matrix M is pseudomonotone if and only if M is PSBD and

〈z,Mz〉 < 0, M tz ≤ 0 ⇒ Mz− = 0.

Proof. Assume that M is pseudomonotone. Then Proposition 3.1 implies that M
is PSBD and

〈z,Mz〉 < 0 and M tz ≤ 0 ⇒ 〈z,Mz−〉 = 〈M tz, z−〉 < 0.

Then Mz− = 0 cannot occur.
Conversely, assume that M is PSBD and not pseudomonotone. Then z exists so

that

〈z,Mz〉 < 0 and M tz ≤ 0 ⇒ 〈z,Mz−〉 = 〈M tz, z−〉 = 0.

For any v ∈ R
n, there exists t(v) > 0 so that

〈z + tv,M(z + tv)〉 < 0 for all t ∈ [−t(v), t(v)].

Hence, for such t

z + tv ∈ int(T) = {u : 〈Mu, u〉 < 0, M tu ≤ 0},

and therefore

0 ≥M tz + tM tv.

Since z− ≥ 0, for all t ∈ [−t(v), t(v)], it holds that

0 ≥ 〈M tz, z−〉+ t〈M tv, z−〉 = t〈v,Mz−〉.

Hence 〈v,Mz−〉 = 0 for all v ∈ R
n and therefore Mz− = 0.

POSITIVE SUBDEFINITE MATRICES AND LCPs 77

It is clear that a PSD matrix is always pseudomonotone. Also, a pseudomonotone
matrix is necessarily copositive. Indeed 〈M0, x−0〉 = 0 and F(x) = Mx pseudomono-
tone on R

n
+ imply 〈Mx, x− 0〉 ≥ 0 for all x ≥ 0. Now, in view of the remarks above,

we consider only matrices which are both MPSBD and copositive. We begin with
matrices of rank 1.

Proposition 3.3. Assume that a and b are two linearly independent and non-
negative vectors. Then M = abt is pseudomonotone if and only if

(C) bi = 0 ⇒ ai = 0.

Proof. Assume that M is not pseudomonotone and condition (C) holds. Then
some z exists such that

〈z,Mz〉 < 0, M tz ≤ 0, and Mz− = 0.

Hence

〈b, z〉 > 0, 〈a, z〉 < 0, and 〈b, z−〉 = 0.

Condition (C), together with 〈b, z−〉 = 0, implies that 〈a, z−〉 = 0 and therefore

0 ≤ 〈a, z+〉 < 〈a, z−〉 = 0.

Conversely, assume that there is some index i such that bi = 0 and ai > 0. Since b is
nonnull, there is j with bj > 0. Take t > 0 so that aj − tai < 0 and let z ∈ R

n with
zi = −t, zj = 1, and zl = 0 for all l = i, j. Then

〈a, z〉〈b, z〉 = (aj − tai)bj < 0 and Mz− = 〈b, z−〉a = 0.

Hence M is not pseudomonotone.
Next, the case of MPSBD matrices with rank greater than or equal to 2 is analyzed

below.
Proposition 3.4. Assume that M(Rn) = M t(Rn) = (M+M t)(Rn) and ν−(M+

M t) = 1. Then M is pseudomonotone if and only if M is PSBD and copositive.
Proof. We have only to prove the sufficiency. Assume that M is PSBD and

copositive, but not pseudomonotone. In view of Lemma 3.1, there exists z such that

〈z,Mz〉 < 0, M tz ≤ 0, and Mz− = 0.

Since M(Rn) = M t(Rn), then Ker(M) = Ker(M t). Hence, M tz− = 0. Then

0 > 〈z,Mz〉 = 〈z+ − z−,M(z+ − z−)〉 = 〈z+,Mz+〉 ≥ 0.

All the above results are summarized in the following theorem.
Theorem 3.3. A matrix M is pseudomonotone if and only if it is PSBD and

copositive with the additional condition in case M = abt that (ai = 0 whenever bi = 0).
In fact, the class of pseudomonotone matrices coincides with the class of matrices
which are both PSBD and copositive star.

Remark. Gowda [9] conjectured that pseudomonotonicity of M implies pseudo-
monotonicity ofM t. This is true whenM is PSD. This is also true when rank(M) ≥ 2
in view of the above proposition and Proposition 2.5. However, it is no longer true
for matrices of rank 1. Take M = abt with a = (1, 0)t and b = (1, 1)t. Then M and
M t are PSBD and copositive, M is pseudomonotone, but M t is not.

78 J.-P. CROUZEIX, A. HASSOUNI, A. LAHLOU, AND S. SCHAIBLE

4. The LCP. In this section, we consider the LCP

(LCP) find x ≥ 0 so that Mx+ q ≥ 0 and 〈Mx+ q, x〉 = 0,

and the quadratic program associated with (LCP):

(QP) m = inf[f(x) = 〈Mx+ q, x〉 : x ≥ 0,Mx+ q ≥ 0].

We introduce the following sets:
E = {x : x ≥ 0, Mx+ q = 0},
F = {x : x ≥ 0, Mx+ q ≥ 0},
S = {x : x ≥ 0, Mx+ q ≥ 0, 〈x,Mx+ q〉 = 0},
Q = {x : x ≥ 0, Mx+ q ≥ 0, 〈x,Mx+ q〉 = m}.

Obviously E ⊆ S ⊆ F , m is nonnegative and x ∈ S if and only if x ∈ Q and m = 0.
F , S, and Q are called the feasible set of (LCP) (and also of (QP)), the solution

set of (LCP), and the optimal solution set of (QP), respectively.
(LCP) and (QP) are said to be feasible if F = ∅ and (LCP) is said to be solvable

if S = ∅. As before, we set F(x) = Mx+ q. We show the following.
Proposition 4.1. (a) (LCP) is feasible if and only if

u ≥ 0, M tu ≤ 0 ⇒ 〈q, u〉 ≥ 0.

(b) Assume that (LCP) is feasible. Then E = F (hence S = E = F) if and only
if there exists u > 0 such that M tu ≤ 0 and 〈q, u〉 = 0.

(c) Assume that F is quasi-monotone on R
n
+ and M is not PSD. Then (LCP) is

feasible if and only if

u ≥ 0, M tu ≤ 0 ⇒ 〈q, u〉 = 0.

(d) Assume that (LCP) is feasible, F is quasi-monotone on R
n
+, and M is not

PSD. Then E = F (and hence E = F = S) if and only if there exists u > 0 such that
M tu ≤ 0.

Proof. (a) As shown in ([1, p. 111]), the result is a direct consequence of Farkas’
lemma.

(b) Let e = (1, . . . , 1)
t ∈ R

n. Then F = ∅ and Mx + q = 0 for all x ∈ F if and
only if

0 = sup
x

[〈Mx+ q, e〉 : x ≥ 0, −Mx ≤ q] .

Hence, by duality in linear programming again, if and only if

0 = inf
y

[〈q, y + e〉 : y ≥ 0, M t(y + e) ≤ 0
]
.

Take u = y + e.
(c) It is easily seen from Proposition 3.2 that

u ≥ 0, M tu ≤ 0 ⇒ 〈q, u〉 ≤ 0.

Combine with (a).
(d) Combine (b) and (c).
Now, we assume that F is quasi-monotone on R

n
+, (LCP) is feasible, and F = E.

The conjunction of these assumptions has strong implications, as shown below.

POSITIVE SUBDEFINITE MATRICES AND LCPs 79

Proposition 4.2. Assume that F is quasi-monotone on R
n
+ and x ≥ 0 exists so

that Mx+ q ≥ 0, Mx+ q = 0. Then M is copositive.
Proof. Let u > 0 and t > 0. Then,

〈Mx+ q, x+ tu− x〉 > 0.

Hence, since F is quasi-monotone,

〈M(x+ tu) + q, x+ tu− x〉 = t〈Mx+ q, u〉+ t2〈Mu, u〉 ≥ 0.

Let t→ +∞. Then M is copositive on the positive orthant and, by continuity, on the
nonnegative orthant as well.

We continue the analysis of (LCP) in the special case where the matrix M has
rank 1. In this case, the solution set can be completely described. Assume that F
is quasi-monotone on R

n
+ and M is copositive. Then, without loss of generality, we

consider the case F(x) = Mx+ q, where

(H)
M = abt with a, b ∈ R

n
+, a, b = 0,

0 = q = λa− µb, λ ≥ 0, µ ≥ 0.

}

Proposition 4.3. Assume that (H) holds. Then (LCP) is feasible if and only
if either (µ = 0) or (ai > 0 whenever bi > 0).

Proof. According to Proposition 4.1, F is nonempty if and only if

y ≥ 0, 〈a, y〉b ≤ 0 ⇒ 〈q, y〉 ≥ 0.

Hence, since 0 = b ≥ 0 and 〈a, y〉 ≥ 0 for all y ≥ 0, F is nonempty if and only if

y ≥ 0, 〈a, y〉 = 0 ⇒ µ〈b, y〉 ≤ 0.

On the other hand, µ〈b, y〉 ≥ 0 for all y ≥ 0. The conclusion follows.
Theorem 4.1. Assume that (H) holds and (LCP) is feasible. Let γ = max [bi/ai :

i such that ai > 0]. Then S = R
n
+ ∩ S̃, where

x ∈ S̃ ⇔

〈a, x〉 = 0 if µ = 0,
〈a, x〉 = 〈b, x〉 = 0 if γµ ≤ λ,
γ〈a, x〉 = 〈b, x〉 = γµ− λ if 0 ≤ λ < µγ.

Proof. Note that for µ = 0, γ is positive in view of Proposition 4.3. Set ξ =
min {bi/ai : i such that ai > 0}. From the definition, x ∈ S if and only if

x ≥ 0, (〈b, x〉+ λ)a ≥ µb and 〈a, x〉〈b, x〉+ λ〈a, x〉 − µ〈b, x〉 = 0.

For x ≥ 0, we analyze the following cases in succession.
(i) 〈a, x〉 = 0. Then, by Proposition 4.3, µ〈b, x〉 = 0. Hence, x ∈ S if and only

if either µ = 0 or (µγ ≤ λ and 〈b, x〉 = 0).
(ii) 〈a, x〉 = 0 and 〈b, x〉 = 0. Then, x ∈ S if and only if µ = λ = 0.
(iii) 〈a, x〉 = 0 and 〈b, x〉 = 0. Then, x ∈ S if and only if µ = 0 and

〈b, x〉 ≥ γµ− λ and
µ

〈a, x〉 −
λ

〈b, x〉 = 1.

80 J.-P. CROUZEIX, A. HASSOUNI, A. LAHLOU, AND S. SCHAIBLE

For r > 0 such that 1 ≥ r(γµ− λ), let us define

Sr =

{
x : x ≥ 0, 〈b, x〉 = 1

r
, and

µ

〈a, x〉 −
λ

〈b, x〉 = 1

}
.

Then x ∈ S if and only if x ∈ Sr for some r such that 1 ≥ r(γµ − λ). Thus, we are
led to analyze the nonemptyness of Sr.

By Farkas’ lemma ([1, p. 109])

Sr =

{
x : x ≥ 0, 〈b, x〉 = 1

r
, 〈a, x〉 = µ

1 + λr

}

is nonempty if and only if

y ∈ R
2 and by1 + ay2 ≤ 0⇒ 1

r
y1 +

µ

1 + λr
y2 ≤ 0.

If y2 > 0, then only y1 < 0 is to be considered, and the implication yields

1

r
≥ (ξµ− λ).

For this recall that bi = 0 when ai = 0. If y2 < 0, then the above implication yields

1

r
≤ (γµ− λ).

Since, we are considering only real r such that 1 ≥ r(γµ−λ), there is only one r such
that 1 = r(γµ− λ).

Therefore in case (iii), x ∈ S if and only if

x ≥ 0 and γ〈a, x〉 = 〈b, x〉 = γµ− λ > 0.

Summarizing, we get the expression for S̃.
Now, we consider the case where rank(M) ≥ 2. We begin with the relationship

between (LCP) and (QP). The quadratic function f(x) = 〈Mx + q, x〉 is convex if
the map F (x) = Mx+ q is monotone. But f is not necessarily pseudoconvex on R

n
+

if F is only pseudomonotone on R
n
+, as shown below.

Example.

M =

(
1 2
−1 0

)
, x̄ =

(
1
−1

)
, and q = Mx̄ =

(−1
−1

)
.

Then

Ms =

(−8 −4
−4 0

)
, Msx̄ =

(−4
−4

)
, and 〈Msx̄, x̄〉 = 0.

It follows that F (x) = Mx + q is pseudomonotone on R
n
+ while f(x) = 〈Mx +

q, x〉 is not pseudoconvex on R
n
+ since the matrix (M +M t) has a positive entry, in

contradiction with Martos’ characterization in [16].
Assume that F = ∅, i.e., (QP) is feasible. Since the optimal value m of the

quadratic program (QP) is finite, (QP) has an optimal solution in view of the Frank–
Wolfe theorem [6]. Also, an optimal solution of (QP) is a Karush–Kuhn–Tucker
(KKT) point of the program. Denote by K the set of the KKT points of (QP). Then,

K =

{
x :

x ≥ 0,Mx+ q ≥ 0, and there are u ≥ 0, v ≥ 0 so that
(M +M t)x+ q = u+M tv, 〈x, u〉 = 〈Mx+ q, v〉 = 0

}
.

POSITIVE SUBDEFINITE MATRICES AND LCPs 81

For x ∈ K, let us define

K(x) =

{
(u, v) :

u ≥ 0, v ≥ 0, 〈x, u〉 = 〈Mx+ q, v〉 = 0,
and (M +M t)x+ q = u+M tv

}
.

Two questions are of interest for an (LCP) [2]: “Do the set of the solutions of
(LCP), the set of the optimal solutions of (QP), and the set of the KKT points of
(QP) coincide?”; and “Is the set of the solutions of (LCP) (polyhedral) convex?” We
will see below that both of these questions receive positive answers if the map F is
pseudomonotone. We first present the following three lemmas.

Lemma 4.1. Assume that 0 = a ∈ R
n and A is an n×n symmetric matrix which

is not PSD.
(i) The condition

〈a, h〉 = 0 =⇒ 〈Ah, h〉 ≥ 0(4.1)

holds if and only if a ∈ A(Rn) and 〈A†a, a〉 ≤ 0.
(ii) Assume that (4.1) holds and 〈a, d〉 = 0. Then

〈Ad, d〉 = 0⇐⇒ Ad = λa for some λ.

Proof. For the first statement, see Crouzeix and Ferland [3]; for the second one,
see Crouzeix, Marcotte, and Zhu [4].

Lemma 4.2. Assume that F(x) = Mx + q is quasi-monotone on R
n
+ and M is

not PSD. Then the implication

〈Mx+ q, h〉 = 0 =⇒ 〈Mh, h〉 ≥ 0

holds for all x ≥ 0 such that Mx+ q = 0.
Proof. The map is quasi-monotone (and pseudomonotone) on the positive orthant

if and only if the condition holds for all x > 0 [5, 15]. We are left with the points
on the boundary. Let x ≥ 0 such that Mx + q = 0. Consider a sequence {xk} of
positive vectors converging to x. Then, by Lemma 4.1, Mxk+q ∈ (M+M t)(Rn) and
〈(M +M t)†(Mxk + q),Mxk + q〉 ≤ 0. Now we pass to the limit and apply Lemma
4.1 again.

Lemma 4.3. Let M be an MPSBD matrix with rank(M) ≥ 2. Assume that
〈Msu, u〉 = 〈Msv, v〉 = 〈Msu, v〉 = 0. Then Mv and Mu are colinear.

Proof. Set B = M + M t. As in the proof of Proposition 2.3, we consider P
invertible, �2 positive definite diagonal, and λ1 < 0 such that

P tP = I and P tBP =

 λ1 0 0

0 �2 0
0 0 0

 .

Set x = P tMu and y = P tMv. The condition on the ranges of M,M t, and (M+M t)
imply that x3 = y3 = 0. Then

λ−1
1 x2

1 + 〈�−1
2 x2, x2〉 = λ−1

1 y2
1 + 〈�−1

2 y2, y2〉 = 0.

Since �2 is positive definite, x = 0 (y = 0) if and only if x1 = 0 (y1 = 0). Hence,
without loss of generality, we assume that x1 = y1 = 1. For t ∈ [0, 1], set w =
u+ t(v − u) and z = P tMw. Then z1 = 1, 〈Msw,w〉 = 0, and

λ−1
1 + 〈�−1

2 z2, z2〉 = λ−1
1 + 〈�−1

2 (x2 + t(y2 − x2)), x2 + t(y2 − x2)〉 = 0.

82 J.-P. CROUZEIX, A. HASSOUNI, A. LAHLOU, AND S. SCHAIBLE

Since the equality is true for all t ∈ [0, 1] and �2 is positive definite, we have y2 = x2.
The conclusion follows.

Theorem 4.2. Assume that F is pseudomonotone on R
n
+, rank(M) ≥ 2, and

(LCP) is feasible. Then S = K = Q = ∅.
Proof. (a) Let x ∈ K and u, v ∈ K(x). Then

Mx+ q = u+M t(v − x).(4.2)

Hence,

〈Mx+ q, v − x〉 = 〈u, v − x〉+ 〈M t(v − x), (v − x)〉,

〈Mx+ q, x〉+ 〈u, v〉+ 〈M(v − x), (v − x)〉 = 0.(4.3)

Equation (4.2) implies also that

Mv + q = u+ (M +M t)(v − x),(4.4)

〈Mv + q, v〉 = 〈u, v〉+ 〈(M +M t)(v − x), v〉.(4.5)

Again in view of (4.2), we have

〈Mx+ q, x〉 = 〈u, x〉+ 〈M t(v − x), x〉,
〈Mx+ q, x〉 = 〈Mx+ q, v〉 − 〈Mx+ q, x〉+ 〈q, x− v〉,

2〈Mx+ q, x〉 = 〈q, x− v〉.(4.6)

(b) First, we consider the case where M is PSD. Then all three quantities in (4.3)
are nonnegative; hence they are null and x ∈ S.

(c) Next, we consider the case where M is MPSBD. Assume, for contradiction,
that x /∈ S. Then, (4.3) and (4.6) imply that both quantities 〈M(v − x), v − x〉
and 〈q, v − x〉 are negative. Since F is pseudomonotone, Proposition 3.1 implies that
M t(v − x) ≤ 0. Hence (4.2) implies

0 < 〈Mx+ q, x〉 = 〈M t(v − x), x〉 ≤ 0,

a contradiction.
Theorem 4.3. Assume that F is pseudomonotone on R

n
+, (LCP) is feasible, and

rank(M) ≥ 2. Then S is a polyhedral convex set. In particular, let x ∈ S be given
such that Mx+ q = 0. Then

S =

{
y :

y ≥ 0,My + q ≥ 0, 〈Mx+ q, y〉 = 〈q, y − x〉 = 0,
(M +M t)(y − x) = λ(Mx+ q) for some λ

}
.

Furthermore, if λ = 0, then M is MPSBD, 〈(M +M t)†q, q〉 = 0, and Mx,My, and
q are colinear.

Proof. (i) Assume that x, y ∈ S. Then 〈Mx + q, y − x〉 = 〈Mx + q, y〉 ≥ 0 and
〈My+ q, x− y〉 = 〈My+ q, x〉 ≥ 0. Since F is pseudomonotone on R

n
+, it follows that

〈My + q, y − x〉 ≥ 0 and 〈Mx+ q, x− y〉 ≥ 0. Hence,

〈Mx+ q, y − x〉 = 〈My + q, y − x〉 = 0.

POSITIVE SUBDEFINITE MATRICES AND LCPs 83

It follows that

〈M(y − x), (y − x)〉 = 0.

First, assume that M is PSD. Then (M +M t)(y − x) = 0 = 0(Mx+ q).
Next, assume that M is MPSBD. Then Lemmas 4.1 and 4.2 ensure the existence

of λ and µ such that

(M +M t)(y − x) = λ(Mx+ q) = µ(My + q).(4.7)

Obviously, (4.7) holds if M is PSD.
Furthermore, the equalities

〈Mx+ q, x〉 = 〈Mx+ q, y〉 = 〈My + q, x〉 = 〈My + q, y〉 = 0

imply that for all t,

r(t) = f(x+ t(y − x)) = 〈(1− t)(Mx+ q) + t(My + q), (1− t)x+ ty〉 = 0.

Hence

0 = r′(0) = 〈(M +M t)x+ q, y − x〉 = 〈x, (M +M t)(y − x)〉+ 〈q, y − x〉.
Then (4.7) yields

0 = λ〈x,Mx+ q〉+ 〈q, y − x〉 = 〈q, y − x〉.
We have proved that

S ⊆ T =

{
y :

y ≥ 0,My + q ≥ 0, 〈Mx+ q, y〉 = 〈q, y − x〉 = 0,
(M +M t)(y − x) = λ(Mx+ q) for some λ

}
.

Next, assume that (M+M t)(y−x) = 0. ThenM is MPSBD and λ and µ are non-
zero. If q = 0, then Mx,My, and q are obviously colinear in view of (4.7). Assume
that q = 0. We know by Theorem 3.1 that x̄ exists so that Mx̄ = q, 〈Msx̄, x̄〉 ≤ 0,
and Msx̄ ≤ 0. Since M(Rn) = M t(Rn) = (M +M t)(Rn), there is w ∈ Ker(M) =
Ker(M t) = Ker((M +M t)) such that

y − x = λ(M +M t)†M(x+ x̄) + w.

Then

0 = 2〈q, y − x〉 = 2〈x̄,M t(y − x)〉 = λ〈x̄,Ms(x+ x̄)〉 = λ(〈Msx̄, x〉+ 〈x̄,Msx̄〉).
Recall that λ = 0, Ms is symmetric, 〈Msx̄, x̄〉 ≤ 0, x ≥ 0, and Msx̄ ≤ 0. Hence

0 = 〈Msx̄, x〉 = 〈Msx̄, x̄〉 = 2〈(M +M t)†q, q〉. On an other hand,

0 = 2〈Mx+ q, y − x〉 = 2〈x,M t(y − x)〉 = λ〈Ms(x+ x̄), x〉.
It follows that 〈Msx, x〉 = 0 and, by Lemma 4.3, that Mx and q = Mx̄ are colinear.
In the same manner, it can be proved that My and q are colinear too.

(ii) Now we prove that T ⊇ S. Let y ∈ T . Then

f(y) = 〈My + q, y〉 = f(x) + 〈(M +M t)x+ q, y − x〉+ 1

2
〈(M +M t)(y − x), (y − x)〉.

84 J.-P. CROUZEIX, A. HASSOUNI, A. LAHLOU, AND S. SCHAIBLE

f(x) = 0 since x ∈ S. 〈Mx+ q, y − x〉 = 0 since x, y ∈ T . Hence, the second and the
third terms are also zero and y ∈ S.

(iii) It is clear that T is a polyhedral convex set.
We give an example for the case where λ is not zero.

M =

(
0 11
−1 0

)
, Ms = −11

5

(
0 1
1 0

)
, q =

(
11
0

)
.

Then S = {0} × [0,∞).
In the special case where M is PSD, the characterization of S in Theorem 4.3

is given already in ([1, p. 142]). From [2] it is known that convexity of the set of
solutions of (LCP) implies polyhedrality of this set. Theorem 4.3 gives an explicit
characterization of the set if one solution is known.

Gowda [8] proved that feasibility implies solvability if F is pseudomonotone on
R
n
+. Theorem 3.2 shows that this is the case if q = 0 and F is quasi-monotone on R

n
+.

5. Concluding remarks. Positive subdefiniteness appears to be the good con-
cept to characterize generalized monotone affine maps on the nonnegative orthant as
well as pseudomonotone matrices. It leads to new characterizations that recover all
previous ones and are more simple.

When M is symmetric, then Ms = M and Theorem 3.1 corresponds to the
characterization of quasi-convex quadratic functions on the nonnegative orthant first
given by Martos [16, 17]. Pseudomonotone maps on R

n
+ and pseudomonotone matrices

have been studied by Gowda [7, 8, 9]. Gowda’s characterizations are related to our
Proposition 3.1. For instance, Gowda’s characterization of pseudomonotonicity of
affine maps is as follows [8, Theorem 2].

Proposition 5.1. F is pseudomonotone on R
n
+ if and only if

(a) z ∈ R
n, 〈z,Mz〉 < 0⇒

M tz ≥ 0 and 〈z,Mz− + q〉 ≥ 0,
or

M tz ≤ 0 and 〈z,Mz− + q〉 ≤ 0;

(b) 〈z,Mz− + q〉 ≥ 0⇒ 〈z,Mz+ + q〉 ≥ 0.
Crouzeix and Schaible [5] have derived characterizations of generalized monotone

affine maps on a convex set from the first-order conditions of pseudomonotonicity on
an open convex set [15]. When specialized to the nonnegative orthant, their result is
as follows.

Proposition 5.2. F is quasi-monotone on R
n
+ (and pseudomonotone on int(Rn+))

if and only if one of the following conditions holds:
(i) M is PSD;
(ii) M has rank 1, q ∈ (M + M t)(Rn) ⊇ M(Rn), 〈q, (M + M t)†q〉 ≤ 0, and

M t(M +M t)†q ≤ 0;
(iii) ν−(M +M t) = 1, (M +M t)(Rn) = M(Rn), Ms is conegative, there is x̄ so

that Mx̄ = q, and either (Rn+ ⊆ W and x̄ ∈ W) or (Rn+ ⊆ −W and x̄ ∈ −W), where
W is a closed convex cone such that W ∪ −W = {w : 〈w,Msw〉 ≤ 0}.

Finally, the different results in this paper show that nonsymmetric matrices of
rank 1 require a separate treatment.

Acknowledgments. The authors would like to thank the referees for their sug-
gestions which helped to improve the presentation of our results. The fourth author
gratefully acknowledges the hospitality and the support of Université Blaise Pascal
for his visit in June 1997.

POSITIVE SUBDEFINITE MATRICES AND LCPs 85

REFERENCES

[1] R. W. Cottle, J. S. Pang, and R. E. Stone, The Linear Complementarity Problem, Aca-
demic Press, New York, 1992.

[2] R. W. Cottle, J. S. Pang, and V. Venkateswaran, Sufficient matrices and the linear
complementarity problem, Linear Algebra Appl., 114/115 (1989), pp. 231–249.

[3] J.-P. Crouzeix and J. A. Ferland, Criteria for quasiconvexity and pseudoconvexity: Rela-
tionships and comparisons, Math. Programming, 23 (1982), pp. 193–205.

[4] J.-P. Crouzeix, P. Marcotte, and D. Zhu, Conditions Ensuring the Applicability of Cut-
ting Plane Methods for Solving Variational Inequalities, Technical report, Université de
Montréal, Montreal, Canada, 1997.

[5] J.-P. Crouzeix and S. Schaible, Generalized monotone affine maps, SIAM J. Matrix Anal.
Appl., 17 (1996), pp. 992–997.

[6] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Res. Logist. Quart.,
3 (1956), pp. 95–110.

[7] M. S. Gowda, Pseudomonotone and copositive star matrices, Linear Algebra Appl., 113 (1989),
pp. 107–118.

[8] M. S. Gowda, Affine pseudomonotone mappings and the linear complementarity problem,
SIAM J. Matrix Anal. Appl., 11 (1990), pp. 373–380.

[9] M. S. Gowda, On the transpose of a pseudomonotone matrix and the LCP, Linear Algebra
Appl., 140 (1990), pp. 129–137.

[10] N. Hadjisavvas and S. Schaible, Quasimonotonicity and pseudomonotonicity in variational
inequalities and equilibrium problems, in Generalized Convexity, Generalized Monotonicity,
Nonconvex Optim. Appl. 27, J.-P. Crouzeix, J.-E. Martinez-Legaz, and M. Volle, eds.,
Kluwer Academic Publishers, Dordrecht, Boston, London, 1998, pp. 257–275.

[11] A. Hassouni, Sous-differentiels des fonctions quasiconvexes, Thèse de 3ème cycle de
l’Université Paul Sabatier, Toulouse, France, 1983.

[12] S. Karamardian, The complementarity problem, Math. Programming, 2 (1972), pp. 107–129.
[13] S. Karamardian, Complementarity problems over cones with monotone and pseudomonotone

maps, J. Optim. Theory Appl., 18 (1976), pp. 445–454.
[14] S. Karamardian and S. Schaible, Seven kinds of monotone maps, J. Optim. Theory Appl.,

66 (1990), pp. 37–46.
[15] S. Karamardian, S. Schaible, and J.-P. Crouzeix, Characterizations of generalized mono-

tone maps, J. Optim. Theory Appl., 76 (1993), pp. 399–413.
[16] B. Martos, Subdefinite matrices and quadratic forms, SIAM J. Appl. Math., 17 (1969), pp.

1215–1223.
[17] B. Martos, Nonlinear Programming: Theory and Methods, North–Holland, Amsterdam, 1975.
[18] G. J. Minty, On the monotonicity of the gradient of a convex function, Pacific J. Math., 14

(1964), pp. 243–247.

HARTLEY TRANSFORM REPRESENTATIONS OF SYMMETRIC
TOEPLITZ MATRIX INVERSES WITH APPLICATION TO

FAST MATRIX-VECTOR MULTIPLICATION∗

GEORG HEINIG† AND KARLA ROST‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 86–105

Abstract. Representations for inverses of real symmetric Toeplitz matrices involving discrete
Hartley transformations are presented which can be used for fast matrix-vector multiplication. In this
way, multiplication of a column vector by an inverse real symmetric Toeplitz matrix can be carried
out with the help of six Hartley transformations plus two for preprocessing. Besides complexity,
stability issues will also be discussed. In particular, it is shown that, for positive definite Toeplitz
matrices, the relative error of the computed vector can be estimated by a multiple of the condition
number of the matrix.

Key words. Toeplitz matrix, Bezoutian, Hartley transform, fast algorithm, stability, complexity

AMS subject classifications. 47B35, 15A09, 15A23

PII. S089547989833961X

1. Introduction. This paper is the third, after [21] and [22], in a series dedicated
to representations of Toeplitz-like matrices with the help of trigonometric transfor-
mations that can be used for fast matrix-vector multiplication. In the first paper
real Toeplitz and Toeplitz-plus-Hankel matrices were considered; inverses of complex
Toeplitz and Toeplitz-plus-Hankel matrices were considered in the second. The rep-
resentations in [22] involve only complex DFTs. Since the DFT for real data and
related real transformations requires only half (or even less) of the amount of a com-
plex DFT it is natural to ask whether in the case of a real matrix real transformations
can be used. In the present paper we discuss this for inverses of n× n real symmet-
ric Toeplitz matrices Tn = [t|i−j|]

n−1
i,j=0 and discrete Hartley transformations. Other

trigonometric transformations like sine and cosine transformations and inverses of
Toeplitz-plus-Hankel matrices will be considered in a forthcoming paper.

Let us briefly describe the history of the problem and mention some related work.
The starting point of the investigation is the Gohberg–Semencul formula [15] that rep-
resents the inverse of a Toeplitz matrix with the help of triangular Toeplitz matrices.
The original formula is valid only under some conditions but there are modifications
working for an arbitrary nonsingular Toeplitz matrix (see [20]). Since multiplica-
tion by triangular Toeplitz matrices can be carried out with fast Fourier transforms
(FFTs), matrix-vector multiplication by inverses of n × n Toeplitz matrices can be
done with O(n log n) complexity. For matrix-vector multiplication with the help of
the Gohberg–Semencul formula, six DFTs of length 2n plus two more DFTs of this
length for preprocessing are required.

It was observed in [2] (see also [1], [13]) that there are also formulas involving
circulant matrices rather than triangular Toeplitz matrices. These formulas are more

∗Received by the editors June 1, 1998; accepted for publication (in revised form) by D. Calvetti
September 29, 1999; published electronically May 31, 2000. This work was partly supported by
research project SM-161, Kuwait University.

http://www.siam.org/journals/simax/22-1/33961.html
†Kuwait University, Department of Mathematics and Computer Science, P.O. Box 5969, Safat

13060, Kuwait (georg@mcs.sci.kuniv.edu.kw).
‡Technische Universität Chemnitz, Fakultät für Mathematik, D-09107 Chemnitz, Germany

(krost@mathematik.tu-chemnitz.de).

86

HARTLEY TRANSFORM REPRESENTATIONS 87

efficient because they require only the computation of DFTs with length n rather
than 2n. Note that a circulant formula is already contained in [29]. More formulas
involving circulants can be found in [13], [30], [4], [18].

In the series of papers [11], [6], [7], [12], and [5] matrix algebras generated by a
Hessenberg matrix were investigated. For special choices of the Hessenberg matrix
these algebras are associated with discrete trigonometric transformations. The main
results concern representations of matrices with a displacement structure, in particu-
lar inverses of Toeplitz matrices, with the help of matrices from these algebras. These
representations can be used then for fast matrix-vector multiplication. Besides for-
mulas matching the best known results for complex matrices, the papers [11], [7],
and [5] contain formulas for inverse real symmetric Toeplitz matrices involving cosine
transforms which admit matrix-vector multiplication by six transformations of length
n plus four for preprocessing.

The problem of fast matrix-vector multiplication by Toeplitz-like matrices was
also discussed in [13], [14], and [25]. The second of these references is especially
worth mentioning because it contains a general approach to trigonometric transform–
based representations of Toeplitz-like matrices using the displacement structure and
transformation into Cauchy matrices. The latter was proposed in [17].

The formulas designed in the present paper can also be used for matrix-vector
multiplication with six transformations, namely, Hartley transformations, but only
two are required for preprocessing. Note that the Hartley transformation does not fit
into the framework of Hessenberg algebras since the corresponding generating matrix
is equal to the sum of the cyclic shift and its transpose, which is not Hessenberg.
Hartley transformation–based formulas are also not considered in [25].

Moreover, let us note that in [23] it is shown that matrix-vector multiplication
by inverses of general Toeplitz-plus-Hankel matrices can also be carried out with the
help of six DHTs only. However, the number of transformations in the preprocessing
phase will be greater, namely, eight in this case.

Our approach differs from those of the above-mentioned papers. We believe that
it is easier and more straightforward. Furthermore, no additional conditions on the
matrix are required, as they are in the other papers. It is based on the fact that
inverses of Toeplitz matrices are Bezoutians. For positive definite Toeplitz matrices
this follows from Szegö’s Christoffel–Darboux-type formula for orthogonal polynomials
on the unit circle. For the general case this was observed in [28]. Let us note that
the fact that a matrix is a Bezoutian is actually stronger than the fact that it has
displacement rank 2. Therefore, it can be expected that the Bezoutian approach
provides a deeper insight and stronger results than the displacement approach in [17]
and [25].

Let us explain the contents of the paper. In section 2 we quote a well-known
inversion formula for Toeplitz matrices and specify it for the symmetric case by show-
ing that the inverse of a symmetric Toeplitz matrix is the Bezoutian of a symmetric
and a skewsymmetric polynomial and how these polynomials can be characterized as
solutions of special equations. This result might be new in the presented form. We
also show that any symmetric Bezoutian, including a singular one, is the Bezoutian
of a symmetric and a skewsymmetric polynomial.

The definition of the DHT will be recalled in section 3. Concerning properties of
this transformation and fast algorithms for its computation, we refer to [3], [9], [34],
[31]. It is convenient to introduce some modifications of the classical DHT. According
to a suggestion of M. Tasche, we denote them by DHT-II, DHT-III, and DHT-IV.

88 GEORG HEINIG AND KARLA ROST

The main results of the paper, which are representations of Toeplitz Bezoutians
involving only Hartley and diagonal matrices, are contained in sections 4 and 5. We
present four different formulas. The first two, which will be presented in section 4,
are convenient if the order n of the matrix is odd. The general structures of them are

B = HI(D1HIIHIVD2 + D3HIIHIVD4)HIII

and

B = HI(D5HIIWHIIID6 + D7HIIWHIIID8 + D9)HI ,
where HX (X = I, II, III, IV) denote the Hartley transforms defined in section 3,
Di (i = 1, . . . , 9) are diagonal matrices, and W is defined by (4.7). The inverse of
the Toeplitz matrix can be identified as a restriction of B. The third and fourth
formulas are convenient if the order of the Toeplitz matrix is even. The structure of
the formulas is similar, only other types of Hartley transforms appear.

With the help of these representations, matrix-vector multiplication by an inverse
of a Toeplitz matrix can be carried out with six Hartley transformations of length N
for any N > n if n is odd and N > n + 1 if n is even and some Hadamard products
of vectors. For preprocessing, only two Hartley transformations are required. The
enlargement of n is convenient in order to have all transformations of the same length.

Of course, the relevance of an algorithm in finite arithmetic depends not only
on its complexity but also on its stability. In section 6 we discuss this problem for
the algorithms emerging from the representation formulas. So far, very little can be
found in the literature concerning this topic. There are some remarks in [8] pointing
out that the Gohberg–Semencul formula might lead to an unstable algorithm. In
[16] some positive results concerning stability of the Gohberg–Semencul and related
formulas are obtained. However, in this paper stability is understood in the rather
weak sense that the forward error cannot be arbitrarily large.

In the present paper we show that the relative error of the computed vector can
be estimated by the condition numbers of the matrix itself and its (n − 1) × (n − 1)
principal section or an (n + 1) × (n + 1) extension of it. In the case of a positive
definite Toeplitz matrix Tn we obtain, comparing the exact vector ξ = T−1

n b with the

computed vector ξ̃, the estimation

‖ξ̃ − ξ‖
‖ξ‖ ≤ 48(n + 2)κ(Tn)(u+ O(u2)),

where κ(Tn) is the condition number of Tn and u is the machine precision.
That means that the algorithm emerging from one of the formulas is forward

stable in the sense of [24, p. 142], at least for positive definite Toeplitz matrices. As
far as we know, this is the first time that stability in this sense is shown for an inver-
sion formula for Toeplitz matrices. A more complete analysis for complex inversion
formulas is contained in [19]. Section 7 is devoted to a more detailed investigation of
the complexity of fast matrix-vector multiplication.

Let us agree upon some notations that will be used throughout the paper. We
denote by In the identity of order n and by Jn and J ′

n the following permutation
matrices of order n:

Jn =

 0 1

. .
.

1 0

 and J ′

n =

[
1 0
0 Jn−1

]
.

HARTLEY TRANSFORM REPRESENTATIONS 89

2. Toeplitz matrix inverses and Bezoutians. It is convenient to introduce
the concept of a Bezoutian in terms of generating functions. Let �(λ) denote the
column vector �(λ) = [λk]n−1

0 , λ ∈ C . The generating function of a (column) vector
x ∈ C

n is, by definition, the polynomial x(λ) = �(λ)Tx . In case of an n×n matrix A
the generating function is the bivariate polynomial

A(λ, µ) = �(λ)TA�(µ).

Definition 2.1. Suppose that a, b ∈ C
n+1. The Toeplitz Bezoutian or T-

Bezoutian of the polynomials a(λ) and b(λ) or of the corresponding coefficient vectors
a and b is the n× n matrix B = Bez(a, b) with the generating function

B(λ, µ) =
a(λ)(Jn+1b)(µ)− b(λ)(Jn+1a)(µ)

1− λµ
.(2.1)

Besides Toeplitz Bezoutians, there exist also Hankel, Toeplitz-plus-Hankel, and
more general Bezoutians (see [20], [22], [27]).

The basis of our approach is the following.
Theorem 2.2.1 Let Tn = [ti−j]n−1

0 be a nonsingular Toeplitz matrix and let z
and x be the solutions of

Tn z = [t−n t1−n t2−n · · · t−1]T , Tn x = [1 0 · · · 0]T ,(2.2)

respectively, where t−n is an arbitrary but fixed number. Then the inverse of Tn is
given by

T−1
n = Bez(x, y) ,(2.3)

where y(λ) = λn − z(λ).
In what follows we shall not distinguish between the solution vector x ∈ C

n and

the vector [x
0] ∈ C

n+1.

Let us note that the converse is also true: The inverse of a nonsingular T-
Bezoutian is Toeplitz (see [20], [28]). Let us also mention the fact that {x, y} forms a

basis of the kernel of the (n− 1)× (n + 1) matrix T̃n = [ti−j]
n−1, n
i=1, j=0.

In this paper we shall not discuss how to obtain the solutions x and z. Let us only
mention that they can be computed with O(n2) complexity using classical Levinson-
type or Schur-type algorithms or with “superfast solvers” with O(n log2 n) complexity
(see, for example, [4], [20], [26]).

We are going to discuss now the specifics of symmetric Toeplitz matrices. For
this let us agree upon some concepts.

Definition 2.3. A vector x ∈ C
n (as well as the corresponding polynomial

x(λ) = �(λ)Tx) is called symmetric, skewsymmetric, even, odd, respectively, if

Jnx = x, Jnx = −x, J ′
nx = x, J ′

nx = −x.
An n×n matrix A will be called centro-symmetric, centro-skewsymmetric, centro-even,
centro-odd, respectively, if

AJn = JnA, AJn = −JnA, AJ ′
n = J ′

nA, AJ ′
n = −J ′

nA.

A is called persymmetric if JnA = ATJn .

1See [20, Theorem 1.1 and formula (1.47)].

90 GEORG HEINIG AND KARLA ROST

For example, Toeplitz matrices and T-Bezoutians are persymmetric. Conse-
quently, symmetric Toeplitz matrices and T-Bezoutians are centro-symmetric. A
matrix of the form

[
0 0
0 B

]
,

where B is centro-symmetric, is centro-even.
Assume now that Tn is symmetric, i.e., t−i = ti (i = 1, 2, . . . , n− 1). We also set

tn = t−n. For our further considerations it is important to have only symmetric and
skewsymmetric vectors in the representation of T−1

n .
But first we show that in the symmetric case the inverse of Tn can be represented

with the help of the solution of only one of the equations of (2.2). In this concern we
have to consider the cases x0
= 0 and x0 = 0, where x0 denotes the first component
of the solution vector x. According to Cramer’s rule, x0
= 0 if and only if the matrix
Tn−1 is nonsingular.

We consider first the case x0
= 0. In this case we have

y =
1

x0
Jn+1x + αx

for some number α. Hence

T−1
n =

1

x0
Bez (x, Jn+1x).(2.4)

This is just the Gohberg–Semencul formula for the symmetric case.
Now we discuss how to represent T−1

n with the help of the solution of the first
equation in (2.2). This will cover also the case x0 = 0. We consider the (n+1)×(n+1)
matrix Tn+1(t) = [ti−j]n0 with tn = t. This matrix is nonsingular if the Schur
complement of Tn is nonzero. This Schur complement is equal to −s(t), where

s(t) = x0t
2 + 2qt + r,(2.5)

with q = gTT−1
n e1 = gTx, r = gTT−1

n g−t0 and g = [0 tn−1 · · · t1]T , e1 = [1 0 · · · 0]T .
If x0 = 0, then q
= 0. In fact, if we had x0 = q = 0, then the backward-shifted

vector [x1 · · ·xn−1 0]T would belong to the kernel of Tn. That means that Tn+1(t) is
singular for one or two values of t, which are just the zeros of (2.5).

If z is a solution of the first equation of (2.2) and y = [yi]
n
0 = [−zT 1]T , then

Tn+1(tn)y = α [0 · · · 0 1]T ,

where α =
∑n
k=0 tn−kyk. Clearly, α
= 0 if s(tn)
= 0. Thus, in this case the vector y is

neither symmetric nor skewsymmetric, since otherwise we would obtain Tn+1(tn)y =
0. This means that the vectors y and Jn+1y, which both belong to the kernel of

T̃n, are linearly independent. Since also x belongs to this kernel and the kernel is
two-dimensional, there are numbers β and γ such that

x = βy − γJn+1y.

HARTLEY TRANSFORM REPRESENTATIONS 91

The coefficients are given by

γ = −1/α = −
(

n∑
k=0

tkyn−k

)−1

, β = γy0.(2.6)

Hence the following is true.
Proposition 2.4. For all values of tn with the exception of at most two, the

inverse of Tn can be represented as

T−1
n = γ Bez (y, Jn+1y),(2.7)

where γ is given by (2.6).
From (2.4) and (2.7) we conclude the following.
Theorem 2.5. The inverse of a symmetric Toeplitz matrix Tn can be represented

in the form

T−1
n = γ Bez (a−, a+),(2.8)

where a+ is symmetric and a− is skewsymmetric. In particular, these vectors and the
factor γ are given by the following:

(1) If the first component x0 of the solution of the second equation of (2.2) is
nonzero, then a± = x± Jn+1x and γ = 1/x0.

(2) If tn is chosen such that s(tn)
= 0, where s(t) is given by (2.5), then a± =
y ± Jn+1y, where y = [−zT 1]T and z is the solution of the first equation of
(2.2) and γ is given by (2.6).

Proof. We have x = (a+ + a−)/2 and Jn+1x = (a+ − a−)/2. Inserting this into
(2.4) we obtain the assertion for the first case. The second case is analogous.

The theorem claims that any nonsingular symmetric T-Bezoutian is the Bezoutian
of a symmetric and a skewsymmetric vector, since the inverse of a T-Bezoutian is
Toeplitz. We show that this is also true for singular Bezoutians, even for a more
general Bezoutian concept. A matrix B will be called generalized T-Bezoutian if the
matrix with the generating function (1 − λµ)B(λ, µ) has rank less than or equal to
2. In [20, Part I, section 2.3], it is shown that any square generalized Bezoutian is
actually the (classical) T-Bezoutian of two polynomials. Moreover, the following is
true.

Proposition 2.6. If B is a symmetric Bezoutian, then there are a symmetric
vector a+ and a skewsymmetric one a− such that B = Bez (a−, a+).

Proof. Suppose that B = Bez (a, b) and R = ab̂T − bâT , where û means Jn+1u.
Then R has the generating function (1 − λµ)B(λ, µ). The range of R is spanned by
a and b. First we observe that these vectors cannot be both symmetric or skewsym-
metric. In fact, assuming that a and b are both symmetric or skewsymmetric, then
RT = −R, but R is symmetric. If one of the vectors a, b is symmetric and the other
one is skewsymmetric, then nothing has to be proved. Assume now that one of the
vectors, say, a, is neither symmetric nor skewsymmetric. Then a and â are linearly
independent and, since R is centro-symmetric, â belongs to the range of R. Hence
there are numbers α and β such that b = αa+βâ. We obtain that R = β(aaT − ââT).
Thus for a multiple c of a or â we have B = Bez (c, ĉ). Setting a± = 1

2 (c ± ĉ) we
obtain B = Bez (a−, a+).

92 GEORG HEINIG AND KARLA ROST

3. Discrete Fourier and Hartley transforms. We recall the definition of
the classical DHTs and introduce some modifications of it that will be used in what
follows. Let

SIn =
[

sin 2jkπ
n

]n−1

0
, CIn =

[
cos 2jkπ

n

]n−1

0
,

SIIn =
[

sin j(2k+1)π
n

]n−1

0
, CIIn =

[
cos j(2k+1)π

n

]n−1

0
,

SIIIn = (SIIn)T , CIIIn = (CIIn)T ,

SIVn =
[

sin (2j+1)(2k+1)π
2n

]n−1

0
, CIVn =

[
cos (2j+1)(2k+1)π

2n

]n−1

0
.

We define

FXn = CXn + iSXn , HXn = CXn + SXn (X = I, II, III, IV) ,

where i is the imaginary unit. If there is no danger of misunderstanding, we will omit
the subscript n .
FI is the classical DFT and HI the classical DHT. Obviously, the modified DFTs

are connected with the classical one via

FII = DnFI , FIII = FIDn , FIV = DnFIDn,(3.1)

where Dn = diag
(
e

πji
n

)n−1

j=0
. For the modified DHTs the following relations are valid:

HII = KnHI , HIII = HIKT
n , HIV = KnHIKT

n ,(3.2)

where Kn = diag
(
cos πjn

)n−1

j=0
+ diag

(
sin πj

n

)n−1

j=0
J ′
n. The relations (3.2) follow from

(3.1) taking into account that J ′
nHI = CI − SI . We can conclude from the relations

(3.2) that the amount for computing the modified DHTs of a vector is approximately
the same as for the classical DHT.

Applying a DFT to a vector x ∈ C
n means, in principle, evaluating the values of

its generating function at unit roots. More precisely, we have for all four DFTs

FIx =
[
x(ω4j

n)
]n−1

0
, FIIx = diag

(
ω2j
n

)n−1

0

[
x(ω4j

n)
]n−1

0
,

FIIIx =
[
x(ω4j+2

n)
]n−1

0
, FIV x = diag

(
ω2j+1
n

)n−1

0

[
x(ω4j+2

n)
]n−1

0
,

where ωn = exp(iπ
2n), which is a primitive 4nth root of unity.

Note that (HX)−1 = 1
n (HX)T for X = I, II, III, IV . This is well known for

HI and can easily be checked for the other transformations. That means that these
transformations are almost unitary.

In view of the symmetry properties of the rows or columns of SX and CX the
following intertwining relations are valid:

HIJ ′
n = J ′

nHI , HIIJn = −J ′
nHII , HIIIJ ′

n = −JnHIII , HIV Jn = JnHIV ,(3.3)

which means, in particular, that HI is centro-even and HIV is centro-symmetric.
From these relations we conclude the following properties of the Hartley transforms.

HARTLEY TRANSFORM REPRESENTATIONS 93

Lemma 3.1.
(1) HI transforms an even vector ae into an even vector and an odd vector ao

into an odd one. Moreover,

HIae = FIae = CIae, HIao = −iFIao = SIao, SIae = 0, CIao = 0.

(2) HII transforms a symmetric vector a+ into an odd vector and a skewsym-
metric vector a− into an even one. Moreover,

HIIa+ = FIIa+ = CIIa+, HIIa− = −iFIIa− = SIIa−,

SIIa+ = 0, CIIa− = 0.

(3) HIII transforms an even vector ae into a skewsymmetric vector and an odd
vector ao into a symmetric one. Moreover,

HIIIae = −iFIIIae = SIIIae, HIIIao = FIIIao = CIIIao,

SIIIao = 0, CIIIae = 0.

(4) HIV transforms a symmetric vector a+ into a symmetric vector and a skewsym-
metric vector a− into a skewsymmetric one. Moreover,

HIV a+ = −iFIV a+ = SIV a+, HIV a− = FIV a− = CIV a−,

SIV a− = 0, CIV a+ = 0.

Let us note that for any centro-symmetric matrix A the vector Aa+ is symmetric,
whereas Aa− is skewsymmetric. In case of a centro-skewsymmetric matrix A we
obtain Aa+ is skewsymmetric, Aa− symmetric. Analogous observations hold for
centro-even or centro-odd matrices and the vectors ae and ao .

Lemma 3.1 has some important consequences which will be exploited in the fol-
lowing two sections. The first one is that for an even vector ae ∈ R

n the vector[
ae(ω

4k
n)
]n−1

k=0
is real and equal to HIae and the vector −i [ae(ω4k+2

n)
]n−1

k=0
is real and

equal toHIIIae. Furthermore, for a symmetric vector a+, the vector
[
ω2ka+(ω4k

n)
]n−1

k=0

is real and equal to HIIa+, and −i [ω2k+1a+(ω4k+2
n)

]n−1

k=0
is real and equal to HIV a+.

A second consequence of Lemma 3.1 is that, for an even vector ae and an odd
vector ao, the even part of HI(ae + ao) is equal to HIae and its odd part is equal
to HIao. That means that only one transformation is needed to compute both HIae
and HIao. This observation will be utilized in what follows. The other DHTs have
analogous properties. We collect them in the following lemma.

Lemma 3.2.
(1) Let ae be even, ao odd, and bI = HI(ae + ao), b

III = HIII(ae + ao). Then

HIae,o =
1

2
(I ± J ′

n)b
I , HIIIae,o =

1

2
(I ∓ Jn)b

III .

(2) Let a+ be symmetric, a− skewsymmetric, bII = HII(a++a−), bIV = HIV (a++
a−). Then

HIIa± =
1

2
(I ∓ J ′

n)b
II , HIV a± =

1

2
(I ± Jn)b

IV .

94 GEORG HEINIG AND KARLA ROST

Finally, the relations in the following lemma are also consequences of the rela-
tions in Lemma 3.1. Here we present only those identities which will be used in the
remainder of this paper. Some other similar equalities can also be derived.

Lemma 3.3. Let A be centro-symmetric, A0 centro-even, and W centro-skewsym-
metric. Then

HIIAHIV = −iFIIAFIV , HIVAHIV = FIVA(FIV)∗,

HIA0HI = FIA0(FI)∗ , HIA0HII = −iFIA0FII ,

HIIWJnHIII = −iFIIW (FII)∗.

Proof. The proof of all relations is straightforward and relies on the symmetry
properties of the rows and columns of SX and CX and the fact that the inner product
of a symmetric and a skewsymmetric vector, as well as that of an odd and an even
vector, vanishes.

Let us prove, as an example, the last relation. We have on one hand

HIIWJnHIII = (CII + SII)W (CIII − SIII)
= SIIWCIII − CIIWSIII .

Here we took into account that the columns of CIII and the rows of CII are symmetric
and the columns of SIII and the rows of SII are skewsymmetric; thus JnHIII =
CIII − SIII , and the fact that W transforms symmetric into skewsymmetric and
skewsymmetric into symmetric vectors. On the other hand,

FIIW (FII)∗ = (CII + iSII)W (CIII − iSIII)
= i(SIIWCIII − CIIWSIII).

This completes the proof.

4. DHT-representations of symmetric T-Bezoutians: Centro-even ver-
sion. In this and the next section we present matrix representations of real symmetric
T-Bezoutians given in the form B = Bez (a−, a+), where a+ is symmetric and a− is
skewsymmetric, involving only Hartley transformations and diagonal matrices.

In this section we extend the centro-symmetric matrix B to a centro-even matrix.
The simplest of these extensions is

B0 =

[
0 0
0 B

]
.(4.1)

We could also add more zero columns and rows to all sides of B. In general, it is
convenient to do this in order to obtain a matrix the order N of which is a power of 2,
because in this case the algorithms for DHT computing are most efficient. This can
be achieved if the order n of B is odd, since N − n must be odd. In the next section
we present another version which is convenient if n is even.

Throughout this section all transformations have length n+1. Therefore, we omit
this subscript. Furthermore, we abbreviate in this section

ω = ωn+1 = exp

(
iπ

2(n + 1)

)
.

HARTLEY TRANSFORM REPRESENTATIONS 95

The generating function of the matrix (4.1) is given by

B0(λ, µ) = λµB(λ, µ) =
λa+(λ)µa−(µ) + λa−(λ)µa+(µ)

1− λµ
.(4.2)

The function B0(λ, µ) is defined by (4.2) only if λµ
= 1. For µ → λ−1 we obtain
using l’Hospital’s rule

B0(λ, λ−1) = −(λa′+(λ)a−(λ−1) + λa′−(λ)a+(λ−1)).

It is convenient to write this relation in a different form. To that aim let us adopt
the following notation: For a polynomial a(λ) , deg a ≤ n , we denote by ã(λ) the
polynomial

ã(λ) =
n

2
a(λ)− λa′(λ).(4.3)

Now we can write

B0(λ, λ−1) = ã+(λ)a−(λ−1) + ã−(λ)a+(λ−1).(4.4)

Note that the coefficient vector ã+ is skewsymmetric and ã− is symmetric.
The construction of the representations for B0 are carried out in two steps. In the

first step we transform B0 into a Cauchy-like matrix with DHTs, and in the second
step we represent the Cauchy matrix by DHTs. The first step is done in two versions
in the following lemma.

Lemma 4.1.
(1) HIB0HII = [pjk]

n
j,k=0 with

pjk =
aII+,ja

IV
−,k + aII−,ja

IV
+,k

2 Imω2j+2k+1
,(4.5)

where

[
aX±,j

]n
j=0

= HXa± (X = II, IV) .

(2) HIB0HI = [qjk]
n
j,k=0 with

qjk =

aII+,ja
II
−,k − aII−,ja

II
+,k

2 Imω2(j−k) : j
= k,

ãII+,ja
II
−,j + ãII−,ja

II
+,j : j = k,

(4.6)

where ã± is defined by (4.3) and
[
ãII±,j

]n
j=0

= HII ã± .

Proof. From (4.2) we obtain that the entries ipjk of FIB0FII = iHIB0HII are
given by

ipjk =
ω4j+4k+2[a+(ω4j)a−(ω4k+2) + a−(ω4j)a+(ω4k+2)]

1− ω4j+4k+2

=
ω2ja+(ω4j)ω2k+1a−(ω4k+2) + ω2ja−(ω4j)ω2k+1a+(ω4k+2)

ω−2j−2k−1 − ω2j+2k+1
.

96 GEORG HEINIG AND KARLA ROST

Since a+ is symmetric and a− is skewsymmetric we have, according to Lemma 3.1,

[ω2ja+(ω4j)]n0 = FIIa+ = HIIa+, [ω2ja−(ω4j)]n0 = FIIa− = iHIIa−,

[ω2k+1a+(ω4k+2)]n0 = FIV a+ = iHIV a+, [ω2k+1a−(ω4k+2)]n0 = FIV a− = HIV a−.
From this (4.5) is immediately obtained.
In the second version the entries qjk of HIB0HI = FIB0(FI)∗ for j
= k are

given by

qjk =
ω4j−4k[a+(ω4j)a−(ω−4k) + a−(ω4j)a+(ω−4k)]

1− ω4j−4k

=
ω2ja+(ω4j)ω−2ka−(ω−4k) + ω2ja−(ω4j)ω−2ka+(ω−4k)

ω−2j+2k − ω2j−2k
.

It remains again to remember the facts of section 2 and to take into account that

[ω−2ka+(ω−4k)]nk=0 = FIIa+ = HIIa+, [ω−2ka−(ω−4k)]nk=0 = FIIa− = −iHIIa−
to obtain the first relation in (4.6).

We consider now the case j = k. According to (4.4),

qjj = ω2j ã+(ω4j)ω−2ja−(ω−4j) + ω2j ã−(ω4j)ω−2ja+(ω−4j)

= i ãII+,j(−i aII−,j) + ãII−,ja
II
+,j ,

from which the second relation in (4.6) follows.
Now we are going to represent the matrices obtained after transformation. For

this we need the representation of some standard Cauchy-like matrices, which are
deduced in the next lemma. We introduce the matrix

Wm =
1

m
diag

(
m− 1

2
,
m− 3

2
, . . . ,

3−m

2
,
1−m

2

)
Jm.(4.7)

The matrix WmJm is centro-skewsymmetric and, therefore, the last relation in Lemma
3.3 is valid.

Lemma 4.2.
(1)

HIIHIV =

[
1

Imω2j+2k+1

]n
j,k=0

.

(2)

HIIWn+1HIII =
[
(2 Imω2j−2k)†

]n
j,k=0

,

where a† means 1/a if a
= 0 and 0 if a = 0.
Proof. 1. The generating function of the identity In+1 is given by

In+1(λ, µ) = �(λ)T �(µ) =
1− λn+1µn+1

1− λµ
.

This implies

FIIFIV =

[
ω2j 1− (ω4j)n+1(ω4k+2)n+1

1− ω4jω4k+2
ω2k+1

]
=

[
2

ω−2j−2k−1 − ω2j+2k+1

]
.

HARTLEY TRANSFORM REPRESENTATIONS 97

It remains to take the first relation in Lemma 3.3 into account.
2. Differentiating the identity (1 − λµ)�(λ)T �(µ) = 1 − λn+1µn+1 by λ and

multiplying the result by λ, we obtain

(1− λµ)λ�′(λ)T �(µ) = −(n + 1)(λµ)n+1 + λµ�(λ)T �(µ).

In particular, we have for λ = ω4j and µ = ω−4k, j
= k,

(1− ω4j−4k)ω4j�′(ω4j)T �(ω−4k) = −(n + 1).

Furthermore, direct computation yields

ω4j�′(ω4j)T �(ω−4j) =
1

2
n(n + 1).

These two relations lead to

FIWn+1Jn+1(FI)∗ =
[
(1− ω4j−4k)†

]n
j,k=0

.

Consequently,

FIIWn+1Jn+1(FII)∗ =
[
ω2j−2k(1− ω4j−4k)†

]n
j,k=0

=
[
i (2Imω2j−2k)†

]n
j,k=0

.

Since Wn+1Jn+1 is centro-skewsymmetric we conclude from this the assertion using
the last relation in Lemma 3.3.

In order to reduce representations for B0 to representations for B we introduce
the n× (n + 1) matrix

P10 =
[

0 In
]
,

where In denotes the identity matrix of order n.
Combining Lemma 4.1 and Lemma 4.2 we obtain two kinds of representations of

real symmetric Bezoutians which are presented in the following theorem.
Theorem 4.3. The real symmetric Bezoutian B = Bez (a−, a+) admits the rep-

resentations

B =
1

2(n + 1)2
P10HI

(
DII

+ HIIHIVDIV
− + DII

− HIIHIVDIV
+

)HIIIPT
10 ,(4.8)

where DX
± = diag

(HXa±
)
for X = II, IV, and

B =
1

(n + 1)2
P10HI

(
DII

+ HIIWn+1HIIIDII
− −DII

− HIIWn+1HIIIDII
+ + D

)HIPT
10 ,

(4.9)

where D = diag (dj)
n
j=0, dj = ãII+,ja

II
−,j + ãII−,ja

II
+,j.

5. DHT-representations of symmetric T-Bezoutians: Centro-symme-
tric version. In this section we present two representations for B = Bez (a−, a+)
that use the fact that B itself is centro-symmetric. In order to have all Hartley
transformations of the same length we extend B to a larger centro-symmetric matrix
bordering it by the same number of zero rows and columns from all sides, i.e., we
consider instead of B a matrix of the form

B0
0 =

 0 0 0

0 B 0
0 0 0

 .

98 GEORG HEINIG AND KARLA ROST

If the order of B is even, then it can be achieved that the order of B0
0 is a power of

2, which is a convenient length for the DHT algorithms. For simplicity we restrict
ourselves to the case that B0

0 has order n + 2, which is no restriction of generality.
All transformations in this sections will have length n + 2. We omit the corre-

sponding subscript. Furthermore, in this section

ω = ωn+2 = exp

(
iπ

2(n + 2)

)
.

Instead of the polynomials a±(λ) we deal with the polynomials ae(λ) = λa+(λ)
and ao(λ) = λa−(λ). The coefficient vectors of these polynomials are, as vectors in
R
n+2, even and odd, respectively. Obviously,

B0
0(λ, µ) =

ae(λ)ao(µ) + ao(λ)ae(µ)

1− λµ

for λµ
= 1 and

B0
0(λ, λ

−1) = −λ(a′e(λ)ao(λ
−1) + a′o(λ)ae(λ

−1)) = ãe(λ)ao(λ
−1) + ão(λ)ae(λ

−1),

where here (as opposed to in the previous section)

ã(λ) =
n + 2

2
a(λ)− λa′(λ).(5.1)

Note that ãe is odd whereas ão is even.
First we transform the matrix B0

0 into a Cauchy-like matrix. The following lemma
can be proved along the same lines as Lemma 4.1.

Lemma 5.1.
(1) HIIB0

0HIV = [pjk]
n+1
j,k=0 with

pjk =
aIe,ja

III
o,k + aIo,ja

III
e,k

2 Imω2j+2k+1
,(5.2)

where [
aXe,j

]n+1

j=0
= HXae ,

[
aXo,j

]n+1

j=0
= HXao (X = I, III).

(2) HIVB0HIV = [qjk]
n+1
j,k=0 with

qjk =

aIIIe,j a
III
o,k − aIIIo,j a

III
e,k

2 Imω2(j−k) : j
= k,

ãIIIe,j a
III
o,j + ãIIIo,j a

III
e,j : j = k,

(5.3)

where ã is defined by (5.1) and [ãIIIj]n+1
j=0 = HIII ã .

Taking Lemmas 5.1 and 4.2 together we obtain representations for B0
0 . In order

to reduce them to representations for B we introduce the n× (n + 2) matrix

P11 =
[

0 In 0
]
.

Theorem 5.2. The real symmetric Bezoutian B = Bez (a−, a+) admits the rep-
resentations

B =
1

2(n + 2)2
P11HIII

(
DI
eHIIHIVDIII

o + DI
oHIIHIVDIII

e

)HIV PT
11 ,(5.4)

HARTLEY TRANSFORM REPRESENTATIONS 99

where DX
e,o = diag

(HXae,o
)
for X = I, III, and

B =
1

(n + 2)2
P11HIV

(
DIII
o HIIWn+2HIIIDIII

e(5.5)

− DIII
e HIIWn+2HIIIDIII

e + D
)HIV PT

11 ,

where D = diag (dj)
n+1
0 , dj = ãIIIe,j a

III
o,j + ãIIIo,j a

III
e,j .

6. Stability. In this section we study the stability of the algorithms for matrix-
vector multiplication by the inverse of a real symmetric Toeplitz matrix emerging
from the representations of symmetric T-Bezoutians presented in the previous two
sections.

First we recall that these representations involve only Hartley transforms and
Hadamard products. The Cooley–Tukey algorithm for the Hartley transformation
(see [34]) is forward stable in the sense that the relative forward error can be made
arbitrarily small if the unit roots are given with sufficient accuracy. A proof for this
was provided to us by Tasche [33]. The proof is similar to that for the FFT given in
[24, section 23.1]. Since DHT computation can be made arbitrarily accurate and the
DHTs are almost unitary, we neglect all errors that arise from DHT computation.

It remains to consider Hadamard products. If we use the standard model of
floating point arithmetic, in which fl(α opβ) = (α opβ)(1 + δ) holds for numbers
α and β and any arithmetic operation “op,” where |δ| ≤ u and u is the machine
precision, then we have for the Hadamard product of two vectors α and β for which
approximations α̃ and β̃ satisfying ‖α̃ − α‖/‖α‖ < ku and ‖β̃ − β‖/‖β‖ < lu are
given2

‖fl(α̃ ◦ β̃)− α ◦ β‖ ≤ (k + l + 1)‖α‖ ‖β‖(u+ O(u2)).

The analysis of the computation of T−1b via the formulas (4.8) or (5.4) reduces
to the computation of a vector ξ by

ξ = p+ ◦ (Ω (q− ◦ η)) + p− ◦ (Ω (q+ ◦ η)),

where Ω is unitary and the product of a DHT and an inverse DHT.
We have actually still a factor γ/2, but it is convenient to let the factor be

absorbed by one of the vectors a+ or a−. We choose a+ for it. That means, in the
representations of Theorems 4.3 and 5.2, we redefine DX

+ as DX
+ = diag (γ2 aX+,j)

N−1
j=0

(N = n + 1 or N = n + 2).
If we assume that all vectors are given with machine precision in the sense that

instead of any vector w appearing in the formula we have a vector w̃ satisfying ‖w −
w̃‖/‖w‖ ≤ u, then

‖fl(p̃+ ◦ fl(Ω (q̃− ◦ η̃))) + p+ ◦ (Ω(q− ◦ η))‖ ≤ 5‖q−‖ ‖p+‖‖η‖(u+ O(u2)).

Together with the corresponding estimation for the second term, this leads to

‖ξ̃ − ξ‖ ≤ 6 (‖p−‖ ‖q+‖+ ‖q−‖ ‖p+‖)‖η‖(u+ O(u2)),(6.1)

2For simplicity, we consider all estimations in the euclidean norm. Stronger estimates are available
in other norms.

100 GEORG HEINIG AND KARLA ROST

where ξ̃ is the computed vector.
Note that ‖p−‖ ≤

√
N ‖a−‖ and ‖p+‖ ≤

√
N ‖γ2 a+‖, and the same for q±. The

estimation (6.1) shows that in order to show stability we have to find bounds for the
norms of the vectors a− and γ

2a+.
We discuss the first version of Theorem 2.5, in which Tn−1 is assumed to be

nonsingular. The following lemma is crucial.
Lemma 6.1. Let x be the solution of the second equation in (2.2) and let x0
= 0.

Then

1

|x0| ‖x‖
2 ≤ ‖T−1

n ‖+ ‖T−1
n−1‖.

In particular, if Tn is positive definite, then

1

|x0| ‖x‖
2 ≤ 2‖T−1

n ‖.

Proof. We form the matrix

X =

x0 0
x1 1
...

. . .

xn−1 1

 .

Then

XTTnX =

[
x0 0
0 Tn−1

]
.

Hence

T−1
n = X

[
1/x0 0

0 T−1
n−1

]
XT =

1

x0
xxT +

[
0 0
0 T−1

n−1

]
.

The assertion is now immediate.
Since the operators 1

2 (In+1 ± Jn+1) are orthogonal projections, we have

‖a−‖
∥∥∥γ
2
a+

∥∥∥ ≤ 2 (‖T−1
n ‖+ ‖T−1

n−1‖).(6.2)

Inserting this into (6.1) we obtain

‖ξ̃ − ξ‖ ≤ 24N(‖T−1
n ‖+ ‖T−1

n−1‖)‖b‖(u+ O(u2))

≤ 24N(κ(Tn) + κ(Tn−1) + |tn−1|‖T−1
n−1‖)‖ξ‖(u+ O(u2)).

We arrive at the following theorem.
Theorem 6.2. Let ξ = T−1

n b be computed by the first formula of Theorem 4.3
or Theorem 5.2, where a± are given according to the first version of Theorem 2.5 and
all vectors are given in floating point machine precision u. If all errors caused by
DHT computation are neglected, then the relative error of the computed vector ξ̃ can
be estimated as

‖ξ̃ − ξ‖
‖ξ‖ ≤ 24N(κ(Tn−1) + κ(Tn) + |tn−1|‖T−1

n−1‖)(u+ O(u2)).

HARTLEY TRANSFORM REPRESENTATIONS 101

In particular, if Tn is positive definite, then

‖ξ̃ − ξ‖
‖ξ‖ ≤ 48Nκ(Tn)(u+ O(u2)).

This means that we have a small relative forward error if both Tn and Tn−1 are
well conditioned. For positive definite Tn this estimations means stability in the sense
of [24, p. 142].

Let us point out that stability of a Toeplitz matrix inversion formula in this strong
sense, i.e., with an estimation proportional to the condition number, is, to the best of
our knowledge, proved here for the first time. In [16] a linear estimate for the relative
error of the inverse matrix computed by a formula of the first inversion variant in
[20] is presented. This leads, however, to quadratic estimates for the error in the
computed solution.

Note that one can show with the same arguments that the algorithm emerging
from the Gohberg–Semencul formula is stable for positive definite Toeplitz matrices.
On the other hand, it can be shown that the formula of the first inversion variant in
[20], which is the second version of Theorem 2.5, may be not stable (in our sense) for
positive definite Toeplitz matrices (see [19, Example 2]). This is remarkable, because
the investigations in [16] seem to indicate that this formula is favorable compared
with the Gohberg–Semencul formula. For more discussion on this issue, we refer to
[19].

Now we consider the second version of Theorem 2.5. For this we mention first
that

Tn+1(tn)y = − 1

γ
en+1,

where en+1 is the last unit vector, y is given in Theorem 2.5, and γ is given by (2.6).
Lemma 6.3.

|γ|‖y‖2 ≤ ‖T−1
n ‖+ ‖Tn+1(tn)

−1‖.

Proof. We form the matrix

Y =

1 −z0

. . .
...

1 −zn−1

0 1

 .

Then

Y TTn+1(tn)Y =

[
Tn 0
0 −1/γ

]
.

Hence

Tn+1(tn)
−1 = Y

[
T−1
n 0
0 −γ

]
Y T = −γyyT +

[
T−1
n 0
0 0

]
.

The assertion is now immediate.

102 GEORG HEINIG AND KARLA ROST

From this lemma we conclude that

‖a−‖
∥∥∥γ
2
a+

∥∥∥ ≤ 2 (‖T−1
n ‖+ ‖Tn+1(tn)

−1‖).(6.3)

Inserting this into (6.1) we obtain the estimation

‖ξ̃ − ξ‖
‖ξ‖ ≤ 24N(κ(Tn) + ‖Tn+1(tn)

−1‖ ‖Tn‖)(u+ O(u2)) .

That means that we have a small relative forward error if Tn is well conditioned
and has a well-conditioned extension Tn+1(tn). In [19] it is shown that such a well-
conditioned extension, even an extension with ‖Tn+1(tn)

−1‖ ≤ ‖T−1
n ‖, always exists.

For example, if

T2 =

[
0 1
1 0

]
,

then for any t2 away from 0 and not too large the matrix T3(t2) is well conditioned.

7. Complexity. In this section we give an account of the number of operations
required for matrix-vector multiplication by a symmetric Bezoutian B, in particular
an inverse symmetric Toeplitz matrix, with the help of the formulas in Theorems 4.3
and 5.2. For this we recall first that the application of these formulas includes only
Hartley transforms, Hadamard products, i.e., multiplications by diagonal matrices,
and additions of vectors. Next we mention that we have to distinguish two phases. In
the first one, the preprocessing phase, the data involved in the formula are evaluated.
If matrix-vector products Bb have to be computed for several vectors b, this has to
be done only once. The second phase is then the computation of Bb according to the
formula using the precomputed data. Since preprocessing has to be done only once,
we put as many calculations as possible in this phase.

Let us discuss the complexity of the Hartley transforms. In [10], [31], [32] fast
algorithms for the classical DHT-I HIN are presented that require N log2 N multipli-
cations and 3

2 N log2 N additions, provided that N is a power of 2. The other DHTs
can be computed using formulas (3.2) and the algorithm for the computation of the
DHT-I. One has then 2N more multiplications for DHT-II and DHT-III, and 4N more
multiplications for DHT-IV. Possibly, there are algorithms for DHT-II, DHT-III, and
DHT-IV without this overhead complexity.

Since most of the DHT algorithms in the literature are designed for vectors, the
length N of which is a power of 2, we extend a given symmetric n × n Bezoutian B
to a matrix of order N = 2t ≥ n via bordering B by zeros in such a way that the
extended matrix is centro-symmetric or centro-even, depending on whether n is even
or odd. In this sense, the formulas in Theorem 4.3 are convenient for odd n and the
formulas in Theorem 5.2 for even n.

We assume, moreover, that N > n if n is odd and N > n+1 if n is even, in order
to guarantee that all DHTs occurring in the representations of B have length N .

Table 1 shows the amount of the second phase. In this table we consider the
different DHTs as equal.

In the preprocessing phase the diagonal matrices occurring in the representations
have to be computed. For this we can take advantage of Lemma 3.2, which states that

HARTLEY TRANSFORM REPRESENTATIONS 103

Table 1
Amount for computation of Bb.

of DHTs Multiplications Additions
(4.8) or (5.4) 6 4N N
(4.9) or (5.5) 6 7N 2N

Table 2
Amount for preprocessing.

of DHTs Multiplications Additions
(4.8) or (5.4) 2 N 3N
(4.9) or (5.5) 2 3N 9N/2

the DHT of two vectors, a symmetric and a skewsymmetric one, can be computed
with one transformation only. Thus only two DHTs of length N are necessary for
preprocessing in both formulas of Theorems 4.3 and 5.2. This is a complexity gain
compared with the representations given in [11], [7], [5], where four transformations
in the preprocessing phase are needed.

The operations are counted as follows. We assume that B is given as B =
Bez (a−, a+). In the case of formula (4.8) or (5.4), N additions are required to com-
pute a++a−. Then two Hartley transformations produce bX for X = II and X = IV ,
and 2N additions give HXa±. Here we utilize the symmetry properties of the vec-
tors. Finally two diagonals have to be multiplied by a factor which requires, due to
symmetry, N multiplications. Similarly the operation account for the formulas (4.9)
and (5.5) can be explained.

Tables 1 and 2 suggest that the first formulas in Theorems 4.3 and 5.2 are more
efficient, from complexity point of view, than the second ones. However, the second
formulas better reflect the symmetry of the original matrix B. This can be utilized
if moments bTB b, rather than vectors Bb, have to be computed. We obtain the
following.

Corollary 7.1. Using formulas (4.9) and (5.5) for a symmetric Bezoutian B,
the moment bTB b , where b ∈ R

n, can be evaluated with the help of three DHTs and
two DHTs for preprocessing plus O(n) operations.

As the FFT algorithms, the fast algorithms for DHT computation are highly
parallelizable. They require only O(logN) operations on a parallel computer with
N processors. Since Hadamard products and vector addition have only O(1) parallel
complexity, we conclude that matrix-vector multiplication by B can be carried out
with O(logN) parallel complexity if N processors are available.

Iterative refinement is a useful tool to improve the accuracy of the solution of
a linear system. In the case of a Toeplitz system Tnξ = b it is desirable to carry
out the iteration with the help of a few fast transformations. Let B be a Bezoutian
approximating T−1

n . Then we replace the system Tnξ = b by the equivalent system
HBTnξ = HBb, where H = HI or H = HII . Then one needs five DHTs to compute
HBb. Each iteration step consists mainly in a matrix-vector product by HBTn. In
[21] representations of Toeplitz matrices using Hartley transforms are presented that
allow matrix-vector multiplication with the help of only four DHTs. That would mean
that multiplication by HBTn can be done with nine DHTs. However, it can easily be
seen that eight DHTs are sufficient. The question is now whether this amount can
further be reduced.

104 GEORG HEINIG AND KARLA ROST

REFERENCES

[1] G. Ammar and P. Gader, A variant of the Gohberg–Semencul formula involving circulant
matrices, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 534–540.

[2] G. Ammar and P. Gader, New decompositions of the inverse of a Toeplitz matrix, in Signal
Processing, Scattering and Operator Theory, Progr. Systems Control Theory 5, Birkhäuser
Boston, Cambridge, MA, 1990, pp. 421–428.

[3] D. Bini and P. Favati, On a matrix algebra related to the discrete Hartley transform, SIAM
J. Matrix Anal. Appl., 14 (1993), pp. 500–507.

[4] D. Bini and V. Pan, Polynomial and Matrix Computations, I. Fundamental Algorithms,
Birkhäuser Boston, Cambridge, MA, 1994.

[5] E. Bozzo, Matrix Algebras and Discrete Transforms, Ph.D. thesis TD-1/94, Dipartimento di
Informatica, Universita di Pisa, Italy, 1994.

[6] E. Bozzo, Algebras of higher dimension for displacement decompositions and computations
with Toeplitz-plus-Hankel matrices, Linear Algebra Appl., 230 (1995), pp. 127–150.

[7] E. Bozzo and C. Di Fiore, On the use of certain matrix algebras associated with discrete
trigonometric transforms in matrix displacement decompositions, SIAM J. Matrix Anal.
Appl., 16 (1995), pp. 312–326.

[8] J. R. Bunch, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci. Stat.
Comput., 6 (1985), pp. 349–364.

[9] O. Buneman, Conversion of FFT’s to fast Hartley transform, SIAM J. Sci. Statist. Comput.,
7 (1986), pp. 624–638.

[10] P. Duhamel and M. Vetterli, Improved Fourier and Hartley transform algorithms and ap-
plication to cyclic convolution of real data, IEEE Trans. Acoust. Speech Signal Process.,
35 (1987), pp. 818–824.

[11] C. Di Fiore and P. Zellini, Matrix decompositions using displacement rank and classes of
commutative matrix algebras, Linear Algebra Appl., 229 (1995), pp. 49–99.

[12] C. Di Fiore and P. Zellini, Matrix displacement decompositions and applications to Toeplitz
linear systems, Linear Algebra Appl., 268 (1998), pp. 197–226.

[13] I. Gohberg and V. Olshevsky, Circulants, displacements and decomposition of matrices,
Integral Equations and Operator Theory, 15 (1992), pp. 730–743.

[14] I. Gohberg and V. Olshevsky, Complexity of multiplication with vectors for structured ma-
trices, Linear Algebra Appl., 202 (1994), pp. 163–192.

[15] I. Gohberg and A. Semencul, On the inversion of finite-section Toeplitz matrices and their
continuous analogues, Mat. Issled., 7 (1972), pp. 201–224 (in Russian).

[16] M. Gutknecht and M. Hochbruck, The stability of inversion formulas for Toeplitz matrices,
Linear Algebra Appl., 223/224 (1995), pp. 307–324.

[17] G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured matrices,
in Linear Algebra for Signal Processing, IMA Vol. Math. Appl. 69, 1994, pp. 95–114.

[18] G. Heinig, Matrix representation of Bezoutians, Linear Algebra Appl., 223/224 (1995),
pp. 337–354.

[19] G. Heinig, Stability of Toeplitz matrix inversion formulas, in Structured Matrices in Operator
Theory, Numerical Analysis, Control, Signal and Image Processing, Contemp. Math., AMS,
Providence, RI, submitted.

[20] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-Like Matrices and Operators,
Akademie-Verlag, Berlin, and Birkhäuser Basel, Boston, MA, 1984.

[21] G. Heinig and K. Rost, Representations of Toeplitz-plus-Hankel matrices using trigonomet-
ric transformations with application to fast matrix-vector multiplication, Linear Algebra
Appl., 275/276 (1998), pp. 225–248.

[22] G. Heinig and K. Rost, DFT representations of Toeplitz-plus-Hankel Bezoutians with appli-
cation to fast matrix-vector multiplication, Linear Algebra Appl., 284 (1998), pp. 157–175.

[23] G. Heinig and K. Rost, Hartley transform representations of inverses of real Toeplitz-plus-
Hankel matrices, Numer. Funct. Anal. Optim., 2000, to appear.

[24] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[25] T. Kailath and V. Olshevsky, Displacement structure approach to discrete transform based

preconditioners of G. Strang type and of T. Chan type, Calcolo, 33 (1996), pp. 191–208.
[26] T. Kailath and A. H. Sayed, Displacement structure: Theory and applications, SIAM Rev.,

37 (1995), pp. 297–386.
[27] M. Krein and M. Naimark, The method of symmetric and Hermitian forms in the theory

of the separation of the roots of algebraic equations, Linear and Multilinear Algebra, 56
(1974), pp. 69–87.

[28] F. I. Lander, The Bezoutian and the inversion of Hankel and Toeplitz matrices, Mat. Issled.,

HARTLEY TRANSFORM REPRESENTATIONS 105

9 (1974), pp. 69–87 (in Russian).
[29] L. Lerer and M. Tismenetsky, Generalized Bezoutian and the inversion problem for block

matrices, I. General scheme, Integral Equations Operator Theory, 9 (1986), pp. 790–819.
[30] K. Rost, Generalized companion matrices and matrix representations for generalized Be-

zoutians, Linear Algebra Appl., 193 (1993), pp. 151–172.
[31] H. Sorensen, D. Jones, M. Heidman, and C. Burrus, On computing the discrete Hartley

transform, IEEE Trans. Acoust. Speech Signal Process., 33 (1985), pp. 1231–1238.
[32] H. Sorensen, D. Jones, M. Heidman, and C. Burrus, Real valued fast Fourier transform

algorithms, IEEE Trans. Acoust. Speech Signal Process., 35 (1987), pp. 849–863.
[33] M. Tasche, Why are the Hartley Transforms Stable?, manuscript.
[34] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia,

PA, 1992.

SPECIAL ULTRAMETRIC MATRICES AND GRAPHS∗

MIROSLAV FIEDLER†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 106–113

Abstract. Special ultrametric matrices are, in a sense, extremal matrices in the boundary of the
set of ultrametric matrices introduced by Mart́ınez, Michon, and San Mart́ın [SIAM J. Matrix Anal.
Appl., 15 (1994), pp. 98–106]. We show a simple construction of these matrices, if of order n, from
nonnegatively edge-weighted trees on n vertices, or, equivalently, from nonnegatively edge-weighted
paths. A general ultrametric matrix is then the sum of a nonnegative diagonal matrix and a special
ultrametric matrix, with certain conditions fulfilled. The rank of a special ultrametric matrix is
also recognized and it is shown that its Moore–Penrose inverse is a generalized diagonally dominant
M -matrix. Some results on the nonsymmetric case are included.

Key words. ultrametric matrix, weighted graph, M -matrix

AMS subject classifications. 15A48, 05C50

PII. S0895479899350988

1. Introduction. Strictly ultrametric matrices were defined in [3] as nonnega-
tive symmetric matrices A = (aik) whose entries satisfy the following inequalities:

aik ≥ min(aij , ajk) for all i, j, k,(1)

aii > aik for all i, k, i �= k.(2)

The following theorem was proved in [3] and a linear algebra proof was given in
[5].

THEOREM A. Every strictly ultrametric matrix is nonsingular and its inverse is
a diagonally dominant M -matrix.

A construction also was given in [5] to describe all such ultrametric matrices.
Later, nonsymmetric ultrametric matrices were independently defined in [4] and [6],
and equality was allowed in (2) (with additional constraints). We shall call such
matrices ultrametric matrices.

In the present note, we first deal with symmetric ultrametric matrices. We shall
say that a symmetric ultrametric matrix is special if the following equality holds for
all i:

aii = max
k �=i

aik.(3)

Such a matrix is in fact never nonsingular but is always, as we shall show, the
limit of a convergent sequence of matrices that are inverses of (weakly) diagonally
dominant M -matrices. For the sake of brevity, we shall denote as Q the class of all
inverses of weakly diagonally dominant nonsingular M -matrices and as Q the closure
of Q, i.e., the set of limits of convergent sequences of matrices in Q.

Now let T be a tree on n vertices V1, . . . , Vn, let E1, . . . , En−1 be its edges. We say
that T is nonnegatively edge-weighted if a nonnegative number wi is assigned to each

∗Received by the editors April 30, 1999; accepted for publication (in revised form) by R. Brualdi
November 16, 1999; published electronically May 31, 2000. This research was supported by grant
GACR 201/98/0222.

http://www.siam.org/journals/simax/22-1/35098.html
†Academy of Sciences of the Czech Republic, Institute of Computer Science, Pod vodárenskou

věž́ı 2, 187 02 Praha 8, The Czech Republic (fiedler@math.cas.cz).

106

SPECIAL ULTRAMETRIC MATRICES AND GRAPHS 107

edge Ei, i = 1, . . . , n− 1. We then assign to every such nonnegatively edge-weighted
tree T a nonnegative n× n symmetric matrix C(T) = (cik) as follows.

For each k,

ckk = max{wi; Ei is incident with Vk};(4)

if i �= k, then

cik = min{wj ;Ej is in the path from Vi to Vk}.(5)

The main result of the first part of this note is that the class of all matrices C(T)
just defined coincides with the class of special symmetric ultrametric matrices, and
this is true even if we restrict ourselves to paths.

In addition, every special symmetric matrix belongs to Q, and every symmetric
ultrametric matrix is a sum of a special ultrametric matrix and a nonnegative diagonal
matrix.

In connection with this assertion, we shall use the following well-known result
which was (in a slightly different form) proved in [2].

THEOREM B. If A ∈ Q and D is a diagonal matrix of the same order with positive
diagonal entries, then A+D ∈ Q. If A ∈ Q and D is a nonnegative diagonal matrix
of the same order, then A + D ∈ Q. If for some real square matrix B, B + D ∈ Q
for every diagonal matrix D of the same order with positive diagonal entries, then
B ∈ Q.

In the second part, we shall discuss the nonsymmetric case and introduce two
new classes of ultrametric matrices.

2. Symmetric ultrametric matrices.
Theorem 2.1. Every special symmetric ultrametric matrix is singular and be-

longs to Q.
Proof. Let A = (aik) be a special symmetric ultrametric matrix. Let apq, p �= q,

be a maximal off-diagonal entry of A. We shall show that the pth and qth rows of
A are identical. Clearly, app = aqq = apq. If p �= j �= q, then apj ≥ min(apq, aqj) =
aqj ≥ min(aqp, apj) = apj .

If now {Dk}, k = 1, 2, . . . , is a sequence of diagonal matrices with positive diagonal
entries converging to the zero matrix, then all matrices A + Dk are ultrametric in
the original sense. Therefore, by Theorem A the inverses of the matrices A + Dk

are diagonally dominant M -matrices so that {A + Dk} is a convergent sequence of
matrices in Q with the limit A ∈ Q.

Theorem 2.2. Let A be an n × n nonnegative symmetric matrix. Then the
following are equivalent:

(1) A is a special ultrametric matrix.
(2) There exists a nonnegatively edge-weighted path L with n vertices such that

A = C(L).
(3) There exists a nonnegatively edge-weighted tree T with n vertices such that

A = C(T).
Proof. 1 → 2. We shall use induction with respect to n. The assertion is trivial

for n = 1 and n = 2. Now let A be a special ultrametric n × n matrix and suppose
the implication holds for all matrices of smaller order. We shall proceed similarly as
in [5]. Let τ be the smallest off-diagonal entry of A. Then there exists a permutation
matrix P such that

PAPT =

(
B1 0
0 B2

)
+ τJ,

108 MIROSLAV FIEDLER

where J is the n×n matrix of all ones. Both B1 and B2 are again special ultrametric
matrices. By the induction hypothesis, Bk = C(Lk) for some path Lk, k = 1, 2. Let
now L be a path obtained by adding to L1 ∪L2 a new edge weighted by τ joining one
end-vertex (it does not matter which) of L1 with one end-vertex of L2 and adding τ
to all weights of edges in both L1 and L2. Since the permutation P corresponds to
renumbering of the vertices, it follows that after such renumbering in L, we shall have
A = C(L).

2→ 3. The proof is trivial.
3 → 1. If A = C(T) for some tree T , then by (4) and (5), both conditions (1)

and (3) are fulfilled and A is thus special ultrametric.
Remark 2.3. An analogous approach to ultrametric distance matrices was already

mentioned in [1]. A different approach using distances in trees was considered in [4].
In the next theorem, we shall investigate the rank of a special matrix given by a

weighted path.
Theorem 2.4. Let L = (1, 2, . . . , n) be a path with nonnegative weights wi

assigned to edges (i, i + 1), i = 1, . . . , n − 1. Set w0 = 0, wn = 0. Let S denote
the set of those indices k ∈ {1, . . . , n − 1} for which wk ≥ max(wk−1, wk+1). Then
the nullity ν(C(L)) of C(L) satisfies the inequality

ν(C(L)) ≥ |S|+ r,(6)

where r = 0, 1, or 2, according to whether none, one, or two of the numbers w1 and
wn−1 equal zero.

In (6), equality holds if all numbers w1, . . . , wn−1 are distinct. In such a case,
the matrix of order n− ν(C(L)) obtained from C(L) by deleting all rows and columns
with indices in S (and eventually the zero row and column if r = 1) is nonsingular
and its inverse is a weakly diagonally dominant M -matrix.

Proof. Let k ∈ S. Then clearly (C(L))ik = (C(L))i,k+1 for every i = 1, . . . , n so
that the kth and (k+1)st rows of C(L) coincide. If, in addition, one or both numbers
w1, wn−1 are equal to zero, one or both of the first and last rows of C(L) are zero.
It means that in the first case, the n-vector (0, . . . , 0, 1,−1, 0, . . . , 0)T with 1 as the
kth coordinate belongs to the null-space N of C(L); in the latter case one or both of
the vectors (1, 0, . . . , 0), (0, . . . , 0, 1) belong to N . This implies (6) since all of these
vectors are linearly independent.

To prove the last assertion, we shall use induction with respect to n. For n = 2
and n = 3, the assertion is correct. Now let n > 3 and suppose the assertion is true
for paths with less than n vertices. Let m be the smallest of the weights in L. If
m = 0, then either the first or the last row is zero, and after removing it, the shorter
path satisfies the induction hypothesis and we are through, or this is not the case.
Then the path L can be considered as a union of two disjoint shorter paths L1 and
L2, each of which satisfies the induction hypothesis. The matrix C(L) is then a direct
sum of the matrices C(L1) and C(L2) . The reduced matrix of C(L) is then again
a direct sum of the reduced matrices of C(L1) and C(L2). The assertion for L thus
follows from the assertions for L1 and L2.

Now letm be positive. Subtractingm from each weight, we obtain a nonnegatively
edge-weighted path L̂ with one weight zero. Clearly, C(L) = C(L̂) + mJ , where J

is the matrix of ones. Let w1 = m. Then the reduced matrix Ĉ(L) of C(L) has the
form

Ĉ(L) =

(
0 0

0 Ĉ(L̂)

)
+mĴ,

SPECIAL ULTRAMETRIC MATRICES AND GRAPHS 109

where Ĉ(L̂) and Ĵ mean the reduced matrix of C(L̂) and the corresponding matrix
of ones. The formula(

m meT

me Z +meeT

)(
m−1 + eTZ−1e −eTZ−1

−Z−1e Z−1

)
= I,

where e is the column vector of ones, applied to Z = Ĉ(L̂) shows that the inverse of

the matrix Ĉ(L) is a weakly diagonally dominant M -matrix since by the induction

hypothesis this holds for Ĉ(L̂).
Since the case wn−1 = m leads to a similar result, it remains to suppose that

m = wk for some k ∈ {2, . . . , n− 2}. Then the path L̂ can be split into two nontrivial
positively edge-weighted paths L1 and L2 satisfying the assumptions of the induction
hypothesis. Applying the Woodbury formula

(P +meeT)−1 = P−1 −m(1 +meTP−1e)−1P−1eeTP−1

to the case that P is the direct sum of the reduced matrices of C(L1) and C(L2) we
again obtain that the inverse of the reduced matrix of C(L) is a weakly diagonally
dominant M -matrix.

Remark 2.5. The example n = 4, w1 = 1, w2 = 0, w3 = 1, where ν(L) = |S|
but the numbers wk are not distinct, shows that the distinctness of the wk’s is not
necessary for the equality in (6). The example n = 5, w1 = 1, w2 = w3 = 0, w4 = 2,
where ν(L) > |S|, shows that equality in (6) is not always attained.

Remark 2.6. It is immediate that every strictly ultrametric matrix is a sum of
a special ultrametric matrix and a diagonal matrix with positive diagonal entries.
Theorem 2.4 allows one to decide in some cases under which conditions the sum of a
special ultrametric matrix and a nonnegative diagonal matrix is nonsingular.

For instance, this will be the case when, in the notation of Theorem 2.4, all wi
are distinct, w1wn−1 �= 0, and we add to C(L) a nonnegative diagonal matrix with
|S| positive diagonal entries in the positions dk for k ∈ S.

Remark 2.7. One can easily show that if the weights of edges of the path L are
mutually distinct and different from zero, the Moore–Penrose generalized inverse of
C(L) is obtained from the inverse of the reduced matrix Ĉ(L) by what is in a sense
an inverse operation to reducing repeated rows and columns: where we had reduced
the kth row and column and left the (k + 1)st, the corresponding row and column of

(Ĉ(L))−1 appearing like

 ∗ a1 ∗

aT1 a22 aT3
∗ a3 ∗

 ,

we put in (C(L))+

∗ 1
2a1

1
2a1 ∗

1
2a
T
1

1
4a22

1
4a22

1
2a
T
3

1
2a
T
1

1
4a22

1
4a22

1
2a
T
3

∗ 1
2a3

1
2a3 ∗

 .

Thus this Moore–Penrose inverse is not an M -matrix but can be considered as a
generalized M -matrix (the diagonal blocks are positive matrices of rank-one), again
weakly diagonally dominant.

110 MIROSLAV FIEDLER

3. The nonsymmetric case. In this section, we shall try to generalize the
approach of the first section to nonsymmetric ultrametric matrices. Let us mention
that in this sense generalized ultrametric matrices were introduced in [4] and [6] by
adding further restrictions to (1) and (2). Let us first give an example.

Example 3.1. Let a < b < c < d be positive numbers. Then the nonsymmetric
matrix

A =

 d a a

d d b
c c c

is ultrametric (in the sense that only (1) and (2) with possible equality are supposed)
and its inverse is

A−1 =
1

∆

 c(d− b) 0 −a(d− b)
−c(d− b) c(d− a) −d(b− a)

0 −c(d− a) d(d− a)

 ,

where ∆ = c(d− a)(d− b).
Thus A−1 is an M -matrix; however, it is not row-diagonally dominant since the

sum in the second row is −(d− c)(b− a).
Remark 3.2. Example 3.1 shows that it does not suffice to restrict oneself only

to (1) and (2) to obtain a similar result as in Theorem A.
Remark 3.3. Observe that the matrix A from Example 3.1 arises from a similar

construction as A(
−→
G) from the directed graph

−→
G having the vertices 1, 2, 3 and edges

(1, 2) with weight a, (2, 1) with weight d, (2, 3) with weight c, and (3, 2) with weight
b.

However, in the following two cases this construction works.
Theorem 3.4. Let n ≥ 1 and let a1, . . . , an−1 be nonnegative numbers not ex-

ceeding one. Define an n× n matrix U = (uik) by

uii = 1, i = 1, . . . , n,

uik = min
j,i≤j<k

aj for i < k,

uik = 0 for i > k.

Then the upper triangular nonsingular matrix U is ultrametric and its inverse is
an M -matrix which is weakly diagonally dominant in both rows and columns.

In addition, if e is the column vector of n ones, then

(min
i

ai)e
TU−1e ≤ 1.

Proof. It is easily checked that the matrix U is a generalized ultrametric ma-
trix in the sense of [6, Definition 2.5]. Therefore, the result follows from [6, Theorem
3.6].

Theorem 3.5. Let n ≥ 2 and let a1, . . . , an be nonnegative numbers. Let
−→
G be

the directed graph with vertices 1, . . . , n and edges (1, 2), (2, 3), . . . , (n − 1, n), (n, 1).
Assign to the edge (k, k+1) the weight ak, k = 1, . . . , n−1, and to (n, 1) the weight an.
Define an n× n matrix B = (bik) by bii = maxj aj for all i and bik as the minimum

of all weights in the path from i to k in
−→
G if i �= k.

Then B is an ultrametric matrix and is nonsingular with the exception of the
case a1 = a2 = · · · = an, and in the case of nonsingularity, the inverse of B is an
M -matrix which is both row- and column-diagonally dominant.

SPECIAL ULTRAMETRIC MATRICES AND GRAPHS 111

In addition,

detB ≥ (max
k

ak −min
k

ak)
n,

and if B is nonsingular and e is the vector of all ones, then

(min
k

ak)e
TB−1e ≤ 1.

Proof. It is evident that in the case a1 = · · · = an the matrix B is singular. Let
this not be the case. By a cyclic transformation of the indices, we can arrange that
a1 = mini ai. We can also assume that maxi ai = 1, so that a1 < 1. Now define a
matrix C = (cij), i, j = 0, . . . , n− 1, by

C = (1− a1)
−1(B − a1ee

T).(7)

Then for some column vector u with n − 1 coordinates u1, . . . , un−1 and some
(n− 1)× (n− 1) matrix A,

C =

(
1 0
u A

)
.

The matrix A satisfies the assumptions of Theorem 3.4. Thus, A−1 is an upper
triangular M -matrix with all row-sums and all column-sums nonnegative. Let v =
(v1, . . . , vn−1)

T be the last column of A.
Then

(1− a1)uk = min(ak+1, ak+2, . . . , an)− a1 for k = 1, . . . , n− 1,

(1− a1)vk = min(ak+1, . . . , an−1)− a1 for k = 1, . . . , n− 2,(8)

vn−1 = 1.

It follows that 0 ≤ u ≤ v.
If an < an−1, let t be the index for which an ≥ at but an < ak for k = t +

1, . . . , n− 1. Thus, t < n− 1. If an ≥ an−1, set t = n− 1.
We have then ui = vi for i = 1, . . . , t − 1, but if t < n − 1, then ut < vt, as well

as ut = ut+1 = · · · = un−1.
Let w be the vector w = (0, . . . , 0, 1)T with n − 1 coordinates. Then v = Aw,

which implies

(A−1u)k ≥ (A−1v)k ≥ 0 for k = 1, . . . , t− 1,

whereas, because of the row-diagonal dominance of A−1,

(A−1u)k = un−1(A
−1e)k ≥ 0 for k = t, t+ 1, . . . , n− 1.

Thus A−1u ≥ 0 and the matrix

C−1 =

(
1 0

−A−1u A−1

)

is an M -matrix.

112 MIROSLAV FIEDLER

We shall show that C−1 is column-diagonally dominant. This is true for the last
n − 1 columns by Theorem 3.4. To show that 1 − eTA−1u ≥ 0 as well, observe that
from eTA−1 ≥ 0 and v − u ≥ 0 we have (eTA−1v) ≥ (eTA−1u), which implies

1− (eTA−1u) ≥ 1− (eTA−1v)

= 1− eTw

= 0.

Let us show that B−1 is also a column-diagonally dominant M -matrix. By (7),
if we denote (1− a1)C as Q,

B−1 = Q−1 − a1

1 + a1eTQ−1e
Q−1eeTQ−1.(9)

Thus

eTB−1 =
1

1 + a1eTQ−1e
eTQ−1

=
1

(1− a1)(1 + a1(1− a1)−1eTC−1e)
eTC−1,

which is indeed a nonnegative row vector.
Let us show now that B−1 is also row-diagonally dominant. This follows from

the fact that the matrix BT satisfies the assumptions of the theorem and is thus
column-diagonally dominant.

It remains to prove the last two inequalities. By (6),

BC−1 = (1− a1)I + a1ee
TC−1.

Thus

detBC−1 = (1− a1)
n + (1− a1)

n−1a1tree
TC−1

= (1− a1)
n + (1− a1)

n−1a1e
TC−1e

≥ (1− a1)
n

since the last term is nonnegative. Observing that detC = 1, the first inequality
follows.

To prove the second inequality, we can assume that a1 > 0. By (9), if we denote
Z = eTQ−1e,

eTB−1e = Z − a1

1 + a1Z
Z2

=
Z

1 + a1Z

≤ 1

a1

since Z is nonnegative.
Remark 3.6. The last inequality also follows from the previous part of the theorem

and from Theorem 3.6 in [4].

SPECIAL ULTRAMETRIC MATRICES AND GRAPHS 113

REFERENCES

[1] M. Fiedler, Ultrametric sets in Euclidean point spaces, Electron. J. Linear Algebra, 3 (1998),
pp. 23–30.

[2] M. Fiedler, C. R. Johnson, and T. L. Markham, Notes on inverse M-matrices, Linear
Algebra Appl., 91 (1987), pp. 75–81.

[3] S. Mart́ınez, G. Michon, and J. San Mart́ın, Inverse of strictly ultrametric matrices are of
Stieltjes type, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 98–106.

[4] J. J. McDonald, M. Neumann, H. Schneider, and M. J. Tsatsomeros, Inverse M-matrix
inequalities and generalized ultrametric matrices, Linear Algebra Appl., 220 (1995), pp.
321–341.

[5] R. Nabben and R. S. Varga, A linear algebra proof that the inverse of a strictly ultrametric
matrix is a strictly diagonally dominant Stieltjes matrix, SIAM J. Matrix Anal. Appl., 15
(1994), pp. 107–113.

[6] R. Nabben and R. S. Varga, Generalized ultrametric matrices—A class of inverse M-matrices,
Linear Algebra Appl., 220 (1995), pp. 365–390.

FRACTION-FREE COMPUTATION OF MATRIX RATIONAL
INTERPOLANTS AND MATRIX GCDs∗

BERNHARD BECKERMANN† AND GEORGE LABAHN‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 114–144

Abstract. We present a new set of algorithms for computation of matrix rational interpolants
and one-sided matrix greatest common divisors. Examples of these interpolants include Padé ap-
proximants, Newton–Padé, Hermite–Padé, and simultaneous Padé approximants, and more generally
M-Padé approximants along with their matrix generalizations. The algorithms are fast and compute
all solutions to a given problem. Solutions for all (possibly singular) subproblems along offdiagonal
paths in a solution table are also computed by stepping around singular blocks on a path correspond-
ing to “closest” regular interpolation problems.

The algorithms are suitable for computation in exact arithmetic domains where growth of coeffi-
cients in intermediate computations is a central concern. This coefficient growth is avoided by using
fraction-free methods. At the same time, the methods are fast in the sense that they are at least an
order of magnitude faster than existing fraction-free methods for the corresponding problems. The
methods make use of linear systems having a special striped Krylov structure.

Key words. Hermite–Padé approximant, simultaneous Padé approximant, striped Krylov ma-
trices, fraction-free arithmetic

AMS subject classifications. 65D05, 41A21

CR subject classification. G.1.2

PII. S0895479897326912

1. Introduction. A number of methods are available for the computation of
various rational interpolation problems. Consider, for example, the simplest case of
rational interpolation, that of Padé approximation. One can compute a Padé approx-
imant by setting up a linear system of equations and using Gaussian elimination to
solve the system. The number of operations in this case is O(n3), where n is the
number of equations in the system. However, since the coefficient matrix of this sys-
tem has a special Hankel or Toeplitz structure, there exist more efficient algorithms
for these computations. Examples include fast O(n2) algorithms and even superfast
O(n log2n) algorithms (cf. Brent, Gustavson, and Yun [15] or Cabay and Choi [18]
in addition to many others). A similar statement can also be made for other matrix-
like Padé approximation problems. Here one finds fast or superfast algorithms for
computing Hermite–Padé and simultaneous Padé approximants, e.g., Van Barel and
Bultheel [51, 52], Cabay, Labahn, and Beckermann [19], Cabay and Labahn [22], and
Beckermann and Labahn [7, 8, 9]. In all the examples above the algorithms both are
fast and avoid problems associated to the existence of singular blocks in an associated
solution table. Alternatively, one may obtain fast algorithms for Padé approximation
by translating to polynomial language some of the algorithms developed for struc-
tured matrices having a small displacement rank, for example, those found in Heinig
and Rost [36].

∗Received by the editors September 9, 1997; accepted for publication (in revised form) by G.
Golub October 6, 1999; published electronically May 31, 2000.

http://www.siam.org/journals/simax/22-1/32691.html
†Laboratoire d’Analyse Numérique et d’Optimisation, Université des Sciences et Technologies de

Lille, 59655 Villeneuve d’Ascq Cedex, France (bbecker@ano.univ-lille1.fr).
‡Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(glabahn@daisy.uwaterloo.ca).

114

FRACTION-FREE RATIONAL INTERPOLANTS 115

However, at the implementation level, these algorithms have drawbacks that limit
their effectiveness. For example, suppose one is working in a floating point environ-
ment. Since the previously mentioned algorithms assume exact arithmetic, implemen-
tations in floating point domains do not take into consideration roundoff error. In
these cases the computations all suffer from some degree of numerical instability. It
is only recently that a number of new algorithms have appeared that are both fast
and stable in a numerical setting, for example, [6, 20, 23, 34, 53] for Padé problems,
[13, 14, 35, 27, 28] for Toeplitz and Hankel systems, [24, 31, 33] and further references
mentioned in [32] for systems with displacement structure.

The roundoff problems encountered when implementing in floating point domains
do not appear when implementing in exact arithmetic environments, for example, in
computer algebra systems such as Maple or Mathematica. However, even in these
cases it turns out that most existing algorithms have problems that also limit their
usefulness. In the case of numerical arithmetic, the efficient algebraic algorithms are
fast but sometimes suffer from a lack of accuracy. In exact domains these algorithms
are accurate but often lack efficiency. For example, in Czapor and Geddes [26], it
is shown that a minor modification of Gaussian elimination computes Padé approx-
imants more efficiently than Levinson’s algorithm, that is, in this case an O(n3)
algorithm is faster than an O(n2) algorithm. The reason for this is simple to explain:
in exact arithmetic domains, operations such as addition or multiplication do not
have a constant cost. Rather, the arithmetic cost depends on the size of the compo-
nents and so we need to measure bit complexity rather than operations complexity.
The (possibly exponential) growth in the cost of intermediate arithmetic operations
may be observed in particular when the domain of coefficients is a field of quotients
Q(a1, . . . , an), where Q is the field of rational numbers (or an algebraic extension of
the rational numbers) and a1, . . . , an are indeterminants, a typical situation for sym-
bolic computation in computer algebra systems. In order to compute in these domains
one must try for a low complexity while at the same time keeping the components of
the arithmetic operations at a small size. In addition, the cost of keeping the compo-
nents of the arithmetic operations at a small size must be done in an efficient manner.

In this paper we present a new fast algorithm for efficiently computing all solu-
tions to a variety of matrix rational interpolation problems along with one-sided ma-
trix greatest common divisors. The interpolation problems covered include the partial
realization problem for matrix power series and Padé, Newton–Padé, Hermite–Padé,
simultaneous Padé, M-Padé, and multipoint-Padé approximation problems and their
matrix generalizations. The connection between rational interpolation and greatest
common divisor problems has been known for a long time and has been successfully
exploited in the scalar case.

The algorithm is recursive, providing also solutions for all (possibly singular)
subproblems along offdiagonal paths in a solution table. Here singular subproblems
are not skipped over via pseudodivisions or look-ahead techniques, but by following
[5, 8, 51] we step around singular blocks on some path corresponding to “closest”
regular interpolation problems. This leads to an additional gain in complexity if there
are only few regular subproblems, a rather typical situation for GCD computations.

Rather than present the algorithm for a field, we assume that the coefficient
domain is an integral domain and give a fraction-free algorithm for efficiently com-
puting solutions to these interpolation problems. The concept of fraction-free implies
that arithmetic operations remain inside the integral domain, rather than requiring
that one does arithmetic in its quotient field. This avoids the need for costly great-

116 BERNHARD BECKERMANN AND GEORGE LABAHN

est common divisor computations required for such rational operations, making the
algorithm suitable for implementation in computer algebra systems. This allows for
efficient computation of matrix interpolation problems in the case of parameterized
data. Such computations also appear in such diverse applications as the Gfun package
of Salvy and Zimmermann [49] for determining recurrences relations, factorization of
linear differential operators [54], and computation of matrix normal forms [11, 55].

The algorithm presented here is at least an order of magnitude faster than apply-
ing the fraction-free algorithm of Bareiss [2], which is based on Gaussian elimination.
This is the only known fraction-free method that will also work for the rational in-
terpolation problems studied here. However, there have been fraction-free algorithms
that are faster than Bareiss’s algorithm in some special cases. For Padé approximation
the algorithm of Cabay and Kossowski [21] makes use of the close relationship be-
tween Padé approximation and polynomial remainder sequences to obtain an improved
fraction-free algorithm. For matrix Padé approximation the algorithm of Beckermann,
Cabay, and Labahn [10] uses a recursive procedure based on modified Schur comple-
ments of the associated linear equations to improve on Gaussian elimination. Finally
the subresultant GCD algorithm of Brown and Traub [16] and Collins [25] gives a fast
greatest common divisor algorithm in the case of scalar polynomials. In all cases our
algorithm is also faster or at least as fast as those mentioned in special cases.

In terms of linear algebra, we can view our problem as determining nullspaces
of rectangular striped Krylov matrices and their principal submatrices in a fast and
fraction-free manner. Notice that this task includes the fraction-free computation of
vectors required for explicit inversion formulas, for example, for Hankel, Toeplitz, or
Sylvester matrices and their block counterparts [36] (for an interpretation in terms
of Padé problems see, for instance, [40, 42]). In the regular case where all principal
submatrices are nonsingular, it is possible to look for fraction-free counterparts of
known algorithms for structured matrices, for example, the fast Gaussian elimination
scheme, that is, Schur type algorithms, or Levinson type methods [32, 36]. Recent
extensions [24, 31, 32, 33] also allow for pivoting in order to overcome problems with
singularities. However, in our setting, additional transformation techniques would be
necessary in order to allow for pivoting. Our alternate approach is motivated by the
fact that transformations may lead to a significant increase of complexity of the input
data and, in any case, this cannot be done in a fraction-free manner. In addition, the
kind of pivoting used in these extensions does not allow us to solve subproblems of
our initial interpolation problem.

The rest of the paper is organized as follows. Section 2 introduces the rational
interpolation problems defined in terms of a “special rule.” Section 3 shows that the
rational interpolation problems can be interpreted in linear algebra terms as solving
a linear system of equations having a striped Krylov matrix as a coefficient matrix.
Some regularity properties are studied in section 4, while section 5 introduces Mahler
systems, a matrix of determinant polynomials which give a basis for our solution
spaces. Section 6 gives a fraction-free recursion along a so-called perfect path, while
section 7 considers the more difficult nonperfect case. Section 8 shows how the algo-
rithm from the previous section can be used to compute the one-sided GCD of two
matrix polynomials. The last section includes a conclusion along with a discussion of
future research directions.

2. Rational interpolation and their linear systems. Let D be an integral
domain with Q its quotient field. Let V be an infinite dimensional vector space over
Q having a basis (ωu)u=0,1,... with (cu)u=0,1,... its dual basis (i.e., a set of linear

FRACTION-FREE RATIONAL INTERPOLANTS 117

functionals on V satisfying cu(ωv) = δu,v). Thus every element f of V can be written
as

f = f0 · ω0 + f1 · ω1 + f2 · ω2 + · · ·(2.1)

with cu(f) = fu. We define the order of a nontrivial element f of V by
ord (f) = n iff c0(f) = · · · = cn−1(f) = 0 and cn(f) �= 0,

and ord (0) = +∞.
We also assume that we have a special element z that acts on V via a special

multiplication rule

cu(z · f) = cu,0 · c0(f) + · · ·+ cu,u · cu(f) with cu,v ∈ D.(2.2)

This special rule can be viewed as a type of Leibniz chain rule. The special rule allows
us to define a multiplication p(z) · f for any polynomial p ∈ Q[z] and f ∈ V, making
V an infinite dimensional module over Q[z].

In this paper we will study the following interpolation problem with polynomial
linear combinations of functions f (1), . . . , f (m), where m ≥ 2.

Definition 2.1 (rational interpolation problem). Let f = [f (1), . . . , f (m)] be a
vector of m elements from V, σ a positive integer, and �n = (�n(1), . . . , �n(m)) a multi-
index. Determine a vector p(z) = [p(1)(z), . . . , p(m)(z)]T of polynomials in z, with each
p(�)(z) having degree bounded by �n(�) − 1, and satisfying the order condition

ord (f · p(z)) = ord (f (1) · p(1)(z) + · · ·+ f (m) · p(m)(z)) ≥ σ.(2.3)

In this case, p(z) will be referred to as solution of type (σ, �n).
Example 2.1 (Hermite–Padé approximants [45, 46, 47, 48, 51]). Let V be the

space Q[[z]] of formal power series around 0 with basis (zu)u=0,1,... and let the ci,j
be defined by ci,j = δi−1,j . Then the special multiplication rule is simply the stan-
dard multiplication by z. With σ = |�n| − 1, where |�n| := �n(1) + · · · + �n(m), the
interpolation problem (2.3) is the Hermite–Padé approximation problem of type �n,
introduced by Hermite in 1873. When m = 2 and f (2) = −1, this gives the classical
Padé approximant. Hermite–Padé approximation also includes other classical approx-
imation problems such as algebraic approximants (f = (1, g, g2, . . . , gm−1)) and G3J
approximants (m = 3, f = (g′, g, 1)). We refer the reader to [1] for some additional
examples.

Before giving further examples for the rational interpolation problem of Defi-
nition 2.1, let us have a closer look at the underlying system of linear equations.
Notice first that we may rewrite the special multiplication rule (2.2) in terms of linear
algebra. We denote by C = (cu,v)u,v=0,1,... the lower triangular infinite matrix deter-
mined by the coefficients of (2.2) and by Cσ, σ ≥ 0 its principal submatrix of order
σ. Furthermore, for each f ∈ V and nonnegative integer σ we associate a vector of
coefficients

Fσ = [c0(f), . . . , cσ−1(f)]
T , F = [c0(f), c1(f), c2(f), . . .]

T .(2.4)

Note that we begin our row and column enumeration at 0. Then in matrix terms the
special multiplication rule can be interpreted as

Cσ · Fσ = [c0(z · f), . . . , cσ−1(z · f)]T

118 BERNHARD BECKERMANN AND GEORGE LABAHN

and more generally

p(Cσ) · Fσ = [c0(p(z) · f), . . . , cσ−1(p(z) · f)]T

for any polynomial p(z) ∈ Q[z] and for any nonnegative integer σ.
For our rational interpolation problem we can associate as in (2.4) to f the vectors

of values Fσ = (F
(1)
σ , . . . ,F

(m)
σ), F

(i)
σ = [c0(f

(i)), . . . , cσ−1(f
(i))]T , i = 1, . . . ,m. Then

the order condition (2.3) in Definition 2.1 may be rewritten as

p(1)(Cσ) · F(1)
σ + · · ·+ p(m)(Cσ) · F(m)

σ = 0.

In order to obtain explicitly a system of equations, we introduce

K(�n,Cσ,Fσ) =

F(1)

σ CσF
(1)
σ · · · C�n(1)−1

σ F
(1)
σ · · · F

(m)
σ · · · C�n(m)−1

σ F
(m)
σ

 ,

a striped Krylov matrix of size σ× |�n|. Furthermore, we identify a vector polynomial
p(z) = [p(1)(z), . . . , p(m)(z)]T of the form p(i)(z) =

∑�n(i)−1
j=0 p

(i)
j z

j , i = 1, . . . ,m, with
its coefficient vector

P = [p
(1)
0 , . . . , p

(1)

�n(1)−1
| |p(m)

0 , . . . , p
(m)

�n(m)−1
]T .

Then p(z) is a solution of type (σ, �n) iff its coefficient vector P satisfies

K(�n,Cσ,Fσ) ·P = 0.(2.5)

In the remaining part of this section, further special cases of the interpolation
problem of Definition 2.1 are discussed.

Example 2.2 (vector and power Hermite–Padé approximants [7, 8, 52]). Let V be
the space Q

s[[z]] of 1×s vectors of formal power series around 0. A basis for V is given
by ωu = ωn·s+k = zn · �ek+1 with 0 ≤ k < s, where �ek denotes the kth unit vector.
Let ci,j be defined by ci,j = δi−s,j . Then the special multiplication rule is again the
standard scalar multiplication by z, viewed as a scalar. In this case, problem (2.3)
with σ = |�n| − 1 is the vector Hermite–Padé approximation problem of type �n. This
interpolation problem appears, for example, in the new Van Hoeij algorithm for the
factorization of differential operators [54].

We can also let V be the space Q[[x]] of formal power series around 0 with basis
ω̃u = ωu(x

s) · [1, x, ..., xs−1]T with the ωu from above. Let the ci,j again be defined by
ci,j = δi−s,j . Then the special rule is multiplication by z = xs. In this case, problem
(2.3) is then to find polynomials p(i) in z with the correct degree bounds (with respect
to z of course) and satisfying the equation

f (1) · p(1)(xs) + · · ·+ f (m) · p(m)(xs) = rσx
σ + rσ+1x

σ+1 + · · · .

This is the power Hermite–Padé approximation problem. Note that this problem is the
same as the first part of our example obtained by multiplying both sides of every basis
equation (2.1) by the vector [1, x, . . . , xs−1]T . This is the “s-trick” described in [7, 8].
Besides vector Hermite–Padé approximants, power Hermite–Padé approximation can
be used to represent (and hence to compute) matrix Padé approximants [41] and
simultaneous Padé approximants [45] along with their matrix generalizations [40].

FRACTION-FREE RATIONAL INTERPOLANTS 119

For instance, solutions of type (|�n| − s, �n) are required as building blocks for matrix
Padé approximants (see [8]).

Example 2.3 (linearized rational interpolation). Suppose that we have a sequence
of not necessarily distinct knots xi ∈ D and a function g being sufficiently smooth
in a neighborhood of these knots. The linearized rational interpolation problem of
type [L/M] (see, e.g., [1]) consists of finding polynomials p and q of degree at most L
and M, respectively, such that −p+ g · q = [−1, g] · [p, q]T vanishes at x0, . . . , xL+M ,
counting multiplicities.

Let V be the space of all formal Newton series in z with respect to the given
knots x0, x1, Note that a basis of V (or some finite dimensional counterpart) may
be constructed using either Newton, Lagrange, or Hermite polynomials. Therefore,
there are several choices for the sequence of linear functionals (cu)u=0,1,2,... in order
to reformulate the linearized rational interpolation problem using the formalism of
Definition 2.1. For instance, one may take as cv the vth divided difference [x0, . . . , xv].
It is easy to verify that for these linear functionals the special multiplication rule (2.2)
holds, with ci,j = δi,j · xi + δi−1,j , i > 0, and c0,0 = x0.

If the knots x0, x1, . . . are distinct, then the simpler choice cv(g) = g(xv) leads
to the special multiplication rule (2.2) with ci,j = δi,j · xi. In the case of not nec-
essarily distinct knots, we may more generally consider the values of the successive
derivatives, i.e., cv(g) = g(ρv)(xv)/(ρv!), where ρv denotes the multiplicity of xv in
(x0, x1, . . . , xv−1). Here the components ci,j for the special multiplication rule is based
on (some permutation of) a Jordan normal form matrix C.

In Example 2.3 we mentioned the case m = 2 with f = [−1, g]. The case of
general f has also been discussed by several authors.

Example 2.4 (M-Padé approximants; see [3, 4, 5, 44, 45]). Suppose that we
have a sequence of not necessarily distinct knots xi ∈ D. Let again V be the space
of all formal Newton series in z with basis elements ωu = (z − x0) · · · (z − xu−1),
with the dual basis consisting of the vth divided difference cv = [x0, . . . , xv], v ≥ 0
(the corresponding special multiplication rule is given in Example 2.3). Solutions of
type (|�n| − 1, �n) of our interpolation problem of Definition 2.1 are known as M-Padé
approximants of type �n. One can also obtain a vector M-Padé problem using the same
method as described in Example 2.2.

An important application for M-Padé approximation is the generalized Richard-
son extrapolation process (GREP) where one tries to approximate the limit of some
sequence (g(xj))j=0,1,... with distinct x0, x1, . . . by interpolating with help of the func-
tion 1 and polynomial linear combinations of some functions g1, . . . , gm [50]. Here the
sequence of knots and the functions g1, . . . , gm are chosen such that (x

�
j ·gi(xj))j=0,1,...

tends to zero for all i, ". Thus the (scalar) ratio between the first and the second com-
ponent of an M-Padé approximant of type [1, 1, n1, . . . , nm] with respect to the system
[−1, g, g1, . . . , gm] is used for approximating the desired limit. Note that, due to the
available data, the linear functionals cv(f) = f(xv) may be preferable.

3. The linear algebra background. For the remainder of this paper we will
assume that we have a fixed lower triangular infinite matrix C and a fixed F =
[F(1), . . . ,F(m)] of infinite coefficient vectors for elements f (1), . . . , f (m) of V. Let �n
be a multi-index and σ a positive integer. In order to simplify notation, we will simply
drop Cσ and Fσ from our notation when using the striped Krylov matrices, i.e., we
will write K(�n, σ) = K(�n,Cσ,Fσ) for the associated striped Krylov matrix of size
σ × |�n|. Note that since C is lower triangular, the matrix K(�n, j) for j < σ consists
of the first j rows of K(�n, σ).

120 BERNHARD BECKERMANN AND GEORGE LABAHN

We have seen in section 2 that finding a solution p of type (|�n| − 1, �n) of the
interpolation problem of Definition 2.1 with exact order |�n|−1 is equivalent to solving
the system of linear equations

K(�n, |�n|) · P̄ = [0, . . . , 0, 1]T(3.1)

for the corresponding coefficient vector P̄. In our case, we look for solutions with co-
efficients not in the fraction field Q but in the integral domain D. This is accomplished
by means of Cramer’s rule over Q, giving a solution

K(�n, |�n|) ·P = det (K(�n, |�n|)) · [0, . . . , 0, 1]T ,(3.2)

with P being a vector having only coefficients from D. Here, the determinant rep-
resentation of P furnished by Cramer’s rule is quite useful and will be studied in
section 5. For instance, this representation enables us to obtain bounds for the size
(in bits) of such a solution in terms of the initial size of the components of the series
using Hadamard’s inequality [30, p. 299]

|det (aj,k)| ≤
∏
j

[∑
k

|aj,k|2
]1/2

.(3.3)

In fact, Cramer solutions are also furnished by applying fraction-free Gaussian elimi-
nation [2, 30] on (3.1). Our contribution is to show in the second part of this paper
that Cramer solutions may be obtained in a more efficient way.

It seems that in general Cramer solutions may be considered as the “simplest”
solutions of (3.1) with coefficients in D. Of course, one may construct examples where
additional simplifications occur, but it can be quite expensive to detect such further
simplifications. To illustrate this statement, take for instance the problem of comput-
ing a scalar GCD. Here several methods exist which avoid fractions (for a summary,
see, e.g., [30, section 7.2]), for instance, the reduced polynomial remainder sequence
(PRS) algorithm. However, only the subresultant GCD algorithm of Brown and Traub
[16] and Collins [25] gives “maximal” Cramer solutions.

We recall that, depending on the matrix C defined by our special rule (2.2),
we may obtain a system of equations with a matrix of coefficients having a quite
particular structure, for instance, the following.

Example 3.1 (Toeplitz and generalized Sylvester matrices). Let C be the classical
lower shift matrix, that is, ci,j = δi−1,j . ThenK(�n, σ) is a generalized Sylvester matrix
[40] with each stripe a lower triangular Toeplitz matrix. If m = 2 and

F =

[
p0 · · · pk 0 · · · 0
q0 · · · · · · qn 0 · · · 0

]T
,

then

FRACTION-FREE RATIONAL INTERPOLANTS 121

K((n, k), n+ k) =

p0 0 · · · 0 q0 0 · · · 0

p0
. . .

... q0
. . .

...
...

. . . 0
...

. . . 0
... p0

... q0

pk
... qn

...

0
. . .

... 0
. . .

...
...

. . .
. . .

...
. . .

. . .
...

0 · · · 0 pk 0 · · · 0 qn

is the classical Sylvester matrix for the polynomials p(z) =
∑k
i=0 pk−iz

i and q(z) =∑n
i=0 qn−iz

i. Sylvester’s matrix is heavily used in the fraction-free computation of
the GCD of two polynomials (cf. [30]).

Besides (striped) Toeplitz or Sylvester matrices associated to (Hermite–)Padé ap-
proximation, striped Krylov matrices with lower triangularCmay be used to represent
other well-known structured matrices. For instance, for vector or power Hermite–Padé
approximants (Example 2.2) we may choose as C the sth power of the lower shift ma-
trix. Then K(�n, σ) is a generalized vector Sylvester matrix with each stripe a vector
Toeplitz matrix having s×1 vector entries. If all the stripes have equal length k, then
this is, up to permutation, the same as a block triangular Toeplitz matrix with blocks
of size s × k. We can also consider the case where C is a matrix made up of diag-
onal blocks of (possibly different sized) shift matrices, leading to mosaic generalized
Sylvester matrices.

In case of the rational interpolation problems discussed in Examples 2.3 and 2.4,
one is left with matrices C consisting of diagonal blocks of the form

x0 0 · · · 0

0 x1
. . .

...
...

. . .
. . . 0

0 · · · 0 xk

 or

x0 0 · · · · · · 0

1 x1
. . .

...

0
. . .

. . .
...

. . .
. . . 0

0 · · · 0 1 xk

,

the first in the case of function evaluations, the second if one uses divided differences
(or simply successive derivatives at a point different from zero). For the first choice,
K(�n, σ) consists of stripes, each of them a rectangular Vandermonde matrix multiplied
on the left by a diagonal matrix.

A powerful formalism for solving structured systems is the concept of displacement
operators (see, for example, [36]), that is, matrices M where for some given matrices
A1,A2, the quantity A1M −MA2 has a much smaller rank than the size of M. In
our case we have

Cσ ·K(�n, σ)−K(�n, σ) · Z
=

[
0 · · · 0 C�n(1)

σ F
(1)
σ · · · 0 · · · 0 C�n(m)

σ F
(m)
σ

]
,

where Z is block diagonal consisting of lower shift matrices of size �n(j), j = 1, 2, . . . ,m.
Thus our striped Krylov matrices K(�n, σ) have displacement rank m.

122 BERNHARD BECKERMANN AND GEORGE LABAHN

A significant number of fast (but not fraction-free) algorithms have been suggested
in the last years for factoring or inverting matrices with small displacement rank, or
for solving corresponding structured systems. For instance, we mention Levinson-type
methods based on bordering techniques and Schur type algorithms (also called fast
Gaussian elimination) based on the fact that Schur complements verify similar dis-
placement equations [32, 36]. In our case, we wish to have a (fraction-free) description
of the nullspace of all principal submatrices of K′ := K(�n, σ)P, where P is some per-
mutation matrix such that Z′ := PTZP remains strictly lower triangular (that is, we
follow some path in the corresponding solution table). Notice that the displacement
equation for Schur complements (cf. [32, Lemma 3.1]) becomes quite involved since Z′

is no longer upper triangular. Also, in case of singularities, one has to use look-ahead,
or one needs to add a technique of pivoting [24, 31, 32, 33] which for general displace-
ment operators A1M−MA2 seems to be feasible only if one of the matrices A1 (for
row pivoting) or A2 (for column pivoting) is diagonal. However, our matrix C will
be diagonal only in special cases,1 and Z′ is never diagonal.2 One usually overcomes
this drawback by using transformation techniques, that is, by multiplying K′ on the
left and/or on the right by suitable matrices (e.g., FFT matrices in the Toeplitz case)
which changes the displacement operator but keeps the displacement rank essentially
invariant [31, 32].

In the present paper we use neither transformation techniques nor look-ahead.
In both cases these methods may present major inconveniences. Transformations can
lead to a significant increase of complexity of the input data, and look-ahead is less
efficient for large jumps (a common occurrence in GCD problems). In addition, both
approaches do not allow us to keep track of all interpolation subproblems correspond-
ing to principal submatrices of K′. Our contribution in section 7 is to show that
a very particular column pivoting still enables us to solve all corresponding sub-
problems. Here we generalize polynomial recurrences presented by several authors
[8, 45, 46, 47, 51], and thus a polynomial language is more appropriate in our context.

4. Normality and controllable data. For the solvability of system (3.1) we
require some regularity assumptions. The aim of this section is to discuss several such
concepts.

Definition 4.1 (multigradients, normality). The scalar

d(�n) = det(K(�n, |�n|))

is called the multigradient of F of type �n. The multi-index �n is called a normal
point if d(�n) �= 0. Finally, the data (C,F) is called perfect if every multi-index is
normal.

We use the convention that the determinant of an empty matrix equals one. Of
course, given σ > 0, the existence of a normal point �n with |�n| = σ requires that
the linear functionals c0, . . . , cσ−1 are linearly independent with respect to the set
V0 := {f · p(z) : p(z) ∈ Q[z]m} (considered as a vector space over Q), in general a

1See Examples 2.3 and 2.4. Here a row pivoting corresponds to a permutation of interpolation
points (which need to be distinct), a classical technique in rational interpolation or M-Padé approx-
imation.

2By using block pivoting, it seems to be possible to allow also for matrices A1 and A2, which are
block diagonal. However, this does not apply for our setting. For example, consider the problem of
Hermite–Padé approximation with three scalar functions following an offdiagonal path to �n = [k, k, k]
(these paths are included in section 7). Then C is the lower shift and Z′ is the third power of the
upper shift.

FRACTION-FREE RATIONAL INTERPOLANTS 123

proper subset of V. In terms of linear algebra, this is equivalent to saying that the
data (Cσ,Fσ) are controllable, i.e., for large k, the columns of Fσ,Cσ ·Fσ, . . . ,Ck

σ ·Fσ
generate the whole space Q

σ. Moreover, from system theory (see, e.g., [37, p. 426
ff, p. 481 ff]) it is well known that this necessary condition is also sufficient for the
existence of a normal point �n with |�n| = σ.

We will say that (C,F) is controllable if (Cσ,Fσ) are controllable for all σ ≥ 0.
One easily verifies the equivalent condition that, for each σ ≥ 0, there exists an
element of V0 having exact order σ. Such a regularity assumption has been imposed for
several algorithms for solving the approximation problems mentioned in the examples
of section 2. Also, equivalent characterizations have been established: in the case of
M-Padé approximation (see Example 2.4), it is shown in [5, Lemma 3.1] that (C,F) is
controllable iff the vector of functions f = [f1, . . . , fm] does not vanish identically at
any of the involved knots. In particular, for Hermite–Padé approximation we have the
equivalent requirement f(0) �= 0. Moreover [9, Lemma 2.7], for vector Hermite–Padé
approximants (see Example 2.2), (C,F) is controllable iff the s×m matrix f(0) has
maximal rank.

Though such a condition allows us to simplify notation, for an application of
our theory to the matrix-GCD problem we need to also allow for noncontrollable
(C,F). One possibility to remedy this drawback is to introduce additional functions
f (m+1), f (m+2), . . . , and thus to consider a suitable extension F∗ of F. Instead, we
prefer to consider a particular maximal subsequence of linear functionals being linearly
independent with respect to V0. The symbol ∗ will be used to identify the resulting
Krylov matrices and multigradients.

We define a unique sequence of integers (σ(j))j=0,1,... being the indices of our
maximal subsequence of linearly independent linear functionals by the following re-
quirements: for all nonnegative integers j there holds

cσ(0), cσ(1), . . . , cσ(j) are linearly independent V0,(4.1)

cσ(0), . . . , cσ(j−1), cσ are linearly dependent V0 for all 0 ≤ σ < σ(j).(4.2)

Definition 4.2 (paranormality, σ-normality). Let �n be a multi-index, and let
j, σ be nonnegative integers. We denote by K∗(�n, j) the matrix of size j×|�n| obtained
by taking the rows labeled σ(0), . . . , σ(j − 1) of the ordinary striped Krylov matrix
K(�n, σ(j)). The scalar

d∗(�n) = det(K∗(�n, |�n|))
will be referred to as the modified multigradient of F of type �n. The multi-index
�n is called paranormal if d∗(�n) �= 0, and called σ-normal if it is paranormal and
σ(|�n| − 1) < σ ≤ σ(|�n|) (where σ(−1) := −1).

Note that the concepts of paranormality and of normality (in the sense of Defini-
tion 4.1) coincide exactly in the case of controllable (C,F). Moreover, �n is |�n|-normal
iff it is a normal point. This implies in particular that σ(j) = j for j = 0, 1, . . . , |�n|−1,
that is, (C|�n|,F|�n|) is controllable. Also, by exploiting the dependency relations (4.2)
one gets a special multiplication rule of the form (2.2) connecting only the linearly
independent linear functionals

cσ(j)(z · f) = c∗j,0 · cσ(0)(f) + · · ·+ c∗j,j · cσ(j)(f)

for all f ∈ V0 and for all j ≥ 0, with c∗j,k ∈ Q. Hence modified striped Krylov matrices
K∗(�n, j) may be represented themselves as striped Krylov matrices with controllable

124 BERNHARD BECKERMANN AND GEORGE LABAHN

data (C∗,F∗). However, in what follows we will not make use of this result. A final
characterization is mentioned in the following lemma.

Lemma 4.3. The multi-index �n is σ-normal iff any striped Krylov matrix K(�n′, σ)
containing the submatrix K(�n, σ) has rank |�n|. In this case, a maximal invertible
submatrix is given by K∗(�n, |�n|).

Proof. Apply Gaussian elimination with column pivoting to K(�n′, σ).

5. Mahler systems. In this section we introduce the notion of a Mahler system.
These systems are generalizations of the Padé and matrix-type Padé systems of [19,
40, 41] and, up to a constant factor, have already been considered by Mahler [45] in the
case of perfect systems for Hermite–Padé and simultaneous Padé approximants. They
are also the fundamental building blocks that we use for the fraction-free algorithm
presented in the later sections.

For a given multi-index �n define r(�n, z) and p(�)(�n, z) by r(�0, z) = 0, p(�)(�n, z) = 0
in the case �n(�) = 0 and otherwise by the determinant formulas

r(�n, z) = det

K∗(�n, |�n| − 1)

E(z)

 ,

where

E(z) = [f (1), . . . , z�n
(1)−1f (1)| |f (m), . . . , z�n

(m)−1f (m)]

and

p(�)(�n, z) = det

K∗(�n, |�n| − 1)

E(�)(z)

with

E(�)(z) = E(�)(�n, z) = [0, . . . , 0|1, z, . . . , z�n(�)−1|0, . . . , 0].(5.1)

The nonzero entries in E(�)(z) occur in the "th stripe. In addition, we let p(�n, z) =
[p(1)(�n, z), . . . , p(m)(�n, z)]T be the column vector of the polynomials defined above.

Lemma 5.1. For a multi-index �n we have
(a) f · p(�n, z) = r(�n, z) ∈ V0;
(b) ord (r(�n, z)) ≥ σ(|�n| − 1) and cσ(|�n|−1)(r(�n, z)) = d

∗(�n);
(c) deg(p(�)(�n, z)) ≤ �n(�)− 1. Moreover, if �n(�) > 0, then the �n(�)− 1st coefficient

is

p
(�)

�n(�)−1
= ε(�)(�n) · d∗(�n− �e�), ε(�)(�n) := (−1)�n(�+1)+···+�n(m)

;

(d) p(�n, z) is not identically zero iff, up to multiplication by a scalar from Q, there
exists exactly one solution of type (σ(|�n| − 2) + 1, �n) (being given by p(�n, z)).

Proof. Part (a) follows by expanding determinants with respect to the last row.
In order to show part (b) notice that, for i = σ(j), 0 ≤ j < |�n| − 1, ci(r(�n, z))
is a determinant of a matrix with two equal rows and hence is zero. In the case
i ∈ {0, . . . , σ(|�n| − 1)− 1} \ {σ(0), . . . , σ(|�n| − 2)} we obtain ci(r(�n, z)) = 0 according

FRACTION-FREE RATIONAL INTERPOLANTS 125

to (4.2). The first potential case where a possibly linearly independent row occurs is
when i = σ(|�n| − 1), and thus ci(r(�n, z)) = d∗(�n). Part (c) follows by expanding out
the determinant definition of p(�)(�n, z) along the last row. The coefficient is, at least up
to sign, the same as taking determinants of the matrix determined by eliminating the
last row and column �n(1)+· · ·+�n(�), which is just d∗(�n−�e�). The sign is determined by
counting the number of columns from the bottom right corner of the matrix. Finally,
the assertion of part (d) is a consequence of Cramer’s rule applied to the homogeneous
system of linear equations K∗(�n, |�n| − 1) ·P = 0, since in fact p(�n, z) �= 0 iff the rank
of the matrix K∗(�n, |�n| − 1) of size (|�n| − 1)× |�n| is maximal.

Lemma 5.1 says that p(�n, z) is a solution in D
m[z] to our interpolation problem

of Definition 2.1 of type (σ, �n), σ ≤ σ(|�n| − 1). However, one rarely wants to use
this definition in order to compute this solution. Rather, it is better to use systems
of linear equations for this computation. For instance, suppose that �n is a normal
point. Then solving the system (3.1) using Cramer’s rule over Q gives a solution P
of problem (3.2) with P being a vector having only coefficients from D. From Lemma
5.1 (b), (d) one sees that P provides the coefficients of the polynomials p(�n, z) via
partitioning the coefficient vector as

P = [p
(1)
0 , . . . , p

(1)

�n(1)−1
| |p(m)

0 , . . . , p
(m)

�n(m)−1
].

Similarly, suppose that �n is paranormal (see Definition 4.2) and choose σ such
that �n is σ-normal. By Lemma 4.3 we have rank K(�n, σ) = rank K(�n+�ei, σ) = |�n| for
all i = 1, . . . ,m, with a square submatrix of maximal rank being given by K∗(�n, |�n|).
Therefore we may find unique solutions for the systems of equations (usually re-
ferred to as fundamental equations [36] or Yule–Walker equations of the corresponding
striped Krylov matrix)

K(�n, σ) · P̄(i) = −C�n(i)

σ · F(i)
σ , 1 ≤ i ≤ m.

Again using Cramer’s rule (with respect to K∗(�n, |�n|)), we obtain solutions P̃(i) of
elements from the domain D to the systems

K(�n, σ) · P̃(i) = −d∗(�n) ·C�n(i)

σ · F(i)
σ , 1 ≤ i ≤ m.(5.2)

Thus, by part (c) of Lemma 5.1, the vector P̃(i) consists of the coefficients of the
vector of determinant polynomials ε(i)(�n) · p(�n+ �ei, z).

We are interested in recursively or iteratively computing solutions of equation
(2.3). However to do this we need a larger collection of solutions to the problem. One
can think of the scalar GCD problem as an example—there one needs two remainders
at every step to get the next remainder. In our case we need to look for them solutions
described already by (5.2).

Definition 5.2 (Mahler systems). The m×m matrix of polynomials

M(�n, z) = [M(λ,j)(�n, z)]mλ,j=1, M(λ,j)(�n, z) := ε(j)(�n) · p(λ)(�n+ �ej , z),

is called the Mahler system of type �n. We shall denote its jth column by
M(·,j)(�n, z).

Some Mahler systems for Hermite–Padé approximation may be found in Exam-
ple 6.1 below. For the particular case of M-Padé approximation at a normal point
�n, our Mahler system coincides with that proposed by Mahler [45] (up to the com-
mon scalar factor d∗(�n)). In what follows, we will consider only Mahler systems at
paranormal points for which we may establish several equivalent characterizations.

126 BERNHARD BECKERMANN AND GEORGE LABAHN

Lemma 5.3. Let �n be a multi-index, and λ ∈ {1, . . . ,m}. The following assertions
are pairwise equivalent:

(a) �n is a paranormal point.
(b) deg p(λ)(�n+ �eλ, z) = �n

(λ).
(c) A solution of type (σ(|�n| − 1) + 1, �n+ �eλ) is unique up to multiplication with

an element from Q, with its λth component having exact degree �n(λ).
(d) For any σ > σ(|�n| − 1), a solution of type (σ, �n) is necessarily trivial.
(e) The columns of the Mahler systemM(�n, z) are linearly independent over Q[z].
Proof. The equivalence of assertion (a) and any of the assertions (b) or (c) follows

from Lemma 5.1 and the following remarks. In order to establish equivalence between
(a) and (d), notice that the coefficient vector P of a solution p(z) of type (σ(|�n|−1)+
1, �n) necessarily satisfies K(�n, σ(|�n| − 1) + 1) · P = 0. By definition (4.1), (4.2), we
obtain the equivalent system of equations K∗(�n, |�n|) ·P = 0, with a square matrix of
coefficients. Thus K∗(�n, |�n|) is nonsingular or, in other words, d∗(�n) �= 0 iff each such
solution P is trivial.

For the equivalence between (a) and (e) it is sufficient to show that detM(�n, z) �= 0
iff d∗(�n) �= 0. Notice that the elements of M(�n, z), namely, M(λ,j)(�n, z), λ, j =
1, . . . ,m, are determinants of matrices of size (|�n|+1)× (|�n|+1). These matrices are
obtained by bordering the matrix K∗(�n, |�n|) on the bottom by one additional row and
on the right by one additional column. Let �e := (1, 1, . . . , 1), and let E(λ)(�n, z) be
defined as in (5.1). Then, by the Sylvester determinantal identity, we have

detM(�n, z) = (detK∗(�n, |�n|))m−1 · β(z),

where β(z) denotes the determinant of the augmented matrix

β(z) = ±det

K∗(�n+ �e, |�n|)

E(1)(�n+ �e, z)
...

E(m)(�n+ �e, z)

.

Expanding β(z) with respect to the last m rows shows that β(z) is a polynomial in
z, and that, more precisely3,

β(z) = ±d∗(�n) · z|�n| + α(z), degα < |�n|.

Here we have taken into account that the coefficient of z|�n| in β(z) is obtained by the
cofactor of diag(z�n

(1)

, . . . , z�n
(m)

) in β(z). Consequently, detM(�n, z) = ±d∗(�n)m−1 ·
(d∗(�n) · z|�n|±α). Therefore the two quantities detM(�n, z) and d∗(�n) only simultane-
ously become zero.

Given a paranormal multi-index �n, we will mostly apply Lemma 5.3 in order to
verify that a given matrix polynomial is a Mahler system of type �n. Here we just have

3One shows that, for controllable (C,F)

detM(�n, z) = ±d∗(�n)m ·
|�n|−1∏
k=0

(z − ck,k).

(For the approximation problems of section 2, see [46, p. 42], [3, p. 90–91], or [9, Lemma 2.7].)

FRACTION-FREE RATIONAL INTERPOLANTS 127

to check that, for λ = 1, . . . ,m, the λth column is a solution of type (σ(|�n|−1)+1, �n+
�eλ) with the correct normalization, i.e., the coefficient of z

�n(λ)

of the λth component
equals d∗(�n).

To the end of this section, we state a further equivalent characterization of para-
normal multi-indices. This statement will be proved at the end of section 7 where
additional results are available. For the remainder of this paper we will use the ab-

breviation z�ν for denoting the diagonal matrix diag(z�ν
(1)

, . . . , z�ν
(m)

).
Corollary 5.4. Let �n be a multi-index, and σ > σ(|�n| − 1). Then �n is σ–

normal iff there exists a matrix polynomial M(z) with columns having order ≥ σ
which satisfies the degree constraints

z−�n ·M(z) = c · Im +O(z−1)z→∞, c ∈ Q \ {0}.
In this case, M(z) = c

d∗(�n) ·M(�n, z).

6. Computing Mahler systems along perfect paths. For a given multi-
index �n, we are interested in computing a solution of type (|�n| − 1, �n) to the interpo-
lation problem of Definition 2.1 in a fraction-free way. By Lemma 5.1, the polynomial
vector p(�n, z) defined in the previous section provides one solution to this problem.
Of course, to compute these polynomials one does not want to use the determinant
definition, except perhaps for small problems. In this section we give a fast method
to compute the solution to our rational interpolation problem using only polynomial
operations over the integral domain D. However, for the algorithm presented in this
section we require some regularity assumptions, which are no longer necessary for the
algorithm presented in the next section.

In the case where we are at a normal point �n the next theorem tells us (in a
more general setting) how to compute a Mahler system at a subsequent normal point
�n+ �eλ from the Mahler system at �n. A similar recurrence relation for Hermite–Padé
approximation has been established earlier by Paszkowski [46, 47, 48] and generalized
by one of the authors [3, Kapitel 3.3] without, however, noticing that this is the key
for fraction-free computations.

Theorem 6.1. Suppose that �n is paranormal. Furthermore, let σ(|�n| − 1) < σ ≤
σ(|�n|), and for " = 1, . . . ,m set

r(�) := cσ

(
f ·M(·,�)(�n, z)

)
.

(a) �n is also (σ + 1)-normal (i.e., σ < σ(|�n|)) iff r(1) = r(2) = . . . = r(m) = 0.
(b) �n+ �eλ is a paranormal point iff r

(λ) �= 0.
(c) In the case r(λ) �= 0, we define also for " = 1, . . . ,m, " �= λ

p(�) := coefficient(M(�,λ)(�n, z), z�n
(�)−1).

Then M(�n+ �eλ, z) can be computed from M(�n, z) as follows:

M(·,�)(�n+ �eλ, z) · p(λ) · ε(λ)(�n) =M(·,�)(�n, z) · r(λ) −M(·,λ)(�n, z) · r(�)(6.1)

for " = 1, 2, . . . ,m, " �= λ, and
M(·,λ)(�n+ �eλ, z) · p(λ) · ε(λ)(�n) = (z − cσ,σ) ·M(·,λ)(�n, z) · r(λ)(6.2)

−
∑
� 	=λ

M(·,�)(�n+ �eλ, z) · p(�) · ε(λ)(�n).

128 BERNHARD BECKERMANN AND GEORGE LABAHN

Proof. For a proof of part (a), set

B := K(�n+ [σ+1, σ+1, . . . , σ+1], σ), B′ := K(�n+ [σ+1, σ+1, . . . , σ+1], σ+1).

By Lemma 4.3 along with our assumptions, we have that rank B = |�n|, and from the
Cayley–Hamilton theorem we know that rank B′ ≥ rank K(�n′, σ + 1) for any multi-
index �n′. Hence from definition (4.1), (4.2) we obtain the characterization σ < σ(|�n|)
iff rank B = rank B′. The m · (σ + 1) coefficient vectors of the polynomial vectors

(z − cσ,σ)j ·M(·,�)(�n, z), " = 1, . . . ,m, j = 0, . . . , σ,

are easily shown to be elements of the kernel of B, and are linearly independent over
Q by Lemma 5.3(e). Thus we have found a basis of the kernel of B. Notice also that,
according to (2.2), the order of f · (z − cσ,σ)j ·M(·,�)(�n, z) is larger than σ if j > 0.
As a consequence, we have established the equivalencies σ < σ(|�n|) iff the kernels of
B and B′ coincide iff f ·M(·,�)(�n, z) has order ≥ σ+1 for " = 1, . . . ,m, as claimed in
part (a).

Assertion (b) follows from part (a) together with Lemma 5.1(b).
In order to show the recurrence relation (6.1) for the case " �= λ, let
q(z) :=M(·,�)(�n+ �eλ, z) · p(λ) · ε(λ)(�n)−M(·,�)(�n, z) · r(λ) +M(·,λ)(�n, z) · r(�).

We claim that q(z) = 0. First by construction we get ord (f ·q(z)) ≥ σ+1. Furthermore,
deg q(µ)(z) ≤ �n(µ) − 1 + δµ,� + δµ,λ. More precisely, the coefficient of z�n(�)

of the "th
component of q(z) is given by

d∗(�n+ �eλ) · p(λ) · ε(λ)(�n)− d∗(�n) · r(λ) = 0

since p(λ) = d∗(�n) due to Lemma 5.1(c), and r(λ) = ε(λ)(�n) · d∗(�n + �e�) due to
Lemma 5.1(b). Hence q(z) is a solution of type (�n+�eλ, σ+1), and thus by Lemma 5.3(d)
is identically zero.

Identity (6.2) is shown in a similar manner; let

q(z) := (z − cσ,σ) ·M(·,λ)(�n, z) · d∗(�n+ �eλ)−
m∑
�=1

M(·,�)(�n+ �eλ, z) · p(�).

Since d∗(�n+�eλ) = r(λ) · ε(λ)(�n), it is sufficient to prove that q(z) vanishes identically,
which follows again by Lemma 5.3(d) by checking order and degree of q(z). First
notice that ord (f · (z−cσ,σ) ·M(·,λ)(�n, z)) ≥ σ+1 by (2.2). Moreover, all terms in the
sum have order at least σ+1, and thus ord (f · q(z)) ≥ σ+1. Also, by definition, the
µth component of q(z) contains only powers zj with j = 0, 1, . . . , �n(µ)+δλ,µ =: jµ. By
using Lemma 5.1 (c), one verifies that the factors in the sum have been chosen such
that the coefficient before zjµ in q(µ)(z) vanishes, and hence deg q(µ)(z) ≤ �n(µ)−1+δµ,λ
for all µ. Thus q(z) = 0.

Theorem 6.1 leads to an algorithm to compute solutions to the rational interpo-
lation problem on staircases under the assumption that all intermediate problems are
at normal points. Here we denote by staircase a sequence (�nk)k=0,1,... of multi-indices
with the properties that

�n0 = �0, �n|�n| = �n, and for all k ≥ 0∃λk such that �nk+1 − �nk = �eλk
.(6.3)

At every step �nk we find a λ such that �nk+1 = �nk + �eλ is normal (which is, for
instance, the case when the vector f is perfect; see Definition 4.1). Then, using the

FRACTION-FREE RATIONAL INTERPOLANTS 129

Table 1
Algorithm FFFGnormal.

Algorithm FFFGnormal (on arbitrary staircases consisting of normal points)

Input: a vector of formal series f,
a staircase (�nk)k=0,...,K of normal points.

Output: For k = 0, 1, 2, . . . ,K with εk ∈ {−1, 1}:
Mahler systems Mk = εk ·M(�nk, z),
multigradients dk = εk · d∗(�nk).

Initialization: M0 ← Im, d0 ← 1

Iterative step: For k = 0, 1, 2, . . . ,K − 1:
Define λ ∈ {1, . . . ,m} by �nk+1 − �nk = �eλ.

Calculate for � = 1, . . . ,m:

first term of residuals r() ← ck(f ·M(·,)
k),

leading coefficients p() ← coefficient(M
(,λ)
k , z�n

(�)
k −1).

Increase order for � = 1, . . . ,m, � �= λ:

M
(·,)
k+1 ← [M

(·,)
k · r(λ) −M

(·,λ)
k · r()]/dk,

M
(·,λ)
k+1 ← (z − ck,k) ·M(·,λ)

k

Adjust degree constraints:

M
(·,λ)
k+1 ← [M

(·,λ)
k+1 · r(λ) −

∑
	�=λ M

(·,)
k+1 · p()]/dk

New multigradient: dk+1 = r(λ)

iteration given by Theorem 6.1 with σ = |�nk| = k, we see that we can remove the
scalar common factor p(µ) = d∗(�nk) before we proceed with our next iteration. This
scalar is determined as the leading coefficient of the (λ, λ) term of the kth Mahler
system.

Therefore, not only the representations (3.2), (5.2) of the solutions but also recur-
rence (6.1) remind one of the well-known recurrence relations of fraction-free Gaussian
elimination [2, 30]. On the other hand, relation (6.2) gives a significant gain in com-
plexity in comparison with the classical Gaussian elimination, obtained by taking into
account the particular structure of our block Krylov matrices. This serves as moti-
vation to refer to our algorithm proposed in Table 1 as fraction-free fast Gaussian
elimination.

From Theorem 6.1 one can see that the iteration is best done in two stages. If
we have the Mahler system of type �nk and wish to compute the Mahler system of
type �nk+1 = �nk +�eλk

, then we first increase the order of all the columns ofM(�nk, z).
This is done by using column λk to increase the orders of all the other columns using
(6.1) of Theorem 6.1. The λkth column itself has its order increased by multiplication
by z − c|�nk|,|�nk|. At this stage all the columns except λk are constant multiples of
the corresponding columns of M(�nk + �eλk

, z). We pull out the constant from these
columns to make them the same as the corresponding columns of the new Mahler
system. Finally, column λk does not have the correct degree structure as required
for our new Mahler system. We then use all the other columns to return this de-
gree structure to the desired form. This gives column λk as a constant multiple of the
λkth column ofM(�nk+�eλk

, z). Removing this constant gives the correct λkth column

130 BERNHARD BECKERMANN AND GEORGE LABAHN

of M(�nk + �eλk
, z) and hence the new Mahler system.

In Algorithm FFFGnormal stated in Table 1, one may find a slight simplification
of relations (6.1), (6.2). In fact, we prefer to compute Mahler systems only up to sign,
namely Mk = εk ·M(�nk, z) with

ε0 = 1, εk+1 = ε
(λk)(�nk) · εk, k ≥ 0,(6.4)

since then all terms ε(λk)(�nk) in (6.1), (6.2) may be dropped.
In Table 1, we have not discussed in detail how to compute efficiently the first

term of the residuals, namely r(�), " = 1, . . . ,m. One possibility (mainly applicable for
Hermite–Padé approximation and its vector counterpart) is to compute explicitly ck(f ·
M

(·,�)
σ) by determining a particular coefficient of the scalar product f ·Mσ. Another

approach, which may be preferable for more complicated special multiplication rules
(2.2), is to simultaneously compute all required values of the residuals, i.e., to compute
the (nontrivial part of the) residual vectors

R
(�)
k = [cσ(f ·M(·,�)

k)]σ=0,...,K−1.

Here we use the initializations R
(�)
0 = F(�) and obtain according to Table 1 and (2.2)

the recurrences

R
(�)
k+1 =

{ [
R

(�)
k · r(λ) −R

(λ)
k · r(�)

]
/dk for " �= λ,[

(CK − ck,k · IK) ·R(λ)
k · r(λ) −∑

� 	=λR
(�)
k+1 · p(�)

]
/dk for " = λ.

We again observe close relationships to the recurrence relations of the classical one-step
fraction-free Gaussian elimination [2, 30]. We also mention that multistep elimination
schemes may be given. However, due to our special rule, the formalism becomes more
complicated.

Example 6.1. Let f be the vector of power series4 whose first six terms are[
1− z + 19 z2 + 3 z3 − 5 z5, 9 + 6 z − 5 z2 + 5 z3 + 4 z5, 1 + 9 z2 + 9 z3 − 4 z5] .

Then the Mahler systems of f of type [1, 0, 0], [1, 1, 0], [1, 1, 1], and [2, 1, 1] generated
by the preceding algorithm are given by

M1 =M(�n1, z) =

z −9 −1
0 1 0

0 0 1

 , M2 =M(�n2, z) =

15 z + 9 81 −6
−1 15 z − 9 −1
0 0 15

 ,

M3 =M(�n3, z) =

26 z + 80 810 86

9 26 z + 96 10

−161 −1674 26 z − 176

 ,

and

M4 =M(�n4, z) =

−670 z2 + 138 z + 270 12286 z + 16930 1042 z + 990

22 −670 z + 1779 103

−468 −32941 −670 z − 1917

 .

4Since f(0) = [1, 9, 1] �= 0, we have controllable data, and thus we may drop the asterisk.

FRACTION-FREE RATIONAL INTERPOLANTS 131

The residuals determined by f ·M4 are given by

[−12316 z4 +O (
z5

)
, 33508 z4 +O

(
z5

)
, −2904 z4 +O (

z5
)]

so that in this step r(1) = d([3, 1, 1]) = −12316, r(2) = −d([2, 2, 1]) = 33508, and
r(3) = d([2, 1, 2]) = −2904 (see Lemma 5.1(b)). Also, the leading coefficients of the
polynomials on the diagonal of the Mahler system M4 are equal to d4 = d([2, 1, 1]) =
−670. In order to generate the Mahler system M5 = −M(�n5, z) of type [2, 2, 1], the
algorithm first increases the orders of all the columns by combining column " with
column 2, " = 1, 3, and by multiplying the second column by z. This gives

P̃ =

33508 z2 − 232744 z − 324712 12286 z2 + 16930z −105364 z − 122892

12316 z − 33802 −670 z2 + 1779z 2904 z − 12862
628930 −32941z 33508 z + 238650

 .

Note that the common multiplier d4 = −670 has been removed from the computations
of columns 1 and 3. The algorithm then uses the values p(1) = 12286 = d([1, 2, 1])
with the first column and p(3) = −32941 = −d([2, 2, 0]) with the third column in order
to return the second column to the degree bounds needed for a Mahler system of type
[2, 2, 1] (see Lemma 5.1(c)). This then gives M5 as

33508 z2 − 232744 z − 324712 65690 z + 87722 −105364 z − 122892

12316 z − 33802 33508 z2 − 5906z + 12531 2904 z − 12862
628930 −200501 33508 z + 238650

 .

We remark that our use of the integers as a coefficient domain in Example 6.1 is
mainly for ease of presentation. A more typical domain would be Q[ε], where ε denotes
an indeterminant (for example, ε may be a symbolic representation of an allowable
error for numeric input).

An asymptotic cost analysis of computing a Mahler system by Algorithm FFFG-
normal is provided in the following theorem. Here we assume following [10] that, for
a, b ∈ D,

size(a+ b) = O(max{size(a), size(b)}),
size(a · b) = O(size(a) + size(b)),
cost(a+ b) = O(1),
cost(a · b) = O(size(a) · size(b)),

where the function “size” measures the total storage required for its arguments and the
function “cost” estimates the number of boolean operations (machine cycles) required
to perform the indicated arithmetic. These assumptions are justified for large operands
where, for example, the cost of addition is negligible in comparison to the cost of
multiplication. Notice that a smaller complexity may be expected if fast multiplication
algorithms (e.g., Schönhage–Strassen) can be applied (cf. Knuth [38]).

Theorem 6.2. Let κ be an upper bound for the size of any element occurring
in C or in Cj · F, j ≥ 0, and suppose that only O(1) entries in a row of C are
different from zero. Then for computing a Mahler system of order K by Algorithm
FFFGnormal we have the cost estimate O(m ·K4 · κ2).

132 BERNHARD BECKERMANN AND GEORGE LABAHN

Proof. Let 0 ≤ k ≤ K. We obtain a bound for the size of the m × (k + 1)
coefficients of the components of Mk by using the determinantal representation of
Definition 5.2: applying the Hadamard inequality (3.3) and taking into account the
above assumptions, we get for their size the upper bound O(k · κ). The same size
estimate is valid for the m · (K − k) nontrivial components of the residual vectors
R

(�)
k , " = 1, . . . ,m.
In step k of the algorithm, we have to perform essentially 2m operations of the

form

P3 = [a1 ·P1 + a2 ·P2]/a3,

where aj ∈ D, and Pj ∈ D[z]m having O(k) nontrivial coefficients. In addition, for
computing the residual vectors we again have essentially 2m operations of the above
form, but now Pj stands for some vector having O(K−k) nontrivial components (by
assumption on C, the cost of multiplying (CK − ck,k · IK) with R

(λ)
k is negligible).

As a consequence, in step k we have O(m · K) multiplications (and additions) of
two elements of D, each being of size bounded by O(k . . . κ). Summing over k =
0, . . . ,K − 1 gives the cost estimate as claimed above.

The cost estimate O(m ·K4 · κ2) of Algorithm FFFGnormal has to be compared
with solving (5.2) by fraction-free Gaussian elimination, with cost given by O(K5 ·κ2).
For the special case of matrix–Padé approximation, we gain a factor m in comparison
with the method proposed in [10]. Let us mention already in this context that a
modification of Algorithm FFFGnormal presented in the following section will have
the same complexity in case of singularities, whereas the complexity may increase by
a factor K for look-ahead methods such as [10].

7. The general recurrence: Nonperfect systems. In this section we present
an algorithm that avoids nonnormal points by traveling around them along a path
of “closest paranormal points.” We will show that this path of closest paranormal
points is separated for each order by at most one unit. The recurrence from section 6
will then be valid for this problem.

Let �n = (�n(1), . . . , �n(m)) be a multi-index. We will construct a sequence of multi-
indices (�nk)k=0,... ,|�n| with |�nk| = k and �n|�n| = �n along an offdiagonal path of indices,
namely, a particular staircase of the form (6.3). At the same time we will construct
a sequence of multi-indices (�νk)k=0,...,|�n| together with the corresponding Mahler sys-
tems M(�νk, z). These points have the property that �νk = �nk iff �nk is a normal point.
Otherwise, the multi-index �νk is a k-normal point having a kind of “minimal dis-
tance” to the sequence (�nj)j as specified below (see Theorem 7.3 and the subsequent
remarks).

In order to simplify the presentation, we first introduce some properties form×m
polynomials which will hold for the Mahler systems computed below.

Definition 7.1 (�n-Popov form, Popov-basis). An m × m matrix polynomial
M(z) ∈ Q

m×m[z] is in �n-Popov form (with row degree �ν) if there exists a multi-index
�ν such that M(z) satisfies the degree constraints

z−�ν ·M(z) = c · Im +O(z−1)z→∞, c ∈ Q \ {0},(7.1)

z−�n ·M(z) · z�n−�ν = T+O(z−1)z→∞, T ∈ Q
m×m being upper triangular.(7.2)

If, in addition, the columns of M(z) have order ≥ σ with σ ≥ σ(|�ν|), then M(z) will
be referred to as a Popov-basis of type (σ, �n).

FRACTION-FREE RATIONAL INTERPOLANTS 133

Notice that the matrix T in (7.2) is necessarily nonsingular because of (7.1).
Also, by multiplying with an appropriate constant we may suppose that M(z) has
coefficients in D (in fact, we will only encounter Mahler systems). Up to a (unique)
permutation of columns, we find the classical Popov normal form [37, subsection 6.7.2,
p. 481] in the case c = 1 and �n = �0 (or �n = [N,N, . . . , N] since (7.2) is invariant under
adding a constant to all components of �n). Here the row degree �ν is usually referred to
as the vector of controllability or Kronecker indices. It is known [37, p. 484] that any
square nonsingular matrix polynomial may be transformed to Popov normal form by
multiplication on the right by a unimodular matrix polynomial and that the resulting
polynomial is unique.5 The introduction of an additional parameter �n is natural in
the context of the approximation problems of section 2. Also, by an appropriate choice
of �n we may force the matrixM(z) to be upper triangular, allowing us to include the
Hermite normal form in our framework (see, e.g., [37, subsection 6.7.1, p. 476]).

The notion basis will become clear from Theorem 7.3(a) since any solution of
order at least σ may be rewritten as a polynomial linear combination of the columns
of a Popov-basis of type (σ, �n). For solutions of type (σ, �n) or, more generally, of
type (σ, �nk) we may even be more precise. In fact, it is easy to see that the set of
polynomial vectors of order ≥ σ forms a submodule over Q[z] of the module Q[z]m.
Bases of such modules have already been successfully computed (not in a fraction-
free way) by several authors [3, 5, 8, 9, 19, 20, 22, 40, 17, 51, 52, 53]. Here we
may distinguish between two different kinds of algorithms (for a summary, see, e.g.,
[9]). For the hybrid (or look-ahead) methods in [19, 20, 22, 40, 53] one uses only
order bases corresponding to normal or perfect points. In this case additional degree
constraints are simple to describe (see, e.g., Corollary 5.4). In contrast, for the single
step methods given in [3, 5, 8, 51, 52] only weaker degree constraints are imposed (for
example, there is no longer uniqueness). A rather detailed study of the fine structure
of degrees of bases in case of singular matrix–Padé approximation has been given in
[17], based on a different computational path and a different normalization of bases.
The approach used in this paper of combining order bases with Popov normal forms
seems to be conceptionally simpler than that of [17], and easily extends to fraction-free
computations.

In Algorithm FFFG (see Table 2) we compute a sequence of paranormal multi-
indices (�νσ)σ=0,...,K together with the corresponding Mahler systems (up to a sign
which may be determined by adapting (6.4)), using the fraction-free recurrence rela-
tion of Theorem 6.1. The efficient computation of the quantities r(�) is not specified.
It can be implemented as described before Example 6.1. We establish in Theorem 7.2
below the connection to Popov-bases. In Theorem 7.3, we show in particular that we
have solved the interpolation problem of Definition 2.1.

We remark that the algorithm has been implemented in the Maple computer
algebra system with the code available from either author.

Theorem 7.2 (feasibility of Algorithm FFFG). Algorithm FFFG of Table 2 is
well defined and gives the specified results (see also Theorem 7.3(a)): for any σ ≥ 0,
the multi-index �νσ is σ-normal, andMσ coincides up to a sign with the Mahler system
M(�νσ, z). Furthermore,Mσ is a Popov-basis of type (σ, �n) with row-degree �νσ. Finally,

5These properties remain valid for the more general �n-Popov form [11]. As a consequence, we
obtain uniqueness (up to a constant factor) of Popov-bases of a given type. A constructive proof
of existence will be given in Theorem 7.2 below. In addition, it follows from Theorem 7.2 that
a Popov-basis with row degree �ν coincides up to a constant with the (nontrivial) Mahler system
M(�ν, z).

134 BERNHARD BECKERMANN AND GEORGE LABAHN

Table 2
Algorithm FFFG.

Algorithm FFFG (on offdiagonal staircases)

Input: a vector of formal series f, a multi-index �n.

Output: For σ = 0, 1, 2, . . . ,K with εσ ∈ {−1, 1}:
�νσ , a closest σ–normal point to (�nk)k=0,1,... defined by (6.3), (7.3),
Mahler systems Mσ = εσ ·M(�νσ , z),
multigradients dσ = εσ · d∗(�νσ),
basis for set of solutions of type (σ, �nk), k ≥ 0:

{z	 ·M(·,µ)
σ : � = 0, 1, ..., �n

(µ)
k − �ν

(µ)
σ − 1, µ = 1, ...,m}.

Initialization: M0 ← Im, d0 ← 1, �ν0 ← �0

Iterative step: For σ = 0, 1, 2, . . . ,K − 1:
Calculate for � = 1, . . . ,m:

first term of residuals r() ← cσ(f ·M(·,)
σ)

Define set Λ = Λσ = {� ∈ {1, . . . ,m} : r() �= 0}.

If Λ = {} then Mσ+1 ←Mσ , dσ+1 ← dσ , �νσ+1 ← �νσ
else

Next closest para–normal point: �νσ+1 ← �νσ + �eπ , where π = πσ ∈ Λ satisfies

π = min
{
� ∈ Λ : �n() − �ν

()
σ = maxµ∈Λ{�n(µ) − �ν

(µ)
σ }

}
.

Calculate for � = 1, . . . ,m, � �= π:

leading coefficients p() ← coefficient(M
(,π)
σ , z�ν

(�)
σ −1).

Increase order for � = 1, . . . ,m, � �= π:

M
(·,)
σ+1 ← [M

(·,)
σ · r(π) −M

(·,π)
σ · r()]/dσ

M
(·,π)
σ+1 ← (z − cσ,σ) ·M(·,π)

σ

Adjust degree constraints:

M
(·,π)
σ+1 ← [M

(·,π)
σ+1 · r(π) −

∑
	�=π M

(·,)
σ+1 · p()]/dσ

New multigradient: dσ+1 = r(π)

endif

with the assumptions of Theorem 6.2, computing a Mahler system of order K has a
cost of O(m ·K4 · κ2).

Proof. The first sentence of the assertion follows by recurrence on σ from Theo-
rem 6.1, where in contrast to Algorithm FFFGnormal we also apply Theorem 6.1(a)
in order to include the case Λ = {}. Let us verify (again by induction on σ) the link
to Popov-bases. The assertion is trivially true for σ = 0 since M0 = Im. Suppose
therefore that the statement holds for σ ≥ 0, and let Λ �= {} (the case Λ = {} is
trivial). In what follows of the proof we write �ν = �νσ and recall that �νσ+1 = �ν + �eπ.
We know already that Mσ+1 is a Mahler system of type �ν + �eπ, implying that the
conditions on the order of the columns as well as the degree constraints (7.1) hold.
To verify (7.2), notice that the recurrence of Theorem 6.1(c) may be rewritten in the
form

Mσ+1 =Mσ ·P1 ·P2 · d,

FRACTION-FREE RATIONAL INTERPOLANTS 135

with some d ∈ Q, and

P1 =

1

. . .

1
a1 · · · aπ−1 z − aπ aπ+1 · · · am

1

. . .

1

, P2 =

1 b1
. . .

...
1 bπ−1

1
bπ+1 1
...

. . .

bm 1

with some aj , bj ∈ Q, where we have not displayed the zero entries. By hypothesis
we know that the limit for z → ∞ of z−�n ·Mσ · z�n−�ν is upper triangular. Also,
the limit of z−�n+�ν · P1 · z�n−�ν−�eπ is upper triangular since, by construction of π, for
" = 1, . . . ,m we have either a� = 0 or �n(π) − �ν(π) ≥ �n(�) − �ν(�), with equality only if

" ≥ π. In addition, b� �= 0 implies that degM
(�,π)
σ = �ν(�) − 1. Comparing with (7.2)

for Mσ, we get for " = 1, . . . ,m either b� = 0 or �n(π) − �ν(π) − 1 ≤ �n(�) − �ν(�), with
equality only if " < π. Thus the limit of z−�n+�ν+�eπ ·P2 · z�n−�ν−�eπ is upper triangular,
and we have established relation (7.2) for Mσ+1. Finally, for a cost analysis we may
fully apply the reasoning of the proof of Theorem 6.2

In order to describe further properties of the output of Algorithm FFFG, let
us specify the offdiagonal path mentioned in the introduction of this section. The
sequence (�nk)k=0,1,2,... is constructed at each step by increasing the index that has
the furthest to go to reach �n, with ties broken by index order. That is, given an �nk
we determine �nk+1 by increasing the λth component by one where λ is chosen as

�n(λ) − �n(λ)
k = maxµ{�n(µ) − �n(µ)

k }. If there is more than one choice of λ, then λ is
the minimum index satisfying the maximality condition. In other words, we use the
construction (6.3), where in each step λ = λk satisfies

λ := min

{
" ∈ {1, . . . ,m} : �n(�) − �n(�)

k = max
µ∈{1,...,m}

{
�n(µ) − �n(µ)

k

}}
.(7.3)

Thus, for example, if �n = [1, 3, 3], then the sequence of 8 vectors are [0, 0, 0], [0, 1, 0],
[0, 1, 1], [0, 2, 1], [0, 2, 2], [1, 2, 2], [1, 3, 2], and [1, 3, 3]. In particular, notice that �n|�n| =
[1, 3, 3], the multi-index of our original problem. The choice (7.3) of our particular
staircase can also be understood as an elimination strategy in an extrapolation process
with respect to an asymptotic scale of comparison. In fact, because of some numerical
and theoretical results, this ordering was also preferred for GREP [29].

Theorem 7.3 (properties of Algorithm FFFG).
(a) For all k, σ ≥ 0, the set of solutions of type (σ, �nk) (and thus the kernel of

the matrix K(�nk, σ)) is spanned by

zj ·M(·,µ)
σ , j = 0, 1, . . . , �n

(µ)
k − �ν(µ)

σ − 1, µ = 1, . . . ,m.

(b) For all k, σ ≥ 0 we have6 rank K(�nk, σ) = |min(�νσ, �nk)|.
(c) A multi-index �ν verifying rank K(�nk, σ) = |min(�ν, �nk)| for k ≥ 0 necessarily

coincides with �νσ.
(d) The multi-index �nk is σ-normal iff �nk = �νσ. In particular, �nk is normal iff

�nk = �νk.
Proof. For a proof of (a), (b), let us first mention that the K := max(�0, �nk−�νσ) =

|�nk|−|min(�νσ, �nk)| polynomial vectors given in the assertion are linearly independent
6In what follows, the operations max,min for integer vectors are defined on a component basis.

136 BERNHARD BECKERMANN AND GEORGE LABAHN

over Q by Lemma 5.3(e) since Mσ essentially is a Mahler system. Let us show that
they are all solutions of type (σ, �nk). From Theorem 7.2 we know that the order is
correct. Furthermore, from (7.2) we have the degree constraints

degM (�,µ)
σ ≤ �n(�) − �n(µ) + �ν(µ)

σ − η�,µ, ", µ = 1, . . . ,m,

with η�,µ = 1 if " > µ and η�,µ = 0 otherwise. Notice also that our offdiagonal
staircase verifies

�n
(µ)
k > 0 =⇒ �n(µ) − �n(µ)

k ≥ �n(�) − �n(�)
k − η�,µ, ", µ = 1, . . . ,m.

Hence in the case �n
(µ)
k − �ν(µ)

σ > 0 (and thus �n
(µ)
k > 0) we get degM

(�,µ)
σ ≤ �n(�)

k −
�n

(µ)
k + �ν

(µ)
σ , as required to show that the polynomial vectors of (a) are solutions of

type (σ, �nk). Consequently, we have found K linearly independent elements of the
kernel of K(�nk, σ), showing that rank K(�nk, σ) ≤ |min(�νσ, �nk)|. On the other hand,
by Lemma 4.3 and the paranormality of �νσ, a nonsingular submatrix of K(�nk, σ) is
given by K∗(min(�νσ, �nk), |min(�νσ, �nk)|), implying the assertions (a), (b).

In order to show (c), notice that by assumption and part (b) we have that

|min(�νσ, �nk)| = |min(�ν, �nk)| for all k ≥ 0. If now �ν �= �νσ, say, �ν
(�) < �ν

(�)
σ , then

we may find a k such that �n
(�)
k = �ν(�), and �n

(µ)
k+1 = �n

(µ)
k + δ�,µ, a contradiction.

Finally, for part (d) it is sufficient to prove the first sentence since |�nk| = k.
The σ-normality of �νσ has been already established in Theorem 7.2, and the final
implication is a consequence of Lemma 4.3 and part (c).

Notice that, for any k, and for any σ-normal multi-index �ν, the matrix K(�a, σ),
�a := min{�ν, �nk}, is a submatrix both of K(�nk, σ), and of K(�ν, σ). Moreover, by
Lemma 4.3, the latter matrix has maximal column rank. Therefore the Krylov matrix
K(�a, σ) has full column rank, and, by Theorem 7.3(b),

|max{�0, �nk−�ν}| = |�nk|−rank K(�a, σ) ≥ |�nk|−rank K(�nk, σ) = |max{�0, �nk−�νσ}|.
(7.4)

Thus one may consider �νσ as the closest σ-normal point to the sequence (�nk)k, and
in addition such a multi-index is unique according to Theorem 7.3(c). In order to
illustrate this statement, we have drawn in Figure 1 in the classical C-table (i.e.,
Padé approximation, m = 2) an offdiagonal path together with the path of closest
paranormal points. We also remark that the classic block structure of the Padé table
is easily shown using Theorem 7.3(a) (cf. [9, Example 4.2]).

We may now establish the equivalent characterization of paranormal points as
claimed in Corollary 5.4

Proof of Corollary 5.4. If �n is σ-normal, then M(z) = M(�n, z) has the required
properties by construction. Let thereforeM(z) be given as described above. We have
shown in Theorem 7.2 that �ν := �νσ is σ-normal, and hence σ(|�ν| − 1) < σ ≤ σ(|�ν|),
implying that |�ν| ≥ |�n|. On the other hand, the columns of M(z) are all solutions of
type (σ, �n). Thus from Theorem 7.3(a) we know that there exists a matrix polynomial
P(z) such that M(z) = Mσ · P(z). Taking into account the degree assumption on
M(z) and (7.2), we may conclude that the limit of z�ν−�n ·P(z) for z →∞ exists. Hence
the components of �n−�ν have to be nonnegative, which together with |�ν| ≥ |�n| implies
that �ν = �n. Consequently, �n is σ-normal, and the representation of Corollary 5.4
follows from Lemma 5.3(c).

Besides solving the approximation problems of section 2, we mention one further
application for Algorithm FFFG.

FRACTION-FREE RATIONAL INTERPOLANTS 137

✲

❄
�n(1)

�n(2)�

�

� �

� �

�

�

�

�

� � � � � �

� �

� �

� �

�

Fig. 1. An example of singular Padé approximation. We have drawn the corresponding C-table
of bigradients; here the dashed square indicates a singular block of zero-entries. By a straight line
we denote the offdiagonal path induced by �n = (7, 6), with the dots characterizing the corresponding
closest paranormal points.

Example 7.1 (fraction-free Hankel matrix solver). Suppose that we want to solve
a system of linear equations

H · x = b, H = [hi+j]i,j=0...n−1, b = [bj]j=n−1,...,2n−2,

with a Hankel matrix of coefficients. If hj , bj ∈ D, we may apply Algorithm FFFG in
two different ways to obtain the Cramer solution x∗ := x · detH ∈ D

n: First, as men-
tioned already in the context of (2.5), we may consider a (homogenous) Hermite–Padé
approximation problem with m = 3, f1 = −1, f2(z) =

∑
hjz

j , f3(z) = −
∑
bjz

j . It
is easily shown that the resulting Sylvester matrix K(�n, 2n− 1), �n := [n− 1, n, 0], is
upper block triangular, with the left upper block being equal to the identity of order
n− 1 and the right lower block being equal to H up to a permutation of the columns.
Hence detH = ±d(�n) and H is nonsingular if and only if �n is normal. In this case,
M(3,3)(�n, z) = ε · detH, ε ∈ {±1}, and thus the coefficient vector of M(2,3)(�n, z) is ε
times the Cramer solution x∗ of our Hankel system.

If one wants to solve the above system for multiple right-hand sides, it may be
more interesting to get explicitly the adjoint detH ·H−1 ∈ D

n×n. Again this can be
done by Algorithm FFFG, using a well-known inversion formula for Hankel matrices:
we compute the Mahler system M([n − 1, n], z) corresponding to the Padé approxi-
mation problem f = [f1, f2] and denote by [qj]j=0,...,n−1 and [vj]j=0,...,n, respectively,
the coefficient vectors ofM(2,1)([n−1, n], z) and ofM(2,2)([n−1, n], z), qn := 0. Then
vn = ±detH, and from [36, section 1] we obtain (up to a sign) the adjoint of H by

vn ·H−1 = 1
vn
·

vn
...

. . .

v1 · · · vn

qn−1 · · · q0
... ·
q0

− 1
vn
·

qn
...

. . .

q1 · · · qn

vn−1 · · · v0
... ·
v0

 .

Thus our algorithm gives a fraction-free method of solving systems of equations having

138 BERNHARD BECKERMANN AND GEORGE LABAHN

Hankel coefficient matrices. By reversing the order of columns one can state a similar
result for Toeplitz systems. Note that in this case we have a Hankel, rather than a
Toeplitz solver, since the algorithm solves all subproblems for nonsingular matrices
along the principal diagonal of a Hankel matrix (principal antidiagonal of a Toeplitz
matrix). The complexity of this solver is O(n4 · κ2), which is faster than O(n5 · κ2)
required for fraction-free Gaussian elimination. One can also use our algorithm for
fast fraction-free solving of linear systems having coefficient matrices that are block
Hankel or block Hankel-like [40].

8. Fraction-free matrix GCD computations. Given two matrix polynomials
A,B having s rows, with elements in D[z], the aim of this section is to show that
Algorithm FFFG of section 7 enables us to compute a greatest common left divisor
(GCLD) of A,B in a fraction-free way. Here it is convenient to combine A,B in a
larger matrix G = [A,B] ∈ D[z]s×m, where we suppose7 that the rows of G are
linearly independent over Q[z]. We recall the well-known fact (see, e.g., [37, Lemma
6.3-3, p. 377]) that from a decomposition

G · U = [A,B] · U = [R, 0], R ∈ Q[z]s×s, U ∈ Q[z]m×m,(8.1)

with U being unimodular (i.e., detU ∈ Q \ {0}) we may read off the solution of the
matrix GCD problem: the matrix R is a GCLD (over Q[z]) of A,B, and it is unique
up to multiplication on the right by a unimodular matrix (in particular, the degree of
its determinant is unique). Note that, by multiplying with a suitable element from D,
the matrices R,U of (8.1) may be chosen to have elements only from D[z]. Algorithm
FFFG will not only provide R ∈ D[z]s×s but also the cofactor matrix U .

The link to the interpolation problems of section 2 is given by reversing coeffi-
cients, i.e., z is replaced by 1/z. We are then left with a vector Hermite–Padé ap-
proximation problem, with the corresponding system of functions f ∈ D[z]s×m being
polynomial. However, the corresponding (C,F) is in general not controllable. Some
results for the recursive solution of such a problem have been mentioned (without com-
plete proofs) in [8, section 4] by exploiting the connections to power Hermite–Padé
approximants.

In order to describe the complexity of our approach, we will make use of a result of
Kung, Kailath, and Morf [39], [12, Theorem 1] on the rank of certain block Sylvester
matrices. Here we require some definitions from the theory of matrix polynomials: the
degree of a (rectangular) matrix polynomial C is the smallest integer N allowing a
representation of the form C(z) = C0+C1z+ · · ·+CNzN . The McMillan degree of C
is the maximum of the degrees of the determinant of a maximal square submatrix of
C (see, e.g., [37, 12, 51, 52]). We also need the concept of minimal indices [37, section
6.5.4] which are closely related to the controllability and Kronecker indices mentioned
previously. The solutions h ∈ Q[z]m of the equation G · h = 0 form a submoduleM
of Q[z]m of dimension m − s. We may find a basis of M given by the columns of
H = [h1, . . . , hm−s] ∈ Q[z]m×(m−s) such that H is column-reduced and irreducible
[37, Theorem 6.5-10, p. 458]. Denoting by �α(j) the degree of hj , j = 1, . . . ,m − s,
and �α = (�α(1), . . . , �α(m−s)), it is known that �α is unique (up to a permutation) [37,
Lemma 6.3-14] and that |�α| equals the McMillan degree of G minus the degree of the
determinant of an GLCD.

We state the main result of this section in the following theorem.

7This restriction is natural since otherwise we may have GCDs with arbitrarily high degree [12],
[37, p. 376 ff].

FRACTION-FREE RATIONAL INTERPOLANTS 139

Theorem 8.1 (GCLD via FFFG). Let G = [A,B] ∈ D[z]s×m with degree N
and McMillan degree N#. In addition, let �α be the vector of minimal indices of G,
with its largest component 8 denoted by N∗. If we apply Algorithm FFFG to the data
f(z) = zN ·G(1/z), �n = (N,N, . . . , N), cj,k = δj−s,k, with stopping criterion σ = σ∗
such that f ·Mσ is reduced, i.e., f ·Mσ contains only s columns different from zero,
then we have the following:

(a) For σ ≥ σ∗, the matrix Uσ(z), a column permutation of Mσ(1/z) ·z�νσ , is uni-
modular and verifies (8.1). Thus we have solved the extended GLCD problem.

(b) We have that σ∗ ≤ σ′ := s · (N +N∗ + 1). For N∗ we have the worst case 9

estimate N∗ ≤ N# ≤ s ·N .
(c) Suppose the coefficients occurring in G are all bounded in size by the con-

stant κ. Then computing the GLCD by Algorithm FFFG has a worst case
complexity of O(m (σ′)4 κ2).

Proof. Denote by I the set of indices of the columns in f ·Mσ∗ which are different
from zero. Note that I contains s elements by assumption on G and σ∗. Let j ∈
{1, . . . ,m} \ I, and σ ≥ σ∗. Since ord (f ·M(·,j)

σ∗) =∞, one easily verifies by induction
that the jth column of Mσ coincides with that of Mσ∗ (up to some constant). In
particular, f ·Mσ is reduced. For the assertion of part (a) it remains to show that
U(z) := Mσ(1/z) · z�νσ is a unimodular matrix polynomial. In fact, U is a matrix
polynomial according to (7.2), and one easily verifies that detMσ = d · z|�νσ| with
d ∈ D \ {0}. Therefore detU ∈ D, as claimed in part (a).

The set Λ appearing in Algorithm FFFG is a subset of I in any step where σ ≥ σ∗.
Therefore the components of �νσ with indices not in I remain invariant for σ ≥ σ∗.
For the remainder of the proof it will be convenient to reorder the columns of G (and
thus simultaneously the rows and columns of Mσ) such that I = {1, 2, . . . , s}. Thus
Uσ(z) =Mσ(1/z) · z�νσ and �νσ = (�cσ,�a) for σ ≥ σ∗, with some multi-index �a having
m− s components.

In [12, Theorem 1] (see also [39]), the authors discuss the rank of transposed
block Sylvester matrices which are given by Sk := K([k, . . . , k], s · (k + N))T using
our notation. It is shown that

rank Sk = |min([k, . . . , k︸ ︷︷ ︸
m

], [k, . . . , k︸ ︷︷ ︸
s

, �α])|, k ≥ 0,

where �α is the vector of minimal indices of G. Notice that K([k, . . . , k], s ·(k+N)) has
a rhombus block structure, and that K([k, . . . , k], σ) is obtained from K([k, . . . , k], s ·
(k + N)) for σ ≥ s · (k + N) by bordering σ − s · (k + N) zero rows. Consequently,
with σ = s · (N + "), we get for " = 0, 1, 2, . . . and for k = 0, 1, . . . , "

rank K([k, . . . , k], σ) = |min([k, . . . , k︸ ︷︷ ︸
m

], [k, . . . , k︸ ︷︷ ︸
s

, �α])| = |min([k, . . . , k︸ ︷︷ ︸
m

], �νσ)|,

the final equality following from Theorem 7.3(b). We may conclude that the one
partition of �νσ′ , namely �a, coincides up to a permutation with the vector �α of minimal
indices, and that the other partition �cσ′ contains only components strictly larger than
N∗. Consider now P (z) := H(1/z) ·z�α, with H ∈ Q[z]m×(m−s) constituting a minimal

8If (without loss of generality) the McMillan degree of G is attained for detA, then N∗ is the
minimal degree of a matrix polynomial [CT , DT] allowing a representation A−1 ·B = C ·D−1.

9As seen from the proof, it is more likely that N∗ has the same magnitude as N#/(m − s). In
this case, σ′ is at most of order (N + 1) · s ·m/(m− s).

140 BERNHARD BECKERMANN AND GEORGE LABAHN

basis as described before Theorem 8.1. Then P ∈ Q[z]m×(m−s), with its jth column
having the degree �α(j), and f · P = 0. By Theorem 7.3(a), the columns of P may be
represented as a polynomial linear combination of the columns of Mσ′ , that is, there
exists a Q ∈ Q[z]m×(m−s) such that P =Mσ′ ·Q, and �z�νσ′ ·Q · z−�α has a finite limit
for z →∞. According to the special form of �νσ′ we may conclude that the first s rows
of Q vanish. Moreover, denoting by Q∗ the (square) submatrix obtained from the last
m − s rows of Q, we know that �z�a · Q∗ · z−�α has a finite limit. In addition, as with
P, the columns of Q∗ are also linearly independent over Q[z], and |�a| = |�α|. Thus
Q∗ is unimodular, showing that f ·Mσ′ is reduced, and hence σ′ ≥ σ∗. For a proof
of part (b), it remains to establish the (rough) bound for N∗. Notice that N∗ ≤ |�α|,
with the latter quantity being bounded above by N#, the McMillan degree of G (see
the remark before Theorem 8.1). The final estimate N# ≤ s ·N of part (b) is trivial.
Finally, part (c) is a consequence of Theorem 7.2.

Example 8.1. Let

A∗(z) :=

[−3 z + 1 4 z
1 −2

]
, B∗(z) :=

[
2 z + 1 −4 z
z2 3

]
, C(z) :=

[
3 z + 1 −3 z
z2 z2 − z

]
.

We will compute the GCLD of the two matrix polynomials A = C ·A∗ and B = C ·B∗

using the method described in Theorem 8.1. The matrix polynomials A∗ and B∗ are
shown to be left coprime, and so GCLDs of A and B are obtained by multiplying C on
the right by some unimodular matrix. Here the combined matrix G(z) = [A(z), B(z)]
is given by

[−9 z2 − 3 z + 1 12 z2 + 10 z −3 z3 + 6 z2 + 5 z + 1 −12 z2 − 13 z
−3 z3 + 2 z2 − z 4 z3 − 2 z2 + 2 z z4 + z3 + z2 −4 z3 + 3 z2 − 3 z

]
,

with m = 4, s = 2, and N = 4. We compute that N# = 6 < s · N, while the
vector of minimal indices is given by �α = (1, 2) (see below), and thus N∗ = 2. Notice
that f(z) = zN · G(1/z) leads to a vector Hermite–Padé approximation problem
where the data is not controllable (in fact, the first row of f is divisible by z2). From
Theorem 8.1 we know that Algorithm FFFG gives us a reduced basis (and thus a
GCLD) at iteration σ∗, with σ∗ ≤ σ′ = 14.

Using Algorithm FFFG we find that σ∗ = 11, and �νσ∗ = [3, 3, 2, 1] and hence we
have computed |�ν11| = 9 different Mahler systems. It is quite instructive to have a
look at the sequence of closest paranormal points (�νσ)0≤σ≤σ∗ which are given by

[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [1, 0, 1, 0], [1, 0, 2, 0],

[1, 1, 2, 0], [1, 1, 2, 1], [2, 1, 2, 1], [2, 2, 2, 1], [3, 2, 2, 1], [3, 3, 2, 1].

Clearly, this staircase differs significantly from the offdiagonal staircase induced by
�n = [4, 4, 4, 4], that is, the “ideal” staircase contains only two paranormal points,
and [0, 0, 0, 0] is the only (trivially) normal point (the linear functionals c0 and c2
have been rejected). This illustrates why the reliable version of Algorithm FFFG as
presented in section 7 is in fact needed.

We note some interesting points about the output of Algorithm FFFG. By re-
versing coefficients in f ·M11 and by eliminating the last two zero columns, we get
the GCLD of A and B as the answer,

C∗(z) :=
[−20736 −124416 z
−41472 z2 + 20736 z 41472 z2 − 41472 z

]
= −20736 ·C(z) ·

[
1 0
1 −2

]
,

FRACTION-FREE RATIONAL INTERPOLANTS 141

with the factor on the right being unimodular. We observe in this example that the
coefficients of the GCLD computed by Algorithm FFFG still have a common factor
d11 = −20736. However, the prediction of such common factors (which also occur for
Cramer solutions in other contexts) seems to be quite a difficult problem to solve.
Also, notice that during our intermediate computations we have already factored out∏10
j=0 dj , a quantity which is of much bigger size than d11. Finally, we observe that

by partitioning

U(z) =M11(1/z) · z�ν11 =
[
U1 U2

U3 U4

]

with blocks of size 2 × 2 we have found the cofactors in the diophantine equation
A ·U1 +B ·U2 = C

∗. Furthermore, U4 ·U−1
3 is the (irreducible) right coprime matrix

fraction description of the rational function B−1A.
For presentation purposes our example uses coefficients from the integers. A

similar example could easily be constructed where the problem has parameters, for
example, having coefficients from the domain Q[ε], with ε an unknown.

The significance of Mahler systems for the scalar GCD problem has been discussed
in some detail in [10, section 6]. Here A,B are scalar polynomials, i.e., m = 2, s = 1,
N = max(degA, degB) = N#, and N − N∗ is the degree of the GCD C of A and
B. The dimension of the largest Sylvester matrix encountered in Algorithm FFFG
will be N + N∗, which may be larger than degA + degB − degC, the dimension of
the well-known critical Trudi submatrix. In fact, for a more efficient implementation
one may choose instead of �n = [N, . . . , N] the “smallest” multi-index �n such that
f(z) := G(1/z) · z�n is polynomial. Here the corresponding unimodular matrix is
obtained by z�n ·Mσ(1/z) · z−�n+�νσ .

9. Conclusions. In this paper we have presented algorithms for the computation
of matrix rational interpolants and one-sided matrix greatest common divisors. The
algorithms are fraction-free and designed to work in exact arithmetic domains where
coefficient growth is a primary concern. The algorithms require no restrictions on input
and are at least an order of magnitude faster than existing methods that compute
solutions to the general problem. When specialized to cases such as Padé and matrix
Padé approximation and scalar greatest common divisor computation, our approach
is at least as efficient as existing fast fraction-free algorithms that work for these
particular cases [10, 16, 21, 25].

Our method finds a basis for the Q[z]-submodule of polynomial vectors of a given
order, by recursively computing all bases of lower order. As such we find all possi-
ble solutions to the above interpolation problems. The methods also illustrate the
advantages of considering the “closest normal points” of a given offdiagonal staircase
of multi-indices which may contain nonnormal points. The approach taken in this
paper differs from the method proposed in [10], which computes matrix Padé approx-
imation by also using Mahler systems as its fundamental computation tool, but only
at normal points. Problems corresponding to nonnormal points are “jumped” using
fraction-free Gaussian elimination.10 As a result, in cases where there are significant
sized jumps their algorithm is potentially an order of magnitude less efficient than the
one presented in this paper.11

10The method of “jumping” over singularities by some look-ahead strategy has been shown to
be very useful in a numerical setting; see [6, 20, 23, 53]. Also, as shown in [10], there is a nice
interpretation of such jumps in terms of modified Schur complements.

11Jumps of larger size are quite typical for matrix-GCD computations; see Example 8.1.

142 BERNHARD BECKERMANN AND GEORGE LABAHN

In the case of computing a scalar GCD, we do not use pseudodivisions in order
to jump over problems associated to multi-indices being not (para)normal. This is in
contrast to classical fraction-free methods for solving such problems [30]. In fact, we
do not believe that our algorithm can be easily converted to recover the subresultant
algorithm. Instead it is probably the case that one would have to choose bases different
from Mahler systems (“comonic” instead of “monic” bases in the terminology of [9]),
leading to some fraction-free variant of the algorithm of [17]. However, notice that,
for large jumps, the size of the intermediate quantities in the subresultant algorithm
[16, 25] (as well as in the algorithms of [10, 21]) may become significant. Our method,
using closest normal points, does not have this drawback.

For some applications, it is of interest to follow computational paths different
than the offdiagonal paths used in this paper. For example, it is of interest to obtain
a Toeplitz instead of a Hankel solver. If this path consists of normal points, then one
may apply the fraction-free algorithm of section 6. However, we are interested in giving
a version that allows us to drop any regularity assumptions. Here, it might be possible
to adapt the method of [5] to fraction-free arithmetic (or, alternatively, the methods
in [9, 52]). In addition, in some applications such as Padé–Chebyshev approximation
or state-space realizations in the theory of linear systems, one is interested in the
case where the matrices C are lower Hessenberg instead of lower triangular. The
corresponding special multiplication rule has the drawback that one decreases by one
the order while multiplying by z. It is possible to adapt Algorithm FFFGnormal, but
a generalization to singular cases is still an open problem.

As mentioned toward the end of section 2, the computation of matrix rational
interpolants are related to the computation of both Popov and Hermite normal forms
for matrices of polynomials. We plan to develop efficient fraction-free algorithms
for these important computations, by combining our Algorithm FFFG with methods
presented in [55]. Similarly it is of interest to see if our methods can be extended to
Ore domains as done by Li [43] in the case of greatest common divisor computations
of differential and difference operators.

Fraction-free algorithms are often important for theoretic reasons since they form
the basis for generating exact algorithms based on modular reduction. We plan to
investigate such algorithms for computing rational interpolants and matrix greatest
common divisors. That these methods ultimately provide improved practical algo-
rithms has been noted by Li [43] in the case of computing greatest common divisors
of differential operators.

REFERENCES

[1] G.A. Baker and P.R. Graves-Morris, Padé Approximants , 2nd ed., Cambridge University
Press, Cambridge, UK, 1995.

[2] E. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elimination, Math.
Comp., 22 (1968), pp. 565–578.

[3] B. Beckermann, Zur Interpolation mit polynomialen Linearkombinationen beliebiger Funk-
tionen, Ph.D. Thesis, Department of Applied Mathematics, University of Hannover, Han-
nover, Germany, 1990.

[4] B. Beckermann, The structure of the singular solution table of the M-Padé approximation
problem, J. Comput. Appl. Math., 32 (1990), pp. 3–15.

[5] B. Beckermann, A reliable method for computing M-Padé approximants on arbitrary stair-
cases, J. Comput. Appl. Math., 40 (1992), pp. 19–42.

[6] B. Beckermann, The stable computation of formal orthogonal polynomials, Numer. Algo-
rithms, 11 (1996), pp. 1–23.

FRACTION-FREE RATIONAL INTERPOLANTS 143

[7] B. Beckermann and G. Labahn, A uniform approach for Hermite Padé and simultaneous
Padé approximants and their matrix generalizations, Numer. Algorithms, 3 (1992), pp.
45–54.

[8] B. Beckermann and G. Labahn, A uniform approach for the fast, computation of matrix-
type Padé approximants, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 804–823.

[9] B. Beckermann and G. Labahn, Recursiveness in matrix rational interpolation problems,
J. Comput. Appl. Math., 77 (1997), pp. 5–34.

[10] B. Beckermann, S. Cabay, and G. Labahn, Fraction–free Computation of Matrix Padé
Systems, in Proceedings of ISSAC’97, Maui, HI, ACM Press, New York, 1997, pp. 125–
132.

[11] B. Beckermann, G. Labahn, and G. Villard, Shifted Normal Forms of Polynomial Ma-
trices, in Proceedings of ISSAC’99, Vancouver, BC, ACM Press, New York, 1999, pp.
189–196.

[12] R.R. Bitmead, S.Y. Kung, B.D.O. Anderson, and T. Kailath, Greatest common divisors
via generalized Sylvester and Bezout matrices, IEEE Trans. Automat. Control, 23 (1978),
pp. 1043–1046.

[13] A.W. Bojanczyk, R.P. Brent, and F.R. de Hoog, Stability analysis of a general Toeplitz
systems solver, Numer. Algorithms, 10 (1995), pp. 225–244.

[14] A.W. Bojanczyk, R.P. Brent, F.R. de Hoog, and D.R. Sweet, On the stability of the
Bareiss and related Toeplitz factorization algorithms, SIAM J. Matrix Anal. Appl., 16
(1995), pp. 40–57.

[15] R. Brent, F.G. Gustavson, and D.Y.Y. Yun, Fast solution of Toeplitz systems of equations
and computation of Padé approximants, J. Algorithms, 1 (1980), pp. 259–295.

[16] W. Brown and J.F. Traub, On Euclid’s algorithm and the theory of subresultants, J. ACM,
18 (1971), pp. 505–514.

[17] A. Bultheel and M. Van Barel, A matrix Euclidean algorithm and the matrix minimal
Padé approximation problem, in Continued Fractions and Padé Approximants, C. Brezin-
ski, ed., North–Holland, Amsterdam, pp. 11–51, 1990.

[18] S. Cabay and D.K. Choi, Algebraic computations of scaled Padé fractions, SIAM J. Comput.,
15 (1986), pp. 243–270.

[19] S. Cabay, G. Labahn, and B. Beckermann, On the theory and computation of non-perfect
Padé-Hermite approximants, J. Comput. Appl. Math., 39 (1992), pp. 295–313.

[20] S. Cabay, A.R. Jones, and G. Labahn, Computation of numerical Padé-Hermite and si-
multaneous Padé systems II: A weakly stable algorithm, SIAM J. Matrix Anal. Appl., 17
(1996), pp. 268–297.

[21] S. Cabay and P. Kossowski, Power series remainder sequences and Padé fractions over an
integral domain, J. Symbolic Comput., 10 (1990), pp. 139–163.

[22] S. Cabay and G. Labahn, A superfast algorithm for multidimensional Padé systems, Numer.
Algorithms, 2 (1992), pp. 201–224.

[23] S. Cabay and R. Meleshko, A weakly stable algorithm for Padé approximants and the
inversion of Hankel matrices, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 735–765.

[24] S. Chandrasekaran and A.H. Sayed, Stabilizing the generalized Schur algorithm, SIAM J.
Matrix Anal. Appl., 14 (1996), pp. 950–983.

[25] G. Collins, Subresultant and reduced polynomial remainder sequences, J. ACM, 14 (1967),
pp. 128–142.

[26] S.R. Czapor and K.O. Geddes, A comparison of algorithms for the symbolic computation
of Padé approximants, in Proceedings of EUROSAM’84, J. Fitch, ed., Lecture Notes in
Comput. Sci. 174, Springer-Verlag, Berlin, 1984, pp. 248–259.

[27] R.W. Freund and H. Zha, Formally biorthogonal polynomials and a look–ahead Levinson
algorithm for general Toeplitz systems, Linear Algebra Appl., 188/89 (1993), pp. 255–303.

[28] R.W. Freund and H. Zha, A look-ahead algorithm for the solution of general Hankel systems,
Numer. Math., 64 (1993), pp. 295–321.

[29] W.F. Ford and A. Sidi, An algorithm for a generalization of the Richardson extrapolation
process, SIAM J. Numer. Anal., 24 (1987), pp. 1212–1232.

[30] K.O. Geddes, S.R. Czapor, and G. Labahn, Algorithms for Computer Algebra, Kluwer,
Boston, MA, 1992.

[31] I. Gohberg, T. Kailath, and V. Olshevski, Fast Gaussian elimination with partial pivoting
for matrices with displacement structure, Math. Comp., 64 (1995), pp. 1557–1567.

[32] G. Golub and V. Olshevski, Pivoting for Structured Matrices, with Applications,
http://www-isl.stanford.edu/∼olshevsk, 1997.

[33] M. Gu, Stable and efficient algorithms for structured systems of linear equations, SIAM J.
Matrix Anal. Appl., 19 (1998), pp. 279–306.

144 BERNHARD BECKERMANN AND GEORGE LABAHN

[34] M.H. Gutknecht, Stable row recurrences for the Padé table and generically superfast look-
ahead solvers for non-Hermitian Toeplitz systems, Linear Algebra Appl., 188/89 (1993),
pp. 351–421.

[35] M.H. Gutknecht and M. Hochbruck, Look-ahead Levinson and Schur algorithms for non-
Hermitian Toeplitz Systems, Numer. Math., 70 (1995), pp. 181–227.

[36] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Oper.
Theory Adv. Appl. 13, Birkhäuser Verlag, Basel, Boston, 1984.

[37] T. Kailath, Linear Systems, Prentice–Hall Englewood Cliffs, NJ, 1980.
[38] D. Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading, MA, 1981.
[39] S.Y. Kung, T. Kaliath, and M. Morf, A generalized resultant matrix for polynomial ma-

trices, in Proceedings of the IEEE Conference on Decision and Control, Florida, 1976,
pp. 892–895.

[40] G. Labahn, Inversion Components of block Hankel-like matrices, Linear Algebra Appl., 177
(1992), pp. 7–48.

[41] G. Labahn and S. Cabay, Matrix Padé fractions and their computation, SIAM J. Comput.,
18 (1989), pp. 639–657.

[42] G. Labahn, D.K. Choi, and S. Cabay, The inverses of block Hankel and block Toeplitz
matrices, SIAM J. Comput., 19 (1990), pp. 98–123.

[43] Z. Li, A Subresultant Theory for Linear Differential, Linear Difference and Ore Polynomials,
with Applications, Ph.D. Thesis, Research Institute for Symbolic Computation, Johannes
Kepler University, Linz, Austria, 1996.

[44] W. Lübbe, Über ein allgemeines Interpolationsproblem—Lineare Identitäten zwischen be-
nachbarten Lösungssystemen, Ph.D. Thesis, Department of Applied Mathematics, Uni-
versity of Hannover, Hannover, Germany, 1983.

[45] K. Mahler, Perfect systems, Composit. Math., 19 (1968), pp. 95–166.
[46] S. Paszkowski, Quelques Algorithmes de l’Approximation de Padé–Hermite, Publication

ANO 89, University of Science and Technology at Lille, Lille, France, 1982.
[47] S. Paszkowski, Recurrence relations in Padé-Hermite approximation, J. Comput. Appl.

Math., 19 (1987), pp. 99–107.
[48] S. Paszkowski, Hermite Padé approximation: Basic notions and theorems, J. Comput. Appl.

Math., 32 (1990), pp. 229–236.
[49] B. Salvy and P. Zimmermann, Gfun: A Maple package for the manipulation of generating

and holonomic functions in one variable, ACM Trans. Math. Software, 20 (1994), pp.
163–177.

[50] A. Sidi, On a generalization of the Richardson extrapolation process, Numer. Math., 57 (1990),
pp. 365–377.

[51] M. Van Barel and A. Bultheel, The computation of non-perfect Padé-Hermite approxi-
mants, Numer. Algorithms, 1 (1991), pp. 285–304.

[52] M. Van Barel and A. Bultheel, A general module theoretic framework for vector M-Padé
and matrix rational interpolation, Numer. Algorithms, 3 (1992), pp. 451–462.

[53] M. Van Barel and A. Bultheel, A look–ahead algorithm for the solution of block Toeplitz
systems, Linear Algebra Appl., 266 (1997), pp. 291–335.

[54] M. Van Hoeij, Factorization of differential operators with rational function coefficients, J.
Symbolic Comput., 24 (1997), pp. 537–561.

[55] G. Villard, Computing Popov and Hermite forms of polynomial matrices, in Proceedings of
ISSAC’96, Zurich, ACM Press, New York, 1996, pp. 250–258.

RATIONAL MATRIX FUNCTIONS AND RANK-1 UPDATES∗

DANIEL S. BERNSTEIN† AND CHARLES F. VAN LOAN‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 145–154

Abstract. Suppose f = p/q is a quotient of two polynomials and that p has degree rp and q has
degree rq . Assume that f(A) and f(A+ uvT) are defined where A ∈ Rn×n, u ∈ Rn, and v ∈ Rn are
given and set r = max{rp, rq}. We show how to compute f(A+uvT) in O(rn2) flops assuming that
f(A) is available together with an appropriate factorization of the “denominator matrix” q(A). The
central result can be interpreted as a generalization of the well-known Sherman–Morrison formula.
For an application we consider a Jacobian computation that arises in an inverse problem involving
the matrix exponential. With certain assumptions the work required to set up the Jacobian matrix
can be reduced by an order of magnitude by making effective use of the rank-1 update formulae
developed in this paper.

Key words. matrix functions, Sherman–Morrison

AMS subject classifications. 65F05, 65F99, 65L05

PII. S0895479898333636

1. Introduction. Suppose A ∈ R
n×n, u ∈ R

n, and v ∈ R
n are given and that f

is a prescribed rational function that is defined on the spectrum of A and A+uvT . In
this paper we are concerned with the efficient computation of f(A + uvT) assuming
that f(A) is available.

The special case f(z) = 1/z is well known:

(A+ uvT)−1 = A−1 − αyzT , y = A−1u, z = A−T v, α = 1/(1 + zTu).

This is the Sherman–Morrison formula and it can be used to compute (A + uvT)−1

from A−1 in O(n2) flops. See [2, p. 50]. In a linear equation setting, the Sherman–
Morrison result, together with a QR factorization of A, makes it possible to solve
(A+ uvT)x = b in O(n2) flops.

Interest in a “fast” f(A+ uvT) result can arise in several settings. For example,
Benzi and Golub [1] present a Lanczos-based process for bounding certain matrix
functions. Our generalized Sherman–Morrison result widens the class of problems
that can be efficiently handled by their technique. Kenney and Laub [3] discuss
condition estimation for matrix functions. With our results it is possible to compute
more specialized sensitivity measures, e.g., how a rational function of a matrix A
changes when a particular aij is varied.

The paper is organized as follows. In the next section we derive the generalized
Sherman–Morrison formula and a closed-form expression for the derivative of f(A)
with respect to aij . Numerical results, stability issues, and a Jacobian evaluation
application are discussed in section 3.

2. A generalized Sherman–Morrison result. We first show that if A changes
by a rank-1 matrix, then Aj changes by a rank-j matrix. Krylov matrices and ex-
change permutation matrices are involved. For A ∈ R

n×n, x ∈ R
n, and j > 0, the

∗Received by the editors February 3, 1998; accepted for publication (in revised form) by R. Freund
October 28, 1999; published electronically May 31, 2000.

http://www.siam.org/journals/simax/22-1/33363.html
†Department of Computer Science, University of Massachusetts, 140 Governor’s Drive, Amherst,

MA 01003 (bern@cs.umass.edu).
‡Department of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853

(cv@cs.cornell.edu).

145

146 DANIEL S. BERNSTEIN AND CHARLES F. VAN LOAN

Krylov matrix Kry(A, x, j) ∈ R
n×j is defined by

Kry(A, x, j) =
[
x, Ax, . . . , Aj−1x

] ∈ R
n×j .

We adopt the convention that Kry(A, x, j) is the empty matrix if j = 0. The exchange
permutation matrix Ej ∈ R

j×j is just the identity matrix Ij with its columns in reverse
order, i.e.,

Ej = Ij(:, j:− 1:1) .

Lemma 1. If A ∈ R
n×n, u ∈ R

n, v ∈ R
n, and j > 0, then

(A+ uvT)j = Aj +KjEjL
T
j ,

where Kj = Kry(A, u, j) and Lj = Kry(AT + vuT , v, j).
Proof. We use induction. The lemma is true for j = 1 since K1 = u, E1 = I1,

and L1 = v. Assume that the lemma holds for some j ≥ 1. It follows that

(A+ uvT)j+1 = (A+ uvT)j(A+ uvT) = (Aj +KjEjL
T
j)(A+ uvT)

= Aj+1 +KjEjL
T
j (A+ uvT) +AjuvT

= Aj+1 +Kj((A
T + vuT)LjEj)

T + (Aju)vT

= Aj+1 +Kj
[
(AT + vuT)jv , . . . , (AT + vuT)v

]T
+ (Aju)vT

= Aj+1 +
[
Kj , A

ju
]

vT (A+ uvT)j

...
vT (A+ uvT)

vT

= Aj+1 +Kj+1Ej+1L
T
j+1.

The computation of (A + uvT)j from Aj requires approximately 6jn2 flops if the
lemma is carefully exploited.

The next result shows that if A changes by a rank-1 matrix, then a degree-r
polynomial in A changes by a rank-r matrix. Hankel matrices are involved and for
α = (α1, . . . , αr) we define

Hank(α) =

α1 α2 α3 · · · αr
α2 α3 · · · · · · 0

α3

...
. . . · · · 0

...
...

...
. . .

...
αr 0 0 · · · 0

∈ R

r×r.

Lemma 2. If A ∈ R
n×n, u ∈ R

n, v ∈ R
n, and p(z) = α0 + α1z + · · ·+ αrzr with

r > 0, then

p(A+ uvT) = p(A) +KrHαL
T
r ,

where Kr = Kry(A, u, r), Lr = Kry(AT + vuT , v, r), α = (α1, . . . , αr), and Hα =
Hank(α).

RATIONAL MATRIX FUNCTIONS AND RANK-1 UPDATES 147

Proof. Using Lemma 1 we have

p(A+ uvT) =

r∑
j=0

αj(A+ uvT)j = α0I +

r∑
j=1

αj(A
j +KjEjL

T
j)

= p(A) +

r∑
j=1

αjKjEjL
T
j ,

where Kj = Kry(A, u, j), Lj = Kry(AT + vuT , v, j), and Ej is the j-by-j exchange
permutation. Note that Kj and Lj are the first j columns of Kr = Kry(A, u, r) and
Lr = Kry(AT + vuT , v, r), i.e., Kj = Kr(:, 1:j) and Lj = Lr(:, 1:j). Let zeros(m,n)
denote the m-by-n zeros matrix as in Matlab with the convention that it is the
empty matrix if either argument is zero. It follows that

KjEjL
T
j = Kr

[
Ej 0
0 zeros(r − j, r − j)

]
LTr

and so

p(A+ uvT) = p(A) + Kr

 r∑
j=1

αj

[
Ej 0
0 zeros(r − j, r − j)

]
LTr .

This proves the lemma since the matrix inside the parentheses is precisely the Hankel
matrix Hα defined above.

The computation of p(A+ uvT) from p(A) involves about 6n2r+ nr2 flops if the
lemma is carefully exploited.

We are now set to prove that if A changes by a rank-1 matrix, then a rational
function of A changes by a rank-r matrix where r is the maximum degree of the
numerator and denominator polynomials.

Theorem 3. Suppose f(z) = p(z)/q(z), where

p(z) =

rp∑
i=0

αiz
i and q(z) =

rq∑
i=0

βiz
i.

Let r = max{rp, rq} and define the r-vectors

α̃ = (α1, . . . , αrp , 0, . . . , 0︸ ︷︷ ︸
r−rp

) and β̃ = (β1, . . . , βrq , 0, . . . , 0︸ ︷︷ ︸
r−rq

).

Suppose A ∈ R
n×n, u ∈ R

n, v ∈ R
n and that f(A) and f(A + uvT) are defined. Set

Hα̃ = Hank(α̃) and Hβ̃ = Hank(β̃). If

Kr = Kry(A, u, r),(1)

Lr = Kry(AT + vuT , v, r),(2)

Y Tα = Hα̃L
T
r ,(3)

Y Tβ = Hβ̃L
T
r ,(4)

then

f(A+ uvT) = f(A) +XY T ,(5)

148 DANIEL S. BERNSTEIN AND CHARLES F. VAN LOAN

where

X = q(A)−1Kr,(6)

Y T = Y Tα −M−1Y Tβ (f(A) +XY Tα),(7)

where

M = Ir + Y
T
β X.(8)

Proof. Assume for clarity that both rp and rq are positive. The proof is easily
adapted to handle the cases rp = 0 and/or rq = 0. (Various matrices and vectors
below turn out to be empty.)

Set α = (α1, . . . , αrp) and β = (β1, . . . , βrq) and define Hα = Hank(α) and
Hβ = Hank(β). Noting that Krp = Kr(:, 1:rp), Lrp = Lr(:, 1:rp), Krq = Kr(:, 1:rq),
and Lrq = Lr(:, 1:rq), we see from Lemma 2 that

p(A+ uvT) = P +KrpHαL
T
rp = P +KrHα̃L

T
r ,

q(A+ uvT) = Q+KrqHβL
T
rq = Q+KrHβ̃L

T
r ,

where P = p(A) and Q = q(A). Thus,

f(A+ uvT) = q(A+ uvT)−1p(A+ uvT)

=
(
Q+KrHβ̃L

T
r

)−1 (
P +KrHα̃L

T
r

)

=
(
In +Q−1KrHβ̃L

T
r

)−1

Q−1
(
P +KrHα̃L

T
r

)
=
(
In +XY Tβ

)−1 (
F +XY Tα

)
,

where F = f(A) = Q−1P . By the Sherman–Morrison–Woodbury formula [2, p. 50],

(
In +XY Tβ

)−1
= In −XM−1Y Tβ ,

where M = Ir + Y
T
β X and so

f(A+ uvT) =
(
In −XM−1Y Tβ

) (
F +XY Tα

)
= F +X

(
Y Tα −M−1Y Tβ (F +XY Tα)

)
= F +X

(
Y Tα − (Ir + Y

T
β X)−1Y Tβ (F +XY Tα)

)
= F +XY T .

The computation of f(A + uvT) from f(A) via (1)–(4) and (6)–(8) requires O(n2r)
flops. Indeed, if we assume that r = rp = rq and that a QR factorization of the
denominator polynomial q(A) is available, then the work is distributed as follows:

Calculation Flops

Kr 2n2r
Lr 2n2r
Yα nr2

Yβ nr2

X 3n2r
M 2nr2

Y 4n2r + 2nr2

RATIONAL MATRIX FUNCTIONS AND RANK-1 UPDATES 149

This totals to 11n2r flops if we assume that r � n. As with any Sherman–Morrison-
type computation, the condition numbers of q(A) and the matrix M defined by (8)
should be monitored because they shed light on the accuracy of the computed update.

Note that Theorem 3 can be generalized in the direction of the Sherman–Morrison–
Woodbury formula (see [2, p. 50]). In particular, if UV T is a rank-d matrix and
f(A + UV T) exists, then it can be shown that f(A) and f(A + UV T) differ by a
matrix that has rank dr.

We conclude this section by using Theorem 3 to develop an expression for the
partial derivative of f(A) with respect to a particular matrix element aij , i.e.,

∂

∂aij
f(A) = lim

δ→0

f(A+ δeie
T
j)− f(A)
δ

,

where In = [e1, . . . , en]. The idea is to use Theorem 3 to simplify the difference
between f(A) and f(A+ δeie

T
j).

Corollary 4. Suppose f(z) = p(z)/q(z), where

p(z) =

rp∑
i=0

αiz
i and q(z) =

rq∑
i=0

βiz
i.

Let r = max{rp, rq} and define the r-vectors

α̃ = (α1, . . . , αrp , 0, . . . , 0︸ ︷︷ ︸
r−rp

) and β̃ = (β1, . . . , βrq , 0, . . . , 0︸ ︷︷ ︸
r−rq

).

Assume that A ∈ R
n×n, f(A) is defined, and 1 ≤ i, j ≤ n. If Hα̃ = Hank(α̃),

Hβ̃ = Hank(β̃), Q = q(A), K(i) = Kry(A, ei, r), and L
(j) = Kry(AT , ej , r), then

∂

∂aij
f(A) = X(i)Z(j)T ,

where

X(i) = Q−1K(i),(9)

Z(j)T = Hα̃L
(j)T −Hβ̃L(j)T f(A).(10)

Proof. Since f(A) is defined, then the matrix f(A+ δeie
T
j) is also defined for all

δ less than or equal to some sufficiently small δ0. Assuming that δ ≤ δ0, we apply
Theorem 3 with u = ei and v = δej . It follows that if

L(δ) = Kry(AT + δeje
T
i , δej , r),

Yα(δ)
T = Hα̃L(δ)

T ,

Yβ(δ)
T = Hβ̃L(δ)

T ,

then

f(A+ δeie
T
j) = f(A) +X

(i)Y (δ)T ,

where

Y (δ)T = Yα(δ)
T − (Ir + Yβ(δ)

TX(i))−1Yβ(δ)
T (f(A) +X(i)Yα(δ)

T).

150 DANIEL S. BERNSTEIN AND CHARLES F. VAN LOAN

Since

L(δ) = δ ·Kry(AT + δeje
T
i , ej , r),

we see that

lim
δ→0

Yα(δ)

δ
= Hα̃L

(j)T and lim
δ→0

Yβ(δ)

δ
= Hβ̃L

(j)T .

Since Yα(δ) and Yβ(δ) both converge to zero as δ → 0, it follows that

lim
δ→0

Y (δ)T = lim
δ→0

(
Yα(δ)

T

δ
− (Ir + Yβ(δ)

TX(i))−1Yβ(δ)
T

δ
(f(A) +X(i)Yα(δ)

T)

)

= Hα̃L
(j)T −Hβ̃L(j)T f(A) ≡ Z(j)T .

Note that if f is a polynomial, then Hβ̃ = 0.

3. Discussion. We have written a Matlab function

[XP,YP,XQ,YQ,XF,YF,condM] = Rational_Update(A,u,v,alfa,P,beta,Q_cell)

that implements the update formulae derived in the proof of Theorem 3. The vectors
alfa and beta contain the coefficients of the numerator and denominator polynomials
p and q, respectively. The QR factorization of Q = q(A) is passed via a cell array
representation Q cell. If A is n-by-n and r is the larger of deg(p) and deg(q), then the
output matrices XP, YP, XQ, YQ, XF, and YF are n-by-r and relate p(A) to p(A+ uvT),
q(A) to q(A+ uvT), and f(A) to f(A+ uvT) as follows:

p(A+ uvT) = P +XPY
T
P ,

q(A+ uvT) = Q+XQY
T
Q ,

f(A+ uvT) = F +XFY
T
F .

The r-by-r matrix M defined by (8) has an important role to play in the calculation
of YF , and so its condition number is returned.

Table 1 reports on the quality of f(A + uvT) when f is the diagonal Pade ap-
proximation to the exponential function:

f(A) =

(
r∑

µ=0

βµA
µ

)−1(r∑
µ=0

αµA
µ

)
, αµ =

(2r − µ)!r!
(2r)!µ!(r − µ)! , βµ = (−1)µαµ.

(11)
See [2, p. 572]. Rational Update is used to update f(A). The matrix A is a randomly
generated 100-by-100 example with eigenvalues in the left-half plane and ‖A ‖2 = 15.
The denominator matrix q(A) is well conditioned. The rank-1 correction uvT has unit
2-norm in the test case. Define

F̃0 = expm(A),

F0 = the (p, p) Pade approximation to exp(A),

F̃1 = expm(A+u*v’),

F1 = the (p, p) Pade approximation to exp(A+ uvT),

F
(up)
1 = an estimate of F1 obtained by updating F0,

RATIONAL MATRIX FUNCTIONS AND RANK-1 UPDATES 151

Table 1
Errors associated with the update of the (r, r)-Pade approximation to eA.

r
‖ F0 − F̃0 ‖2
‖ F̃0 ‖2

‖ F1 − F̃1 ‖2
‖ F̃1 ‖2

‖ F1 − F
(up)
1 ‖

2

‖ F1 ‖2
cond(Q) cond(M)

0 2.00e+001 1.99e+001 0.00e+000 1.0e+000 1.0e+000
1 1.56e+001 1.55e+001 2.01e−015 3.6e+000 1.0e+000
2 9.42e+000 9.40e+000 3.17e−015 8.9e+000 1.0e+000
3 4.36e+000 4.35e+000 7.66e−015 1.7e+001 1.5e+000
4 1.52e+000 1.52e+000 2.31e−014 2.7e+001 4.7e+000
5 4.01e−001 4.03e−001 3.95e−014 3.9e+001 9.9e+000
6 8.08e−002 8.14e−002 4.46e−014 5.0e+001 3.5e+002
7 1.27e−002 1.28e−002 4.97e−014 6.2e+001 1.2e+004
8 1.59e−003 1.61e−003 5.35e−014 7.3e+001 2.7e+005
9 1.62e−004 1.64e−004 5.80e−014 8.3e+001 4.9e+006
10 1.37e−005 1.39e−005 6.15e−014 9.3e+001 7.9e+007
11 9.76e−007 9.88e−007 6.36e−015 1.0e+002 1.1e+009
12 5.94e−008 6.00e−008 6.88e−014 1.1e+002 1.5e+010
13 3.12e−009 3.14e−009 6.93e−014 1.2e+002 1.8e+011
14 1.43e−010 1.43e−010 7.46e−014 1.2e+002 2.0e+012
15 5.77e−012 5.75e−012 7.80e−014 1.3e+002 2.1e+013
16 2.06e−013 2.05e−013 7.89e−014 1.4e+002 2.0e+014

where expm is the built-inMatlab function for the matrix exponential. In this study
we treat expm as exact, thereby enabling us to report on the relative error in F0 and
F1. We are well aware of the difficulties associated with eA calculations, but this
example is not numerically challenging for expm.

An interesting aspect of Table 1 is that the 2-norm relative error in F
(up)
1 is

consistently small even as the condition of the matrix M deteriorates with increasing
r. We have no analysis or informal explanation for this phenomena, which (it turns
out) is quite typical. The Krylov matrices that “make up” the matrix M and the
“right-hand-side matrix” Y Tβ (f(A) + XY Tα) in (7) are notoriously ill conditioned,
especially for large values of r. But somehow the effect of this ill-conditioning is
muted. It is perhaps worth noting that Krylov matrices are always involved (at least
implicitly) with any matrix polynomial calculation because

r∑
i=0

αiA
i = [I, A, . . . , Ar]

α0I
α1I
...
αrI

 .

Apparently there is not a simple connection between the condition of a matrix poly-
nomial computation and the condition of the Krylov matrices that lurk in the back-
ground. Clearly, more research in this area is required, especially if high-degree poly-
nomials are involved.

We now proceed to a discussion of Corollary 4 and how it can be applied in a
systems identification context. Suppose the value of a scalar-valued function

y(t) = cT eAtb, b, c ∈ R
n, A ∈ R

n×n,

is known at t = t1, . . . , tm withm ≥ n2 and that from that data we want to reconstruct
A. Defining

yk = y(tk), k = 1:m,

152 DANIEL S. BERNSTEIN AND CHARLES F. VAN LOAN

we see that yk is a snapshot of the solution to the initial value problem

ẋ = Ax, x(0) = b

“as seen through” the observation vector c, i.e., yk = cTx(tk).

There are several ways to attack this difficult identification problem (see [4, 5]).
One approach is to approximate eAtk with a rational function fk(A) for k = 1:m and
then to minimize ‖ φ(A)− y ‖2, where

φ(A) =

cT f1(A)b
cT f2(A)b

...
cT fm(A)b

 and y =

y1
y2
...
ym

 .

This is a nonlinear least square problem in the n2 entries that define the matrix
A = (aij). If the Levenberg–Marquardt algorithm is applied, then (among other
things) at each step we need to compute the m-by-n2 Jacobian J of the vector-valued
function φ(A).

Suppose an ODE solver is used to generate fk(A)b ≈ x(tk) for k = 1:m. If each
of these vectors requires O(n2) flops to compute, then a φ-evaluation costs O(mn2)
flops and a finite-difference approximation to J would involve O(mn4) flops. We show
how this flop count can be reduced by a factor that ranges from n to n2.

Note that the kth row of the Jacobian involves partial derivatives of the scalar-
valued function cT fk(A)b with respect to each of the matrix entries aij :

∂

∂aij

(
cT fk(A)b

)
= cT

(
∂

∂aij
fk(A)

)
b.

Corollary 4 is therefore applicable. Let us see how we might use the corollary to
simplify the evaluation of these Jacobian entries. Assume that fk is the (rp, rq) Pade
approximation to eAtk , i.e.,

fk(A) = qk(A)
−1pk(A),

pk(A) =

(
rp∑
µ=0

α(k)
µ A

µ

)
,

qk(A) =

(
rq∑
µ=0

β(k)
µ Aµ

)

with

α(k)
µ =

(rp + rq − µ)!rp!
(rp + rq)!µ!(rp − µ)! t

µ
k and β(k)

µ =
(rp + rq − µ)!rq!

(rp + rq)!µ!(rq − µ)! t
µ
k .

Using Corollary 4,

cT
(
∂

∂aij
fk(A)

)
b = cTX

(i)
k Z

(j)T
k b,(12)

RATIONAL MATRIX FUNCTIONS AND RANK-1 UPDATES 153

where

X
(i)
k = qk(A)

−1K(i),(13)

Z
(i)
k = Hα(k)L(j)T −Hβ(k)L(j)T qk(A)

−1pk(A).(14)

Note that if r = max{rp, rq} and we precompute and store the matrix powers A2, . . . ,
Ar, then the Krylov matricesK(i) and L(j) are easily retrieved and the matrices pk(A)
and qk(A) can be set up in O(n2r) flops. For a given Jacobian row index k, we must
compute the vectors ck1, . . . , ckn ∈ R

r defined by

cTki = c
T qk(A)

−1K(i), i = 1:n,(15)

and the vectors bk1, . . . , bkn ∈ R
r defined by

bki = Hα(k)L(i)T b−Hβ(k)L(i)T qk(A)
−1pk(A)b, i = 1:n.(16)

The kth row of the Jacobian is then made up of the inner products cTkibkj , where i
and j each range from 1 to n. Summarizing the overall Jacobian evaluation we get

Compute and save the matrix powers A2, . . . , Ar.
For k = 1:m

Set up qk(A) and pk(A), and compute the QR factorization of the former.
For i = 1:n

Compute the vectors cki and bki defined by (15) and (16).
end
Establish the kth row of the Jacobian by computing the inner products

cTkibkj , i = 1:n, j = 1:n.
end

The powers of A cost O(rn3). As we mentioned above, once these powers are available,
then the Krylov matrices K(i) and L(j) that figure in the computations are “free.” For
each k there is an O(n3) QR factorization. The vectors ck1, . . . , ckn and bk1, . . . , bkn
can altogether be computed in O(rn2) flops. The n2 inner products cTkibkj cost another
O(rn2) flops. Thus, each row of the Jacobian requires O(rn2 + n3) flops. The total
Jacobian evaluation as outlined is therefore an O(rmn2+mn3) computation, a factor
of n less than the ODE finite-difference approach.

We note that if the Pade approximation is a polynomial (rq = 0), then a number
of simplifications result:

Compute and save the matrix powers A2, . . . , Ar.
For i = 1:n

Compute cTi = cTK(i) and bi = L
(i)T b.

end
For k = 1:m

Compute the inner products cTi Hα(k)bj , i = 1:n, j = 1:n.
end

The flop count now is just O(rmn2), which is less than the ODE finite-difference
approach by a factor of n2.

A numerical issue here concerns the size of r. As we mentioned earlier, the Krylov-
related computations can be problematic if this parameter is too large. However,
in some contexts it is possible to base the identification process on observations of
cT eAtb at values t = t1, . . . , tm that are small in value. In this case a low-order Pade
approximation to eAtk can suffice.

Matlab software for carrying out the updates discussed in this paper is available
from http://www.cs.cornell.edu/cv.

154 DANIEL S. BERNSTEIN AND CHARLES F. VAN LOAN

Acknowledgments. The authors became interested in this problem as a result
of discussions with Professor Martha Contreras of the Biometrics Unit at Cornell
University. Mike Todd read an earlier draft of this paper, spotted some errors, and
showed us that the exact Jacobian could be obtained in section 2.

REFERENCES

[1] M. Benzi and G.H. Golub, Bounds for the entries of matrix functions with applications to
preconditioning, BIT, 39 (1999), pp. 417–438.

[2] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1997.

[3] C.S. Kenney and A.J. Laub, Condition estimates for matrix functions, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 191–209.

[4] R.I. Jennrich and P.B. Bright, Fitting systems of linear differential equations using computer
generated exact derivatives, Technometrics, 18 (1976), pp. 385–392.

[5] L. Ljung, System Identification—Theory for the User, Prentice-Hall, Englewood Cliffs, NJ,
1984.

OPTIMAL KRONECKER PRODUCT APPROXIMATION OF BLOCK
TOEPLITZ MATRICES∗

JULIE KAMM† AND JAMES G. NAGY‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 155–172

Abstract. This paper considers the problem of finding n×n matrices Ak and Bk that minimize
||T −

∑
Ak ⊗ Bk||F , where ⊗ denotes Kronecker product and T is a banded n × n block Toeplitz

matrix with banded n × n Toeplitz blocks. It is shown that the optimal Ak and Bk are banded
Toeplitz matrices, and an efficient algorithm for computing the approximation is provided. An image
restoration problem from the Hubble Space Telescope (HST) is used to illustrate the effectiveness of
an approximate SVD preconditioner constructed from the Kronecker product decomposition.

Key words. block Toeplitz matrix, conjugate gradient method, Kronecker product, image
restoration, preconditioning, singular value decomposition

AMS subject classifications. 65F20, 65F30

PII. S0895479898345540

1. Introduction. A Toeplitz matrix is characterized by the property that its
entries are constant on each diagonal. Toeplitz and block Toeplitz matrices arise
naturally in many signal and image processing applications; see, for example, Bunch
[4] and Jain [17] and the references therein. In image restoration [21], for instance,
one needs to solve large, possibly ill-conditioned linear systems in which the coefficient
matrix is a banded block Toeplitz matrix with banded Toeplitz blocks (BTTB).

Iterative algorithms, such as conjugate gradients (CGs), are typically recom-
mended for large BTTB systems. Matrix-vector multiplications can be done efficiently
using fast Fourier transforms [14]. In addition, convergence can be accelerated by pre-
conditioning with block circulant matrices with circulant blocks (BCCB). A circulant
matrix is a Toeplitz matrix in which each column (row) can be obtained by a circular
shift of the previous column (row), and a BCCB matrix is a natural extension of this
structure to two dimensions; cf. Davis [10].

Circulant and BCCB approximations are used extensively in signal and image
processing applications, both in direct methods which solve problems in the “Fourier
domain” [1, 17, 21] and as preconditioners [7]. The optimal circulant preconditioner
introduced by Chan [8] finds the closest circulant matrix in the Frobenius norm. Chan
and Olkin [9] extend this to the block case; that is, a BCCB matrix C is computed
to minimize

||T − C||F .

BCCB approximations work well for certain kinds of BTTBmatrices [7], especially
if the unknown solution is almost periodic. If this is not the case, however, the
performance of BCCB preconditioners can degrade [20]. Moreover, Serra-Capizzano
and Tyrtyshnikov [6] have shown recently that it may not be possible to construct a
BCCB preconditioner that results in superlinear convergence of CGs.

∗Received by the editors October 5, 1998; accepted for publication (in revised form) by L. Reichel
November 6, 1999; published electronically May 31, 2000.

http://www.siam.org/journals/simax/22-1/34554.html
†Raytheon Systems Company, Dallas, TX 75266 (j-kamm@ti.com).
‡Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322

(nagy@mathcs.emory.edu).

155

156 JULIE KAMM AND JAMES G. NAGY

Here we consider an alternative approach: optimal Kronecker product approxi-
mations. A Kronecker product A⊗B is defined as

A⊗B =

a11B · · · a1nB
...

...
an1B · · · annB

 .

In particular, we consider the problem of finding matrices Ak, Bk to minimize

∥∥∥∥∥T −
s∑

k=1

Ak ⊗Bk

∥∥∥∥∥
F

,(1.1)

where T is an n2 × n2 banded BTTB matrix, and Ak, Bk are n× n banded Toeplitz
matrices. A general approach for constructing such an optimal approximation was
proposed by Van Loan and Pitsianis [25] (see also Pitsianis [23]). Their approach,
which we describe in more detail in section 2, requires computing principal singular
values and vectors of an n2 × n2 matrix related to T .

An alternative approach for computing a Kronecker product approximation T ≈
A⊗B for certain deconvolution problems was proposed by Thirumalai [24]. A similar
approach for banded BTTB matrices was considered by Nagy [22]. As opposed to
the method of Van Loan and Pitsianis, the schemes described in [22, 24] require
computing principal singular values and vectors of an array having dimension at most
n× n, and thus can be substantially less expensive. Moreover, Kamm and Nagy [20]
show how these approximations can be used to efficiently construct approximate SVD
preconditioners.

Numerical examples in [20, 22, 24] indicate that this more efficient approach can
lead to preconditioners that perform better than BCCB approximations. However,
theoretical results establishing optimality of the approximations, such as in (1.1),
were not given. In this paper, we provide these results. In particular, we show
that some modifications to the method proposed in [22, 24] are needed to obtain an
approximation of the form (1.1). Our theoretical results lead to an efficient algorithm
for computing Kronecker product approximations of banded BTTB matrices.

This paper is organized as follows. Some notation is defined, and a brief review of
the method proposed by Van Loan and Pitsianis is provided in section 2. In section 3
we show how to exploit the banded BTTB structure to obtain an efficient scheme
for computing terms in the Kronecker product decomposition. A numerical example
from image restoration is given in section 4.

2. Preliminaries and notation. In this section we establish some notation to
be used throughout the paper and describe some previous work on Kronecker product
approximations. To simplify notation, we assume T is an n × n block matrix with
n× n blocks.

2.1. Banded BTTB matrices. We assume that the matrix T is a BTTB, so
it can be uniquely determined by a single column t which contains all of the nonzero
values in T ; that is, some central column. It will be useful to define an n×n array P
as t = vec(PT), where the vec operator transforms matrices into vectors by stacking
columns as follows:

TOEPLITZ KRONECKER PRODUCT APPROXIMATION 157

A =
[

a1 a2 · · · an
] ⇔ vec(A) =

a1

a2

...
an

 .

Suppose further that the entry of P corresponding to the diagonal of T is known.1

For example, suppose that

P =

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 ,(2.1)

where the diagonal of T is located at (i, j) = (2, 3). Then t = vec(PT) is the sixth
column of T , and we write

T = toep2[t, 2, 3] =

p23 p22 p21 p13 p12 p11 0 0 0
0 p23 p22 0 p13 p12 0 0 0
0 0 p23 0 0 p13 0 0 0
p33 p32 p31 p23 p22 p21 p13 p12 p11

0 p33 p32 0 p23 p22 0 p13 p12

0 0 p33 0 0 p23 0 0 p13

0 0 0 p33 p32 p31 p23 p22 p21

0 0 0 0 p33 p32 0 p23 p22

0 0 0 0 0 p33 0 0 p23

.(2.2)

In general, if the diagonal of T is pij , then the upper and lower block bandwidths of
T are i− 1 and n− i, respectively. The upper and lower bandwidths of each Toeplitz
block are j − 1 and n− j, respectively.

In a similar manner, the notation X = toep(x, i) is used to represent a banded
point Toeplitz matrix X constructed from the vector x, where xi corresponds to the
diagonal entry. For example, if the second component of the vector x = [x1 x2 x3 x4]

T

corresponds to the diagonal element of a banded Toeplitz matrix X, then

X = toep(x, 2) =

x2 x1 0 0
x3 x2 x1 0
x4 x3 x2 x1

0 x4 x3 x2

 .

2.2. Kronecker product approximations. In this subsection we review the
work of Van Loan and Pitsianis. We require the following properties of Kronecker
products:

• (A⊗B)T = AT ⊗BT .
• (A⊗B)(C ⊗D) = (AC)⊗ (BD).
• If U1 and U2 are orthogonal matrices, then U1 ⊗ U2 is also orthogonal.
• (A⊗B)x = vec(BXAT), vec(X) = x.

A more complete discussion and additional properties of Kronecker products can be
found in Horn and Johnson [16] and Graham [13].

1In image restoration, P is often referred to as a “point spread function,” and the diagonal entry
is the location of the “point source.” See section 4 for more details.

158 JULIE KAMM AND JAMES G. NAGY

Van Loan and Pitsianis [25] (see also Pitsianis [23]) propose a general technique
for an approximation involving Kronecker products where ||T −∑k(Ak ⊗ Bk)||F is
minimized. By defining the transformation to tilde space of a block matrix T ,

T =

T11 T12 · · · T1n

T21 T22 · · · T2n

...
...

...
Tn1 Tn2 · · · Tnn

 ,

as

T̃ = tilde(T) =

vec(T11)
T

...
vec(Tn1)

T

...
vec(T1n)

T

...
vec(Tnn)

T

;

it is shown in [23, 25] that

∥∥∥∥∥T −
s∑

k=1

(Ak ⊗Bk)

∥∥∥∥∥
F

=

∥∥∥∥∥T̃ −
s∑

k=1

(ãkb̃
T
k)

∥∥∥∥∥
F

,

where ãk = vec(Ak) and b̃k = vec(Bk). Thus, the Kronecker product approximation
problem is reduced to a rank-s approximation problem. Given the SVD of T̃ , T̃ =∑r
k=1 σ̃kũkṽ

T
k , rank(T̃) = r, it is well known [12] that the rank-s approximation T̃s,

s ≤ r, which minimizes ||T̃ − T̃s||F is T̃s =
∑s
k=1 σ̃kũkṽ

T
k . Choosing ãk =

√
σ̃kũk,

b̃k =
√
σ̃kṽk minimizes ||T̃ −∑s

k=1 ãkb̃
T
k ||F over all rank-s approximations, and thus

one can construct an approximation T̂ =
∑s
k=1(Ak⊗Bk) which minimizes ||T − T̂ ||F .

This general technique requires computing the largest s singular triplets of an
n2 × n2 matrix, which may be expensive for large n. Thirumalai [24] and Nagy [22]
show that a Kronecker product approximation of a banded BTTB matrix T can be
found by computing the largest s singular triplets of the n×n array P . However, this
method does not find the Kronecker product which minimizes the Frobenius norm
approximation problem in (1.1). In the next section we show that if T is a banded
BTTB matrix, then this optimal approximation can be computed from an SVD of a
weighted version of the n× n array P .

3. BTTB optimal Kronecker product approximation. Recall that the Van
Loan and Pitsianis approach minimizes ||T −∑s

k=1(Ak ⊗ Bk)||F for a general (un-

structured) matrix T by minimizing ||T̃ −∑s
k=1(ãkb̃

T
k)||F . If it is assumed that Ak

and Bk are banded Toeplitz matrices, then the array P associated with the central
column of T can be weighted and used to construct an approximation which minimizes
||T̃ −∑s

k=1(ãkb̃
T
k)||F .

Theorem 3.1. Let T be the n2 × n2 banded BTTB matrix constructed from
P , where pij is the diagonal element of T . (Therefore, the upper and lower block
bandwidths of T are i − 1 and n − i, and the upper and lower bandwidths of each
Toeplitz block are j−1 and n− j.) Further, let Ak be an n×n banded Toeplitz matrix

TOEPLITZ KRONECKER PRODUCT APPROXIMATION 159

with upper bandwidth i− 1 and lower bandwidth n− i, and let Bk be an n× n banded
Toeplitz matrix with upper bandwidth j− 1 and lower bandwidth n− j. Define ak and
bk such that Ak = toep(ak, i) and Bk = toep(bk, j), and define

T̃ = tilde(T),

ãk = vec(Ak),

b̃k = vec(Bk),

Wa = diag(
√
n− i+ 1,

√
n− i+ 2, . . . ,

√
n− 1,

√
n,
√
n− 1, . . . ,

√
i+ 1,

√
i),

Wb = diag(
√
n− j + 1,

√
n− j + 2, . . . ,

√
n− 1,

√
n,
√
n− 1, . . . ,

√
j + 1,

√
j),

Pw = WaPWb.

Then for s ≤ r = rank(P),∥∥∥∥∥T̃ −
s∑

k=1

ãkb̃
T
k

∥∥∥∥∥
F

=

∥∥∥∥∥Pw −
s∑

k=1

(Waak)(Wbbk)
T

∥∥∥∥∥
F

.

Proof. See section 3.1.
Therefore, if Ak and Bk are constrained to be banded Toeplitz matrices, then

||T −∑s
k=1(Ak ⊗Bk)||F can be minimized by finding ak, bk which minimize ||Pw −∑s

k=1(Waak)(Wbbk)
T ||F . This is a rank-s approximation problem, involving a matrix

of relatively small dimension, which can be constructed using the SVD of Pw. Noting
that Wa and Wb are diagonal matrices which do not need to be formed explicitly, the
construction of T̂ =

∑s
k=1 Ak⊗Bk which minimizes ||T − T̂ ||F , where Ak and Bk are

banded Toeplitz matrices, can be computed as follows:
• Define the weight vectors wa and wb based on the (i, j) location (in P) of the
diagonal entry of T :

wa =
[√

n− i+ 1 · · · √n− 1
√
n
√
n− 1 · · · √i]T ,

wb =
[√

n− j + 1 · · · √n− 1
√
n
√
n− 1 · · · √j]T .

• Calculate Pw = (waw
T
b). ∗ P and its SVD Pw =

∑r
k=1 σkukv

T
k , where “.∗”

denotes point-wise multiplication.
• Calculate

ak = (
√
σkuk)./wa,

Ak = toep(ak, i),

bk = (
√
σkvk)./wb,

Bk = toep(bk, j)

for k = 1, . . . , s, s ≤ r, where “./” denotes point-wise division.
The proof of Theorem 3.1 is based on observing that T̃ has at most n unique rows

and n unique columns, which consist precisely of the rows and columns of P . This
observation will become clear in the following subsection.

3.1. Proof of Theorem 3.1. To prove Theorem 3.1, we first observe that if a
matrix has one row which is a scalar multiple of another row, then a rotator can be
constructed to zero out one of these rows, i.e.,

Q

[
αxT

xT

]
=

[
α√
α2+1

1√
α2+1−1√

α2+1
α√
α2+1

] [
αxT

xT

]
=

[√
α2 + 1xT

0T

]
.(3.1)

160 JULIE KAMM AND JAMES G. NAGY

If this is extended to the case where more than two rows are repeated, then a simple
induction proof can be used to establish the following lemma.

Lemma 3.2. Suppose an n× n matrix X has k identical rows:

X =

xT1
xT1
...

xT1
xT2
...

xTn−k+1

.

Then a sequence of k−1 orthogonal plane rotators Q1, Q2, . . . , Qk−1 can be constructed
such that

QX = Qk−1Qk−2 · · ·Q1X =

√
kxT1
0T

...
0T

xT2
...

xTn−k+1

,

thereby zeroing out all the duplicate rows.

It is easily seen that this result can be applied to the columns of a matrix as well,
using the transpose of the plane rotators defined in Lemma 3.2.

Lemma 3.3. Suppose an n× n matrix X contains k identical columns:

X =
[

x1 x1 · · · x1 x2 · · ·xn−k+1

]
.

Then an orthogonal matrix Q can be constructed from a series of plane rotators such
that

XQT =
[√

kx1 0 · · · 0 x2 · · · xn−k+1

]
.

The above results illustrate the case where the first occurrence of a row (column)
is modified to zero out the remaining occurrences. However, this is for notational
convenience only. By appropriately constructing the plane rotators, any one of the
duplicate rows (columns) may be selected for modification, and the remaining rows
(columns) zeroed out. These rotators can now be applied to the matrix T̃ .

Lemma 3.4. Let T be the n2×n2 banded BTTB matrix constructed from P , where
pij is the diagonal entry of T . In other words, T = toep2[vec(PT), i, j]. Further, define

T̃ = tilde(T),

Wa = diag(
√
n− i+ 1,

√
n− i+ 2, . . . ,

√
n− 1,

√
n,
√
n− 1, . . . ,

√
i+ 1,

√
i),

Wb = diag(
√
n− j + 1,

√
n− j + 2, . . . ,

√
n− 1,

√
n,
√
n− 1, . . . ,

√
j + 1,

√
j).

TOEPLITZ KRONECKER PRODUCT APPROXIMATION 161

Then orthogonal matrices Q1 and Q2 can be constructed such that

Q1T̃Q
T
2 =

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 WaPWb 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0

.

Proof. By definition,

T =

Ti T1 0
. . .

. . .

Tn Ti T1

. . .
. . .

0 Tn Ti

.

Defining t̃Ti = vec(Ti)
T , and representing T̃ using the n× n2 submatrices T̃i,

T̃ =

T̃1

...

T̃i
...

T̃n

,

it is clear that T̃ contains only n unique rows, which are t̃T1 , . . . , t̃
T
n , and that the ith

submatrix, T̃i, contains all the unique rows, i.e.,

T̃i =

t̃T1
t̃T2
...

t̃Tn

 .

Furthermore, it can be seen that there are n − i + 1 occurrences of t̃T1 , . . . , n − 1
occurrences of t̃Ti−1, n occurrences of t̃Ti , n− 1 occurrences of t̃Ti+1, . . . , and i occur-

rences of t̃Tn . Therefore, a sequence of orthogonal plane rotators can be constructed

162 JULIE KAMM AND JAMES G. NAGY

to zero out all rows of T̃ except those in the submatrix T̃i, i.e.,

Q1T̃ =

0
...
0

WaT̃i
0
...
0

=

0T

...
0T√

n− i+ 1 t̃T1
...√

n− 1 t̃Ti−1√
n t̃Ti√

n− 1 t̃Ti+1
...√
i t̃Tn
0T

...
0T

.

Now, partitioning T̃i,

T̃i =
[
T̃i1 · · · T̃ij · · · T̃in

]
,

where each T̃ij is an n × n submatrix, it can be seen that T̃i contains only n unique

columns, which are the columns of P , p1, . . . ,pn, and that the jth submatrix T̃ij
contains all the unique columns, i.e.,

T̃ij =
[

p1 p2 · · · pn
]
= P.

Furthermore, the matrix T̃i contains n−j+1 occurrences of p1, . . . , n−1 occurrences
of pj−1, n occurrences of pj , n− 1 occurrences of pj+1, . . . , and j occurrences of pn.
Therefore, a sequence of orthogonal plane rotators can be constructed such that

Q1T̃Q
T
2 =

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 WaPWb 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0

.

The following properties involving the vec and toep2 operators are needed.
Lemma 3.5. Let T , T̃ , and P be defined as in Lemma 3.4. Further, let Ak be an

n × n banded Toeplitz matrix with upper bandwidth i − 1 and lower bandwidth n − i,
and let Bk be an n× n banded Toeplitz matrix with upper bandwidth j − 1 and lower
bandwidth n− j. Define ak and bk such that Ak = toep(ak, i) and Bk = toep(bk, j).
Then

(1) vec(X)− vec(Y) = vec(X − Y), where X and Y are any two matrices of the
same size,

(2) toep2(x, i, j) − toep2(y, i, j) = toep2(x − y, i, j), where x and y are any two
vectors of the same length,

TOEPLITZ KRONECKER PRODUCT APPROXIMATION 163

(3) toep2{vec[(∑s
k=1 akb

T
k)
T], i, j} =∑s

k=1 Ak ⊗Bk, and
(4) toep2{vec[(P −∑s

k=1 akb
T
k)
T], i, j} = T −∑s

k=1 Ak ⊗Bk.

Proof. Properties 1 and 2 are clear from the definitions of the vec and toep2
operators. Property 3 can be seen by considering the banded Toeplitz matrices A =
toep(a, i) and B = toep(b, j) and noting that the central column of A⊗B containing
all the nonzero entries is

vec[(abT)T] =

a1b1
...

a1bn
...

anb1
...

anbn

.

Therefore, property 3 holds when k = 1 since both sides are banded BTTB matrices
constructed from the same central column, and can be extended to k = 1, . . . , s by
applying property 2. Property 4 follows from properties 2 and 3.

Using these properties, Lemma 3.4 can be extended to the matrix T̃ −∑k ãkb̃
T
k .

Lemma 3.6. Let T be the n2×n2 banded BTTB matrix constructed from P , where
pij is the diagonal entry of T . Further, let Ak be an n × n banded Toeplitz matrix
with upper bandwidth i− 1 and lower bandwidth n− i, and let Bk be an n× n banded
Toeplitz matrix with upper bandwidth j − 1 and n − j. Define ak and bk such that
Ak = toep(ak, i) and Bk = toep(bk, j), and define ãk = vec(Ak) and b̃k = vec(Bk).
Let T̃ , Wa, and Wb be defined as in Lemma 3.4. Then orthogonal matrices Q1 and
Q2 can be constructed such that

Q1

(
T̃ −

s∑
k=1

ãkb̃
T
k

)
QT2 =

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 Wa(P −

∑s
k=1 akb

T
k)Wb 0 · · · 0

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0

.

Proof. Using Lemma 3.5,

T −
s∑

k=1

Ak ⊗Bk = toep2

vec

(
P −

s∑
k=1

akb
T
k

)T
 , i, j

 .

By definition of the transformation to tilde space,

tilde

(
T −

s∑
k=1

Ak ⊗Bk

)
= T̃ −

s∑
k=1

ãkb̃
T
k .

164 JULIE KAMM AND JAMES G. NAGY

Applying Lemma 3.4 to T −∑s
k=1 Ak ⊗Bk yields

Q1

(
T̃ −

s∑
k=1

ãkb̃
T
k

)
QT2 =

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 Wa(P −

∑s
k=1 akb

T
k)Wb 0 · · · 0

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0

.

The proof of Theorem 3.1 follows directly from Lemma 3.6 by noting that

∥∥∥∥∥T̃ −
s∑

k=1

ãkb̃
T
k

∥∥∥∥∥
F

=

∥∥∥∥∥Q1

(
T̃ −

s∑
k=1

ãkb̃
T
k

)
QT2

∥∥∥∥∥
F

=

∥∥∥∥∥Wa

(
P −

s∑
k=1

akb
T
k

)
Wb

∥∥∥∥∥
F

=

∥∥∥∥∥Pw −
s∑

k=1

(Waak)(Wbbk)
T

∥∥∥∥∥
F

.

3.2. Further analysis. It has been shown how to minimize ||T − T̂ ||F when the
structure of T̂ is constrained to be a sum of Kronecker products of banded Toeplitz
matrices. We now show that if T is a banded BTTB matrix, then the matrix T̂ =∑
iAi ⊗ Bi minimizing ||T − T̂ ||F must adhere to this structure. Therefore, the

approximation minimizes ||T − T̂ ||F over all matrices T̂ =
∑
iAi ⊗ Bi when T is a

banded BTTB matrix.

If T is a banded BTTB matrix, then the rows and columns of T̃ have a particular
structure. To represent this structure, using an approach similar to Van Loan and
Pitsianis [25], we define the constraint matrix Sn,ω. Given an n× n banded Toeplitz
matrix T , with upper and lower bandwidths ω =

[
ωu, ωl

]
, Sn,ω is an n2 × (n2 −

(ωu + ωl + 1)) {−1, 0, 1} matrix such that STn,ωvec(T) = 0. For example, let T be a
4× 4 banded Toeplitz matrix with bandwidths ωu = 2 and ωl = 1. Then

T =

t2 t1 t0 0
t3 t2 t1 t0
0 t3 t2 t1
0 0 t3 t2

 ,

TOEPLITZ KRONECKER PRODUCT APPROXIMATION 165

and

ST4,[2,1] =

1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

.

Note that STn,ω clearly has full row rank. Given the matrix T in (2.2),

T̃ =

p22 p23 0 p21 p22 p23 0 p21 p22

p32 p33 0 p31 p32 p33 0 p31 p32

0 0 0 0 0 0 0 0 0
p12 p13 0 p11 p12 p13 0 p11 p12

p22 p23 0 p21 p22 p23 0 p21 p22

p32 p33 0 p31 p32 p33 0 p31 p32

0 0 0 0 0 0 0 0 0
p12 p13 0 p11 p12 p13 0 p11 p12

p22 p23 0 p21 p22 p23 0 p21 p22

,

ST3,[1,1] =

1 0 0 0 −1 0 0 0 0
0 1 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0
0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 1 0 0

,

and the rows and columns of T̃ satisfy

ST3,[1,1]T̃ (:, i) = 0,

ST3,[1,1]T̃ (i, :)
T = 0

for i = 1, . . . , n2. Using the structure of T̃ , the matrix T̂ =
∑k
i=1 Ai ⊗Bi minimizing

||T − T̂ ||F must be structured such that Ai and Bi are banded Toeplitz matrices, as
the following sequence of results illustrates.

Lemma 3.7. Let A =
[

a1 a2 · · · an
]
be the n × n matrix whose structure

is constrained by STn,ωai = 0, ai �= 0, for i = 1, . . . , n. Further, let A =
∑r
i=1 σiuiv

T
i

be the SVD of A, where r = rank(A). Then ui satisfies S
T
n,ωui = 0 for i = 1, . . . , r.

Proof. Given the SVD of A

Avi = σiui

for i = 1, . . . , n, and subsequently

STn,ωAvi = σiS
T
n,ωui.

166 JULIE KAMM AND JAMES G. NAGY

By definition, STn,ωA = 0 and σi > 0 for i = 1, . . . , r. Therefore, STn,ωui = 0 for
i = 1, . . . , r.

Applying this result to AT , it is clear that the right singular vectors of A satisfy
STn,ωvi = 0 for i = 1, . . . , r if the rows of A are structured in the same manner.

Lemma 3.8. Let

A =

aT1
aT2
...

aTn

be the n × n matrix whose structure is constrained by STn,ωai = 0 for i = 1, . . . , n.

Further, let A =
∑r
i=1 σiuiv

T
i be the SVD of A, where r = rank(A). Then vi satisfies

STn,ωvi = 0 for i = 1, . . . , r.
Theorem 3.9. Let T be an n×n banded block Toeplitz matrix with n×n banded

Toeplitz blocks, where the upper and lower block bandwidths of T are ω =
[
ωu ωl

]
,

and the upper and lower bandwidths of each Toeplitz block are γ =
[
γu γl

]
. Then

the matrices Ai and Bi minimizing

∥∥∥∥∥T −
k∑
i=1

(Ai ⊗Bi)

∥∥∥∥∥
F

for k ≤ n are n× n banded Toeplitz matrices, where the upper and lower bandwidths
of Ai are given by ω, and the upper and lower bandwidths of Bi are given by γ.

Proof. Recall that

∥∥∥∥∥T −
k∑
i=1

(Ai ⊗Bi)

∥∥∥∥∥
F

=

∥∥∥∥∥T̃ −
k∑
i=1

(ãib̃
T
i)

∥∥∥∥∥
F

,

where vec(Ai) = ãi and vec(Bi) = b̃i. The structure of T results in rank(T̃) = r ≤ n
and STn,ωT̃ (:, i) = STn,γ T̃ (i, :)

T = 0 for i = 1, . . . , n2. Letting T̃ =
∑r
i=1 σ̃iũiṽ

T
i be the

SVD of T̃ , ||T̃ −∑k
i=1(ãib̃

T
i)||F , k ≤ r, is minimized by ãi =

√
σ̃iũi and b̃i =

√
σ̃iṽi,

where STn,ωũi = STn,γ ṽi = 0. Therefore, Ai is an n × n banded Toeplitz matrix with
upper and lower bandwidths given by ω, and Bi is an n× n banded Toeplitz matrix
with upper and lower bandwidths given by γ.

3.3. Remarks on optimality. The approach outlined in this section results
in an optimal Frobenius norm Kronecker product approximation to a banded BTTB
matrix. The approximation is obtained from the principal singular components of
an array Pw = WaPWb. It might be interesting to consider whether it is possible
to compute approximations which are optimal in another norm. In particular, the
method considered in [20, 22, 24] uses a Kronecker product approximation computed
from the principal singular components of P . Unfortunately we are unable to show
that this leads to an optimal norm approximation. However, there is a very close
relationship between the approaches. Since Wa and Wb are full rank, well-conditioned
diagonal matrices, P and Pw have the same rank. Although it is possible to establish
bounds on the singular values of products of matrices (see, for example, Horn and
Johnson [15]), we have not been able to determine a precise relationship between
the Kronecker product approximations obtained from the two methods. However,

TOEPLITZ KRONECKER PRODUCT APPROXIMATION 167

50 100 150 200 250

50

100

150

200

250

0
10

20
30

40
50

60

0

10

20

30

40

50

60
0

0.02

0.04

0.06

0.08

0.1

(a) Observed, blurred image. (b) PSF, P .

Fig. 1. Observed HST image and point spread function.

we have found through extensive numerical results that both methods give similarly
good approximations. Since numerical comparisons do not provide any additional
insight into the quality of the approximation, we omit such results. Instead, in the
next section we provide an example from an application that motivated this work and
illustrate how a Kronecker product approximation might be used in practice. We note
that further comparisons with BCCB approximations can be found in [20, 24].

4. An image restoration example. In this section we consider an image
restoration example, and show how the Kronecker product approximations can be
used to construct an approximate SVD preconditioner. Image restoration is often
modeled as a linear system:

b = Tx + n ,

where b is an observed blurred, noisy image, T is a large, often ill-conditioned matrix
representing the blurring phenomena, n is noise, and x is the desired true image.
If the blur is assumed to be spatially invariant, then T is a banded BTTB matrix
[1, 21]. In this case, the array P corresponding to a central column of T is called a
point spread function (PSF).

The test data we use consists of a partial image of Jupiter taken from the Hubble
Space Telescope (HST) in 1992, before the mirrors in the Wide Field Planetary Cam-
era were fixed. The data was obtained via anonymous ftp from ftp.stsci.edu in the
directory pub/stsdas/testdata/restore/data/jupiter. Figure 1 shows the observed im-
age. Also shown in Figure 1 is a mesh plot of the PSF, P , where the peak corresponds
to the diagonal entry of T . The observed image is 256× 256, so T is 65,536× 65,536.

We mention that if T is ill conditioned, which is often the case in image restoration,
then regularization is needed to suppress noise amplification in the computed solution
[21]. Although T is essentially too large to compute its condition number, certain
properties of the data indicate that T is fairly well conditioned. For instance, we
observe that the PSF is not very smooth (smoother PSFs typically indicate more
ill-conditioned T). Another indication comes from the fact that the optimal circulant

168 JULIE KAMM AND JAMES G. NAGY

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 2. Singular values of the PSF, P .

approximation of T , as well as our approximate SVD of T (to be described below), is
well conditioned; specifically these approximations have condition numbers that are
approximately 20.

We also mention that if the PSF can be expressed as P = σuvT (i.e., it has
rank 1), then the matrix T is separable. Using Theorem 3.1, T = A ⊗ B, where
A = toep(

√
σu) and B = toep(

√
σv). Efficient numerical methods that exploit the

Kronecker product structure of T (e.g., [2, 5, 11]) can then be used.

However, as can be seen from the plot of the singular values of P in Figure 2, for
this data, P is not rank 1, and so T is not separable. We therefore suggest constructing
an approximate SVD to use as a preconditioner and solve the least squares problem
Tx ≈ b using a CG algorithm, such as CGLS; see Björck [3]. This preconditioning
idea was proposed in [20] and can be described as follows. Given

T ≈
s∑

k=1

Ak ⊗Bk,(4.1)

an SVD approximation of T can be constructed as

T ≈ UΣV T ,

U = UA ⊗ UB ,

V = VA ⊗ VB ,

Σ = diag(UTTV)

= diag(UT (A1 ⊗B1 +A2 ⊗B2 + · · ·+Ak ⊗Bk)V),

where A1 = UAΣAV
T
A and B1 = UBΣBV

T
B . Note that the number of terms s only

affects the setup cost of calculating Σ. For s ≥ 1, Σ = diag(UTTV) clearly solves the
minimization problem

TOEPLITZ KRONECKER PRODUCT APPROXIMATION 169

Table 4.1
Number of CGLS and preconditioned CGLS (PCGLS) iterations needed for convergence.

CGLS, no prec. PCGLS, circulant prec. PCGLS, SVD prec.
43 12 4

5 10 15 20 25 30 35 40 45 50
10

–5

10
–4

10
–3

10
–2

10
–1

iteration

re
s
id

u
a

l
2

n
o

rm

no prec.circulant prec.

svd prec

Fig. 3. Plot of the residuals at each iteration.

min
Σ
||Σ− UTTV ||F = min

Σ
||UΣV T − T ||F

over all diagonal matrices Σ and therefore produces an optimal SVD approximation,
given a fixed U = UA ⊗UB and V = VA ⊗ VB . This is analogous to the circulant and
BCCB approximations discussed earlier, which provide an optimal eigendecomposition
given a fixed set of eigenvectors (i.e., the Fourier vectors).

In our tests, we use CGLS to solve the least squares problem Tx ≈ b us-
ing no preconditioner, our approximate SVD preconditioner (with s = 3 terms in
equation (4.1)), and the optimal circulant preconditioner. Although we observed
that T is fairly well conditioned, we should still be cautious about noise corrupting
the computed restorations. Therefore, we use the conservative stopping tolerance
||TTb− TTTx||2/||TTb||2 < 10−4.

Table 4.1 shows the number of iterations needed for convergence in each case,
and in Figure 3 we plot the corresponding residuals at each iteration. The computed
solutions are shown in Figure 4, along with the HST observed, blurred image for
comparison.

5. Concluding remarks. Because the image and PSF used in the previous
section come from actual HST data, we cannot get an analytical measure on the
accuracy of the computed solutions. However, we observe from Figure 4 that all
solutions appear to be equally good restorations of the image, and from Figure 3 we
see that the approximate SVD preconditioner is effective at reducing the number of
iterations needed to obtain the solutions. Additional numerical examples comparing
the accuracy of computed solutions, as well as computational cost of BCCB and

170 JULIE KAMM AND JAMES G. NAGY

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

(a) HST blurred image. (b) CGLS solution, 43 iterations.

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

(c) PCGLS solution, circ. prec., 12 its. (d) PCGLS solution, SVD prec., 4 its.

Fig. 4. The observed image, along with computed solutions from CGLS and PCGLS.

the approximation SVD preconditioner, can be found in [19, 20]. A comparison of
computational complexity between BCCB preconditioners and the approximate SVD
preconditioner depends on many factors. For example,

• What is the dimension of P (i.e., the bandwidths of T)?
• Is a Lanczos scheme used to compute SVDs of P , A1, and B1?
• Do we take advantage of band and Toeplitz structure when forming matrix-
matrix products involving UA, UB , VA, VB , and Ak, Bk, k = 2, . . . , s?
• How many terms, s, do we take in the Kronecker product approximation?
• For BCCB preconditioners, is n a power of 2?

TOEPLITZ KRONECKER PRODUCT APPROXIMATION 171

If we assume T is n2 × n2, and s = O(1), then set up and application of the
approximate SVD preconditioner is at most O(n3). If we further assume that n
is a power of 2, then the corresponding cost for BCCB preconditioners is at least
O(n2 log2 n). It should be noted that the approximate SVD preconditioner does not
require complex arithmetic, does not require n to be a power of 2, or does not require
any zero padding. Moreover, decomposing T into a sum of Kronecker products,
whose terms are banded Toeplitz matrices, might lead to other fast algorithms (as
has occurred over many years of studying displacement structure [18]). In this case,
the work presented in this paper provides an algorithm for efficiently computing an
optimal Kronecker product approximation.

REFERENCES

[1] H. Andrews and B. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ,
1977.

[2] E. S. Angel and A. K. Jain, Restoration of images degraded by spatially varying pointspread
functions by a conjugate gradient method, Applied Optics, 17 (1978), pp. 2186–2190.

[3] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[4] J. R. Bunch, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci. Stat.

Comput., 6 (1985), pp. 349–364.
[5] D. Calvetti and L. Reichel, Application of ADI iterative methods to the image restoration

of noisy images, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 165–186.
[6] S. Serra-Capizzano and E. Tyrtyshnikov, Any circulant-like preconditioner for multilevel

matrices is not superlinear, SIAM J. Matrix Anal. Appl., 21 (1999), pp. 431–439.
[7] R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38

(1996), pp. 427–482.
[8] T. F. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Stat.

Comput., 9 (1988), pp. 766–771.
[9] T. F. Chan and J. A. Olkin, Preconditioners for Toeplitz-block matrices, Numer. Algorithms,

6 (1993), pp. 89–101.
[10] P. J. Davis, Circulant Matrices, John Wiley, New York, 1979.
[11] L. Eldén and I. Skoglund, Algorithms for the Regularization of Ill-Conditioned Least Squares

Problems with Tensor Product Structure, and Application to Space-Variant Image Restora-
tion, Tech. Report LiTH-MAT-R-82-48, Department of Mathematics, Linköping University,
Sweden, 1982.

[12] G. H. Golub and C. V. Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[13] A. Graham, Kronecker Products and Matrix Calculus: With Applications, Halsted Press, John
Wiley, New York, 1981.

[14] M. Hanke and J. G. Nagy, Restoration of atmospherically blurred images by symmetric
indefinite conjugate gradient techniques, Inverse Problems, 12 (1996), pp. 157–173.

[15] R. A. Horn and C. A. Johnson, Matrix Analysis, Cambridge University Press, New York,
1985.

[16] R. A. Horn and C. A. Johnson, Topics in Matrix Analysis, Cambridge University Press, New
York, 1991.

[17] A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ,
1989.

[18] T. Kailath and A. H. Sayed, Displacement structure: Theory and applications, SIAM Rev.,
37 (1995), pp. 297–386.

[19] J. Kamm, Singular Value Decomposition-Based Methods for Signal and Image Restoration,
Ph.D. thesis, Southern Methodist University, Dallas, TX, 1998.

[20] J. Kamm and J. G. Nagy, Kronecker product and SVD approximations in image restoration,
Linear Algebra Appl., 284 (1998), pp. 177–192.

[21] R. L. Lagendijk and J. Biemond, Iterative Identification and Restoration of Images, Kluwer
Academic Publishers, Boston, Dordrecht, London, 1991.

[22] J. G. Nagy, Decomposition of Block Toeplitz Matrices into a Sum of Kronecker Products
with Applications in Image Restoration, Tech. Report 96-1, Department of Mathematics,
Southern Methodist University, Dallas, TX, 1996.

172 JULIE KAMM AND JAMES G. NAGY

[23] N. P. Pitsianis, The Kronecker Product in Approximation and Fast Transform Generation,
Ph.D. thesis, Cornell University, Ithaca, NY, 1997.

[24] S. Thirumalai, High Performance Algorithms to Solve Toeplitz and Block Toeplitz Matrices,
Ph.D. thesis, University of Illinois, Urbana, IL, 1996.

[25] C. F. Van Loan and N. P. Pitsianis, Approximation with Kronecker products, in Linear
Algebra for Large Scale and Real Time Applications, M. S. Moonen and G. H. Golub, eds.,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993, pp. 293–314.

ON PRINCIPAL ANGLES BETWEEN SUBSPACES OF
EUCLIDEAN SPACE∗

ZLATKO DRMAČ†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 173–194

Abstract. The cosines of the principal angles between the column spaces of full column rank
matrices X ∈ Rm×p and Y ∈ Rm×q are efficiently computed, using the Björck–Golub algorithm,
as the singular values of QT

xQy , where Qx and Qy are orthonormal matrices computed by the QR
factorizations of X and Y, respectively. This paper shows that the Björck–Golub algorithm is mixed
stable in the following sense: the computed singular values approximate with small relative error the
exact cosines of the principal angles between the column spaces of X+∆X and Y +∆Y, where ∆X,
∆Y are small backward errors. Further, theoretical analysis and numerical evidence show that the
algorithm becomes more robust if the QR factorizations are computed with the complete pivoting
scheme of Powell and Reid. Moreover, it is shown that Gaussian elimination with complete pivoting
can be used as an efficient preconditioner in computation and as a useful tool in analysis of the
sensitivity of the QR factorization.

Key words. canonical correlations, principal angles, singular values

AMS subject classifications. 65F15, 65G05, 65F25

PII. S0895479897320824

1. Introduction. Let X ∈ Rm×p, Y ∈ Rm×q be full column rank matrices with
p ≥ q and let X = span(X), Y = span(Y) be the corresponding column spaces. The
minimal angle ϑ1 ∈ [0, π/2] between X and Y is defined by

cosϑ1 = max
x∈X , y∈Y
‖x‖2=‖y‖2=1

xT y, where ‖x‖2 =
√
xTx.

If PX and PY are the orthogonal projectors onto X , Y, respectively, then σ1 = cosϑ1

is the largest singular value of PXPY . If σ1 ≥ · · · ≥ σq are the singular values of
PXPY , then the principal angles ϑi ∈ [0, π/2], 1 ≤ i ≤ q, between X and Y are
defined by σi = cosϑi. Note that σ1 = ‖PXPY‖2, where ‖ · ‖2 denotes the operator
norm induced by the Euclidean vector norm ‖ · ‖2. If p = q, then the angle (distance)
∠(X ,Y) between X and Y is defined by sin∠(X ,Y) = ‖PX − PY‖2 = sinϑp.

The cosines of the principal angles are also known as canonical correlations and
have important applications, e.g., in statistics, econometrics, and geology. Golub and
Zha [25] discuss various equivalent characterizations and applications of the principal
angles. For instance, the principal angles can be used to solve constrained optimization
problems such as maxA,B Trace(ATXTY B), where ATXTXA = Ip, B

TY TY B = Iq,
or to solve the orthogonal Procrustes minimization problem minUTU=I ‖Qx −QyU‖F
with the Frobenius matrix norm ‖ · ‖F and orthonormal matrices Qx and Qy.

Björck and Golub [10] have shown that the principal angles can be efficiently
computed via the singular value decomposition (SVD) ofQT

xQy, whereX = QxRx and

∗Received by the editors April 30, 1997; accepted for publication (in revised form) by F. T. Luk
December 18, 1998; published electronically May 31, 2000. This research was supported by National
Science Foundation grants ACS–9357812 and ASC–9625912, Department of Energy grant DE–FG03–
94ER25215, and Croatian Ministry of Science and Technology grant 037012. A preliminary version of
this paper appeared as technical report CU–CS–838–97, Department of Computer Science, University
of Colorado at Boulder.

http://www.siam.org/journals/simax/22-1/32082.html
†Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia (drmac@

math.hr).

173

174 ZLATKO DRMAČ

Y = QyRy are the QR factorizations of X and Y, respectively. Taking PX ≡ QxQ
T
x ,

PY ≡ QyQ
T
y and writing the SVD of QT

xQy as QT
xQy = WΣV T we obtain the SVD

PXPY = (QxW)Σ(QyV)
T .

In this paper, we analyze the numerical stability of the Björck–Golub algorithm.
In section 2, we show that the algorithm is mixed stable: the computed approxi-
mations of the singular values of PXPY approximate with small relative error the
singular values of PX̃PỸ , where X̃ = span(X + ∆X), Ỹ = span(Y + ∆Y) and
max1≤i≤p ‖∆Xei‖2/‖Xei‖2, max1≤i≤q ‖∆Y ei‖2/‖Y ei‖2 are, up to factors of the di-
mensions, of the order of the machine precision ε. (Here ei denotes the ith column of
the identity matrix I.) From this estimate, we conclude that the Björck–Golub algo-
rithm has equally small backward error angles ∠(X , X̃), ∠(Y, Ỹ) for all bases XD1,
Y D2 of X , Y, where D1, D2 are arbitrary diagonal nonsingular matrices.

We also show that the backward error bound in the Björck–Golub algorithm can
be improved to |∆Xij | ≤ f(m, p)µiεmaxj |Xij |, where f(·) is modest polynomial and
µi is a certain pivot growth factor. The values of µi are moderate if the QR factor-
ization is computed using the complete pivoting of Powell and Reid [29]. Numerical
evidence shows that in this case the QR factorization is more robust in computing an
orthonormal basis for span(X). To explain this high accuracy and to explore possi-
bilities of further improvement, we devise a new stable algorithm for computing the
QR factorization.

The new algorithm is defined and analyzed in section 3. The main novelty is
that we use Gaussian elimination with complete pivoting as a preconditioner for the
QR factorization. If P1XP2 = LxUx is the LU factorization with complete pivoting,
and if Lx = QxRx is the QR factorization, then XP2 = PT1 Qx(RxUx) is the QR
factorization of XP2. Due to pivoting, Lx is well-conditioned and the matrix Qx

can be efficiently computed by a variant of the modified Gram–Schmidt algorithm.
Error analysis shows that the new algorithm is mixed stable. The backward error
changes X to X̃ = span(PT1 (Lx+∆Lx)), where max1≤i≤p ‖∆Lxei‖2/‖Lxei‖2 depends
on the accuracy of Gaussian elimination with pivoting. In other words, columnwise
backward error is introduced in the basis Lx of X , rather than inX. The corresponding
perturbation in X is elementwise small with a bound similar to the one for QR
factorization with complete pivoting.

An analysis shows that the new algorithm computes with nearly the same accu-
racy orthonormal bases for column spaces of all matrices of the form D1XD2, where
D1, D2 are arbitrary diagonal nonsingular matrices. Similar accuracy is observed in
the case of the QR factorization with complete pivoting. This fact is related to the
similar form of the elementwise backward errors in the QR factorization and Gaussian
elimination. However, the bounds seem to be sharper in the case of Gaussian elimina-
tion. In section 4, we give numerical examples that illustrate the benefits of complete
pivoting and, in some cases, higher accuracy if the QR factorization is preconditioned
using Gaussian elimination.

2. Analysis of the Björck–Golub algorithm. Golub and Zha [24] show that
the Björck–Golub algorithm has the same forward error bounds as a backward stable
algorithm. In this section, we prove that the algorithm is mixed stable: the computed
canonical correlations are close approximations of the exact canonical correlations of
certain matrices X̃ ≈ X and Ỹ ≈ Y . Detailed analysis, presented in section 2.1, shows
that the backward errors are independent of column scalings of X and Y . In section
2.2, we show that the algorithm achieves much higher accuracy if the QR factorization
is computed with complete pivoting of Powell and Reid [29], and in section 2.3 we

PRINCIPAL ANGLES BETWEEN SUBSPACES OF EUCLIDEAN SPACE 175

analyze the elementwise structure of the backward error.

2.1. Mixed stability. The Björck–Golub algorithm follows a three-step scheme:
(i) compute the orthonormal QR factors Qx, Qy of the data matrices X, Y ; (ii)
compute the matrix product S = QT

xQy; (iii) compute the SVD of S. In the standard
model of floating-point arithmetic, this algorithm is mixed stable.

Theorem 2.1. Let σ̃1 ≥ · · · ≥ σ̃q be the singular values computed by the Björck–

Golub algorithm. Then there exist X̃ = X+∆X ∈ Rm×p, Ỹ = Y +∆Y ∈ Rm×q with
the following two properties:

(i) The values max1≤i≤p ‖∆Xei‖2/‖Xei‖2 and max1≤i≤q ‖∆Y ei‖2/‖Y ei‖2 are
of the order of machine precision times a moderate polynomial of the corre-
sponding matrix dimensions.

(ii) If σ′
1 ≥ · · · ≥ σ′

q are the exact cosines of the principal angles between span(X̃)

and span(Ỹ), then, for all i, either σ̃i = σ′
i = 0 or |σ̃i − σ′

i|/σ′
i is less than

machine precision times a moderate polynomial of the matrix dimensions.
Proof. Let Q̃x, Q̃y, R̃x, R̃y be the computed approximations of Qx, Qy, Rx, Ry,

respectively. Then there exist backward perturbations δX, δY and an η1 � 1 such
that

(2.1)

X + δX = Q̃xR̃x, Y + δY = Q̃yR̃y, max

{
max
1≤i≤p

‖δXei‖2
‖Xei‖2 , max

1≤i≤q
‖δY ei‖2
‖Y ei‖2

}
≤ η1.

To prove relation (2.2), recall that there exists a backward error δ0X and an exactly
orthonormal matrix Q̂x such thatX+δ0X = Q̂xR̃x, where maxi ‖δ0Xei‖2/‖Xei‖2 and
‖Q̃x − Q̂x‖2 are small multiples of machine precision (cf. [15], [26, section 18.3]). Note
that computation of the orthogonal factors is generally not backward stable unless
the computed matrices Q̃x and Q̃y are exactly orthonormal. (We generally cannot say

that the computed matrix Q̃x is an exact orthogonal factor of some X̃ ≈ X.) The
best we can prove is mixed stability: Q̃x and Q̃y are close to exact orthogonal factors
of X + δX and Y + δY, respectively. This is ensured since there exists an η2 � 1 such
that

max{‖Q̃T
x Q̃x − I‖F , ‖Q̃T

y Q̃y − I‖F } ≤ η2.

(Here we assume that we use a QR factorization algorithm that ensures near orthog-
onality of the computed matrices Q̃x and Q̃y.) If Q̃x = Q′

x(I + T ′
x) is the exact QR

factorization of Q̃x and if η2 < 1/4, then the upper triangular matrix T ′
x satisfies

(cf. [20, Theorem 2.1]) ‖T ′
x‖2 ≤ η2 and the mixed stability of the computation of the

orthonormal QR factor follows from the relation

X̃ = X +∆X ≡ X + δX = Q′
x

(
(I + T ′

x)R̃x

)
, ‖Q̃x −Q′

x‖2 ≤ ‖T ′
x‖2.

Similarly, Y + δY = Q′
y(I + T ′

y)R̃y, ‖T ′
y‖2 ≤ η2. Let S̃ = fl(Q̃T

x Q̃y) be the computed

matrix product. Then S̃ = Q̃T
x Q̃y + ES , where ‖ES‖2 ≤ η3. The computed singular

values σ̃1 ≥ · · · ≥ σ̃q of S̃ are the exact singular values of S̃ + δS̃, where ‖δS̃‖2 ≤ η4.
Here the values of η3 � 1, η4 � 1 depend on the details of computation (cf. [23,
sections 2.4.8 and 8.3.2]). We can write the matrix S̃ + δS̃ as

S̃ + δS̃ = Q̃T
x Q̃y + ES + δS̃ = Q̃T

x (Q̃y + (Q̃T
x)

†(ES + δS̃))

= (I + T ′
x)
T
(
(Q′

x)
TQ′′

y

)
(I + T ′′

y),

176 ZLATKO DRMAČ

where (Q̃T
x)

† = Q′
x(I + T ′

x)
−T is the generalized inverse and Q̃y + (Q̃T

x)
†(ES + δS̃) =

Q′′
y(I + T ′′

y) is the QR factorization of an almost orthonormal matrix with ‖T ′′
y ‖2 ≤

η5 � 1. Note that

Ỹ = Y +∆Y ≡ Y + δY + (Q̃T
x)

†(ES + δS̃)R̃y

satisfies Ỹ = Q′′
y(I + T ′′

y)R̃y and that, for all 1 ≤ i ≤ q,

∥∥∥((Q̃T
x)

†(ES + δS̃)R̃y

)
ei

∥∥∥
2
≤ ‖ES‖2 + ‖δS̃‖2

1− ‖T ′
x‖2

1 + η1

1− ‖T ′
y‖2
‖Y ei‖2

≤ (1 + η1)
η3 + η4

(1− η2)2
‖Y ei‖2.

The singular values of (Q′
x)
TQ′′

y are the cosines of the principal angles between

span(X̃) and span(Ỹ). The proof is completed by noting that the relative differ-
ence between the singular values of S̃ + δS̃ and (Q′

x)
TQ′′

y is at most ‖T ′
x‖2 + ‖T ′′

y ‖2 +
‖T ′

x‖2‖T ′′
y ‖2 (cf. [21, Theorem 3.1]).

The backward errors described in Theorem 2.1 are small normwise relative errors
in the columns of the bases X and Y of X , Y, respectively. These estimates, however,
do not guarantee that the backward perturbations of X and Y are small in the angle
metric. Consider now the angle ∠(X , X̃), where X = span(X), X̃ = span(X +∆X),
and X, ∆X are as in Theorem 2.1. If DX = diag(‖Xei‖2), X = XcDX , ∆Xc =
∆XD−1

X , then X = span(Xc), X̃ = span(Xc +∆Xc), and, for sufficiently small ∆X,
an estimate of Wedin [42] yields

sin∠(X , X̃) ≤ ‖X†
c‖2
√
p max

1≤i≤p
‖∆Xei‖2
‖Xei‖2 .

Hence, we have the following corollary of Theorem 2.1.
Corollary 2.1.Let the assumptions of Theorem 2.1 hold. Then there exist sub-

spaces X̃ , Ỹ and a modest polynomial f(m, p, q) such that

sin∠(X , X̃) ≤ ‖X†
c‖2
√
p max

1≤i≤p
‖∆Xei‖2
‖Xei‖2 , sin∠(Y, Ỹ) ≤ ‖Y †

c ‖2
√
q max

1≤i≤q
‖∆Y ei‖2
‖Y ei‖2

and such that the computed singular values (σ̃i)
q
i=1 are, up to a relative error of order

f(m, p, q)ε, the exact singular values of PX̃PỸ .
The following perturbation results for the canonical correlations shows that the

angles ∠(X , X̃), ∠(Y, Ỹ) are a natural metric for measuring backward errors.
Theorem 2.2. Let X , X̃ , Y, Ỹ be subspaces of Rm (or Cm) with dim(X) =

dim(X̃), dim(Y) = dim(Ỹ), and let

η = sin∠(X , X̃) + sin∠(Y, Ỹ) + sin∠(X , X̃) · sin∠(Y, Ỹ).
Let Σ = diag(σi), Ξ = diag(ξj), Σ̃ = diag(σ̃i), Ξ̃ = diag(ξ̃j) be the singular values of
PXPY , (I − PX)PY , PX̃PỸ , (I − PX̃)PỸ , respectively. Then

‖Σ− Σ̃‖2 ≤ η, ‖Ξ− Ξ̃‖2 ≤ η.(2.2)

Furthermore, let Θ = diag(ϑi), Θ̃ = diag(ϑ̃i) be the principal angles between X and
Y, and between X̃ and Ỹ, respectively. Then η < 1−√2/2 implies

‖Θ− Θ̃‖2 ≤ η√
1− (η + 1/

√
2)2

.(2.3)

PRINCIPAL ANGLES BETWEEN SUBSPACES OF EUCLIDEAN SPACE 177

Proof. The assumptions about the dimensions of the subspaces imply sin∠(X , X̃) =
‖PX − PX̃ ‖2 and sin∠(Y, Ỹ) = ‖PY − PỸ‖2. Since the error in the singular values of
a perturbed matrix is not larger than the spectral norm of the perturbation (cf. [23,
Corollary 8.3.2]), we have

‖ Σ− Σ̃‖2
≤ ‖PXPY − PX̃PỸ‖2 = ‖(PX − PX̃)PY + PX (PY − PỸ)− (PX − PX̃)(PY − PỸ)‖2
≤ sin∠(X , X̃) + sin∠(Y, Ỹ) + sin∠(X , X̃) · sin∠(Y, Ỹ).
Similarly, the second inequality in (2.2) follows from ‖Ξ − Ξ̃‖2 ≤ ‖(I − PX)PY−
(I − PX̃)PỸ‖2 and from the identity ∠(X , X̃) = ∠(X⊥, X̃⊥). To prove (2.3), we first
note that

|ϑi − ϑ̃i| =
∫ max{σi,σ̃i}

min{σi,σ̃i}

dt√
1− t2

=

∫ max{ξi,ξ̃i}

min{ξi,ξ̃i}

dt√
1− t2

(2.4)

and that min{max{σi, σ̃i},max{ξi, ξ̃i}} ≤ 1/
√
2 + η. Then we estimate the integrals

in (2.4).
Corollary 2.1 shows that the backward error angles in the Björck–Golub algo-

rithm are independent of column scalings of the bases X and Y and that these angles
might be large only if minD=diag κ2(XD) and minD=diag κ2(Y D) are large. (Here we
recall the near optimality of the spectral condition number κ2(Xc) = ‖Xc‖2‖X†

c‖2:
κ2(Xc) ≤ √pminD=diag κ2(XD); see [39].) In that case, certain, even very small,
normwise relative changes of the columns of the ill-conditioned basis X might cause
arbitrarily large flutter of the corresponding subspace. The following example illus-
trates this situation. Let

X =

 1 1
ε −ε
ε ε

 , Y =

 11
1

 , X̃ =

 1 1
ε −ε
ε −ε

 , |ε| � 1,(2.5)

and let X = span(X), X̃ = span(X̃), Y = span(Y). The angle between X and Y
is fairly large (X is close to span(e1, e2)) and the corresponding columns of X and
X̃ differ by small (O(ε)) angles. However, it holds that Y ⊂ X̃ . Using MATLAB
with ε = 1000 ∗ eps ≈ 2.22 · 10−13, we compute the orthogonal factors of X and X̃,
respectively, as

Q̃x ≈

 −1.00 2.22 · 10−13

−2.22 · 10−13 −1.00
−2.22 · 10−13 2.46 · 10−26

 , ˜̃Qx ≈

 −1.00 3.14 · 10−13

−2.22 · 10−13 −7.07 · 10−1

−2.22 · 10−13 −7.07 · 10−1

 .

Hence, the principal angles between X and Y are poorly determined in the presence
of such errors. This behavior is also captured by the following theorem of Golub and
Zha [24].

Theorem 2.3. Let X ∈ Rm×p and Y ∈ Rm×q be full column rank matrices
and let X = XcDX , Y = YcDY , where DX = diag(‖Xei‖2), DY = diag(‖Y ei‖2).
Let X̃ = X + ∆X, Ỹ = Y + ∆Y be full column rank matrices such that |∆X| ≤
εGX |X|, |∆Y | ≤ εGY |Y |, where 0 ≤ ε� 1 and GX , GY are matrices with nonnegative
elements. Let X = span(X), Y = span(Y), X̃ = span(X̃), Ỹ = span(Ỹ). Let C(X , X̃)
be the orthogonal complement of X ⋂ X̃ in X + X̃ , and let ξ be the minimal angle
between C(X , X̃) and Y. Similarly, let ζ be defined as the minimal angle between

178 ZLATKO DRMAČ

C(Y, Ỹ) and X̃ . If Σ, Σ̃ are the diagonal matrices of the cosines of the principal
angles between X and Y, and between X̃ and Ỹ, respectively, then

‖Σ̃− Σ‖2 ≤ ε
(√

p(m− p)‖GX‖2κ2(Xc) cos ξ +
√
q(m− q)‖GY ‖2κ2(Yc) cos ζ

)
.

This theorem shows that the accuracy of the singular values of PXPY depends
on the condition numbers of the column scaled matrices Xc and Yc. It can be shown
that the dimension factors

√
p(m− p) and

√
q(m− q) can be improved to

√
p and√

q, respectively.
We conclude our analysis of the Björck–Golub algorithm with an experimental

illustration of the bounds in Theorem 2.1 and Corollary 2.1.
Example 2.1. We generate test pairs (X,Y) as follows. We write X, Y as

X = XcDX , Y = YcDY , where DX = diag(‖Xei‖2), DY = diag(‖Y ei‖2), and
κ2(Xc), κ2(Yc) ∈ {10i, i = 2, . . . , 6}, κ2(DX) ∈ {108, 1012, 1016}, κ2(DY) ∈
{109, 1013, 1015}. For fixed values of the condition numbers (κ2(Xc), κ2(DX), κ2(Yc),
κ2(DY)) we generate Xc, DX , Yc, DY with different distributions of singular values.
We use the procedure DLATM1() from [14], and we choose the values of the parameter
MODE so that the distributions of the singular values of Xc, DX , Yc, DY are from the
set {5, 3}×{5}×{5,−4}×{5}. In this way, we generate 900 test pairs (X,Y), divided
into 25 classes, where the pairs from the same class Cij have nearly the same values of
(κ2(Xc), κ2(Yc)) ≈ (10i, 10j), 2 ≤ i, j ≤ 6. We measure the backward error angles in
the following way. We use single precision floating-point arithmetic (ε ≈ 10−8) to find
approximate orthonormal bases Q̃x and Q̃⊥

x for X and X⊥, respectively. Then, we
use double precision computation to compute the sine of the angle between span(Q̃x)
and X . This is accomplished by an application of the Björck–Golub algorithm to the
matrices Q̃⊥

x and X. The same procedure is applied to Q̃y and Y . (It is clear from the
proof of Theorem 2.1 that the computation of the orthonormal bases introduces the
major part of the error. Hence, this experiment gives a useful insight into the overall
accuracy of the algorithm.) The QR factorizations are computed using the LAPACK
[1] procedure SGEQRF(). The results of the test with m = 200, p = 100, q = 50 are
given in Figure 2.1, where

eij = max
(X,Y)∈Cij

max{sin∠(span(Q̃x),X), sin∠(span(Q̃y),Y)}.

From Corollary 2.1, it follows that eij is bounded (roughly) by f(m, p, q)εmax{κ2(Xc),
κ2(Yc)} ≈ f(m, p, q)10max{i,j}−8, where f(·) is a modest function of the dimensions.
Figure 2.1 indicates that this bound is almost attainable.

2.2. Effects of complete pivoting in the QR factorization. If the matrix
X is changed to X +∆X, where ‖∆X‖2/‖X‖2 is small, the relevant condition num-
ber that determines the sensitivity of the QR factorization of X is κ2(X) (cf. [31]).
If it is known that ∆X is a small columnwise perturbation of X as in relation (2.2),
we can write X + ∆X = (Xc + ∆Xc)DX , where DX = diag(‖Xei‖2), X = XcDX ,
∆X = ∆XcDX , and ‖∆Xc‖2/‖Xc‖2 is small. Thus, the sensitivity of the QR fac-
torization is determined by κ2(Xc), which can be much smaller than κ2(X). Hence,
the finer structure of the perturbation ∆X makes it possible to eliminate artificial ill-
conditioning, in this case represented by large κ2(X), which is the result of different
lengths of matrix columns.

In some situations, artificial ill-conditioning is the result of heavy row weighting.
For example, if X = D′X1, where D

′ is an ill-conditioned diagonal matrix and X1

PRINCIPAL ANGLES BETWEEN SUBSPACES OF EUCLIDEAN SPACE 179

2
3

4
5

6

2

3

4

5

6
-5

-4

-3

-2

-1

ij

lo
g

1
0

(e
_

ij)

 m = 200, p = 100, q = 50

Fig. 2.1. The values of log10 eij , 2 ≤ i, j ≤ 6 in Example 2.1. Note that log10 eij ≈ max{i, j}−7,
almost as predicted by the theory.

is a well-conditioned matrix, then it may not be possible to scale the columns of X
to obtain a well-conditioned matrix Xc. In that case, both κ2(X) and κ2(Xc) are
large, and numerical experiments show that the QR factorization is computed with
large errors. This stability problem of the QR factorization of matrices with heavily
weighted rows is well known (e.g., in solving weighted least squares problems) and
there exist computational experience and satisfactory backward error bounds which
show that the factorization is more robust if it is computed with column and row
interchanges; see Powell and Reid [29], Barlow [3], Van Loan [40], Björck [8, section
4.4.2]. The QR factorization with complete (column and row) pivoting is described in
the following result of Powell and Reid [29].

Proposition 2.1. Let the QR factorization of X be computed in floating-point
arithmetic by a sequence of p Householder reflections, and let X̃ = X + δX, where
δX is the backward error. Let X̃(k), k ∈ {1, . . . , p}, denote the floating-point matrix
computed in the kth step of the algorithm, let X(k), k ∈ {1, . . . , p}, denote the matrix
in the kth step of exact computation, and let

ρi(X̃) = max
j,k
|(X̃(k))ij |, ρi(X) = max

j,k
|(X(k))ij |, i = 1, . . . ,m.(2.6)

Then there exists a modest polynomial h(p) such that |δXij | ≤ h(p)ερi(X̃). Fur-
thermore, if the columns of X are permuted following the pivoting of Golub [22],
and if, in addition, the rows of the matrices X(k) are permuted so that, for all k,
|(X(k))kk| = maxi≥k |(X(k))ik|, then

max
j
|(X(k+1))k,j | ≤

√
m|(X(k))kk|, and ρi(X) ≤ (1 +

√
2)i−1

√
mmax

j
|Xij |.

The pivot growth factors µi(X) = ρi(X)
maxj |Xij | , 1 ≤ i ≤ m, are usually moderate and the

exponential growth is attained only in pathological cases.

Barlow [3] shows that the G-algorithm of Bareiss [2] has a backward error bound
similar to the one in Proposition 2.1. Cox and Higham [12] show that the row pivoting

180 ZLATKO DRMAČ

in Proposition 2.1 can be replaced by the initial sorting of matrix rows by decreas-
ing /∞ norms. Hence, complete pivoting reduces to column pivoting and it can be
implemented in high performance software; see Quintana-Orti, Sun, and Bischof [30].

From Proposition 2.1, it follows that complete pivoting ensures an elementwise
backward error bound which is invariant under row scalings. Before we analyze the-
oretical implications of this fact, we illustrate the effects of pivoting in numerical
computation. We first show that row weighting does not increase the backward error
angle if the QR factorization is computed with complete pivoting.

Example 2.2. We follow a test procedure similar to the one in Example 2.1. The
only difference is that instead of X = XsDX we generate X = D′

XXsD
′′
X , where D

′
X ,

D′′
X are diagonal matrices generated in the same way asDX . We generate 900 matrices

divided into 5 groups with κ2(Xs) = 10i, i = 2, 3, 4, 5, 6. For each generated matrix X
we also compute κ2(Xc), where Xc is obtained by normalizing the columns of X. The
matrices Xs, D

′
X , and D′′

X are generated in a sequence of nested loops with different
choices of parameters (cf. Example 2.1). For the orthonormal basis Q̃x, computed with
the QR factorization with complete pivoting, we compute ex = sin∠(Q̃x,X). We also

compute fx = sin∠(˜̃Qx,X), where ˜̃Qx is computed without pivoting. The values of
fx, ex, κ2(Xc) shown in Figure 2.2 demonstrate that the error angle fx increases with
large κ2(Xc), while the values of ex depend only on κ2(Xs). Note that ex/κ2(Xc)
is much smaller than the roundoff ε ≈ 10−8 and that ex ≈ κ2(Xs)ε. (The almost
periodic behavior of κ2(Xc) is due to the fact that the matrices are generated in a
sequence of nested loops.) In this example, we have observed similar accuracy if the
row pivoting is replaced by the initial row ordering.

In the next two examples, we show the difference in the forward errors for the
two variants of the Björck–Golub algorithm.

Example 2.3. In this example we show that QR-based computation of the or-
thogonal bases can introduce large error and it can fail to detect that, for example,
one of the principal angles is close to π/2. We take the bases X and Y to be

X ≈

0.57378941 · 1017 −0.74737239 · 1009 −0.10439621 · 1002

−0.75415686 · 1029 0.25173789 · 1022 −0.11089462 · 1014

−0.52912208 · 1019 0.51559708 · 1012 −0.63842515 · 1004

0.26020839 · 1026 −0.72667785 · 1018 0.14745371 · 1010

0.21463361 · 1022 −0.76107815 · 1014 0.39906168 · 1006

0.13388386 · 1026 −0.48858418 · 1019 0.75605997 · 1011

−0.43084490 · 1020 0.33985776 · 1013 −0.38962076 · 1005

,

Y ≈

0.12378225 · 10+00 −0.17331250 · 10+13

0.84008590 · 10−09 0.17773952 · 10+05

−0.26428604 · 10−14 −0.98536731 · 10−01

0.13059467 · 10−12 −0.80072369 · 10+00

0.18943973 · 10−11 −0.20708348 · 10+01

−0.16178360 · 10+01 −0.33048027 · 10+13

0.40286435 · 10−06 0.10409793 · 10+09

,

where the entries of the corresponding double precision arrays are shown to eight dec-
imal places. In Table 2.1, we show the computed approximations of the cosines of the
principal angles. (π-Björck–Golub refers to the Björck–Golub algorithm with pivoting
suggested by Powell and Reid. Algorithm 3.1 is described in section 3. At this point,
the only purpose of the last row in Table 2.1 is to give a second set of double precision
reference values (singular value approximations).) Since σ̃2 ≈ 3.7ε, it is determined

PRINCIPAL ANGLES BETWEEN SUBSPACES OF EUCLIDEAN SPACE 181

0 100 200 300 400 500 600 700 800 900
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

e_x

f_x

e_x / k_2(X_c)

k_2(X_c)

 Test matrix X

 m = 200, p = 100, q = 50

Fig. 2.2. The values of ex, fx, κ2(Xc), ex/κ2(Xc) in Example 2.2.

Table 2.1
The computed singular values in Example 2.3.

σ̃i Björck–Golub (single) Björck–Golub (double) π-Björck–Golub (single)
σ̃1 0.10000002 · 101 0.9999999910693745 0.10000000 · 101
σ̃2 0.91120803 0.2269574724944604 · 10−6 0.21987161 · 10−6

Algorithm 3.1 (double): σ̃1 ≈ 0.9999999910693748, σ̃2 ≈ 0.2219392787298458 · 10−6.

only to an absolute uncertainty of order ε. To illustrate this, we multiply the entries
of X and Y by randomly chosen numbers 1 ± εij with |εij | ≤ 10−4. The single pre-
cision Björck–Golub algorithm and π-Björck–Golub algorithm compute, respectively,
σ̃2 ≈ 0.99112201 and σ̃2 ≈ 0.75409122 · 10−6. The double precision computation gives
σ̃2 ≈ 0.7685475597770073 · 10−6. The maximal principal angle is not sensitive to this

change since ϑ̃2 ≈ arccos(0.21987161 · 10−6) and
˜̃
ϑ2 ≈ arccos(0.75409122 · 10−6) sat-

isfy ϑ̃2/
˜̃
ϑ2 ≈ 1.0000003 and (π/2)/min{ϑ̃2,

˜̃
ϑ2} ≈ 1.0000005. This is obvious from the

formula

ϑi =
π

2
−
∫ σi

0

dt√
1− t2

.

Remark 2.1. The value of σ̃1 = 0.10000002 · 101 in Table 2.1 shows that mixed
stability is the right framework for the numerical analysis of principal angle compu-
tation. No backward perturbation can in exact arithmetic lead to 0.10000002 · 101 as

182 ZLATKO DRMAČ

Table 2.2
The computed singular values in Example 2.4.

σ̃i Björck–Golub (single) Björck–Golub (double) π-Björck–Golub (single)
σ̃1 0.99059296 0.5015345317976148 · 10−2 0.48222207 · 10−2

σ̃2 0.25136729 · 10−9 0.2510846255712600 · 10−9 0.22261035 · 10−9

Algorithm 3.1 (double): σ̃1 ≈ 0.5015345505648627 · 10−2, σ̃2 ≈ 0.2510846257369576 · 10−9.

Table 2.3
The results in Example 2.4 with perturbed data.

σ̃i Björck–Golub (single) Björck–Golub (double) π-Björck–Golub (single)
σ̃1 0.99053305 0.5013070874085607 · 10−2 0.48202435 · 10−2

σ̃2 0.24991473 · 10−9 0.2502365149198476 · 10−9 0.22178702 · 10−9

Algorithm 3.1 (double): σ̃1 ≈ 0.5013070984780922 · 10−2, σ̃2 ≈ 0.2502365153154889 · 10−9.

the cosine of a principal angle. (Strictly speaking, the Björck–Golub algorithm and
Algorithm 3.1 in section 3 are not backward stable.)

Example 2.4. The most critical part of the principal angle computation is the
computation of the orthonormal bases of the given spaces. If that computation in-
troduces large errors that “rotate” the initial spaces, there is no way to tell which
singular value of PXPY will suffer the largest perturbation. In this example, we show
that the largest error might be in the largest singular value, while the smallest one is
computed very accurately. Let

X ≈

0.81909804 · 1001 −0.85610022 · 1002 −0.19108842 · 1012

−0.31793150 · 1011 0.15111104 · 1013 0.26747300 · 1022

−0.51921289 · 1012 0.32394455 · 1013 0.74985519 · 1022

−0.12806811 · 1016 0.32962115 · 1016 0.11506216 · 1026

0.11302525 · 1003 −0.85968597 · 1003 −0.16852694 · 1013

0.85886880 · 1016 −0.89292760 · 1017 −0.17015941 · 1027

0.14028936 · 1005 −0.69895642 · 1006 −0.11412105 · 1016

,

Y ≈

−0.77654567 · 10−4 −0.42605337 · 10−06

−0.52320495 · 10−7 −0.42627118 · 10−09

−0.12184166 · 10−6 −0.47657759 · 10−09

0.34901023 · 10−6 0.19476305 · 10−08

0.22741771 · 10+4 0.86991999 · 10+01

0.15964494 · 10−8 0.15686126 · 10−10

0.75523679 · 10−9 0.46711879 · 10−11

.

The computed singular values are given in Table 2.2. (As in Example 2.3, the last
row in Table 2.2 and in Table 2.3 is used only as a second set of reference values.)
To illustrate how well σ1 and σ2 are determined by the data, we introduce random
rounding errors of order 10−4 into the entries of X and Y and we run the test again.
The results are shown in Table 2.3.

2.3. Elementwise structure of the backward error. In this section, we try
to gain further understanding of the structure of the backward error in the QR factor-
ization with complete pivoting and its implications about the forward perturbation
of the orthogonal QR factor. We use the following useful observation:

(i) Let X = X ′
cD, where D is a diagonal matrix of powers of the base of the

floating-point arithmetic. Then, in the absence of underflow and overflow, the

PRINCIPAL ANGLES BETWEEN SUBSPACES OF EUCLIDEAN SPACE 183

QR factorizations of X and X ′
c are numerically equivalent in the sense that

both compute the same floating-point approximation Q̃x ≈ Qx. (Qx denotes
the exact orthogonal factor of X.)

To simplify the notation, we assume that the initial matrix is permuted so that no
column or row interchanges are necessary in the Powell–Reid QR factorization with
pivoting. We also assume that we can write X = D′XsD = X ′

cD, where D, D
′ are

nonsingular diagonal scalings and the diagonals of D are powers of the base of the
floating-point arithmetic, and that no column interchanges are necessary to compute
the QR factorization with column pivoting of X ′

c. In that case, neither the column or
the row interchanges are necessary in the Powell–Reid row pivoting, and we assume
that the pivot growth factors µi(X̃

′
c) are moderate. We let Q̃x denote the computed

approximation of the orthonormal basis Qx. Using Proposition 2.1, we conclude that
there exist an exactly orthonormal matrix Q′

x and a backward error δX such that the
computed triangular factor R̃x satisfies

X + δX = Q′
xR̃x, |δXij | ≤ h(p)εµi(X̃)max

j
|Xij |.(2.7)

By observation (i), we can also write

X̃ ′
c ≡ X ′

c + δ(X ′
c) = Q′

x(R̃xD
−1), |(δ(X ′

c))ij | ≤ h(p)εµi(X̃
′
c)max

j
|(X ′

c)ij |.(2.8)

We can rewrite relation (2.8) to

D′(Xs +D′−1δ(X ′
c))D = Q′

xR̃x,

∣∣∣∣ (δ(X
′
c))ij

D′
ii

∣∣∣∣ ≤ h(p)εµi(X̃
′
c)max

j
|(Xs)ij |.(2.9)

Since the computed matrix Q̃x is nearly orthonormal and since ‖Q̃x −Q′
x‖2 is (up

to a factor of the dimensions m, p) of order ε, the main issue in the perturbation
of X = span(X) is how the matrix Qx changes in the presence of the following
perturbation:

(2.10)

X ≡ D′XsD �−→ X + δX = D′(Xs + δXs)D, |(δXs)ij | ≤ h(p)εµi(X̃
′
c)max

j
|(Xs)ij |.

The existing perturbation results for the QR factorization X = QxRx can be roughly
divided into two groups. In the first group, we have error bounds in terms of ‖δX‖F /‖X‖2
and a typical estimate is of the form

‖δQx‖F ≤
√
2κ2(X)

‖δX‖F
‖X‖2 ,(2.11)

as in [37] (derived using fixed-point and operator theory; see also [31], [35]) or

‖δQx‖F ≤
√
2 max

0≤t≤1
‖(X + t · (δX))−1‖2‖δX‖F ,(2.12)

as in [5] (derived for m × m nonsingular matrices using calculus on the manifold
GL(m)). In the second group are the results of Sun [36] and Zha [43]. These results
are best represented by the following theorem due to Zha: if |δX| ≤ εGX |X|, with
GX ≥ 0, ‖GX‖∞ = 1, and with sufficiently small ε, then

‖δQx‖∞ ≤ z(m, p)ε‖ |Rx| · |R−1
x | ‖∞,(2.13)

184 ZLATKO DRMAČ

where z(m, p) is a modestly growing function. Zha has shown that the bound (2.13)
is sharp. (Here the matrix absolute values and the inequalities involving matrices are
understood elementwise; ‖ · ‖∞ is the matrix norm induced by the /∞ vector norm.)
An important feature of the bound (2.13) is that it is invariant under replacingX+δX
with (X + δX)Dx, where Dx is an arbitrary diagonal nonsingular matrix. Hence, the
size of the error in the case of columnwise perturbations (‖δXei‖2 � ‖Xei‖2 for all i)
is essentially determined by cond(X) = minDx=diag κ2(XDx). However, cond(X) may
be large ifX has heavily weighted rows, for example, ifX is composed asX = D′XsD,
where D and D′ are ill-conditioned diagonal scalings, and Xs has moderate (say)
κ2(Xs). Thus, the bound (2.13) is not sharp in the case of perturbation (2.10).

It does not seem simple to deal with row scaling in the perturbation analysis
of the QR factorization. In the case of column scaling, we use the fact that both
X = QxRx and XDx = Qx(RxDx) are the essentially unique QR factorizations, and
we can take advantage of the fact that κ2(XDx) might be much smaller than κ2(X).
In other words, if the ill-conditioning can be “filtered out” by column scaling, it is
artificial and it does not affect the accuracy of the computation. On the other hand,
the relation between the orthonormal QR factors of the matrices X, Xs, X + δX,
Xs + δXs in relation (2.10) is not obvious. (For an asymptotic analysis see [32].) We
discuss the solution to this problem in the next section, where we describe a new
algorithm that is based on another fundamental matrix factorization, namely, the LU
factorization.

3. The new algorithm. The main difference between our new algorithm and
the algorithm of Björck and Golub is in the computation of the orthonormal bases
of X = span(X) and Y = span(Y). Instead of the QR factorization applied directly
to the matrices X and Y, we first compute the LU factorizations of X and Y using
Gaussian elimination with complete (or partial) pivoting. Then we use the computed
unit lower trapezoidal LU factors as new bases for X , Y. (Note that the numbers
of parameters in the unit lower trapezoidal LU factors of X and Y are equal to the
dimensions of the corresponding Stiefel manifolds of m × p and m × q orthonormal
matrices.)

Algorithm 3.1. CC(X,Y).

Input X ∈ Rm×p, Y ∈ Rm×q full column rank matrices with p ≥ q.
Step 1 Compute the LU factorizations with pivoting, P1XP2 = LxUx, P3Y P4 =

LyUy. (For partial pivoting, P2 = Ip, P4 = Iq.)
Step 2 Compute the QR factorizations Lx = QxRx, Ly = QyRy, using the

modified Gram–Schmidt algorithm.
Step 3 Compute the matrix S = QT

x ((P1P
T
3)Qy) and the SVD of S, S =

WΣV T .
Output Return the matrices Σ, PT1 QxW, PT3 QyV .

Since Lx and Ly are lower trapezoidal, the cost of the modified Gram–Schmidt
orthogonalization can be reduced using the following algorithm.

Algorithm 3.2. MGS LT(L).

for j = p, p− 1, . . . , 1
Lx(j : m, j) := (1/‖Lx(j : m, j)‖2)Lx(j : m, j)
for i = j − 1, j − 2, . . . , 1

Lx(j : m, i) := Lx(j : m, i)−
(
(Lx(j : m, j))

T
Lx(j : m, i)

)
Lx(j : m, j)

end for
end for

PRINCIPAL ANGLES BETWEEN SUBSPACES OF EUCLIDEAN SPACE 185

This algorithm overwrites Lx with a lower trapezoidal orthonormal basis of span(Lx).
The QR factorization of Lx can be also computed using orthogonal transformations,
but the modified Gram–Schmidt algorithm is simpler.

3.1. Error analysis. The first and the most important fact used in the analysis
is that Lx and Ly are well-conditioned bases for X and Y. The matrices Lx and Ly
are lower trapezoidal with unit diagonal and with off-diagonal elements less than one
in modulus. Further, the spectral condition numbers of Lx and Ly are bounded by
a function of the dimensions, independent of X, Y . Although the theoretical bound
of the condition numbers is an exponential function of the dimension, the values of
κ2(Lx) and κ2(Ly) are almost always moderate (cf., e.g., [38], [34], [41]). Hence, we
can safely use the modified Gram–Schmidt algorithm to compute nearly orthogonal
bases for span(Lx) and span(Ly).

We begin the analysis by pointing out an important difference between the LU and
the QR factorizations. Namely, the LU factorization and the backward error from its
floating-point computation are, under certain assumptions, invariant under row and
column scalings. To simplify the notation, we assume that in Step 1 of Algorithm 3.1
the rows and the columns of X are permuted so that X ≡ P1XP2 = LxUx is the LU
factorization with complete pivoting. Then the computed matrices L̃x, Ũx satisfy (cf.
[26, Theorem 9.3])

X + δX = L̃xŨx, |δX| ≤ εLU (p)|L̃x| · |Ũx|, εLU (p) ≤ pε

1− pε
,(3.1)

where the matrix absolute values and inequalities are understood elementwise.
Let X = D1ZD2, where D1 and D2 are diagonal scalings, and let δZ be defined

by the relation

X + δX = D1(Z + δZ)D2,(3.2)

that is, δZ = D−1
1 δXD−1

2 . If Z = LzUz and Z+δZ = L̃zŨz are the LU factorizations,
then

Z = (D−1
1 LxD1)(D

−1
1 UxD

−1
2), Z + δZ = (D−1

1 L̃xD1)(D
−1
1 ŨxD

−1
2),

and, by the uniqueness of the LU factorization,

Lz = D−1
1 LxD1, Uz = D−1

1 UxD
−1
2 , L̃z = D−1

1 L̃xD1, Ũz = D−1
1 ŨxD

−1
2 .

Furthermore, from relations (3.1) and (3.2) it follows that

L̃zŨz = Z + δZ, |δZ| ≤ εLU (p)|L̃z| · |Ũz|.(3.3)

Note that Lx − L̃x = D1(Lz − L̃z)D
−1
1 and that

(3.4)

‖(Lx − L̃x)ei‖2
‖Lxei‖2 ≤ max

j>i

∣∣∣∣ (D1)jj
(D1)ii

∣∣∣∣ ‖(Lz − L̃z)ei‖2
‖Lxei‖2 ≤ max

j>i

∣∣∣∣ (D1)jj
(D1)ii

∣∣∣∣ ‖(Lz − L̃z)ei‖2.

Hence, if X ≡ P1XP2 can be written as X = D1ZD2, where the diagonal entries of
the diagonal matrix |D1| are graded from large to small and Z in (3.3) admits an
accurate LU factorization with moderate ‖Lz‖2, then the computed matrix L̃x has
columnwise small relative error. (See [13], [16], [19], [33]. Similar analysis applies to

186 ZLATKO DRMAČ

Ux − Ũx = (D1D2)D
−1
2 (Uz − Ũz)D2, where we can derive rowwise bounds.) Since

L̃x is also well-conditioned, its QR factorization can be computed with the modified
Gram–Schmidt algorithm.

The numerical properties of the modified Gram–Schmidt algorithm are well un-
derstood; see [6], [11], [7]. The two most important facts are summarized in the
following theorem due to Higham [26, section 18.7, Theorem 8.12].

Theorem 3.1. Let the modified Gram–Schmidt algorithm be applied to A ∈ Rm×p

of rank p, and let A = Ac diag(‖Aei‖2). If Q̃ and R̃ are the computed matrices,
then there exist a backward perturbation δA and moderate polynomials ℘MGS(m, p),
℘′
MGS(m, p) such that

A+ δA = Q̃R̃, ‖δAei‖2 ≤ ε℘MGS(m, p)‖Aei‖2,(3.5)

‖Q̃T Q̃− I‖2 ≤ ε℘′
MGS(m, p)κ2(Ac) +O((ε℘′

MGS(m, p)κ2(Ac))
2).(3.6)

The next result describes Algorithm 3.1 in floating-point arithmetic.
Theorem 3.2. Let L̃x = Lx + δLx, L̃y = Ly + δLy be the computed lower trian-

gular factors in Step 1 of Algorithm 3.1. Let rank(Lx + δLx) = rank(Lx), rank(Ly +
δLy) = rank(Ly), and let

ηx ≡ max
1≤i≤p

‖δLxei‖2
‖Lxei‖2 < 1, ηy ≡ max

1≤i≤q
‖δLyei‖2
‖Lyei‖2 < 1.

Further, let the approximations Q̃x ≈ Qx, Q̃y ≈ Qy, computed in Step 2, satisfy

ω ≡ max{‖Q̃T
x Q̃x − Ip‖F , ‖Q̃T

y Q̃y − Iq‖F } < 1,(3.7)

where ω is derived from Theorem 3.1. Then there exist subspaces X̂ , Ŷ, and a moderate
function f(m, p, q) such that the following hold:

(i) The subspaces X̂ and Ŷ are close approximations of X and Y, respectively.
More precisely, if we define η′y = ηy+ε℘MGS(m, q)(1+ηy), then it holds that

sin∠(X , X̂) ≤ √p(ηx + ε℘MGS(m, p)(1 + ηx))‖(Lx)†c‖2,(3.8)

sin∠(Y, Ŷ) ≤ √q
(
η′y +

εf(m, p, q)(1 + η′y)
(1− ω)2

)
‖(Ly)†c‖2.(3.9)

(ii) If σ′
1 ≥ · · · ≥ σ′

q are the exact cosines of the principal angles between X̂ and

Ŷ, then, for all i, either σ̃i = σ′
i = 0 or |σ̃i−σ′

i|/σ′
i is less than ω plus ε times

a moderate polynomial of the space dimension.
Proof. The floating-point QR factorization of L̃x can be represented as Q̃xR̃x =

L̃x + δL̃x, where (cf. Theorem 3.1) ‖δL̃xei‖2 ≤ ε℘MGS(m, p)‖L̃xei‖2, 1 ≤ i ≤ p. Let
∆Lx = δLx+ δL̃x, and let, as in Theorem 2.1, Q̃x = Q′

x(I +T ′
x) be the QR factoriza-

tion of Q̃x. (Q
′
x is exactly orthonormal and T ′

x is upper triangular with ‖T ′
x‖2 ≤ ω.)

Then Lx + ∆Lx = Q′
x(I + T ′

x)R̃x. Note that rank(Lx + ∆Lx) = rank(Lx). Define
X̂ = span(Lx + ∆Lx) and note that the sine of the angle between X and X̂ equals
sin∠(X , X̂) = ‖((Q′

x)
⊥)TQx‖2, where (Q′

x)
⊥ is the orthonormal basis of the orthog-

onal complement of X̂ . An easy calculation shows that

((Q′
x)

⊥)TQx = −((Q′
x)

⊥)T (∆Lx)R−1
x , sin∠(X , X̂) ≤ ‖∆LxR−1

x ‖2.
Similarly, we can write Ly +∆′Ly = Q′

y(I + T ′
y)R̃y, where ∆

′Ly = δLy + δL̃y. As in

the proof of Theorem 2.1, we write S̃ ≡ fl(Q̃T
x Q̃y) = Q̃T

x Q̃y + ES and we represent

PRINCIPAL ANGLES BETWEEN SUBSPACES OF EUCLIDEAN SPACE 187

the computed singular values σ̃1 ≥ · · · ≥ σ̃q of S̃ as exact singular values of S̃ + δS̃,

where both δS̃ and ES are small in the spectral norm (‖ES‖2 � 1, ‖δS̃‖2 � 1). Then
we write

S̃ + δS̃ = Q̃T
x Q̃y + ES + δS̃ = Q̃T

x (Q̃y + (Q̃T
x)

†(ES + δS̃))

= (I + T ′
x)
T
(
(Q′

x)
TQ′′

y

)
(I + T ′′

y),

where Q̃y + (Q̃T
x)

†(ES + δS̃) = Q′′
y(I + T ′′

y) is the QR factorization of an almost
orthonormal matrix with ‖T ′′

y ‖2 � 1. Define

Ly +∆Ly ≡ Ly +∆′Ly + (Q̃T
x)

†(ES + δS̃)R̃y = Q′′
y(I + T ′′

y)R̃y,

and Ŷ = span(Ly+∆Ly). The proof is completed by an elementary calculation of the
upper bounds for ‖∆Lxei‖2/‖Lxei‖2, ‖∆Lyej‖2/‖Lyej‖2, 1 ≤ i ≤ p, 1 ≤ j ≤ q, and

by comparing the singular values of S̃+ δS̃ and (Q′
x)
TQ′′

y , as in the proof of Theorem
2.1.

Remark 3.1. The backward error bounds (3.8) and (3.9) can be improved as
follows. Note that it also holds that sin∠(X , X̂) = ‖(Q⊥

x)
TQ′

x‖2, where Q⊥
x is the

orthonormal basis of the orthogonal complement of X . An easy calculation shows
that (Q⊥

x)
TQ′

x = (Q⊥
x)

T (∆Lx)R̃
−1
x (I + T ′

x)
−1. Let now ∆Lx = Q∆x

R∆x
be the QR

factorization of ∆Lx and let L∆x = span(∆Lx). Then

(Q⊥
x)

TQ′
x =

(
(Q⊥

x)
TQ∆x

)
R∆xR̃

−1
x (I + T ′

x)
−1,

sin∠(X , X̂) ≤ sin∠(X ,L∆x)
‖∆LxR̃−1

x ‖2
1− ‖T ′

x‖2
.

Hence, if span(∆Lx) ⊂ X , then sin∠(X , X̂) = 0.
Remark 3.2. In this paper, we consider only the classical partial and complete

pivoting in the Gaussian elimination. Other choices include, for example, the pivoting
for stability and sparsity due to Björck and Duff [9], the maximal transversal pivoting
due to Olschowka and Neumaier [27], and the pivoting for forward stable Gaussian
elimination due to Demmel et al. [13].

3.2. Applications to the QR factorization with complete pivoting. The
conclusions about the sensitivity of the LU factorization can be used to understand
the high accuracy of the QR factorization with complete pivoting. Recall relation
(2.10),

X ≡ D′XsD �−→ X+δX = D′(Xs+δXs)D, |(δXs)ij | ≤ h(p)εµi(X̃
′
c)max

j
|(Xs)ij |,

and assume that the diagonals of D, D′ are graded (|Dii| ≥ |Di+1,i+1|, |D′
ii| ≥

|D′
i+1,i+1|) and that Xs admits an accurate LU factorization in the presence of the

perturbation δXs. (Note that pivoting ensures that D, D′ nearly meet the order-
ing assumption.) In that case, the LU factorization of X = LxUx is accurate as
well and maxi ‖δLxei‖2/‖Lxei‖2 � 1. Now note that from X = LxUx = QxRx
it follows that Lx = Qx(RxU

−1
x) is the QR factorization of Lx. In other words,

the orthonormal QR factors of X and Lx are essentially the same (up to the ori-
entation of the columns of Qx, depending on the signs of the pivots). Similarly, if
X + δX = (Lx + δLx)(Ux + δUx) = (Qx + δQx)(Rx + δRx), then Qx + δQx is
the orthonormal QR factor of Lx + δLx. This means that we can develop a per-
turbation theory for δQx as a function of Lx and δLx. The good news is that δLx

188 ZLATKO DRMAČ

is from the columnwise class of perturbations and the relevant condition number is
minDL=diag κ2(LxDL). This condition number is moderate if the unit lower trapezoidal
LU factor of Xs is well-conditioned. In that case, we can derive sharp perturbation
estimates for the QR factorization of the perturbed matrix X from relation (2.10).
For example, we can prove the following proposition.

Proposition 3.1. Let X = QxRx, X + δX = (Qx + δQx)(Rx + δRx) be the QR
factorizations of X and X + δX, respectively. Let Lx and Lx + δLx be the unit lower
triangular factors of X and X + δX, and let (Lx)c = Lx diag(1/‖Lxei‖2), (δLx)c =
δLx diag(1/‖Lxei‖2), ‖(δLx)L†

x‖2 < 1/2. There exists an upper triangular matrix E
such that

(
I + (δLx)L

†
x

)
Qx = (Qx + δQx)(I + E),

‖E‖F ≤
√
2‖ ((δLx)L†

x

)T
+ (δLx)L

†
x +

(
(δLx)L

†
x

)T (
(δLx)L

†
x

) ‖F , and

‖δQx‖F ≤ ‖(δLx)L
†
x‖F + ‖E‖F

1− ‖E‖2 .

Furthermore, sin∠(span(Qx + δQx), span(X)) ≤ ‖(Lx)†c‖2‖(δLx)c‖2.
3.3. Comments on the SVD computation in principal angle algorithms.

In the proofs of Theorem 2.1 and Theorem 3.2 we do not explicitly mention which
algorithm is used to compute the SVD of the matrix S̃ = fl(Q̃T

x Q̃y) = Q̃T
x Q̃y+ES . We

only use the fact that the algorithm is backward stable where the backward error δS̃
is small in the spectral matrix norm, ‖δS̃‖2 ≤ f(p, q)ε‖S̃‖2. If we use the Jacobi SVD
algorithm, then we can estimate δS̃ by (cf. [18]) ‖δS̃ei‖2 ≤ g(p, q)ε‖S̃ei‖2, 1 ≤ i ≤ q,
where g(p, q) is a modest polynomial. Here, the backward error in small columns is
correspondingly small and the Jacobi SVD algorithm computes small singular values
with higher relative accuracy. However, this higher accuracy of the Jacobi SVD algo-
rithm does not improve the overall accuracy. If for some j the column S̃ej is small

(of order ε, say), then S̃ej is generally accurate to an absolute uncertainty of order
mε (‖ESej‖2 ≤ O(mε)) and the relative error in that column might be large. In that
case, even an exact SVD computation would not be able to compute the singular
values of S̃ with a high relative accuracy. Hence, the SVD algorithm of choice is the
fastest algorithm which ensures small ‖δS̃‖2/‖S̃‖2.

Example 3.1. We illustrate the above discussion in the case p = q = 1. Let
X = [x], Y = [y], where x, y ∈ Rm are unit vectors, and let δx, δy be small perturba-
tions (‖δx‖2 � 1, ‖δy‖2 � 1). Then ∠(X ,Y) = arccos(xT y) and |(x+ δx)T (y+ δy)−
xT y| ≤ ‖δx‖2+‖δy‖2+‖δx‖2‖δy‖2. Hence, the relative accuracy of the singular value
σ1 = xT y in the presence of errors δx and δy is determined by (‖δx‖2+‖δy‖2)/(xT y).
If ‖δx‖2 and ‖δy‖2 are of the order of the machine precision ε, then we see that
floating-point computation of σ1 is feasible to only (roughly) −�log10(ε/(x

T y))� dec-
imal places. In other words, small singular values are poorly determined if the corre-
sponding subspaces are nearly orthogonal (cf. [24]).

Remark 3.3. If X and Y are normally scaled (p = q, XTY = Ip), then the canon-
ical correlations of X and Y are the singular values of XY T . In that case the canonical
correlations are determined to high relative accuracy if the condition numbers κ2(Xc),
κ2(Yc) of column scaled matrices X, Y are moderate (cf. [24]). For accurate SVD
computation of XY T , see [16], [17].

PRINCIPAL ANGLES BETWEEN SUBSPACES OF EUCLIDEAN SPACE 189

0 100 200 300 400 500 600 700 800 900 1000
10

−10

10
−5

10
0

10
5

10
10

10
15

e_x

g_x

k_2(X_c)

k_2((L_x)_c)

 Test matrix X

 m = 200, p = 100, q = 50

Fig. 4.1. The values of ex, gx, κ2(Xc), κ2((L̃x)c) for 900 test in Example 4.1. The LU factor-
izations are computed with complete pivoting. Similar results are obtained if the LU factorizations
are computed with the partial (row) pivoting.

3.4. Cross-product implementation. In this subsection, we briefly discuss
an implementation of Algorithm 3.1 that may be an efficient alternative in the case
m� max{p, q}.

Algorithm 3.3. X–CC(X,Y).
Input X ∈ Rm×p, Y ∈ Rm×q full column rank matrices with p ≥ q.

Step 1 Compute the LU factorizations with pivoting, P1XP2 = LxUx,
P3Y P4 = LyUy. (For partial pivoting, P2 = Ip, P4 = Iq.)

Step 2 Compute the matrices Hxx = LTxLx, Hyy = LTy Ly, Hxy =

LTx ((P1P
T
3)Ly), and the Cholesky factorizations Hxx = RTxRx, Hyy =

RTy Ry. Exploit symmetry as much as possible.

Step 3 Compute the matrix S = R−T
x HxyR

−1
y and the SVD of S, S =WΣV T .

Output Return the matrix Σ.

The use of the Cholesky factors of the cross-product matrices is similar to the
Peters–Wilkinson [28] algorithm for least squares solution using the normal equations.
(Recall that the principal angle problem in the case q = 1 is closely related to the
classical least squares problem; cf. [10]. Also note that in the case of sparse X and Y
we may use the complete pivoting of Björck and Duff [9] which is designed to preserve
as much of the original sparsity as possible. For related results see also Barlow [3] and
Barlow and Handy [4].) Perturbation analysis of Algorithm 3.3 can be done using a
technique from [17]. We omit the details for the sake of brevity.

190 ZLATKO DRMAČ

0 100 200 300 400 500 600 700 800 900
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

e
_

x

0 100 200 300 400 500 600 700 800 900 1000
10

−1

10
0

10
1

10
2

10
3

10
4

f_
x
/e

_
x

Fig. 4.2. The values of ex and fx/ex for all 900 matrices {X} in Example 4.2. The LU and
the QR factorizations are computed with complete pivoting. Note that in most cases fx � ex.

4. Numerical examples. We conclude this work with several numerical exam-
ples. We show that complete pivoting in the QR factorization improves the accuracy
of the Björck–Golub algorithm and that in some cases Gaussian elimination with
pivoting can be used as an accurate preconditioner for the QR factorization.

Example 4.1. In this example, we generate test matrices X as in Example
2.1, and we measure the errors in the computed orthonormal bases Q̃x of X =
span(X). For each generated matrix X we compute κ2(Xc) (Xc = X diag(1/‖Xei‖2)),
κ2((L̃x)c), where L̃x is the computed lower trapezoidal factor of X and (L̃x)c =
L̃x diag(1/‖L̃xei‖2), and

ex = sin∠(span(Q̃x),X), gx = ‖Q̃T
x Q̃x − Ip‖2.

The results for all 900 values of X are given in Figure 4.1. Recall that the test matrices
{X ≡ D′XsD} are divided into five classes (180 examples each) with fixed κ2(Xs) =
102, 103, 104, 105, 106. These classes are clearly recognizable in Figure 4.1 if one follows
the growth of ex. The accuracy is determined by κ2(Xs) and not by κ2(Xc). Also
note that the deviation from orthonormality of Q̃x is of the order of mε and that
κ2((L̃x)c) ≈ O(1). A similar accuracy is observed in a variant of Algorithm 3.1 with
LU factorizations with the partial (row) pivoting.

Example 4.2. In this example, we generate a set of rather ill-conditioned bases. We
first generate an X as in Example 2.1, and then we partition X as X = [X1, X2], and
we introduce heavy weighting into the rows ofX2. Both Algorithm 3.1 and the Björck–

PRINCIPAL ANGLES BETWEEN SUBSPACES OF EUCLIDEAN SPACE 191

0 100 200 300 400 500 600 700 800 900
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

e
_

x

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−2

10
0

10
2

10
4

f_
x
/e

_
x

Fig. 4.3. The values of ex and fx/ex for all matrices {X} in Example 4.2. The LU factor-
izations are computed with partial pivoting and the QR factorizations are computed with complete
pivoting.

Golub algorithm are sensitive to ill-conditioning introduced in this way. However,
Algorithm 3.1 retains its accuracy properties in most of the cases, while the QR-based
approach results in much larger errors. In Figure 4.2, ex is defined as in Example 4.1

(Q̃x computed by Algorithm 3.1) and fx = sin∠(span(˜̃Qx),X), where ˜̃Qx is computed
by the QR factorization with complete pivoting. The variant of Algorithm 3.1 with
partial pivoting is also less accurate; see Figure 4.3.

Example 4.3. Examples where Algorithm 3.1 is guaranteed to achieve high accu-
racy include structured matrices where various combinatorial and algebraic conditions
(sparsity, sign pattern) ensure forward stable Gaussian elimination with complete piv-
oting. These include Cauchy and Vandermonde matrices and many others; see [13].
(For further references on highly accurate Gaussian elimination, see [26, Chapter 9].)
In such cases, Algorithm 3.1 has an advantage over the straightforward use of orthog-
onal QR factorization.

Example 4.4. In this example, we measure the forward error in the computed
canonical correlations. As reference values we use the approximate canonical correla-

tions σ
(D)
1 ≥ · · · ≥ σ

(D)
q computed by the double precision Algorithm 3.1. The test

problems are generated as in Example 4.1. We test the accuracy of the Björck–Golub
algorithm with complete pivoting, Algorithm 3.1 with complete and partial pivot-
ing, and Algorithm 3.3 with complete pivoting. For single precision approximations

192 ZLATKO DRMAČ

0 100 200 300 400 500 600 700 800 900
10

−10

10
−5

10
0

e
p

s
_

B
G

0 100 200 300 400 500 600 700 800 900
10

−10

10
−5

10
0

e
p

s
_

L
U

C

0 100 200 300 400 500 600 700 800 900
10

−10

10
−5

10
0

e
p
s
_

L
U

P

0 100 200 300 400 500 600 700 800 900
10

−4

10
−2

10
0

e
p
s
_
S

V
D

Fig. 4.4. The computed forward errors in Example 4.5.

σ
(S)
1 ≥ · · · ≥ σ

(S)
q computed by each of the four algorithms, we compute

εCC =
max1≤i≤q |σ(D)

i − σ
(S)
i |

max{κ2(Xs), κ2(Ys)} .

The expected values of εCC are of order of the machine precision ε. The maximal
computed values of εCC for all four algorithms are between 2.6 · 10−7 and 3.5 · 10−7

which, in this example, shows nearly the same accuracy. A high performance imple-
mentation of the QR factorization with complete pivoting (using [12] and [30]) is the
method of choice in this example.

Example 4.5. In our last example, we compare the algorithms based on the QR
and the LU factorizations with pivoting with the algorithm based on the use of the
SVD in the computation of the orthonormal bases for span(X), span(Y). (The use
of the SVD in the principal angle computation is discussed in [10] in connection with
ill-conditioned and rank deficient cases.) In this example, we compute the SVD using
the LAPACK procedure SGESVD(). The test is performed as in Example 4.4 and with
the dimensions m = 100, p = q = 50. For each of the 900 examples, we compute
the maximal forward errors εBG (for the Björck–Golub algorithm with complete piv-
oting), εLUC (for Algorithm 3.1 with complete pivoting), εLUP (for Algorithm 3.1
with partial pivoting), and εSV D for the computation based on the SVD. The results
shown in Figure 4.4 show that the SVD approach is less accurate than the QR- and
LU-based algorithms with complete pivoting. The reason is the high sensitivity of the
bidiagonalization based SVD algorithms to differently scaled matrix columns and/or

PRINCIPAL ANGLES BETWEEN SUBSPACES OF EUCLIDEAN SPACE 193

rows. (We conjecture that a similar situation occurs in the weighted least squares
computation if we compare the Peters–Wilkinson algorithm, the QR approach with
complete pivoting, and the algorithm based on a SVD procedure that is sensitive to
column and row weighting.)

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenny, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, 2nd ed., SIAM, Philadelphia, PA, 1995.

[2] E. H. Bareiss, Numerical Solution of the Weighted Linear Least Squares Problem by G-
Transformations, Technical Report 82–03–NAM–03, Department of Electrical Engineering
and Computer Science, Northwestern University, Evanston, IL, 1982.

[3] J. Barlow, Stability analysis of the G-algorithm and a note on its application to sparse least
squares problems, BIT, 25 (1985), pp. 507–520.

[4] J. Barlow and S. Handy, The direct solution of weighted and equality constrained least-
squares problems, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 704–716.

[5] R. Bhatia and K. Mukherjea, Variation of the unitary part of a matrix, SIAM J. Matrix
Anal. Appl., 15 (1994), pp. 1007–1014.

[6] Å. Björck, Solving linear least squares problems by Gram–Schmidt orthogonalization, BIT, 7
(1967), pp. 1–21.

[7] Å. Björck, Numerics of Gram–Schmidt orthogonalization, Linear Algebra Appl., 197/198
(1994), pp. 297–316.

[8] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[9] Å. Björck and I. S. Duff, A direct method for the solution of sparse linear least squares,

Linear Algebra Appl., 34 (1980), pp. 43–67.
[10] Å. Björck and G. H. Golub, Numerical methods for computing angles between linear sub-

spaces, Math. Comp., 27 (1973), pp. 579–594.
[11] Å. Björck and C. C. Paige, Loss and recapture of orthogonality in the modified Gram–Schmidt

algorithm, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 176–190.
[12] A. J. Cox and N. J. Higham, Stability of Householder QR factorization for weighted least

squares problems, in Numerical Analysis 1997, Proceedings of the 17th Dundee Biennial
Conference, Pitman Res. Notes Math. Ser. 380, D. F. Griffiths, D. J. Higham, and G. A.
Watson, eds., Addison-Wesley-Longman, Harlow, Essex, UK, 1998, pp. 57–73.

[13] J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač, Computing
the singular value decomposition with high relative accuracy, Linear Algebra Appl., 299
(1999), pp. 21–80.

[14] J. Demmel and A. McKenney, A Test Matrix Generation Suite, LAPACK Working Note 9,
Courant Institute, New York, 1989.

[15] Z. Drmač, Computing the Singular and the Generalized Singular Values, Ph.D. thesis, Lehrge-
biet Mathematische Physik, Fernuniversität Hagen, Hagen, Germany, 1994.

[16] Z. Drmač, Accurate computation of the product-induced singular value decomposition with
applications, SIAM J. Numer. Anal., 35 (1998), pp. 1969–1994.

[17] Z. Drmač, New accurate algorithms for singular value decomposition of matrix triplets, SIAM
J. Matrix Anal. Appl., to appear.

[18] Z. Drmač, A tangent algorithm for computing the generalized singular value decomposition,
SIAM J. Numer. Anal., 35 (1998), pp. 1804–1832.

[19] Z. Drmač and E. R. Jessup, On Accurate Generalized Singular Value Computation in
Floating-Point Arithmetic, Department of Computer Science, University of Colorado at
Boulder; SIAM J. Matrix Anal. Appl., submitted.

[20] Z. Drmač, M. Omladič, and K. Veselić, On the perturbation of the Cholesky factorization,
SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1319–1332.

[21] S. Eisenstat and I. Ipsen, Relative perturbation techniques for singular value problems, SIAM
J. Numer. Anal., 32 (1995), pp. 1972–1988.

[22] G. H. Golub, Numerical methods for solving linear least squares problems, Numer. Math., 7
(1965), pp. 206–216.

[23] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1989.

[24] G. H. Golub and H. Zha, Perturbation analysis of the canonical correlations of matrix pairs,
Linear Algebra Appl., 210 (1994), pp. 3–28.

194 ZLATKO DRMAČ

[25] G. H. Golub and H. Zha, The canonical correlations of matrix pairs and their numerical
computation, in Linear Algebra for Signal Processing, IMA Vol. Math. Appl., A. Bojanczyk
and G. Cybenko, eds., Springer, New York, 1995, pp. 27–49.

[26] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[27] M. Olschowka and A. Neumaier, A new pivoting strategy for Gaussian elimination, Linear

Algebra Appl., 240 (1996), pp. 131–151.
[28] G. Peters and J. H. Wilkinson, The least squares problem and pseudoinverses, Comput. J.,

13 (1970), pp. 309–316.
[29] M. J. D. Powell and J. K. Reid, On applying Householder transformations to linear least

squares problems, in Information Processing 68, Proc. International Federation of Informa-
tion Processing Congress, Edinburgh, 1968, North-Holland, Amsterdam, 1969, pp. 122–126.

[30] G. Quintana-Orti, X. Sun, and C. H. Bischof, A BLAS 3 Version of the QR Factorization
with Column Pivoting, Argonne Preprint MCS–P551–1295 and PRISM Working Note 26,
Argonne National Laboratory, Argonne, IL, 1990.

[31] G. W. Stewart, Perturbation bounds for the QR decomposition of a matrix, SIAM J. Numer.
Anal., 14 (1977), pp. 509–518.

[32] G. W. Stewart, On the asymptotic behavior of scaled singular value and QR decompositions,
Math. Comp, 43 (1984), pp. 483–489.

[33] G. W. Stewart, On the Perturbation of LU and Cholesky Factors, Technical Report TR–3535,
Department of Computer Science and Institute for Advanced Computer Studies, University
of Maryland, College Park, MD, 1995.

[34] G. W. Stewart, The Triangular Matrices of Gaussian Elimination and Related Decompo-
sitions, Technical Report TR–3533, Department of Computer Science and Institute for
Advanced Computer Studies, University of Maryland, College Park, MD, 1995.

[35] J.-G. Sun, Perturbation bounds for the Cholesky and QR factorizations, BIT, 31 (1991),
pp. 341–352.

[36] J.-G. Sun, Componentwise perturbation bounds for some matrix decompositions, BIT, 32
(1992), pp. 702–714.

[37] J.-G. Sun, On perturbation bounds for the QR factorization, Linear Algebra Appl., 215 (1995),
pp. 95–111.

[38] L. N. Trefethen and R. Schreiber, Average-case stability of Gaussian elimination, SIAM
J. Matrix Anal. Appl., 11 (1990), pp. 335–360.

[39] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math., 14 (1969),
pp. 14–23.

[40] C. F. Van Loan, A generalized SVD analysis of some weighting methods for equality con-
strained least squares, in Matrix Pencils, B. Kagstrom and A. Ruhe, eds., Lecture Notes
in Math. 973, Springer-Verlag, New York, 1983, pp. 245–262.

[41] D. Viswanath and L. N. Trefethen, Condition Numbers of Random Triangular Matrices,
http://simon.cs.cornell.edu/home/lnt/, 1996.

[42] P. A. Wedin, On angles between subspaces of a finite dimensional inner product space, in
Matrix Pencils, B. Kagstrom and A. Ruhe, eds., Lecture Notes in Math. 973, Springer-
Verlag, New York, 1983, pp. 263–285.

[43] H. Zha, A componentwise perturbation analysis of the QR decomposition, SIAM J. Matrix
Anal. Appl., 14 (1993), pp. 1124–1131.

ON GMRES-EQUIVALENT BOUNDED OPERATORS∗

LEONID KNIZHNERMAN†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 195–212

Abstract. Given a bounded linear operator A in a Hilbert space H and a nonzero vector r ∈ H,
we construct a unitary operator U and (under some conditions) bounded self-adjoint operators P
and T (nonnegative definite and indefinite, respectively) such that all the residual Krylov subspaces
of (A, r), (U, r), (P, r), and (T, r) of the same dimension for the equation Ax = r are equal. When
possible (for example, for U and P , provided 0 is outside the field of values of A), we estimate a gap
in the spectrum of U and the condition numbers of P and T . Some attainability results are also
established.

It is shown that some analogous matrix assertions are valid, which can be obtained by means of
degenerating the operator case. Numerical examples are presented for the finite-dimensional case.

Key words. GMRES, Arnoldi’s method, orthonormal polynomials, bounded operators, Hilbert
space, matrices

AMS subject classifications. 65F10, 47A99

PII. S0895479897325748

1. Introduction. GMRES [17] is a popular Arnoldi-based method for solving
systems of linear equations Ax = r. At a kth step of Arnoldi’s algorithm [4] with A
and r, GMRES produces the approximate solution which minimizes the residual norm
‖At− r‖ over the k-dimensional Krylov subspace span{A0r, A1r, . . . , Ak−1r

}
.

To simplify theoretical investigation of GMRES, Greenbaum and Strakoš pro-
posed in [9] to study the GMRES process with (B, r) instead of (A, r), where B is a
matrix generating the same residual subspaces as A, but having a simpler structure.
Greenbaum and Strakoš showed that one can take a unitary matrix as B and that if
0 is outside the field of values of A, then B can be taken Hermitian positive definite.1

Their constructions are based on the following assertion. Let n be the dimension
of the space, let (w1, . . . ,wk) be an orthonormal basis of span

{
A1r, . . . , Akr

}
for

k = 1, . . . , n, and let one consider representations of (finite-dimensional) operators in
the basis (w1, . . . ,wn). There exists a Hessenberg matrix H such that AW = WH,
and operators, generating the same residual subspaces with respect to r as A, have
the form

RH, R is upper triangular.(1.1)

Since the behavior of GMRES applied to a normal matrix can be well described in
terms of the (discrete) spectral measure, Greenbaum and Strakoš tried to find normal
matrices of sort (1.1). Evidently, if H = R1N with R1 = R−1 upper triangular (the
inverse of that in (1.1)) and N normal, then N is a desirable normal matrix such that
GMRES(A, r) = GMRES(N, r).

For example, considering an RQ-decomposition of H, i.e., H = R1Q with upper
triangular R1 and unitary Q, they constructed an equivalent unitary matrix N = Q.

∗Received by the editors August 21, 1997; accepted for publication (in revised form) by A. Green-
baum December 20, 1999; published electronically May 31, 2000.

http://www.siam.org/journals/simax/22-1/32574.html
†Central Geophysical Expedition, Narodnogo Opolcheniya St., House 40, Bldg. 3, Moscow 123298,

Russia (mmd@cge.ru).
1Under a special condition, they also built an equivalent Hermitian matrix, not necessarily pos-

itive definite.

195

196 LEONID KNIZHNERMAN

Provided 0 is outside the numerical range of A, they considered the decomposition
H = UL = (UL−∗)(L∗L) with upper triangular U and lower triangular L, which gave
tridiagonal Hermitian N = L∗L.

Greenbaum and Strakoš also listed a few open questions; e.g., they did not bound
a possible gap in the spectrum of the unitary matrix and the condition number of the
Hermitian one. It was proved in [10] that any nonincreasing convergence curve (of
a finite length) is attained in GMRES at a matrix with any desired eigenvalues; the
authors concluded that eigenvalues are not the relevant quantities in determining the
behavior of GMRES.

The aim of this paper is partially analogous to that of [9] and [10], but we go
further: we try to estimate the mentioned spectral gap and condition numbers. We
mainly work with bounded operators in Hilbert spaces instead of matrices and use the
technique of linear operators [2] and orthonormal polynomials [18, 14]. We consider
the finite-dimensional (i.e., matrix) case as degenerated one.

Positive points and some difficulties in working with infinite spectra by means of
potential theory are described in detail in [6]. Also, it is worth mentioning that [13]
is entirely devoted to bounded operators in Krylov subspace processes. Polynomials,
orthonormal on the unit circumference, were earlier exploited in [1, 7].

In section 2 we construct a special orthonormal “basis”2 (w1,w2, . . .) of the
Hilbert space in terms of which (“basis”) we shall define some operators. A similar
(finite) construction can be found in [9, 10, 3]; it is just briefly described. However,
the normalization of vectors is important for our considerations, so we fix a particular
normalization from the variety suggested in [9, 10], and we cannot omit some details.3

We mention that a particular normalization is also fixed in [12], where some results
“dual” to our own are established.

In section 3 we build a GMRES-equivalent (i.e., generating the same infinite se-
quence of the residual Krylov subspaces) unitary operator U . We prove that 1 is
not an eigenvalue of U and, moreover, under some condition we bound a gap in the
spectrum of U around 1 on the unit circumference; if 0 lies outside the closure of
the numerical range (= field of values) of A, the condition is satisfied. Further, we
prove that any infinite nonincreasing and asymptotically vanishing residual sequence
is attained at a unitary operator; a consequence is derived for the full orthogonal-
ization method (FOM). Note that we cannot replace a unitary operator with one,
having a prescribed spectrum, in the last result: unlike the spectrum of a matrix, the
spectrum of an operator determines the worst possible (when r varies) asymptotical
speed of convergence of GMRES [13, Theorem 3.4.9] and an analogous upper bound
for the spectral Arnoldi decomposition method (SADM) [11, Theorem 1] in terms of
the generalized Green function of the spectrum.4

In section 4, under some condition, we construct a GMRES-equivalent bounded
self-adjoint injective5 nonnegative definite operator P ; under a stronger condition, we
bound the condition number of P ; this is the case if 0 is outside the closure of the
numerical range of A.

In section 5 we analogously construct an indefinite self-adjoint equivalent opera-
tor.

2We shall use the term basis in its usual linear algebra sense without quotes and in the sense of
Hilbert spaces (a countable set with a dense envelope) in quotes.

3A few related points will be italicized in the text.
4Rigorously speaking, we should add to the spectrum all points separated by it from infinity.
5That is, one having a trivial kernel.

GMRES-EQUIVALENT BOUNDED OPERATORS 197

In section 6 we formulate and shortly prove results for matrices. We show that the
matrix theorems are trivial consequences of the analogous operator assertions. The
derivation is mainly performed by means of cutting off infinite series. A few figures
illustrating the proved theorems are drawn.

In section 7 we list some questions which still remain open.
Calligraphic letters denote vector spaces, capital roman letters denote operators

and matrices, small letters of the font Euler Fraktur denote vectors, small roman
letters denote complex scalars, Greek letters denote functions and measures. The
symbol ↑↓ denotes collinearity of vectors, ≡ equality by definition, Km themth Krylov
subspace, span the linear envelope, and the angular brackets 〈,〉 the scalar product.
Notation introduced in proofs is local.

2. Constructing an orthonormal “basis”. Let A be a bounded injective
linear operator in a Hilbert space H and r be a vector in H\{0}. We shall consider
the GMRES process [17] with A and r. Set q = Ar. Excluding trivial cases and
without loss of generality, we can reckon that the union of the Krylov subspaces
∪∞k=0Kk(A, r) is dense in H and that dimKk(A, r) = dimKk(A, q) = k.

Recall that for each k ∈ N GMRES finds the vector tk ∈ Kk(A, r) realizing
minxk∈Kk(A,r) ‖r − Axk‖. It follows from the minimality (see [2, section 7]) that the
residues rk = r−Atk satisfy the orthogonality property

rk ⊥ AKk(A, r) = Kk(A, q).(2.1)

Let us construct a special orthonormal “basis,” in terms of which we shall later
define some operators in H. Let the Arnoldi process with A and q produce Arnoldi’s
vectors w1, w2,. . . . As, due to (2.1), Kk+1(A, q) � rk − rk+1 ⊥ Kk(A, q), we have
rk − rk+1 ↑↓ wk+1 or rk − rk+1 = 0. Putting gk+1 ≡ ‖rk − rk+1‖, renormalize wk+1 so
that rk − rk+1 = gk+1wk+1 (k ∈ N). So, the desirable “basis” (w1,w2, . . .) has been
obtained.

It follows from the density of ∪∞k=0Kk(A, r) in H that
rk → 0 as k →∞.(2.2)

We can decompose a residue in {wi}. Really, for k ∈ N,
∞∑

l=k+1

glwl = lim
m→∞

k+m∑
l=k+1

glwl = lim
m→∞

k+m∑
l=k+1

(rl−1 − rl) = rk − lim
m→∞ rk+m = rk

owing to (2.2). In particular,

r = r0 =

∞∑
l=1

glwl.(2.3)

Similarly to [10], denote

fk ≡ ‖rk‖ =
√√√√ ∞∑
l=k+1

g2
l .

Slightly modifying a definition from [9, section 3], we shall write GMRES(A, r) =
GMRES(B, r), where B is a bounded linear operator in H, if AKk(A, r) = BKk(B, r),
k ∈ N.

198 LEONID KNIZHNERMAN

Lemma 2.1. If a bounded linear operator B in H is presented by an unre-
duced upper Hessenberg infinite matrix in the “basis” (w1,w2, . . .) and Br ↑↓ w1,
then GMRES(A, r) = GMRES(B, r).

Proof. We have

BKk(B, r) = Kk(B,w1) = span{w1, . . . ,wk} = AKk(A, r)
due to the Hessenbergness of B and by the construction of the “basis” (w1,
w2, . . .).

3. A GMRES-equivalent unitary operator. Define the numbers

an = ‖r‖/fn, bn =
√
a2
n − a2

n−1 (n ∈ N, a−1 ≡ 0)(3.1)

and the infinite matrix U whose (n+ 1)st column (n ∈ N) is
(
− bn+1

anan+1
· b0 − bn+1

anan+1
· b1 . . . − bn+1

anan+1
· bn an

an+1
0 . . .

)T
.(3.2)

We shall see later that the components of (3.2) are the coefficients in the recurrence for
some system of polynomials with positive leading coefficients orthonormal on the unit
circumference and that the numbers an and bn are the coefficients in the recurrences
(3.8) and (3.9) for those orthonormal polynomials and the dual ones.

One can derive from (3.1) that columns (3.2) form an orthonormal system of
vectors in l2. Since

∑n
k=0 b

2
k = a2

n, the squared norm of the (n + 1)st column equals
b2n+1+a

2
n

a2
n+1

= 1 and the scalar product of the (m+ 1)st and (n+ 1)st columns (m > n)

is

bm+1

amam+1
· bn+1

anan+1
· a2
n −

bn+1bm+1

amam+1
· an
an+1

= 0.

Now, it follows from [2, section 26, the second theorem] that U presents a bounded
operator in H if one refers U to the “basis” (w1,w2, . . .). Moreover, U

∗U = I, so U
is unitary.

We shall identify the matrix U and the correspondent operator.
Theorem 3.1. The assertion GMRES(A, r) = GMRES(U, r) holds for the uni-

tary operator U just constructed.
Proof. Compute

U−1w1 = U∗w1 = −
∞∑
n=1

bn
an−1an

wn.

As, due to the nonnegativity of gn,

bn
an−1an

=

√
a2
n − a2

n−1

a2
n−1a

2
n

=
√
a−2
n−1 − a−2

n = ‖r‖−1gn,(3.3)

we deduce by virtue of (2.3) U−1w1 ↑↓ r, whence Ur ↑↓ w1. It remains to apply
Lemma 2.1.

There exists a positive bounded measure σ on the unit circumference such that

〈
Ukw1,w1

〉
=
1

2π

∫
|z|=1

zkdσ(z), k ∈ Z(3.4)

GMRES-EQUIVALENT BOUNDED OPERATORS 199

(see [2, section 62]). The measure σ may be considered as the spectral measure of
the normal operator U (see [16, chap. 13, section 33]). It follows from (3.4) and the
unitariness of U that

〈
Ukw1, U

lw1

〉
=
〈
Uk−lw1,w1

〉
=
1

2π

∫
|z|=1

zkz̄ldσ(z), k, l ∈ Z.(3.5)

Extending (3.5) by linearity, we can define the following scalar product on C[z]:

〈α, β〉 = 1

2π

∫
|z|=1

α(z)β(z)dσ(z) = 〈α(U)w1, β(U)w1〉, α, β ∈ C[z].(3.6)

Let the polynomials ϕk (k ∈ N) satisfy the recurrence

zϕn(z) =
an

an+1
ϕn+1(z)− bn+1

anan+1

n∑
k=0

bkϕk(z), ϕ0(z) = 1.(3.7)

We easily derive from ϕ0(U)w1 = w1 and (3.2) by induction that ϕk(U)w1 = wk+1.
Therefore, {ϕk} is the family of orthonormal polynomials corresponding to scalar
product (3.6) (see [14, chap. 3, section 1]). The leading coefficient of ϕk is ak; it is
proved in [14] that bk = ϕk(0).

Introduce also the dual polynomials ϕ∗
n(z) = znϕn

(
z−1
)
, n ∈ N, and put ϕ−1 =

ϕ∗
−1 ≡ 0. The relations

anϕn+1(z) = an+1zϕn(z) + bn+1ϕ
∗
n(z), n ∈ N,(3.8)

and

bn+1ϕn+1(z) = an+1ϕ
∗
n+1(z)− anϕ

∗
n(z), n ≥ −1,(3.9)

take place (see [14, chap. 3, section 1]).
Theorem 3.2. The number 1 is not an eigenvalue of U .
Proof. Since Ux = x implies U∗x = x, it is sufficient to prove that the adjoint

equation U∗x− x = 0 has no nontrivial solution x in H. Decompose x =
∑∞
l=0 xlwl+1,

xl ∈ C. Writing the equation componentwise, we have

− bn+1

anan+1

n∑
k=0

bkxk +
an

an+1
xn+1 − xn = 0, n ∈ N.(3.10)

If x0 �= 0, then, comparing (3.10) with (3.7), we see that xn = ϕn(1)x0.
From the equality ϕ∗

n(1) = ϕn(1) and formula (3.8) we deduce

ϕn+1(1)

ϕn(1)
=

an+1 + bn+1

an
=

an+1

an

(
1 +

bn+1

an+1

)
,

whence

ϕn(1) = an

n∏
l=1

(
1 +

bl
al

)
≥ an →∞ as n→∞,

which contradicts the assumption that x ∈ H. Therefore, x0 = 0 and x = 0.
Theorem 3.2 means that 1 does not belong to the discrete spectrum of U . How-

ever, 1 may belong to the continuous spectrum. For example, this is the case if ak

200 LEONID KNIZHNERMAN

tends to +∞ slower than any exponential. (It follows from [14, chap. 2, formula
(7.19) and chap. 3, formula (6.3)] that in this case the spectrum of U is the whole
unit circumference.) The next theorem asserts that if all steps of the GMRES process
are uniformly far from stagnation, then there is a gap in the spectrum of U around 1.

Theorem 3.3. If the residual norms satisfy the inequality

fl/fl+1 ≥ p > 1, l ∈ N,(3.11)

then 1 is a regular point of U ; namely,

∥∥(I − U)−1
∥∥ ≤ 1

2

√
p+ 1

p− 1

(
1√

1− p−2
+

1√
p2 − 1

)
.(3.12)

Proof. For al → +∞ as l→ +∞, the measure σ violates the Szegö condition (see
[14, chap. 3, Theorem 2.1]). This implies that ϕl form a complete “basis” in the space
L2,σ of functions whose squared modulus is integrable on the unit circumference with
respect to σ (see [14, chap. 3, Theorem 2.2]).

By virtue of (3.2) and (3.7), U can be considered as the operator of multiplication
by the independent variable z in L2,σ.

We shall show that the operator I − U is continuously invertible. First, set

ψ(z) =

∞∑
l=0

ulϕl(z) ∈ L2,σ with ‖ψ‖2L2,σ
=

∞∑
l=0

|ul|2 = 1.

Using (3.9), perform the redecomposition from ϕl in ϕ∗
l :

∞∑
l=0

ulϕl =

∞∑
l=0

vlϕ
∗
l with vl = al

(
ul
bl
− ul+1

bl+1

)
,

the series in ϕ∗
l being convergent in L2,σ, because ‖ϕ∗

l ‖2L2,σ
= a−2

l

∑l
k=0 b

2
k = 1 (see

[14, chap. 3, section 1, identity (1.3)]),

al
bl
=

1√
1−
(
al−1

al

)2
≤ 1√

1− p−2
,(3.13)

and

al
bl+1

=
1√(

al+1

al

)2

− 1
≤ 1√

p2 − 1 ,(3.14)

where we used (3.11) in the form al+1/al ≥ p. Again exploiting (3.13) and (3.14), we
get

√√√√ ∞∑
l=0

|vl|2 ≤
√√√√ ∞∑

l=0

(
al
bl
|ul|
)2

+

√√√√ ∞∑
l=0

(
al
bl+1
|ul+1|

)2

≤ max
l∈N

al
bl
+max

l∈N

al
bl+1

≤ 1√
1− p−2

+
1√

p2 − 1 .(3.15)

GMRES-EQUIVALENT BOUNDED OPERATORS 201

Now we shall find a function χ(z) =
∑∞
l=0 qlϕl(z) ∈ L2,σ such that (1− z)χ(z) =

ψ(z). In view of (3.8) and (3.9), we have

zϕn = a−1
n+1

(
an

an+1ϕ
∗
n+1 − anϕ

∗
n

bn+1
− bn+1ϕ

∗
n

)

=
an
bn+1

ϕ∗
n+1 −

(
a2
n

an+1bn+1
+

bn+1

an+1

)
ϕ∗
n =

an
bn+1

ϕ∗
n+1 −

an+1

bn+1
ϕ∗
n

and

(1− z)ϕn = −an−1

bn
ϕ∗
n−1 +

(
an
bn
+

an+1

bn+1

)
ϕ∗
n −

an
bn+1

ϕ∗
n+1,

whence

(1− z)χ(z) =

∞∑
n=0

qn

[
−an−1

bn
ϕ∗
n−1 +

(
an
bn
+

an+1

bn+1

)
ϕ∗
n −

an
bn+1

ϕ∗
n+1

]

=

∞∑
n=0

ϕ∗
n

[
−an−1

bn
qn−1 +

(
an
bn
+

an+1

bn+1

)
qn − an

bn+1
qn+1

]
.

The infinite tridiagonal matrix H with the rows

(
. . .− an−1

bn

an
bn
+

an+1

bn+1
− an
bn+1

. . .
)

is symmetric and presents a bounded self-adjoint operator in l2. Since

an
bn
+

an+1

bn+1
− an−1

bn
− an

bn+1
=

an − an−1√
a2
n − a2

n−1

+
an+1 − an√
a2
n+1 − a2

n

=

√
an − an−1

an + an−1
+

√
an+1 − an
an+1 + an

≥ 2
√

p− 1
p+ 1

,

we observe diagonal dominance in H:

H ≥ 2
√

p− 1
p+ 1

I.(3.16)

It follows from (3.15) and (3.16) that χ exists and

‖χ‖ ≤ 1
2

√
p+ 1

p− 1

(
1√

1− p−2
+

1√
p2 − 1

)
.

This means that the resolvent (I − U)−1 exists, (3.12) holding.
Liesen [12] gave upper bounds for a residue of GMRES, applied to a unitary

matrix, in terms of a gap in the spectrum. This is partially “dual” to what we just
did.

As p tends to +∞, the right-hand side of (3.12) tends to 1/2; this means that
Sp(U) concentrates around the point −1. On the other hand, as p→ 1+0, the right-
hand side of (3.12) is asymptotically equivalent to 1/(p−1), so Sp(U) can approach 1.

The condition of the following assertion was considered in [9], but without deduc-
ing quantitative results.

202 LEONID KNIZHNERMAN

Corollary 3.4. If 0 does not belong to the closure of the numerical range of A,
then 1 is a regular point of U .

Proof. As in the proof of the error estimate for the steepest descent method [8,
section 2.2], it can be shown that

‖rk+1‖2 ≤ ‖rk‖2 − |〈Ark, rk〉|2
‖Ark‖2 .(3.17)

According to the condition, there exists a positive constant d such that |〈Au, u〉| ≥
d‖u‖2 for any u ∈ H. Combined with (3.17), this implies

fk+1 ≤
√
1− (d/‖A‖)2fk,(3.18)

and it only remains to apply Theorem 3.3.
Evidently, with greater d (i.e., the distance from 0 to the numerical range of A),

a larger gap in the spectrum of U around 1 can be guaranteed.
The next theorem directly generalizes the main result of [10].
Theorem 3.5. Let fk be a nonincreasing sequence of real numbers converging to

0. Then there exist a unitary operator U and a nonzero vector r in a separable Hilbert
space H such that fk = ‖rk‖ for GMRES with (A, r).

Proof. Let (w1,w2, . . .) be an orthonormal “basis” of H. Define the numbers gk
by the equality gk =

√
f2
k−1 − f2

k (k ≥ 1; note that ∑∞
k=1 g

2
k < +∞), the vector

r by (2.3), the numbers an and bn by (3.1), and the operator U by (3.2). As in
the proofs of Theorem 3.1 and Lemma 2.1, it can be shown that U−1w1 ↑↓ r and
UKk(U, r) = Kk(U,w1) = span{w1, . . . ,wk}, from which the formula for the residue
is instantly derived.

Corollary 3.6. Let a sequence hk ∈]0,+∞] of elements of the extended real
axis satisfy the condition lim infk→∞ hk < +∞. Then there exist a unitary operator
U and a nonzero vector r in a separable Hilbert space H such that GMRES with (U, r)
converges and

∥∥rAk ∥∥ = hk, where rAk is the kth residue of FOM with (U, r).
Proof. Set f0 = h0 and, inductively for k ≥ 1,

fk =

{
hk√

1+(hk/fk−1)2
if hk < +∞,

fk−1 otherwise.

As 0 < fk ≤ fk−1, there exists f = limk→∞ fk ≥ 0. If f > 0, then

hk =

{ fk√
1−(fk/fk−1)2

if fk �= fk−1,

+∞ otherwise
→ +∞ as k →∞,

which contradicts the assumption. Therefore, fk → 0.
According to Theorem 3.5, there exist an operator U and vector r for which

‖rk‖ = fk. It is sufficient to use Theorem 3 in [5], asserting that

∥∥rAk ∥∥ =
{

‖rk‖√
1−(‖rk‖/‖rk−1‖)2

if ‖rk‖ �= ‖rk−1‖,
+∞ otherwise.

4. A GMRES-equivalent self-adjoint nonnegative definite operator. Un-
der the assumption

gi �= 0, sup
i≥1

gi+1/gi < +∞,

GMRES-EQUIVALENT BOUNDED OPERATORS 203

define the infinite symmetric tridiagonal matrix

P =

h1 e1

e1 h2 e2

. . .
. . .

. . .

 with hi = 1 +

g2
i+1

g2
i

, ei = −gi+1

gi
(i ≥ 1).

The matrix P evidently presents a bounded self-adjoint operator in the “basis” (w1,w2,
. . .). The condition gi �= 0 is natural, because GMRES applied to a self-adjoint non-
negative definite operator cannot stagnate.

Theorem 4.1. The assertion GMRES(A, r) = GMRES(P, r) holds for the self-
adjoint operator P just constructed.

Proof. Direct calculation based on (2.3) demonstrates that P r = g1w1 ↑↓ w1.
Then refer to Lemma 2.1.

Theorem 4.2. The operator P is nonnegative definite, and 0 is not its eigen-
value.

Proof. For any vector

x =
∞∑
i=1

xiwi ∈ H
(
so that

∞∑
i=1

|xi|2 < +∞
)

we derive

〈P x, x〉 =
∞∑
i=1

(
1 +

g2
i+1

g2
i

)
|xi|2 −

∞∑
i=1

gi+1

gi
(xixi+1 + xi+1xi)

= |x1|2 +
∞∑
i=1

∣∣∣∣gi+1

gi
xi − xi+1

∣∣∣∣
2

≥ 0,
(4.1)

so P is nonnegative definite. Besides that, if P x = 0, then x1 = 0 and, inductively,
x2 = x3 = · · · = 0.

Theorem 4.2 shows, in particular, that P is injective, but does not guarantee that
P is continuously invertible. The next theorem gives a sufficient condition for P to
be so.

Theorem 4.3. If the numbers gk satisfy the inequality

gi/gj ≤ cpi−j , c > 0, 0 < p < 1, i ≥ j ≥ 1,(4.2)

then the operator P is positive definite. Its condition number is estimated by

condP ≤
[
c(1 + cp)

1− p

]2
.(4.3)

Proof. Let again x =
∑∞
i=1 xiwi ∈ H. Define the quantities y1 = x1, yi+1 =

gi+1/gi · xi − xi+1 (i ≥ 1) and the vector y =
∑∞
i=1 yiwi. In view of (4.1), we have

〈P x, x〉 =∑∞
i=1 |yi|2 = ‖y‖2.

Prove by induction that |xi| ≤
∑i
k=1

gi
gk
|yk|. For i = 1 this assertion is reduced

to |x1| ≤ |y1|. Move from i to i+ 1:

|xi+1| ≤ |yi+1|+ gi+1

gi
|xi| ≤ |yi+1|+ gi+1

gi

i∑
k=1

gi
gk
|yk| =

i+1∑
k=1

gi+1

gk
|yk|.

204 LEONID KNIZHNERMAN

Thus,

‖x‖2 ≤
∞∑
i=1

(
i∑

m=1

gi
gm
|ym|

)2

.

The terms with |yk| · |yl| (k ≥ l) have the summarized coefficient

∞∑
i=k

g2
i

gkgl
≤ c2

∞∑
i=k

p2i−k−l =
c2pk−l

1− p2
,

which is to be doubled if k �= l (we have used (4.2) here). Since for m ≥ 0
∞∑
l=1

c2pm

1− p2
|yl| · |yl+m| ≤ c2pm

1− p2
‖y‖2,

then

‖x‖2 ≤
(

c2

1− p2
+ 2

∞∑
m=1

c2pm

1− p2

)
‖y‖2 =

[
c2

1− p2
+

2c2p

(1− p)(1− p2)

]
‖y‖2

=
c2

(1− p)2
‖y‖2 = c2

(1− p)2
〈P x, x〉 ,

whence

P ≥
(
1− p

c

)2

I.(4.4)

In view of the estimate

‖P‖ ≤ max
i
{|ei−1|+ |hi|+ |ei|} ≤ (1 + cp)2 (e−1 ≡ 0)

and (4.4), we can obtain bound (4.3).
Corollary 4.4. If 0 does not belong to the closure of the numerical range of A,

then 0 is a regular point of P , i.e., P is positive definite.
Proof. We shall prove the applicability of Theorem 4.3 by demonstrating that a

partial case of (4.2) holds. One can extract the inequality f2
k − f2

k+1 ≥ (d
‖A‖)

2f2
k from

(3.18), whence gk+1 ≥ d
‖A‖fk (k ∈ N). If i ≥ j ≥ 1, then we deduce

gi
gj
≤ fi−1

d
‖A‖fj−1

≤ ‖A‖
d

√
1−
(

d

‖A‖
)2

i−j

,

where we again use inequality (3.18).

5. A GMRES-equivalent self-adjoint indefinite operator. Put

uk =
fk

fk−1
, vk = (−1)k−1 f2

k−1

gkfk−1 + gk+1fk
, k ≥ 1.

Under the condition

|vk| ≤ c1, k ≥ 1, c1 > 0,(5.1)

GMRES-EQUIVALENT BOUNDED OPERATORS 205

define the infinite matrices

L =

1
u1 1

u2 1
. . .

. . .

 , D = diag(v1, v2, . . .).

In particular, condition (5.1) means that gk and gk+1 cannot vanish simultaneously.
This is natural, because a GMRES process with a self-adjoint operator cannot stagnate
at two consecutive steps.

Owing to the inequality uk ≤ 1 and condition (5.1), we can derive from [2,
section 26, the second theorem] that L and D present bounded operators. Form
the self-adjoint operator T = LDL∗. (As usual, we identify infinite matrices and
operators in H by means of the “basis” (w1,w2, . . .).)

Theorem 5.1. The operator T is injective, and the pair (T, r) is GMRES-
equivalent to (A, r).

Proof. The injectivity of L and D is evident, and the one of L∗ follows from the
definition of uk and the fact limk→∞ fk = 0.

The matrix presenting T is tridiagonal. Since vk(gk + ukgk+1) = (−1)k−1fk−1,
we have with use of (2.3) T r = LDL∗r = L

∑∞
k=1(−1)k−1fk−1wk = f0w1 ↑↓ w1. This

completes the proof.
Theorem 5.2. If the numbers fk additionally satisfy the inequality

fi/fj ≤ c2p
i−j , c2 > 0, 0 < p < 1, i ≥ j ≥ 0,(5.2)

then the operator T is continuously invertible; namely,

condT ≤ 2c1(1 + c2p)
2

(
1 +

c1p

1− p

)2

.(5.3)

Proof. First,

∥∥D−1
∥∥ = max

k

∣∣v−1
k

∣∣ = max
k

∣∣∣∣ gk
fk−1

+
gk+1

fk−1
· fk
fk−1

∣∣∣∣ ≤ 2.(5.4)

Second, due to (5.2) the infinite matrix

1
−u1 1
u1u2 −u2 1
−u1u2u3 u2u3 −u3 1

· · · . . .

 =

1
− f1f0 1
f2
f0

− f2f1 1

− f3f0
f3
f1

− f3f2 1

· · · . . .

represents a bounded operator, and this operator is directly shown to be L−1. Third,
the continuous invertibility of L implies that of L∗. Thus, T is the product of three
continuously invertible operators.

It follows from (5.1), (5.2), and (5.4) that ‖T‖ ≤ c1(1 + c2p)
2 and

∥∥T−1
∥∥ ≤ 2

(
1 +

c1p

1− p

)2

,

which implies (5.3).

206 LEONID KNIZHNERMAN

6. Results and examples for matrices. Let m ≥ 1, Am be a linear operator
in Cm, r ∈ Cm. Denote by rk (0 ≤ k ≤ m − 1) the residues of the GMRES process
with (Am, r) and by fk the residual norms fk = ‖rk‖. Assume that rm−1 �= 0. Define
also the numbers

gk =

{√
f2
k−1 − f2

k if 1 ≤ k ≤ m− 1,
fm−1 if k = m.

Let Bm be a linear operator in C
m. Following [9, 10], we write

GMRES(Am, r) = GMRES(Bm, r),

if AmKk(Am, r) = BmKk(Bm, r) for k = 0, . . . ,m− 1.
We introduce an orthonormal basis (w1, . . . ,wm) of C

m by

ri−1 − ri = giwi, gi = ‖ri−1 − ri‖, i = 1, . . . ,m, rm ≡ 0
(note the nonnegativity of gi; refer, e.g., to [15] for other details).

6.1. An equivalent unitary matrix. Define the numbers

an = ‖r‖/fn, bn =
√
a2
n − a2

n−1 (n = 0, . . . ,m− 1, a−1 ≡ 0),
and the Hessenberg matrix

Um =

−b0 b1
a0a1

−b0 b2
a1a2

· · · −b0 bm−1

am−2am−1
− b0
am−1

a0

a1
−b1 b2

a1a2
· · · −b1 bm−1

am−2am−1
− b1
am−1

a1

a2
· · · −b2 bm−1

am−2am−1
− b2
am−1

...
...

−bm−2
bm−1

am−2am−1
− bm−2

am−1

am−2

am−1
− bm−1

am−1

.(6.1)

We shall identify Um and the linear operator in Cm defined by the matrix Um in
terms of the basis (w1, . . . ,wm).

Theorem 6.1. The matrix Um is unitary, and the assertion

GMRES(Am, r) = GMRES(Um, r)

holds in the sense of [9, 10].
Proof. The proof of this theorem (and also Theorems 6.4 and 6.7) is analogous

to that of Theorem 3.1 (4.1 and 5.1, respectively). The only new (trivial) point is to
check out that the mth component of U−1

m w1 is what we need.
Theorem 6.2. The number 1 is not an eigenvalue of Um.
Proof. Modifying the proof of Theorem 3.2, we obtain the formula

xk = ak

k∏
l=1

(
1 +

bl
al

)
x0, k = 0, . . . ,m− 1.

At that, formula (3.10) with n = m− 1 becomes

−
m−1∑
k=0

bk
am−1

xk − xm−1 = 0,

GMRES-EQUIVALENT BOUNDED OPERATORS 207

Fig. 6.1. Sp(Um) for m = 100, ai = pi−1, p = 1.1.

which is possible only if x0 = 0, because otherwise all the terms in the left-hand side
are of the same sign.

This theorem may also be derived from [1, Lemma 1].
Theorem 6.3. If the residual norms satisfy the inequality

fl/fl+1 ≥ p > 1, l = 0, . . . ,m− 2,(6.2)

then

∥∥(I − Um)
−1
∥∥ ≤ 1

2

√
p+ 1

p− 1

(
1√

1− p−2
+

1√
p2 − 1

)
.(6.3)

Proof. The infinite series in the proof of Theorem 3.3 become finite by means of
omitting the terms with ϕk, ϕ

∗
k for k ≥ m. The identity (3.8) for n = m − 1 turns

into zϕm−1(z) = −ϕ∗
m−1(z).

We draw the spectra of Um with m = 100 for two sequences fk in Figures 6.1 and
6.2. Estimate (6.3) gives the lower bounds dist(1,Sp(Um)) ≥ 0.09524 and 0.00995,
respectively. The clear gaps around the point 1 in the figures evidently satisfy the
mentioned inequalities.

208 LEONID KNIZHNERMAN

Fig. 6.2. Sp(Um) for m = 100, ai = pi−1, p = 1.01.

6.2. An equivalent Hermitian positive definite matrix. Under the as-
sumption

gi �= 0, i = 1, . . . ,m,(6.4)

define the m×m symmetric tridiagonal matrix

Pm =

h1 e1 O
e1 h2 e2

. . .

O em−1 hm

with

hi = 1 +
g2
i+1

g2
i

, ei = −gi+1

gi
(i = 1, . . . ,m, gm+1 ≡ 0).

Theorem 6.4. The assertion GMRES(Am, r) = GMRES(Pm, r) holds in the
sense of [9, 10].

Theorem 6.5. The matrix Pm is positive definite.
Proof. The infinite series in the proof of Theorem 4.2 are truncated: the numbers

xi, i > m, vanish.

GMRES-EQUIVALENT BOUNDED OPERATORS 209

Fig. 6.3. Sp(Pm) for m = 100, gi = pi−1, p = 1/1.1.

Fig. 6.4. Sp(Pm) for m = 100, gi = pi−1, p = 1/1.01.

Theorem 6.6. If the numbers gk satisfy the inequality

gi/gj ≤ cpi−j , c > 0, 0 < p < 1, m ≥ i ≥ j ≥ 1,(6.5)

then the condition number of Pm is estimated by

condPm ≤
[
c(1 + cp)

1− p

]2
.(6.6)

Proof. The infinite series in the proof of Theorem 4.3 are to be properly trun-
cated.

The initial assumption (6.4) is natural, because a GMRES process with an Her-
mitian positive definite matrix has no stagnation steps.

We draw the spectra of Pm with m = 100 for two sequences fk in Figures 6.3
and 6.4. Estimate (6.6) gives the upper bounds cond(Pm) ≤ 441.00 and 40401.0,
respectively. In fact, the correspondent values of cond(Pm) are 405.01 and 7895.8.

6.3. An equivalent Hermitian indefinite matrix. Under the condition

max(gk−1, gk) > 0, k = 2, . . . ,m,(6.7)

define the numbers

uk =
fk

fk−1
, vk = (−1)k−1 f2

k−1

gkfk−1 + gk+1fk
, k = 1, . . . ,m, um ≡ 0,

and the m×m matrices

Lm =

1
u1 1

u2 1
. . .

. . .

um−1 1

 , Dm = diag(v1, . . . , vm).

Form the Hermitian matrix Tm = LmDmL
∗
m.

Theorem 6.7. The matrix Tm is regular, and the pair (Tm, r) is GMRES-
equivalent to (Am, r) in the sense of [9, 10].

Theorem 6.8. If the numbers fk obey the inequality

fi/fj ≤ c2p
i−j , c2 > 0, 0 < p < 1, 0 ≤ j ≤ i ≤ m− 1,

then the condition number of the matrix Tm is estimated as

condTm ≤ 2c1(1 + c2p)
2

(
1 +

c1p

1− p

)2

,(6.8)

210 LEONID KNIZHNERMAN

Fig. 6.5. | Sp(Tm)| for m = 100 and stagnation at every other step. The two horizontal bars
correspond to the positive and negative eigenvalues, respectively.

Fig. 7.1. Sp(Um) for m = 100, a2 = a3 = p2, a4 = · · · = a6 = p5, a11 = · · · = a15 = p14,
a16 = · · · = a21 = p20, a22 = · · · = a28 = p27, a29 = · · · = a36 = p35, a37 = · · · = a45 = p44,
a46 = · · · = a55 = p54, a56 = · · · = a64 = p63, a65 = · · · = a76 = p75, a77 = · · · = a89 = p88,
a90 = · · · = a99 = p98, p = 1.1.

where

c1 = max
k=1,...,m−1

f2
k−1

gkfk−1 + gk+1fk
.

Again, assumption (6.7) is obligatory, because a GMRES process with an Hermi-
tian matrix cannot stagnate at two consecutive steps.

The proofs of Theorems 5.1 and 5.2 obviously induce those of Theorems 6.7 and
6.8.

We draw the modulus of the eigenvalues of Tm with m = 100 for the sequence

GMRES-EQUIVALENT BOUNDED OPERATORS 211

Fig. 7.2. The “spectral function” of the pair (Um, r) with the matrix Um inherited from Fig-
ure 7.1. The abscissas axis is directed to the left.

fk = 1.1
−2[(k+1)/2] in Figure 6.5. Estimate (6.8) gives the upper bound condTm ≤

2500.7. In fact, the value of condTm equals 24.545.

7. Open questions. We do not know if inequalities (3.12), (4.3), and (5.3) are
precise in any sense. Besides that, there may be other gaps in the spectrum of U and
gaps in those of P and T , also influencing the speed of convergence of GMRES.

Neither do we know how to interpret conditions (3.11), (4.2), and (5.2) in a natural
way—i.e., not so roughly, as in Corollaries 3.4 and 4.4.

It is sometimes more suitable to characterize convergence in terms of the spectral
measure instead of the spectrum. In Figure 7.1 we draw the spectrum of the matrix
Um with m = 100 for a residual sequence majorized by the one from the example
presented in Figure 6.1. We can see that the gap around 1 in Figure 7.1 is much less
than in Figure 6.1, notwithstanding the fact that convergence of the correspondent
GMRES process is not worse. However, we plotted the graph of the function

x �→ ‖r‖−2
∑

�θi>x
|〈r, zi〉|2

in Figure 7.2, where (θi, zi) are the eigenpairs of Um with normalized eigenvectors zi.
It is clear that the spectral density in a vicinity of 1 is small, which just reflects good
(but not regular) convergence. It would be interesting to find rigorous statements for
both the operator and matrix cases.

Acknowledgments. The author thanks Anne Greenbaum for useful discussions,
supplying him with preliminary copies of a few papers, a book, and commentaries to
them, and also for supplying a MATLAB program used in [9]; Zdeněk Strakoš for
useful discussions and remarks; Jörg Liesen for useful discussions; Hakim Ikramov
for supplying a few references; participants of Eugene Tyrtyshnikov’s seminar at the
Institute of Computational Mathematics for useful discussion; referee B for useful
remarks.

212 LEONID KNIZHNERMAN

REFERENCES

[1] G. S. Ammar, W. B. Gragg, and L. Reichel, On the eigenproblem for orthogonal matrices,
in Proceedings of the 25th Conference on Decision and Control, Athens, Greece, IEEE,
New York, 1986, pp. 1963–1966.

[2] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover, New
York, 1993.

[3] M. Arioli, V. Pták, and Z. Strakoš, Krylov sequences of maximal length and convergence
of GMRES, BIT, 38 (1998), pp. 636–643.

[4] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue
problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[5] J. Cullum and A. Greenbaum, Relations between Galerkin and norm-minimizing iterative
methods for solving linear systems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 223–247.

[6] T. A. Driscoll, K.-C. Toh, and L. N. Trefethen, From potential theory to matrix iterations
in six steps, SIAM Rev., 40 (1998), pp. 547–578.

[7] W. B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math.,
16 (1986), pp. 1–8.

[8] A. Greenbaum, Iterative Methods for Solving Linear Systems, Frontiers Appl. Math. 17, SIAM,
Philadelphia, PA, 1997.

[9] A. Greenbaum and Z. Strakoš, Matrices that generate the same residual spaces, in Re-
cent Advances in Iterative Methods, G. Golub, A. Greenbaum, and M. Luskin, eds., IMA
Vol. Math. Appl. 60, Springer-Verlag, 1994, pp. 95–118.

[10] A. Greenbaum, V. Pták, and Z. Strakoš, Any nonincreasing convergence curve is possible
for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465–469.

[11] L. Knizhnerman, On adaptation of the Arnoldi method to the spectrum, Schlumberger–Doll
Research, Research Note #EMG-001-96-03, Ridgefield, CT, 1996.

[12] J. Liesen, Computable convergence bounds for GMRES, SIAM J. Matrix Anal. Appl., 21
(2000), pp. 882–903.

[13] O. Nevanlinna, Convergence of Iterations for Linear Equations, Lectures Math. ETH Zürich,
Birkhäuser-Verlag, Basel, Switzerland, 1993.

[14] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Nauka,
Moscow, 1988 (in Russian).

[15] M. Rozložńık and Z. Strakoš, Variants of the residual minimizing Krylov space methods,
in Proceedings of the Eleventh Summer School on Software and Algorithms of Numerical
Mathematics, I. Marek, ed., University of West Bohemia, Plzeň, 1995, pp. 208–225.

[16] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
[17] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[18] G. Szegö, Orthogonal Polynomials, AMS, New York, 1959.

ACCURACY OF TWO THREE-TERM AND THREE TWO-TERM
RECURRENCES FOR KRYLOV SPACE SOLVERS∗

MARTIN H. GUTKNECHT† AND ZDENĚK STRAKOŠ‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 213–229

Abstract. It has been widely observed that Krylov space solvers based on two three-term
recurrences can give significantly less accurate residuals than mathematically equivalent solvers im-
plemented with three two-term recurrences. In this paper we attempt to clarify and justify this
difference theoretically by analyzing the gaps between recursively and explicitly computed residuals.

It is shown that, in contrast with the two-term recurrences analyzed by Sleijpen, van der Vorst,
and Fokkema [Numer. Algorithms, 7 (1994), pp. 75–109] and Greenbaum [SIAM J. Matrix Anal.
Appl., 18 (1997), pp. 535–551], in the two three-term recurrences the contributions of the local
roundoff errors to the analyzed gaps may be dramatically amplified while propagating through the
algorithm. This result explains, for example, the well-known behavior of three-term-based versions of
the biconjugate gradient method, where large gaps between recursively and explicitly computed resid-
uals are not uncommon. For the conjugate gradient method, however, such a devastating behavior—
although possible—is not observed frequently in practical computations, and the difference between
two-term and three-term implementations is usually moderate or small. This can also be explained
by our results.

Key words. system of linear algebraic equations, iterative method, Krylov space method,
conjugate gradient method, three-term recurrence, accuracy, roundoff

AMS subject classifications. 65F10, 65G05

PII. S0895479897331862

1. Introduction. Among the Krylov space solvers for linear systems Ax = b
(with A an (N ×N)-matrix and b an N -vector) there are quite a few that are based
on three-term recurrences for both the residuals rn and the iterates xn. Given an
initial approximation x0, we let r0 = b − Ax0, r−1 = o, x−1 = o, β−1 = 0 and
consider for n ≥ 0, while γn �= 0,

rn+1 = (Arn − rnαn − rn−1βn−1)/γn ,

xn+1 = −(rn + xnαn + xn−1βn−1)/γn .
(1.1)

In order that the recurrences (1.1) be consistent with the residual definition rn ≡
b−Axn, the scaling coefficients γn need to be chosen according to

γn = −(αn + βn−1),(1.2)

which means that the tridiagonal matrix with coefficients βn−1, αn, and γn in its
(n+ 1)st column has column sums zero; see, for example, section 4.3 of [14].

The list of algorithms based on (1.1) and (1.2) includes the Chebyshev iteration
[24, 21, 19], the second-order Richardson iteration [21] (which is the stationary form

∗Received by the editors December 23, 1997; accepted for publication (in revised form) by G. H.
Golub on September 22, 1999; published electronically June 3, 2000.

http://www.siam.org/journals/simax/22-1/33186.html
†Seminar for Applied Mathematics, ETH Zürich, ETH-Zentrum, CH-8092 Zürich, Switzerland

(mhg@sam.math.ethz.ch).
‡Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322 (on

leave from Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague)
(strakos@mathcs.emory.edu). This author’s work was supported by ASCR grant A2030706 and by
GA CR grant 205/96/0921. Part of the work was performed while he visited the Swiss Center for
Scientific Computing (CSCS/SCSC) in 1997.

213

214 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

of the Chebyshev iteration), the three-term versions (ORes) of the conjugate gra-
dient (CG) and the conjugate residual (CR) methods [24, 15], and the three-term
version (BiORes) of the unsymmetric or two-sided Lanczos method [18, 14] (which
is a variation of the biconjugate gradient (BiCG) method); see also [2, 15]. On the
other hand, for example, neither the version of CG suggested by Rutishauser [21]
(based on recurrences for the increments in x and r) nor the minres algorithm of
Paige and Saunders [20], which implements the CR method for symmetric indefinite
matrices, nor their symmlq algorithm is covered by our assumptions. An interesting
contribution to the rounding error analysis of minres and symmlq can be found in
[23].

The CG, CR, and BiCG methods have better known versions (OMin and BiOMin)
that are instead based on three two-term recurrences involving, in addition to the it-
erates and their residuals, direction vectors pn: for n ≥ 0,

pn = rn + pn−1ψn−1 ,

rn+1 = rn −Apnωn ,
xn+1 = xn + pnωn

(1.3)

with p0 = r0. Other methods like OrthoMin [28] use the last two of these recur-
rences, but have a more complex update formula for the direction vectors. In principle,
the version (1.3) can be obtained from the three-term version (1.1)–(1.2) by an LU
decomposition of the tridiagonal matrix of recurrence coefficients; see [1, 5, 14, 20].
The folklore is that implementations based on the two-term recurrences (1.3) are less
affected by roundoff than those based on the three-term recurrences (1.1)–(1.2). It
should be pointed out that the meaning of the phrase less affected by roundoff should
be carefully specified, otherwise the previous statement is imprecise and can be mis-
leading.

Recent work of Greenbaum [10, 11] shows that under the sole assumption that
the last two recurrences (1.3) hold, there is a limitation on the accuracy of the iterates
computed in finite precision arithmetic; the corresponding residuals b−Axn cannot be
expected to decrease below a certain level. (A similar but somewhat weaker result was
given by Sleijpen, van der Vorst, and Fokkema [22].) This level depends primarily
on the largest norm of an approximate solution xn generated during the iteration,
but it does not explicitly depend on how the coefficients ωn and ψn are determined.
Since, for example, the BiCG method may produce very large intermediate iterates
and residuals, this result is of great importance in practice. In contrast, related work
on GMRES showed that the size of intermediate iterates does not play a role [4, 12].

In this paper we investigate and answer the question when and why algorithms
based on two three-term recurrences of the form (1.1)–(1.2) usually do not produce
as small residuals as mathematically equivalent algorithms based on three two-term
recurrences (1.3). Similarly to [10, 11, 22, 4], we investigate the gap fn ≡ (b −
Axn) − rn between the explicitly computed residuals b − Axn and the recursively
updated residuals rn. We will refer to the former as true residuals and to the latter
as updated residuals. We show that for computations based on (1.1)–(1.2), the gap fn
satisfies a nonhomogeneous second-order difference equation. By writing n steps of
this difference equation as the superposition of n+1 homogeneous difference equations
(in a different context, this idea has been used by Grcar [8]), we receive an explicit
formula for fn in terms of the local roundoff errors. The resulting formula contains, in
addition to the sum of local errors (which is the analog of the sum that represents the
gap fn in the case of two-term recurrences analyzed by Greenbaum), each local error

ACCURACY OF KRYLOV SPACE SOLVERS 215

multiplied by a set of potentially large multipliers. Moreover, the local errors may
become for the two three-term recurrences much larger than for two-term recurrences.

Assume that—in any application for which they are suitable—the methods based
on the recurrences (1.1)–(1.2) or (1.3) will eventually produce small updated residuals
(whose norm will decrease to the level of roundoff occurring in the finite precision
computation of the residual b −Ax for the exact solution x). Then the size of the
gap fn determines the ultimate attainable accuracy measured by the size of the true
residual; a large gap will eventually mean a poor residual b − Axn. The methods
based on (1.1)–(1.2) are proven to be in this sense potentially much less accurate than
those based on (1.3). In this sense, the folklore statement mentioned above is correct.

Our theoretical conclusions are well supported by numerical experiments.
It should be mentioned that the question of the ultimate attainable accuracy of

iterative methods was studied by several other authors in addition to those mentioned
above; see, for example, [3, 17, 25, 26, 27]. For a more detailed discussion we refer
to [11]. However, to our knowledge, the problem of numerical differences between the
recurrences (1.1)–(1.2) and (1.3) was not analyzed in these papers.

2. Local roundoff and the basic recurrence for the gap. In finite precision
arithmetic, recurrences (1.1) have to be replaced by

rn+1 = (Arn − rnαn − rn−1βn−1 + gn)/γn ,

xn+1 = −(rn + xnαn + xn−1βn−1 − hn)/γn ,
(2.1)

where gn and hn contain all the local rounding errors produced at the step n+1, and
rn, xn, etc., denote the actually computed quantities.

The first step of the analysis consists of estimating these local errors. We make
the usual assumption that the floating-point arithmetic with roundoff unit ε satisfies

fl(a± b) = a(1 + ε1)± b(1 + ε2), |ε1|, |ε2| ≤ ε,(2.2)

fl(a op b) = (a op b)(1 + ε3), |ε3| ≤ ε, op = ∗, /.(2.3)

Then the roundoff in the matrix-vector multiplication (computed in a standard
way) is bounded according to

|fl(Ap)−Ap| ≤ m ε |A| |p|+O(ε2),(2.4)

where |A| and |p| denote the elementwise absolute values of A and p, and m is the
maximal number of nonzeros in any row of A. Assuming that the first and the third
terms in (1.1) are summed up first, by applying these rules we get

|gn| ≤ ((m+ 3) |A| |rn|+ 3 |rnαn|+ 4 |rn−1βn−1|) ε+O(ε2),(2.5)

|hn| ≤ (3 |rn|+ 3 |xnαn|+ 4 |xn−1βn−1|) ε+O(ε2).(2.6)

Both gn and hn are bounded by a quantity proportional to ε, but the behavior of
their bounds close to convergence is different. While the updated residual will become
eventually small in reasonable computations, and the bound for |gn| will decrease
correspondingly, the bound for |hn| will not. Note that we could consider a norm of
gn and hn here, but there is no real need for this.

In the following estimates we assume that the computed coefficients αn, βn−1,
and γn satisfy, in analogy to (1.2),

γ0 = −α0 , γn = −(αn + βn−1) + εn (n > 0)(2.7)

216 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

with error terms εn (note that this symbol is distinct from ε) that are bounded by

|εn| ≤ (|αn|+ |βn−1|) ν ε (n > 0) ,(2.8)

where ν is a suitable small constant. Note that ν = 1 when γn is computed using
(1.2). For later convenience we set ε0 = 0.

We want to estimate the norm of the difference (or gap) between updated and
true residuals, hence, of

fn ≡ b−Axn − rn .

For n = 0, the gap f0 is the roundoff in computing r0 from A, x0, and b; that is,
f0 = b−Ax0 − fl(b−Ax0), and this is bounded by

|f0| ≤ ((m+ 1) |A| |x0|+ |b|) ε+O(ε2).(2.9)

Inserting the recursions (2.1) and the equality (2.7) we have

fn+1 = b + (Arn + Axnαn + Axn−1βn−1 −Ahn)
1

γn

− (Arn − rnαn − rn−1βn−1 + gn)
1

γn

= − [(b−Axn − rn)αn + (b−Axn−1 − rn−1)βn−1 − b εn + Ahn + gn]
1

γn

= − [fn αn + fn−1 βn−1 − b εn + Ahn + gn]
1

γn
.

(2.10)

Let us gather the last three terms, the local errors, in

ln ≡ (−b εn + Ahn + gn)
1

γn
.

By inserting the estimates (2.5), (2.6), and (2.8) we see that

|ln| ≤ [|b| (|αn|+ |βn−1|) ν + (m+ 6) |A| |rn|+ 3 (|A| |xn|+ |rn|) |αn|
+ 4 (|A| |xn−1|+ |rn−1|) |βn−1|] ε

|γn| +O(ε2).

For n = 0, we have γ0 = −α0, ε0 = 0, and thus

l0 = (Ah0 + g0)
1

γ0
, f1 = f0 − l0.

In summary, (2.10) yields for the gaps fn the linear second-order difference equation

f1 = f0 − l0 , fn+1 = −
(
fn
αn
γn

+ fn−1
βn−1

γn
+ ln

)
(n ≥ 1),(2.11)

or, equivalently, the pair of first-order difference equations

[
fn
fn+1

]
=

[
O I

−βn−1

γn
I −αn

γn
I

] [
fn−1

fn

]
−
[
o
ln

]
(n ≥ 1)(2.12)

ACCURACY OF KRYLOV SPACE SOLVERS 217

with f1 = f0 − l0. These recurrences describe the propagation of the local rounding
errors lk, k = 0, . . . , n. We see that the gap fn between the updated and the true
residuals after n steps is determined by a nonhomogeneous second-order difference
equation. This is in sharp contrast to the error behavior of the coupled two-term
recurrences, where the gap after n steps is just a simple sum of local errors; see [11].
Consequently, as we will see in the next section, the two three-term recurrences may
suffer from a strong amplification of the local errors.

3. Formula for the gap between true and updated residuals. For the
moment, assume that the term εn in (2.7) vanishes, that is,

−αn
γn
− βn−1

γn
= 1(3.1)

holds even in finite precision arithmetic. Denote by zn+1 = D(zn−m+1, zn−m;m) the
result of m steps of the recurrence

zk+1 = −zkαk
γk
− zk−1

βk−1

γk
, k = n−m+ 1, . . . , n,(3.2)

started at the step n−m. Note that due to (3.1), zn−m+k+1 = D(zn−m+1, zn−m; k) =
zn−m for all k whenever zn−m+1 = zn−m. Our discussion will rely heavily on this
fact.

First, we derive how the gap fn+1 is affected by f0. Clearly, the part of this gap
that depends on f0 is given by

D(f0, f0;n) = f0 ,

that is, f0 is not amplified in the process. Next we have to analyze the dependence
of fn+1 on the elementary rounding errors l0 born in the first step of the algorithm.
Clearly, considering (2.11) for n = 1, subtracting and adding l0

β0

γ1
, the contribution

of l0 to the gap fn+1 can be decomposed into two parts: the part which propagates
through the recurrence without any change,

D(−l0,−l0;n) = − l0 ,

and the part depending on the modified local error of the first step,

l̃1 ≡ l0
β0

γ1
+ l1 ,

which has yet to be analyzed. Repeating the same idea for the steps 2 through n,
we can conclude that the gap fn+1 can be written as the following superposition of
effects of local errors:

fn+1 = f0 −l0
−l0 β0

γ1
− l1

−l0 β0β1

γ1γ2
− l1 β1

γ2
− l2(3.3)

...

−l0 β0β1 · · ·βn−1

γ1γ2 · · · γn − . . .− ln−1
βn−1

γn
− ln.

218 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

Let us give another derivation of this fundamental result. From (2.12) we see
that, in view of f1 = f0 − l0,

[
fn
fn+1

]
=

n∏
k=1

[
O I

−βk−1

γk
I −αk

γk
I

] [
f0
f0

]
(3.4)

−
n∑
j=0

n∏
k=j+1

[
O I

−βk−1

γk
I −αk

γk
I

] [
o
lj

]
.

Here, due to (3.1), the matrices in the first product leave [f�0 f�0]� invariant. In
the product that appears after the sum, we split off the last matrix (the one where
k = j + 1) and apply it to [o� l�j]� to get

[
lj

−lj αj+1

γj+1

]
=

[
lj
lj

]
+

[
o

lj
βj

γj+1

]
.

Now we have again a first term that is left invariant by the matrices it is multiplied
with and a second term of the form [o� �]� that can be treated in the same way

that [o� l�j]� was treated before. Repeating this trick we finally obtain

[
fn
fn+1

]
=

[
f0
f0

]
−
n−1∑
j=0

[
lj
lj

](
1 +

βj
γj+1

+ · · ·+ βj · · ·βn−2

γj+1 · · · γn−1

)
(3.5)

−
n∑
j=0

[
o
lj

]
βj · · ·βn−1

γj+1 · · · γn ,

which is the same as formula (3.3), written for both fn and fn+1.
Now we describe how the picture changes when the coefficients αn, βn−1, and

γn are computed imprecisely, that is, when (3.1) is replaced by (2.7). We can fol-
low the analysis described above with the only difference being that we should add
the effect of the quantity f0ε1/γ1 propagating through n − 1 steps of the recurrence

(3.2) with z1 := o, the effect of l̃1ε2/γ2 propagating through n − 2 steps of (3.2)
with z2 := o, and so on. As long as the constant ν is small and εn is close to the
machine precision ε, these modifications will only cause effects proportional to O(ε2).
In (3.3) we should therefore add terms O(ε2) to individual terms of the sum. How-
ever, once the size of these terms is considered, the new O(ε2) contributions can be
thought of as being incorporated in the O(ε2) terms already present in the bounds for
f0, l0, . . . , ln. Therefore, we can use (3.3) in the further analysis with no change and
no limitation.

We summarize our main result in the following theorem.
Theorem 3.1. Up to a term O(ε2), the gap fn+1 between true and updated

ACCURACY OF KRYLOV SPACE SOLVERS 219

residuals is given by the formula

fn+1 = f0 −
n∑
j=0

lj

− l0

(
β0

γ1
+
β0β1

γ1γ2
+ · · ·+ β0 · · ·βn−1

γ1 · · · γn

)

− l1

(
β1

γ2
+ · · ·+ β1 · · ·βn−1

γ2 · · · γn

)

...

− ln−1
βn−1

γn
.

(3.6)

It is tempting to estimate ||fn|| directly on the basis of (3.4), using an appropriate
norm for the 2 × 2 block matrices. However, the resulting estimate is too generous,
as it does not take into account the fundamental special properties of these block
matrices.

4. Comparison with three coupled two-term recurrences. In our nota-
tion, Greenbaum’s gap [11] for the coupled two-term recurrences (1.3) is

fGn+1 = f0 −
n∑
j=0

lGj , where lGj ≡ AhG
j + gG

j ,(4.1)

with gG
n and hG

n denoting the local rounding errors in the computation of the first
two recurrences of (1.3), analogously to gn and hn in (2.1). A comparison of (4.1)
with (3.6) is instructive.

We point out that the size of the local rounding errors may be considerably larger
in the two three-term recurrences than in the three two-term recurrences; the size of
the local error lGj in the step n is essentially bounded by O(ε)||A|| max1≤j≤n ||xj ||
(see [11]), where ||A|| denotes the spectral norm of A. In our case, a similar term in
the bound for ||ln|| would be multiplied by the factor (3|αn|+4|βn−1|)/|γn|, which can
be substantially larger than 1; see section 5 for the specific case of the CG method.
Nevertheless, as documented by our numerical experiments in section 6, the difference
between the implementations based on the two three-term recurrences (1.1)–(1.2) and
those using the three two-term recurrences (1.3) cannot be explained by the size of the
local rounding error terms only. The amplification of the local errors due to possibly
large multipliers plays a substantial if not decisive role: the additional terms in (3.6)
can be similar in size to or even dominate the sum of local rounding errors. If the
multipliers become very large, then the two three-term recurrences (1.1)–(1.2) are
likely to exhibit a dramatically wider gap than the two-term recurrences (1.3).

Assuming, as in [11], that the updated residuals become eventually negligible,
the relations (3.6) and (4.1) determine the ultimate attainable accuracy of the meth-
ods based on (1.1)–(1.2) and (1.3), respectively, measured by the norm of the true
residuals.

5. Example: CG method. For the following discussion of the size of the mul-
tiplicative factors

k∏
j=i

βj−1

γj
(1 ≤ i ≤ k)

220 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

we restrict ourselves to symmetric positive definite matrices A and to the CG method.
First, for the simplicity of our exposition, we assume exact arithmetic.

The coefficients in the two-term recurrences (1.3) are for CG given by [16]

ωn =
〈rn, rn〉
〈pn,Apn〉 , ψn =

〈rn+1, rn+1〉
〈rn, rn〉 .(5.1)

Both ωn and ψn are positive. Without specific knowledge about A and r0 we cannot
say anything more about their values. More precisely, given any two sequences of pos-
itive numbers, ω0, . . . , ωN−1 and ψ0, . . . , ψN−2, there is a symmetric positive definite
matrix A and a vector r0 such that the classical OMin form (the Hestenes–Stiefel
(HS) implementation) of the CG method applied to A with the initial residual r0
generates the given coefficients; see Theorem 18:3 of Hestenes and Stiefel [16]. This
result allows us to construct examples having any given set of multipliers, and thus
to find some with very large gaps. On the other hand, if the matrix A is reasonably
well conditioned and if the CG method converges well, then the bounds derived for
the multipliers will show that no substantial amplification of the local rounding errors
will occur.

It is well known [20, 5, 1] that by eliminating the direction vectors pn in (1.3)
we obtain the three-term (ORes) variant of the CG method with recurrences of the
form (1.1)–(1.2). From the orthogonality of the residuals we receive

αn =
〈rn,Arn〉
〈rn, rn〉 , βn−1 = γn−1

〈rn, rn〉
〈rn−1, rn−1〉 .(5.2)

Using (5.1) and γn = −(αn +βn−1), we see that the coefficients of the two implemen-
tations are related by

γn = − 1

ωn
< 0,

βn−1

γn
=
ψn−1ωn
ωn−1

≥ 0,
αn
γn

= −1− ψn−1ωn
ωn−1

≤ −1,(5.3)

where ψ−1 = 0, ω−1 = 1. The equality is attained in the last two formulas only if
xn = x, that is, if we have reached the solution. We conclude that the multiplicative
factors in (3.3) have the form

k∏
j=i

βj−1

γj
=

ωk
ωi−1

k∏
j=i

ψj−1 ,(5.4)

and therefore they may exhibit, in general, an arbitrary behavior.
For a given matrix A and an initial residual r0, it is possible to relate the size of

the multipliers to the condition number of A and the convergence of the CG process
measured by the norm of the residuals. First, according to Theorem 5:5 in [16],

〈pn,Apn〉
〈pn,pn〉 <

1

ωn
= |γn| < 〈rn,Arn〉〈rn, rn〉 ,

which yields, with the spectral norm,

1

‖A−1‖ =
1

σmin(A)
<

1

ωn
= |γn| < ‖A‖.(5.5)

Rewriting the multipliers in the form

k∏
j=i

βj−1

γj
=

ωk
ωi−1

||rk||2
||ri−1||2 ,

ACCURACY OF KRYLOV SPACE SOLVERS 221

we receive the following bounds:

1

κ(A)

||rk||2
||ri−1||2 ≤

k∏
j=i

βj−1

γj
≤ κ(A)

||rk||2
||ri−1||2 ,(5.6)

where κ(A) is the spectral condition number of the matrix A. Note that

||rk||2
||ri−1||2 =

||A1/2A1/2 (x− xk)||2
||A1/2A1/2 (x− xi−1)||2 ≤

||A||
σmin(A)

||x− xk||2A
||x− xi−1||2A

≤ κ(A)

due to the monotonicity of the A-norm of the error. Consequently,

k∏
j=i

βj−1

γj
≤ κ2(A).

As mentioned in section 2, the bound for the size of the local rounding errors ln in
the two three-term recurrences (1.1)–(1.2) contains the factors |αn/γn| and |βn−1/γn|.
In view of (5.2) and (5.5) we have 0 ≤ αn ≤ ‖A‖ and |γn|−1 ≤ ‖A−1‖. Using (5.3),
we obtain the estimate

0 ≤ βn−1

γn
≤
∣∣∣∣αnγn

∣∣∣∣ ≤ κ(A).(5.7)

Surprisingly, to establish that the developed bounds remain relevant in the case of
finite precision computation we do not need any extra work: the results of [9] and [13]
imply that in finite precision arithmetic the following slightly relaxed bounds hold:

(1− ϑ)
1

κ(A)

||rk||2
||ri−1||2 ≤

k∏
j=i

βj−1

γj
≤ (1 + ϑ) κ(A)

||rk||2
||ri−1||2 ,(5.8)

k∏
j=i

βj−1

γj
≤ (1 + ϑ) κ2(A) ,(5.9)

βn−1

γn
≤
∣∣∣∣αnγn

∣∣∣∣ ≤ (1 + ϑ) κ(A) ,(5.10)

where 0 ≤ ϑ � 1. (Here, we make the usual assumption about the numerical non-
singularity of the matrix A; for details see the references mentioned above.) Note,
however, that the conclusion we just made is far from trivial. The values of the ac-
tually computed recurrence coefficients and of the residual norms may be completely
different from their theoretical counterparts. But still, essentially the same bounds
hold!

The large size of the upper bounds for ill-conditioned A suggest that though
the size of the local errors may contribute to a possibly large gap between true and
updated residuals, the further amplification of the local errors due to large multipliers
may have a much stronger effect.

222 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

6. Numerical experiments with the CG method. The construction of our
numerical experiments follows ideas from [16].

Example 1. We consider N = 48 and aim at the following values of the coefficients
(5.1) for the classical HS form of the CG method:

ω0 = ω1 = · · · = ω47 = 1,

ψ0 = 10, ψ1 = ψ3 = · · · = ψ43 = 0.01, ψ2 = · · · = ψ42 = 100,(6.1)

ψ44 = 10−2, ψ45 = 10−3, ψ46 = 10−4.

Using the well-known formulas [9]

T0,0 =
1

ω0
,

Ti,i =
1

ωi
+
ψi−1

ωi−1
,(6.2)

Ti,i−1 = Ti−1,i =

√
ψi−1

ωi−1
, i = 1, . . . , N − 1,

we construct an N×N symmetric positive definite tridiagonal matrix T with spectral
norm ‖T‖ = 102 and condition number κ(T) ≈ 2×106 (for N = 48). For any unitary
N × N matrix V, the CG method (1.3), (5.1) applied to the system Ax = b with
A = VTV� and r0 = b−Ax0 = Ve1 then generates in steps 1 to N the prescribed
coefficients ωj , ψj , j = 0, . . . , N − 1, and the residual norms

‖rj‖ = 101/2 for j = 1, 3, . . . , 43,

‖rj‖ = 10−1/2 for j = 2, 4, . . . , 44,

with ‖rj‖ sharply decreasing in the steps 45 through 48. For an initial residual
different from Ve1 the behavior of the residual norms will be different, but we may
still expect some oscillations and, consequently, some large multipliers.

We have used the construction described above, choosing V as the unitary matrix
resulting from the QR decomposition of a randomly generated N × N matrix; in
Matlab notation [V,R] = qr(randn(N,N)). Furthermore, we have chosen x =
(1, . . . , 1)�, b = Ax, x0 = o, r0 = b. Hence, r0 �= Ve1. Experiments were performed
on an Sun Ultra 10 workstation with ε ≈ 1.11× 10−16 using Matlab 5.0.

Three implementations of the CG method have been compared: except for Fig-
ure 9, solid lines always represent results of the classical OMin or Hestenes–Stiefel
(HS) version given by (1.3) and (5.1), dots those of the Rutishauser (R) variant
described in [21], and dashed lines those of the ORes implementation of the form
(1.1)–(1.2) presented, for example, in [15, p. 143], and denoted here as HY. In the R
variant the recurrences are, for n ≥ 0, of the form

∆rn = (−Arn + ∆rn−1 ηn−1) τ−1
n , rn+1 = rn + ∆rn ,

∆xn = (rn + ∆xn−1 ηn−1) τ−1
n , xn+1 = xn + ∆xn ,

(6.3)

and they are started with r0 = b −Ax0, ∆r−1 = o, ∆x−1 = o, and η−1 = 0. The
coefficients are computed according to

τn =
〈rn,Arn〉
〈rn, rn〉 − ηn−1 , ηn = τn

〈rn+1, rn+1〉
〈rn, rn〉 .(6.4)

ACCURACY OF KRYLOV SPACE SOLVERS 223

0 20 40 60 80 100 120
10

–18

10
–16

10
–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

Iteration Number

U
pd

at
ed

 R
es

id
ua

l N
or

m
s

Comparison of HS, R, and HY Variants

Fig. 1. Example 1: Norms of the updated residuals for the two-term (HS, solid line), three-term
(HY, dashed line), and Rutishauser (R, dots) variants of the CG method.

In the HY variant, the following recurrences are used for n ≥ 0:

rn+1 = θn+1(−µn+1Arn + rn) + (1− θn+1)rn−1 ,

xn+1 = θn+1(µn+1rn + xn) + (1− θn+1)xn−1 .
(6.5)

They are started with r0 = b − Ax0, θ1 = 1, x−1 = o, and r−1 = o, and the
coefficients are computed according to

µn =
〈rn, rn〉
〈rn,Arn〉 , θn+1 =

(
1− µn+1

µn

〈rn, rn〉
〈rn−1, rn−1〉

1

θn

)−1

.(6.6)

Clearly, the finite precision equivalent of (6.5) can be written in the form (2.1). Con-
sequently, Theorem 3.1 applies, although the bounds for the size of the local errors
derived in section 2 have to be modified slightly.

Norms of the updated residuals are compared in Figure 1. We can see the os-
cillations followed by the fast convergence for n around 70. Of course, theoretically
the method should converge in 48 steps, but, as can be explained by the analysis in
[9, 13], the convergence is delayed due to roundoff effects. Norms of the true residuals
‖b−Axn‖ are shown in Figure 2. Clearly, residual norms of the HY variant stagnate
at a significantly worse level than those of the HS variant, as predicted by our analysis.

In Figure 3 the norms of the gaps fn we investigated, that is, of the differences
between true and updated residuals, are displayed. Note that for the HY variant
the gap starts to grow soon, much earlier than one can detect from the two previous
figures. Figure 4 shows the behavior of the error norms ‖x − xn‖. Surprisingly,
the differences in the error norms are much less pronounced than those in the true
residuals.

Example 2. The second example makes use of the same construction, but now,
again for N = 48, we aim at

ω0 = ω1 = · · · = ω47 = 1,

ψ0 = ψ1 = · · · = ψ39 =
√

2, ψ40 = · · · = ψ46 = 2−7,
(6.7)

224 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

0 20 40 60 80 100 120
10

–18

10
–16

10
–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

Iteration Number

T
ru

e
R

es
id

ua
l N

or
m

s

Comparison of HS, R, and HY Variants

Fig. 2. Example 1: Norms of the true residuals computed as ‖b−Axn‖ for the two-term (HS,
solid line), three-term (HY, dashed line), and Rutishauser (R, dots) variants of the CG method.

0 20 40 60 80 100 120
10

–18

10
–16

10
–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

Iteration Number

N
or

m
 o

f t
he

 G
ap

 b
et

w
ee

n
Tr

ue
 a

nd
 U

pd
at

ed
 R

es
id

ua
ls

Comparison of HS, R, and HY Variants

Fig. 3. Example 1: Norms of the differences (gaps) fn between the true and updated residuals
for the two-term (HS, solid line), three-term (HY, dashed line), and Rutishauser (R, dots) variants
of the CG method.

which gives ‖T‖ ≈ 4.8 and κ(T) ≈ 6× 107. Again, we consider the system Ax = b,
A = VTV�, where V is determined as in Example 1, x = (1, . . . , 1)�, b = Ax. If we
chose x0 so that r0 = Ve1, we would find residuals with

‖rn‖ = (
√

2)n for n = 1, 2, . . . , 40

and a sharply decreasing norm in the subsequent steps. However, we have again
chosen x0 differently, namely x0 = o, so that r0 = b. Then we do not find an initially

ACCURACY OF KRYLOV SPACE SOLVERS 225

0 20 40 60 80 100 120
10

–18

10
–16

10
–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

Iteration number

E
rr

or
 N

or
m

s

Comparison of HS, R, and HY Variants

Fig. 4. Example 1: Norms of the errors ‖x−xn‖ for the two-term (HS, solid line), three-term
(HY, dashed line), and Rutishauser (R, dots) variants of the CG method.

0 20 40 60 80 100 120
10

–18

10
–16

10
–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

Iteration Number

U
pd

at
ed

 R
es

id
ua

l N
or

m
s

Comparison of HS, R, and HY Variants

Fig. 5. Example 2: Norms of the updated residuals for the two-term (HS, solid line), three-term
(HY, dashed line), and Rutishauser (R, dots) variants of the CG method.

increasing but rather a quickly decreasing residual norm, both for the updated (see
Figure 5) and the true residual (see Figure 6); note the significant oscillation around
n = 45. The norm of the true residuals of the HY variant stagnates again at a
significantly worse level than in the HS variant. Figure 7 shows the norm of the gaps
fn. The differences in the norms of the errors, displayed in Figure 8, are again less
pronounced.

To illustrate the contribution of the size of local rounding errors to the gap fn, we
plotted in Figure 9 the size of the coefficients |αn/γn|, βn/γn and |1/γn|. Clearly, while

226 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

0 20 40 60 80 100 120
10

–18

10
–16

10
–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

Iteration Number

T
ru

e
R

es
id

ua
l N

or
m

s

Comparison of HS, R, and HY Variants

Fig. 6. Example 2: Norms of the true residuals computed as ‖b−Axn‖ for the two-term (HS,
solid line), three-term (HY, dashed line), and Rutishauser (R, dots) variants of the CG method.

0 20 40 60 80 100 120
10

–18

10
–16

10
–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

Iteration Number

N
or

m
 o

f t
he

 G
ap

 b
et

w
ee

n
T

ru
e

an
d

U
pd

at
ed

 R
es

id
ua

ls

Comparison of HS, R, and HY Variants

Fig. 7. Example 2: Norms of the differences (gaps) fn between the true and updated residuals
for the two-term (HS, solid line), three-term (HY, dashed line), and Rutishauser (R, dots) variants
of the CG method.

the gap exhibits a loss of accuracy of about six orders of magnitude, the anticipated
contribution of the local errors to this gap is not greater than about two orders
of magnitude. The disastrous difference between updated and true residuals must
therefore be caused by an amplification of the local rounding errors due to large
multipliers. In the analogous figure (not shown) for Example 1 the same behavior is
slightly less pronounced.

A detailed explanation of the performance of the R variant and of the behavior
of the error in all variants requires further work.

ACCURACY OF KRYLOV SPACE SOLVERS 227

0 20 40 60 80 100 120
10

–18

10
–16

10
–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

Iteration number

E
rr

or
 N

or
m

s

Comparison of HS, R, and HY Variants

Fig. 8. Example 2: Norms of the errors ‖x−xn‖ for the two-term (HS, solid line), three-term
(HY, dashed line), and Rutishauser (R, dots) variants of the CG method.

0 20 40 60 80 100 120
10

–2

10
–1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Iteration number

T
hr

ee
Te

rm
 R

ec
ur

re
nc

e
C

oe
ffi

ci
en

ts

Indication of the Size of the Local Errors

Fig. 9. Example 2: Size of the three-term recurrence coefficients |αn/γn| (solid line), βn/γn
(dots) and |1/γn| (dashed line) for the HY variant of the CG method

.

7. Conclusions. We have explained why the ultimate attainable accuracy mea-
sured by the norm of the true residual b−Axn can be much worse for implementations
of Krylov space methods based on the two three-term recurrences (1.1)–(1.2) than for
the corresponding implementations based on two-term recurrences of the form (1.3).
For example, in the three-term (ORes) version of the CG method, the gap between
true and updated residuals is affected not only by the maximum size of the intermedi-
ate iterates ||xk|| as in the coupled two-term (OMin) version, but also by oscillations
of the squared norms of the residuals, that is, the quantities ||rk||2/||ri−1||2, 1 ≤ i ≤ k.

228 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

Many well-known algorithms like minres and symmlq [20], or the three-term and
the coupled two-term versions of the quasi-minimal residual (QMR) method [6, 7], as
well as the Rutishauser variant of the CG method are not of the form (1.1)–(1.2) or
(1.3). Hence, the results presented in this paper do not apply to them.

Chris Paige suggested another derivation of the results presented in this paper,
based entirely on matrix formulations of the algorithms. His approach brings some
additional insight into the problem and has potential for further generalization of the
results. We hope to report about the results of the joint subsequent work in the near
future.

Acknowledgments. The authors would like to thank Anne Greenbaum, Gerard
Meurant, Chris Paige, Lisa Perrone, and Miro Rozložńık for their helpful comments.

REFERENCES

[1] S. F. Ashby and M. H. Gutknecht, A matrix analysis of conjugate gradient algorithms, in
Advances in Numerical Methods for Large Sparse Sets of Linear Systems, M. Natori and
T. Nodera, eds., Parallel Processing for Scientific Computing 9, Keio University, Yokahama,
Japan, 1993, pp. 32–47.

[2] S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, A taxonomy for conjugate gradient
methods, SIAM J. Numer. Anal., 27 (1990), pp. 1542–1568.

[3] J. A. M. Bollen, Numerical stability of descent methods for solving linear equations, Numer.
Math., 43 (1984), pp. 361–377.

[4] J. Drkošová, A. Greenbaum, M. Rozložńık, and Z. Strakoš, Numerical stability of the
GMRES method, BIT, 35 (1995), pp. 308–330.

[5] R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical Analysis, G. A.
Watson, ed., Lecture Notes in Math. 506, Springer, Berlin, 1976, pp. 73–89.

[6] R. W. Freund and N. M. Nachtigal, QMR: A quasi-minimal residual method for non-
Hermitian linear systems, Numer. Math., 60 (1991), pp. 315–339.

[7] R. W. Freund and N. M. Nachtigal, An implementation of the QMR method based on
coupled two-term recurrences, SIAM J. Sci. Comput., 15 (1994), pp. 313–337.

[8] J. F. Grcar, Analyses of the Lanczos Algorithm and of the Approximation Problem in Richard-
son’s Method, Ph.D. thesis, Report UIUCDCS-R-81-1074, University of Illinois at Urbana-
Champaign, 1981.

[9] A. Greenbaum, Predicting the behavior of finite precision Lanczos and conjugate gradient
computations, Linear Algebra Appl., 113 (1989), pp. 7–63.

[10] A. Greenbaum, Accuracy of computed solutions from conjugate-gradient-like methods, in Ad-
vances in Numerical Methods for Large Sparse Sets of Linear Systems, M. Natori and T.
Nodera, eds., Parallel Processing for Scientific Computing 10, Keio University, Yokahama,
Japan, 1994, pp. 126–138.

[11] A. Greenbaum, Estimating the attainable accuracy of recursively computed residual methods,
SIAM J. Matrix Anal. Appl., 18 (1997), pp. 535–551.

[12] A. Greenbaum, M. Rozložńik, and Z. Strakoš, Numerical behaviour of the modified Gram-
Schmidt GMRES implementation, BIT, 37 (1997), pp. 706–719.

[13] A. Greenbaum and Z. Strakoš, Predicting the behavior of finite precision Lanczos and con-
jugate gradient computations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 121–137.

[14] M. H. Gutknecht, Lanczos-type solvers for nonsymmetric linear systems of equations, Acta
Numerica, 6 (1997), pp. 271–397.

[15] L. Hageman and D. Young, Applied Iterative Methods, Academic Press, Orlando, FL, 1981.
[16] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,

J. Research Nat. Bur. Standards, 49 (1952), pp. 409–435.
[17] N. J. Higham and P. A. Knight, Componentwise error analysis for stationary iterative meth-

ods, in Linear Algebra, Markov Chains, and Queueing Models, C. D. Meyer and R. J.
Plemmons, eds., IMA Vol. Math. Appl. 48, Springer-Verlag, New York, 1993, pp. 29–46.

[18] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators, J. Research Nat. Bur. Standards, 45 (1950), pp. 255–281.

[19] T. A. Manteuffel, The Tchebyshev iteration for nonsymmetric linear systems, Numer. Math.,
28 (1977), pp. 307–327.

ACCURACY OF KRYLOV SPACE SOLVERS 229

[20] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[21] H. Rutishauser, Theory of gradient methods, in Refined Iterative Methods for Computation
of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, Mitt. Inst.
angew. Math. ETH Zürich, Birkhäuser-Verlag, Basel, Switzerland, 1959, pp. 24–49.

[22] G. L. G. Sleijpen, H. A. van der Vorst, and D. R. Fokkema, BiCGstab(l) and other hybrid
Bi-CG methods, Numer. Algorithms, 7 (1994), pp. 75–109.

[23] G. L. G. Sleijpen, H. A. van der Vorst, and J. Modersitzki, The main effects of round-
ing errors in Krylov solvers for symmetric linear systems, SIAM J. Matrix Anal. Appl.,
submitted.

[24] E. Stiefel, Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme,
Comm. Math. Helv., 29 (1955), pp. 157–179.

[25] H. Woźniakowski, Numerical stability of the Chebyshev method for the solution of large linear
systems, Numer. Math., 28 (1977), pp. 191–209.

[26] H. Woźniakowski, Round-off error analysis of iterations for large linear systems, Numer.
Math., 30 (1978), pp. 301–314.

[27] H. Woźniakowski, Round-off error analysis of a new class of conjugate-gradient algorithms,
Linear Algebra Appl., 29 (1980), pp. 507–529.

[28] D. M. Young and K. C. Jea, Generalized conjugate-gradient acceleration of nonsymmetrizable
iterative methods, Linear Algebra Appl., 34 (1980), pp. 159–194.

STABLE COMPUTATION WITH THE FUNDAMENTAL MATRIX OF
A MARKOV CHAIN∗

JESSE L. BARLOW†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 230–241

Abstract. The short term behavior of a Markov chain can be inferred from its fundamental
matrix F . One method of computing the parts of F that are needed is to compute Fy for a given
vector y.

It is shown that all forward stable algorithms that solve a particular least squares problem lead to
forward stable algorithms for computing Fy. This in turn leads to a class of algorithms that compute
Fy accurately whenever the underlying problem is well-conditioned. One algorithm from this class is
based upon the Grassman–Taksar–Heyman variant of Gaussian elimination. Other such algorithms
include one based upon orthogonal factorization and one based upon the conjugate gradient least
squares algorithm.

Key words. fundamental matrix, pseudoinverse, group inverse, backward error, conditioning

AMS subject classifications. 65F05, 65F20

PII. S0895479898334538

1. Introduction. Consider a matrix A ∈ �n×n of the form

A = I −Q,(1.1)

where

Q ≥ 0, Qc = c, c = (1, 1, . . . , 1)T ∈ �n.(1.2)

Thus

Ac = 0.(1.3)

Matrices of the form (1.1) arise in Markov chains. The conditions (1.2) state that Q
is row stochastic. We assume that A is irreducible; therefore rank(A) = n− 1.

The stationary vector p of the Markov chain satisfies

pTA = 0,(1.4)

cTp = 1.(1.5)

The vector p determines the long term behavior of the chain. Throughout the paper,
we make use of the fact that ‖c‖∞ = ‖p‖1 = 1.

The short term behavior of the chain is studied by systems analysts. Considerable
information about that behavior may be recovered from the fundamental matrix given
by

F = (A− cpT)−1.(1.6)

∗Received by the editors February 26, 1998; accepted for publication (in revised form) by D.
Calvetti November 22, 1999; published electronically June 3, 2000.

http://www.siam.org/journals/simax/22-1/33453.html
†Department of Computer Science and Engineering, Pennsylvania State University, University

Park, PA 16802–6106 (barlow@cse.psu.edu). The research of this author was supported by the
National Science Foundation under grants CCR–9424435 and CCR–9732081.

230

STABLE COMPUTATION WITH THE FUNDAMENTAL MATRIX 231

Since F is often large and dense when A is large and sparse, for a given vector y,
we compute the value

x = Fy(1.7)

rather than compute all of F explicitly.
First, for k = 1, . . . , n, let Pk be a permutation that exchanges the kth and nth

column of a matrix. Then define Bk ∈ �n×(n−1) and ak ∈ �n by

APk = (Bk ak).(1.8)

The class of algorithms that are the main subject of this paper compute (1.7) as
follows.

ŷ← y − c(pTy),(1.9)

solve min
x̂k∈�n−1

‖ŷ −Bkx̂k‖2,(1.10)

x̂ = Pk

(
x̂k
0

)
,(1.11)

α← pT (y − x̂),(1.12)

x← x̂+ αc.(1.13)

Step (1.9) assures that pT ŷ = 0 and that ŷ ∈ range(A). Steps (1.12)–(1.13) are just
the normalization pTx = pTy. Since A is irreducible, it is known that rank(Bk) =
n − 1 [1]; thus (1.10) has a unique solution. Moreover, Bkx̂k = ŷ is consistent; thus
(1.10) always has a zero residual.

The group inverse can also be applied to a vector by making a slight change to
the algorithm (1.9)–(1.13). The group inverse, called A#, is the unique matrix such
that

(1) AA#A = A, (2) A#AA# = A#, (3) AA# = A#A.(1.14)

To do the computation

x = A#y,(1.15)

we only change (1.12) to

α← −pT x̂,(1.16)

so that pTx = 0.
In our analysis, we assume that p is the exact solution of (1.4)–(1.5). That is, all

rounding errors come after p is computed.
Two terms used in the paper are backward stable and forward stable. Their defi-

nitions correspond to those given by Higham [7, pp. 8–10].

232 JESSE L. BARLOW

Three measures of the conditioning of A have been used frequently in the liter-
ature. In section 2.1, we show that they are all closely related. For convenience, we
use the one associated with the Moore–Penrose inverse of A. In section 2.2, we show
our main result (Theorem 2.6 and Corollary 2.7), that both forward stable methods
and backward stable methods for solving (1.10) lead to forward stable methods for
solving (1.7) and (1.15).

Heyman and O’Leary [6] applied a variant of the Grassman–Taksar–Heyman
(GTH) algorithm to solve (1.7). In section 3, we show that this algorithm implic-
itly produces a backward stable solution of (1.10) (Proposition 3.2) and thus always
obtains as accurate a solution of (1.7) as can be expected (based on Corollary 2.7).
Several other algorithms that also obtain good solutions to (1.7) are simply those that
use other forward stable methods to solve (1.10).

2. A stable class of algorithms for computing with the fundamental
matrix.

2.1. The condition of the problem. At least three measures have been used
for the condition of solving (1.4)–(1.5). These measures lead to reasonable approaches
to understanding the condition of (1.7) or (1.15). The three measures are as follows:

(1) The group inverse, A#, given in (1.14). See Meyer [8].
(2) The sep function. See Meyer and Stewart [9] or Stewart and Sun [12, pp.

230–246].
(3) The Moore–Penrose inverse, A†. See, for instance, Barlow [1].
We will show that the first two measures can be bounded using A†, thereby

justifying the use of the third measure.
Noting that A has rank n− 1, it has the singular value decomposition (SVD)

A = ÛΣV̂ T , Û , V̂ ∈ �n×(n−1),(2.1)

Σ = diag(σ1, . . . , σn−1) ∈ �(n−1)×(n−1).(2.2)

If ĉ = c/‖c‖2 and p̂ = p/‖p‖2, then

U =
(

Û p̂
)
, V =

(
V̂ ĉ

)
(2.3)

are both orthogonal matrices.
The Moore–Penrose inverse, A†, is given by

A† = V̂ Σ−1ÛT .(2.4)

Thus

‖A†‖2 = ‖Σ−1‖2 = σ−1
n−1.

Below we show an important relation between the Moore–Penrose inverse and other
characterizations of the Markov chain, generalizing a result in [1].

For this problem, the important separation for the sep function is between the
matrix

C = ÛTAÛ(2.5)

and the zero eigenvalue of A. Meyer and Stewart [9] show that

sep(C, 0)−1 = ‖C−1‖2 = ‖A#Û‖2 ≤ ‖A#‖2.(2.6)

STABLE COMPUTATION WITH THE FUNDAMENTAL MATRIX 233

For the class of matrices given in (1.1), ‖C−1‖2 is bounded above and below in
terms of ‖A†‖2.

Proposition 2.1. Let A be the matrix in (1.1) with the SVD given by (2.1)–(2.2)
and let C be defined by (2.5). Then

‖A†‖2 ≤ ‖C−1‖2 = ‖A#Û‖2 ≤
√

n‖A†‖2.(2.7)

Proof. First we note that in terms of the SVD of A in (2.1)–(2.2), we have

C = ΣV̂ T Û .(2.8)

We now proceed to bound ‖C−1‖2. Let U and V be defined by (2.3), and let
W = V TU . Note that W is an orthogonal matrix. It can be partitioned

W =

(n− 1 1

n− 1 W11 W12

1 W21 W22

)
=

(
V̂ T Û V̂ T p̂

ĉT Û ĉT p̂

)
.(2.9)

We have that

W22 = ĉT p̂ =
cTp

‖c‖2‖p‖2 .

The vector c is just an n-vector of ones, so ‖c‖2 =
√

n. Since ‖p‖1 = 1, we have
1/
√

n ≤ ‖p‖2 ≤ 1. Using the condition (1.5) yields

1√
n
≤W22 ≤ 1,

so

1 = ‖W−1
22 ‖2 ≤

√
n.

It is an immediate corollary of the C–S decomposition [5, 11] that W11 and W22 are
singular or nonsingular together and that if they are nonsingular, then

‖W−1
11 ‖2 = ‖W−1

22 ‖2.
Therefore, W11 is nonsingular and

‖W−1
11 ‖2 ≤

√
n.

Since

C−1 = (V TU)−1Σ−1 = W−1
11 Σ−1,

we have

‖C−1‖2 ≤ ‖W−1
11 ‖2‖Σ−1‖2 ≤

√
n‖A†‖2.

The lower bound in (2.7) comes from the observation that

‖A†‖2 = ‖Σ−1‖2 ≤ ‖W11‖2‖C−1‖2 ≤ ‖C−1‖2.
Thus, for the remainder of this paper, we consider the value

κ2(A) = ‖A‖2‖A†‖2(2.10)

as an appropriate condition number for the problem (1.7).

234 JESSE L. BARLOW

2.2. Characterizing the class of algorithms. The solution of (1.7), (1.15),
and (1.10) are all solutions of the equation

Ax = ŷ,(2.11)

where (1.9) is used to make (2.11) consistent. The solution x̂ of (1.10) solves (2.11)
subject to the condition

eTk x̂ = 0.

All solutions of (2.11) have the form

x = x̂+ βc.

Steps (1.12)–(1.13) ensure that we are computing (1.7), and steps (1.16) with (1.13)
ensure that we are computing (1.15).

We now show that the system (1.10) is bounded in terms of κ2(A) in (2.10). The
proof technique here is similar to that used in [1].

Proposition 2.2. Let A be an irreducible matrix of the form (1.1) the condition
(2.10). Let Bk, k = 1, 2, . . . , n, be defined by (1.8). Then

‖B†
k‖2 ≤

√
n‖A†‖2,(2.12)

and

κ2(Bk) ≤ √nκ2(A).(2.13)

Proof. Without loss of generality we assume that Pk = I since the 2-norm is
invariant under row and column permutations. We then let B = Bk.

To bound ‖B†‖2 in terms of ‖A†‖2, consider the underdetermined system

BT z = rB .(2.14)

The minimum length solution of (2.14) is

z = B†T rB .(2.15)

Since B is just the first n− 1 rows of A, we have that

AT z = rA =

(
n− 1 BT z
1 eTnAT z

)
=

(
n− 1 rB
1 ρA

)
.

Using (1.3) gives us

cTAT z = cT rA = 0.

Since c = (1, 1, . . . , 1)T we conclude that

|ρA| = |cTn−1rB | ≤ ‖cn−1‖2‖rB‖2,(2.16)

where cn−1 = (1, 1, . . . , 1)T ∈ �n−1. Thus,

|ρA| ≤
√

n− 1‖rB‖2,

STABLE COMPUTATION WITH THE FUNDAMENTAL MATRIX 235

and

‖rA‖22 = ‖rB‖22 + ρ2
A ≤ n‖rB‖22.(2.17)

Since A is irreducible,

null(AT) = null(BT) = span{p}.
Therefore,

z = A†T rA.(2.18)

Combining (2.18), (2.15), and (2.17) leads to

‖z‖2 = ‖B†T rB‖2 = ‖A†T rA‖2 ≤
√

n‖A†T ‖2‖rB‖2.(2.19)

Since (2.19) holds for any rB , we have that

‖B†T ‖2 ≤
√

n‖A†T ‖2.(2.20)

Taking transposes yields (2.12). Use of fact that ‖B‖2 ≤ ‖A‖2 yields (2.13).
Remark 1. The inequality (2.16) can be replaced by

|ρA| ≤ ‖cn−1‖∞‖rB‖1 = ‖rB‖1
leading to the conclusion that the inequalities (2.12)–(2.13) can be replaced by

‖B†
k‖∞ ≤ 2‖A†‖∞, k = 1, 2, . . . , n,(2.21)

and

κ∞(Bk) ≤ 2κ∞(A).(2.22)

Both of the inequalities (2.21) and (2.22) are independent of n.
To prove that forward stable algorithms for solving (1.10) lead to forward stable

algorithms for solving (1.9)–(1.13), two simple lemmas on error analysis and a third
with lower bounds on ‖A†‖2 and ‖A†‖∞ are necessary.

Lemma 2.3. In floating point arithmetic with machine unit εM , step (1.9) satisfies

‖fl(ŷ)− ŷ‖∞ ≤ (n + 4)εM‖y‖∞ + O(ε2
M).(2.23)

Proof. First, we note that

‖ŷ‖∞ ≤ ‖y‖∞ + ‖c‖∞|pTy| ≤ ‖y‖∞ + ‖c‖∞‖p‖1‖y‖∞.

Since ‖c‖∞ = ‖p‖1 = 1, we have

‖ŷ‖∞ ≤ 2‖y‖∞.(2.24)

Using standard error bounds on floating point operation yields

|fl(pTy)− pTy| ≤ nεM |p|T |y|+ O(ε2
M).

Thus a componentwise bound is

|fl(ŷ)− ŷ| ≤ εM (2 max{|y|, |ŷ|}+ n|p|T |y||c|) + O(ε2
M).

236 JESSE L. BARLOW

Use of the above inequality, the fact that ‖p‖1 = ‖c‖∞ = 1, the inequality (2.24),
and the infinity norm yields (2.23).

Lemma 2.4. In floating point arithmetic with machine unit εM , the results of
steps (1.12)–(1.13) satisfy

‖fl(x)− x‖∞ ≤ (4n + 13)εM max{1, ‖B†
k‖∞}‖y‖∞ + O(ε2

M).(2.25)

Proof. Standard error bounds on floating point arithmetic yield

|fl(α)− α| ≤ (2n + 4)(|p|T |y|+ |p|T |x̂k|)εM + O(ε2
M)

≤ (2n + 4)‖p‖1(‖y‖∞ + ‖x̂k‖∞)

≤ (2n + 4)(‖y‖∞ + ‖B†
k‖∞‖y‖∞)

≤ (4n + 8) max{1, ‖B†
k‖∞}‖y‖∞.

Thus,

|fl(x)− x| ≤ εM (n max{|x|, |x̂k|}+ (4n + 8) max{1, ‖B†
k‖∞}‖y‖∞|c|) + O(ε2

M),

which implies that

‖fl(x)− x‖∞ ≤ εM (max{‖x‖∞, ‖x̂k‖∞}

+(4n + 8) max{1, ‖B†
k‖∞}‖y‖∞) + O(ε2

M).

(2.26)

Since

‖x‖∞ ≤ ‖x̂k‖∞ + ‖c‖∞|α|

≤ ‖B†
k‖∞‖ŷ‖∞ + |pTy|+ |pT x̂k|

≤ 2‖B†
k‖∞‖ŷ‖∞ + ‖y‖∞ ≤ 4‖B†

k‖∞‖y‖∞ + ‖y‖∞.(2.27)

Combining (2.26) and (2.27) yields (2.25).
To compute (1.15), we must do (1.16) instead of (1.12). This leads to the error

bounds

|fl(α)− α| ≤ n|p|T |y|εM + O(ε2
M) ≤ nεM‖y‖1 + O(ε2

M).

Thus we may conclude by the same argument that

‖fl(x)− x‖∞ ≤ εM (n‖y‖∞ + max{‖x‖∞, ‖xk‖∞}) + O(ε2
M)

≤ (n + 5) max{1, ‖B†
k‖∞}‖y‖∞ + O(ε2

M).

We now give lower bounds for ‖A†‖2 and ‖A†‖∞.
Lemma 2.5. Let A be a matrix of the form (1.1). Then

‖A†‖∞ ≥ 0.5, ‖A†‖2 ≥ 1/(1 +
√

n).(2.28)

STABLE COMPUTATION WITH THE FUNDAMENTAL MATRIX 237

Proof. We note that

‖A‖∞ = ‖I −Q‖∞ ≤ ‖I‖∞ + ‖Q‖∞ = 2.

Thus also, ‖A‖2 ≤ 1 +
√

n by standard norm inequalities. Since

‖A‖‖A†‖ ≥ 1,

for any operator norm ‖ · ‖, we have (2.28).
The main result of the paper is given in Theorem 2.6. Here we assume that we

have an algorithm that solves (1.10) and produces a solution zk such that

‖zk − x̂k‖2 ≤ φ(n)εM‖B†
k‖2(‖y‖2 + ‖Bk‖2‖x̂k‖2) + O(ε2

M).(2.29)

Several algorithms have been shown to satisfy the assumption (2.29). Since (1.10)
has a zero residual, two such algorithms are the Q–R factorization of Bk [14, p. 236]
and the corrected seminormal equations method [2]. Other examples are discussed in
section 3.

Theorem 2.6. Let A ∈ �n×n be an irreducible matrix of the form (1.1) and
let Bk ∈ �n×(n−1) be given by (1.8). Suppose that all computations are done in
floating point arithmetic with machine unit εM . Suppose we use an algorithm to solve
(1.10) that obtains a vector zk satisfying (2.29) for some modestly growing function
φ(n). Then using standard methods for computing steps (1.9), (1.12), and (1.13) the
algorithm (1.9)–(1.13) produces a computed vector z for Fy such that

‖z− x‖2 ≤
√

n(φ(n) + ψ(n))εM‖A†‖2(‖y‖2 + ‖A‖2‖x̂k‖2) + O(ε2
M),(2.30)

where ψ(n) = 10n + 26. If we substitute (1.16) for (1.12) to compute A#y, then we
obtain (2.30) with ψ(n) = 4n + 8.

Proof. If we add the results of Lemmas 2.3 and 2.4, use the bound on ‖Bk‖∞,
and use standard inequalities relating the 2-norm and ∞-norm we obtain

‖z− x‖2 ≤ εM
√

nφ(n)‖A†‖2(‖y‖2 + ‖A‖2‖xk‖2)

+ (5n + 13) max{1, ‖B†
k‖∞}‖y‖∞ + O(ε2

M).

Since ‖B†
k‖∞ ≤ 2‖A†‖∞ ≤ 2

√
n‖A†‖2 we have

‖z− x‖2 ≤ εM
√

nφ(n)‖A†‖2(‖y‖2 + ‖A‖2‖xk‖2)

+ (5n + 13) max{1, 2
√

n‖A†‖2}‖y‖2 + O(ε2
M).

From (2.28), 2
√

n‖A†‖2 ≥ 1; thus we may conclude (2.30). An analogous proof
obtains (2.30) for computing A#y.

The following corollary makes the slightly stronger assumption that a backward
stable method is used to solve (1.10). Clearly an analogous result holds for (1.15).

Corollary 2.7. Assume that A and Bk satisfy the hypothesis of Proposition 2.2.
Suppose we use an algorithm to solve (1.10) that obtains a solution zk that satisfies

min
zk∈�n−1

‖ŷ + δŷ − (Bk + δBk)zk‖2,

where η = ‖δBk‖2‖B†
k‖2 ≤ 1− ζ < 1 and

‖δBk‖2 ≤ φ0(n)εM‖Bk‖2 + O(ε2
M),

238 JESSE L. BARLOW

‖δŷ‖2 ≤ φ0(n)εM‖y‖2 + O(ε2
M).

Then the algorithm (1.9)–(1.13) computes a vector z that satisfies (2.30) with φ(n) =
φ0(n)/ζ.

Proof. This corollary is simply the result of a classic theorem on perturbation;
see, for instance, Björck [3, p. 30, Theorem 1.4.6]. Using the fact that the residual is
zero, we have that

‖zk − x̂k‖2 ≤ φ0(n)εM
‖B†

k‖2
1− η

(‖y‖2 + ‖B†
k‖2‖x̂k‖2) + O(ε2

M).

The use of Lemma 2.2 and ζ = 1− η yields the result.
In the next section, we use the result of Corollary 2.7 to show that a new algorithm

to compute Fy obtains answers that are as good as can be expected.

3. Why the GTH algorithm and other algorithms yield accurate solu-
tions. Heyman and O’Leary [6] suggest an algorithm that uses the GTH algorithm
to solve (1.10) (although they do not state it as such). We now show that floating
point implementation of that algorithm satisfies the hypothesis of Corollary 2.7. Thus
it has a forward error bound of the form (2.30).

To review, the GTH algorithm is a variant of Gaussian elimination with two
differences:

• The elimination proceeds from bottom to top (rather than top to bottom),
thus producing the factors

A = RL,(3.1)

where R is upper triangular with diagonals equal to −1 and L is lower trian-
gular with �11 = 0.

• Since Ac = 0, then Lc = 0 also. The diagonal elements of L are computed so
as to satisfy this constraint. This modification leads to the componentwise
accuracy in computing p in (1.4)–(1.5) [10].

Heyman and O’Leary [6] then use this factorization to solve (1.10) with the con-
straint

eT1 x = 0.(3.2)

The constraint arises naturally out of the factorization. The first row of L must be
zero; thus if we solve

Rv = y,(3.3)

Lx = v,(3.4)

then eT1 v = 0 because of consistency.
If we let

L =

(1 n− 1

1 0 0
n− 1 �1 L̄

)
, R =

(1 n− 1

r1 R̄
)

and we choose k = 1 in (1.8), then

B1 = R̄L̄.(3.5)

STABLE COMPUTATION WITH THE FUNDAMENTAL MATRIX 239

The GTH algorithm computes the factorization (3.5) without reference to the first
column of A. This key fact means that the GTH algorithm may be used to solve
(1.10) with k = 1 as given below.

Algorithm 3.1 (Heyman–O’Leary procedure for solving least squares (LS) prob-
lem (1.10)).

(1) Factor B1 as in (3.5).
(2) Using Gaussian elimination with partial pivoting, factor the upper Hessenberg

matrix R̄ into

R̄ = PRLRUR, LR ∈ �n×n, UR ∈ �n×n−1,(3.6)

where

LR ∈ �n×n, unit lower triangular,

UR ∈ �n×(n−1), upper trapeziodal (last row zero),

PR, permutation matrix .

(3) Using ŷ from (1.9), solve

LRf = PT
R ŷ

by forward substitution, noting that eTn f = 0 by consistency. Then solve

URL̄x̂1 = f

by back substitution followed by forward substitution.
Standard error analysis results about Gaussian elimination yield the following

result. Its proof is in the appendix.
Proposition 3.2. Let Algorithm 3.1 be applied to B1 as defined in (1.8) and ŷ

as computed by (1.9). Then, in floating point arithmetic with machine unit εM , the
computed solution x̂1 satisfies

min
x̂1∈�n−1

‖ŷ + δŷ − (B1 + δB1)x̂1‖2,

where for modestly growing functions φi(n), i = 1, 2,

‖δŷ‖2 ≤ φ1(n)εM‖ŷ‖2 + O(ε2
M),(3.7)

‖δB1‖2 ≤ φ2(n)εM‖B1‖2 + O(ε2
M).

Proposition 3.2 and Corollary 2.7 imply that Heyman and O’Leary’s algorithm
obtains a computed value z for Fy that satisfies (2.30). This it obtains accurate
results whenever A is well-conditioned.

In [6], the authors point out that R in (3.1) may be ill-conditioned and give an
example where this ill-conditioning seems irrelevant. In fact, the above results show
that it does not matter if R is ill-conditioned as long as A is well-conditioned.

From Theorem 2.6 we know that if κ2(A) is modest, any forward stable algorithm
for solving (1.10) is a forward stable algorithm for solving (1.7) or (1.15). Other
algorithms that could be used include the following:

240 JESSE L. BARLOW

• The conjugate gradient least squares (CGLS) algorithm applied to (1.10).
An analysis by Björck, Elfving, and Strakoš [4] suggests that the conjugate-
gradient-based CGLS algorithm could be used to solve (1.10) with forward
stability.
• Orthogonal factorization applied to Bk. Well-known backward error bounds

from [14, p. 236] on orthogonal factorization would be sufficient.
• Corrected seminormal equation applied to Bk with the upper triangular factor

from orthogonal factorization [2].
The choice of algorithm for computing (1.7) depends upon the choice of algo-

rithm to compute p. If the factorization from the GTH algorithm has already been
used to compute p, the Heyman–O’Leary algorithm would be a good choice, since
the additional work is just Gaussian elimination on a Hessenberg matrix, some back
and forward solves, and some vector operations. Orthogonal-factorization-based ap-
proaches would be appropriate if the orthogonal factorization has already been done.
If iterative methods have been used to compute p, then the CGLS algorithm, with
some appropriate preconditioner, would be a good choice to solve (1.10).

Appendix. Proof of Proposition 3.2. We will neglect the errors from the
back and forward substitutions since these are strongly backward stable operations
[7, Chapter 8].

We need two facts. First, that the computed L̄ and R̄ satisfy

R̄L̄ = B1 + δB0,

where

‖δB0‖2 ≤ φ0(n)εM‖B1‖2 + O(ε2
M)

for a modestly growing function φ0(n). This is a property of Gaussian elimination on
a diagonally dominant matrix that the GTH version also satisfies. Second, a result of
Wilkinson’s [13] on Gaussian elimination applied to Hessenberg matrices states that
the computed PR, LR, and UR satisfy

PRLRUR = R + δR, ‖δR‖2 ≤ φR(n)εM‖R‖2 + O(ε2
M)

and

PRLRf = ŷ + δŷ, ‖δŷ‖2 ≤ φy(n)εM‖ŷ‖2 + O(ε2
M).

Thus the two factorizations together yield

PRLRURL̄ = B1 + δRL̄ + δB1 = B1 + δB1,

where

‖δB‖2 ≤ εM (φR(n)‖R̄‖2‖L̄‖2 + φ0(n)‖B1‖2).

Since R̄ and L̄ are factors from Gaussian elimination applied to a diagonally dominant
matrix, we have that

‖R̄‖2 ≤
√

n‖R‖1 ≤ 2
√

n,

‖L̄‖2 ≤
√

n‖L̄‖∞ ≤ 2
√

n‖B1‖∞ ≤ 2n‖B1‖1.

STABLE COMPUTATION WITH THE FUNDAMENTAL MATRIX 241

Thus,

‖δB‖2 ≤ φ2(n)εM‖B1‖2 + O(ε2
M),

where φ2(n) = φ0(n) + 4nφR(n). A similar argument leads to the backward error
bound

PRLRf = ŷ + δŷ0 + δŷ1,(A.1)

where δŷ0 is the backward error from the substitution and δŷ1 is the error from the
consistency of (1.10). Standard error bounds on Gaussian elimination yield

‖δŷ0‖2 ≤ φy(n)εM‖ŷ‖2 + O(ε2
M) ≤ (1 +

√
n)φy(n)‖y‖2 + O(ε2

M).

Neglecting errors in p, any residual in (1.10) would result from rounding errors in
(1.9). Thus, from Lemma 2.3, the equation

B1x1 = ŷ + δŷ1

is consistent for some δŷ1 such that

‖δŷ1‖2 ≤ εMψy(n)‖y‖2 + O(ε2
M),

which yields the bound (3.7) with φ1(n) = (1 +
√

n)φy(n) + ψy(n).

Acknowledgments. The author thanks Dianne O’Leary for her suggestions and
Daniela Calvetti for her patience.

REFERENCES

[1] J.L. Barlow, Error bounds for the computation of null vectors with applications to Markov
chains, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 797–812.

[2] A. Björck, Stability analysis of the method of semi-normal equations for linear least squares
problems, Linear Algebra Appl., 88/89 (1987), pp. 31–48.

[3] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[4] Å. Björck, T. Elfving, and Z. Strakoš, Stability of Conjugate Gradient-Type Methods for

Solving Linear Least Squares Problems, Technical Report LiTH-MAT-R-1995-26, Depart-
ment of Mathematics, Linköping University, Linköping, Sweden, 1995.

[5] C. Davis and W.M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J.
Numer. Anal., 7 (1970), pp. 1–46.

[6] D.P. Heyman and D.P. O’Leary, Overcoming instability in computing the fundamental matrix
for a Markov chain, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 534–540.

[7] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[8] C.D. Meyer, Jr., The role of the group generalized inverse in the theory of finite Markov

chains, SIAM Rev., 17 (1975), pp. 443–464.
[9] C.D. Meyer and G.W. Stewart, Derivatives and perturbations of eigenvectors, SIAM J.

Numer. Anal., 25 (1988), pp. 679–691.
[10] C. O’Cinneide, Entrywise perturbation theory and error analysis for Markov chains, Numer.

Math., 65 (1993), pp. 109–120.
[11] G.W. Stewart, On the perturbation of psuedo-inverses, projections and linear least squares

problems, SIAM Rev., 19 (1977), pp. 634–662.
[12] G. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.
[13] J. Wilkinson, Error analysis of direct methods of matrix inversion, J. ACM, 8 (1961), pp. 281–

330.
[14] J. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

CHARACTERIZATION OF CONTINUOUS, FOUR-COEFFICIENT
SCALING FUNCTIONS VIA MATRIX SPECTRAL RADIUS∗

MARKUS BRÖKER† AND XINLONG ZHOU‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 242–257

Abstract. We characterize the existence of continuous solutions of a four-coefficient dilation
equation in terms of the usual spectral radius of a matrix. The criteria for the existence of such a
solution can be very quickly examined. As a result we give an affirmative answer to a conjecture
raised by Colella and Heil in 1992. Moreover, using our criteria we find the smoothest compactly
supported four-coefficient orthogonal scaling function and thus the smoothest compactly supported
orthonormal wavelet generated by this scaling function.

Key words. dilation equation, joint spectral radius, scaling function, subdivision scheme,
wavelet

AMS subject classifications. 26A15, 26A18, 39A10, 42A05, 39B12, 15A18, 65D17

PII. S0895479897323750

1. Introduction. Let A0 and A1 be two N ×N matrices with real entries. The
joint spectral radius for two matrices is given by (see [20])

ρ(A0, A1) = lim sup
k→∞

(
sup
di=0,1

||Ad1 · · ·Adk ||
) 1

k

.

Moreover, as shown in [20] the joint spectral radius does not depend on the choice of
the norm. One of the important applications of this concept is the characterization
of the cascade algorithm or the so-called subdivision algorithm for fast generation of
curves. In fact, just in this application Daubechies and Lagarias (see [7]) rediscovered
the joint spectral radius and recognized its importance. To be more precise, for a
given subdivision scheme {aj}Nj=0, aj ∈ R, we denote the associated polynomial by

a(z) =
∑N
j=0 ajz

j (see [2] and [9]). Beginning with one finite sequence of control

points {x0
i }, we set

xki :=
∑
τ

ai−2τx
k−1
τ , k = 1, 2, . . . ,

where the range of summation will always be clear from the context. For ψ(x) =
1− |x|, |x| ≤ 1; ψ(x) = 0 otherwise, the polygon generated by xni can be written as

fn(x) =
∑
i

x0
i

∑
j

anj ψ(2
n(x− i)− j),

where anj =
∑
τ a

n−1
τ aj−2τ are the coefficients of the polynomial

∏n−1
l=0 a(z2l

). Thus,

the question of whether for all given x0
j the polygon determined by {aj}Nj=0 uni-

formly converges to a continuous curve is equivalent to the uniform convergence of

∗Received by the editors July 8, 1997; accepted for publication (in revised form) by A. Edelman
August 30, 1999; published electronically June 3, 2000.

http://www.siam.org/journals/simax/22-1/32375.html
†Informatik-Kooperation, Nevinghoff 26, 48147 Münster, Germany (Markus Broeker@

informatik-kooperation.de).
‡Department of Mathematics, Gerhard-Mercator-University of Duisburg, D-47057 Duisburg, Ger-

many (zhou@riemann.informatik.uni-duisburg.de).

242

JOINT SPECTRAL RADIUS 243

∑
j a

n
j ψ(2

nx− j). Define S to be the operator given by Sf(x) =∑N
i=0 aif(2x− i). It

is easy to see that Snψ(x) =
∑
i a
n
i ψ(2

nx− i). Therefore, the uniform convergence of
the polygon sequence is equivalent to the uniform convergence of the iterates Snψ. If
this is the case, then the limit of Snψ (say, ϕ) is a fixed point of the operator S. In
other words, ϕ satisfies

ϕ(x) =

N∑
i=0

aiϕ(2x− i).(1)

Assume a(z) = (1 + z)b(z) , b(z) =
∑N−1
i=0 biz

i ,

B0 =

b0 0 0 · · · 0 0
b2 b1 b0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · bN−1 bN−2

 , B1 =

b1 b0 0 · · · 0 0
b3 b2 b1 · · · 0 0
...

...
...

. . .
...
...

0 0 0 · · · 0 bN−1

 .

The following result can be found in [2], [13], and [21].
Theorem A. Under the above notations the iterates Snψ uniformly converge to

a continuous, compactly supported function ϕ if and only if
(i) a(1) = 2 and a(z) = (1 + z)b(z);
(ii) the joint spectral radius ρ(B0, B1) is less than 1.
There is another connection between the concept of the joint spectral radius and

(1), namely, the characterization of compactly supported wavelets in wavelets analy-
sis. Using the dilation equation (1), this problem may be reduced to find compactly
supported scaling function, i.e., the solution ϕ of (1) (see, e.g., [3], [4], [5], [6]). It is
known (see, e.g., [2], [5], [6], and [15]) that the existence of such ϕ and its regularity
can be characterized in terms of the joint spectral radius of two N × N matrices
defined by the coefficients {a0, . . . , aN} of the dilation equation (1) restricted to an
appropriate subspace.

Clearly, (i) and (ii) of the above theorem are also sufficient conditions for the ex-
istence of a compactly supported solution ϕ of (1). The question is now the following:
how can we quickly calculate the joint spectral radius for given A0 and A1? One can
easily see that the direct estimation of this quantity has an exponentially increasing
cost. Therefore, it is usually impractical to calculate the value by the definition of the
joint spectral radius (see [4], [5], [6], [7], [8], [9], [10], [11], [15], and [19] for a related
discussion).

In this paper we study the joint spectral radius constructed by a four-coefficient
dilation equation, i.e., N = 3. As a result we obtain a computable condition for the
existence of a continuous, compactly supported solution of (1). For certain families
of 2 × 2 matrices we can calculate this joint spectral radius exactly (see Lemma 4).
Let us assume in the following that a(1) = 2. We notice that this is not an essential
restriction. In fact, as shown in [6], if (1) has a compactly supported integrable
solution, one must have a(1) = 2m for some natural number m, and then the equation
defined by the coefficients a(z)/2m−1 has also a compactly supported solution in L1.
Our first result is the following theorem.

Theorem 1. For N = 3 the iterates Snψ uniformly converge to a continuous,
compactly supported function ϕ if and only if a(z) = (1 + z)b(z) and the quantity
supi+j≥1, i,j≥0 ρ(B

i
0B

j
1) is less than 1, where ρ(·) is the usual spectral radius of a

matrix.

244 MARKUS BRÖKER AND XINLONG ZHOU

It is clear that the value in this theorem can be evaluated very quickly. The
necessary and sufficient condition for (1) to have a continuous, compactly supported
solution can be stated as the following theorem.

Theorem 2. For N = 3, (1) has a continuous, compactly supported solution if
and only if a(z) = (1 + z2)(α + (1 − α)z) with 0 < α < 1 or a(z) = (1 + z)b(z) with
supi+j≥1, i,j≥0 ρ(B

i
0B

j
1) < 1.

After proving both results in the next section, we will give some applications
concerning the smoothest four-coefficient orthogonal scaling function in the sense of
[4] in section 3. As a result we can determine this function and thus the smoothest
orthonormal wavelet generated by this scaling function. Moreover, recall that a func-
tion f is Hölder continuous with Hölder exponent α if there exists a constant C for
which |f(x) − f(y)| ≤ C|x − y|α for all x, y. The four-coefficient orthogonal scaling
function ϕ constructed in [4] (see also [11]), i.e.,

ϕ(x) =
1

5
(3ϕ(2x) + 6ϕ(2x− 1) + 2ϕ(2x− 2)− ϕ(2x− 3)),(2)

has a Hölder exponent of approximately 0.60. We can calculate this value exactly,
and thus give an affirmative answer to a conjecture raised in [4], i.e., ρ(B0, B1) =
ρ(B12

0 B1)
1/13, with b(z) = (3+3z−z2)/5 in our notation. It is interesting to see that

Daubechies’ scaling function D4 (see, e.g., [4]) has a Hölder exponent of about 0.550
only, while the smoothest four-coefficient scaling function has an exponent of about
0.628.

Remark. After we finished our paper we learned that, using the optimum unit ball
technique (see [17]), Maesumi obtained some similar results and settled the Colella–
Heil conjecture [4] mentioned above. Moreover, using the algorithm introduced in [18]
Maesumi also finds the smoothest four-coefficient orthogonal scaling function. Our
approach is quite different and does not rely on the finiteness conjecture (see [8] and
[15]). Furthermore, the results in section 2 lead to the exact expression of the joint
spectral radius for all four-coefficient orthogonal scaling functions.

2. Proof of the main results. Let us first recall the following result of Berger
and Wang [1] in the following lemma.

Lemma 3. For A0 and A1 as above there holds

ρ(A0, A1) = lim sup
k→∞

sup
di=0,1

(ρ(Ad1Ad2 · · ·Adk))
1
k .(3)

Combining this result with some fundamental calculations we can prove the fol-
lowing lemma.

Lemma 4. Suppose C0 and C1 are two 2 × 2 matrices. If det(C0) ≤ 0 or
det(C1) ≤ 0, then

ρ(C0, C1) = sup
i+j≥1, i,j≥0

(
ρ(Ci0C

j
1)
) 1

i+j

.

Proof. Without loss of generality we may assume det(C0) ≤ 0. Furthermore, the
continuity of the joint spectral radius (see [12]) tells us that we need only prove our
assertion for det(C0) < 0. With this in mind we write r1 and r2 for the eigenvalues
of C0. Hence det(C0) = r1 · r2 < 0. Denote the value on the right-hand side by
ρ. The condition on C0 means that this matrix is similar to a diagonal matrix.
Recall that for any regular 2 × 2 matrix T there holds (see, e.g., [11]) ρ(C0, C1) =

JOINT SPECTRAL RADIUS 245

ρ(TC0T
−1, TC1T

−1). We may therefore suppose that C0 is a diagonal matrix (say,
C0 =diag (r1, r2)). On the other hand, for the trace of a 2× 2 matrix B one has

| |Tr(B)| − ρ(B)| ≤ |det(B)| 12 .

Writing γ := max(ρ(C0), ρ(C1)), the above inequality implies

| |Tr(Cd1Cd2 · · ·Cdk)| − ρ(Cd1Cd2 · · ·Cdk)| ≤ γk,(4)

where dj = 0 or 1. Moreover, since for two square matrices A and B one has Tr(AB) =

Tr(BA), we may write Tr(Cd1Cd2 · · ·Cdk) as Tr(Cj11 Cj20 · · ·Cjm−1

1 Cjm0) with some jτ ,
such that

∑m
τ=1 jτ = k. Denote for the moment

Cj11 Cj20 · · ·Cjm−1

1 =

(
a b
c d

)
.

Then Tr(Cj11 Cj20 · · ·Cjm−1

1 Cjm0) = arjm1 + drjm2 . Obviously, if a · d < 0, then

|Tr(Cj11 Cj20 · · ·Cjm−1

1 Cjm0)| ≤ max(|r1|jm−1, |r2|jm−1)

×|Tr(Cjm−1

1 C0C
j1
1 Cj20 · · ·Cjm−3

1 C
jm−2

0)|.
For the case a · d ≥ 0 we have

|Tr(Cj11 Cj20 · · ·Cjm−1

1 Cjm0)| ≤ max(|r1|jm , |r2|jm) |Tr(Cj11 Cj20 · · ·Cjm−1

1)|
= max(|r1|jm , |r2|jm) |Tr(Cj1+jm−1

1 Cj20 · · ·Cjm−3

1 C
jm−2

0)|.

Repeating this process we get for some k′ and τi, such that k′ +
∑µ
i=1(τi + 1) = k,

the estimate

|Tr(Cj11 Cj20 · · ·Cjm−1

1 Cjm0)| ≤ max(|r1|k′ , |r2|k′)(5)

×|Tr(Cτ11 C0C
τ2
1 C0 · · ·Cτµ1 C0)|.

We note that (5) does not include the trivial case

|Tr(Cj11 Cj20 · · ·Cjm−1

1 Cjm0)| ≤ max(|r1|k′′ , |r2|k′′) |Tr(Cτ1)|

for some k′′ and τ . However, as |Tr(Cτ1)| ≤ 2ρτ (C1) we conclude from (4) that for this
case ρ(C0, C1) = max(ρ(C0), ρ(C1)). Because of this fact in the following discussion
(see (6), (7), and (8)) we shall omit such trivial cases.

To deal with Tr(Cτ11 C0C
τ2
1 C0 · · ·Cτµ1 C0), we notice that when det(C1) < 0, then

the matrix C1 is similar to a diagonal matrix. Thus, applying the above approach to
the second factor of the right-hand side of (5), we conclude for some k′′ and k2, such
that k′′ + 2k2 = µ+

∑µ
i=1 τi,

|Tr(Cτ11 C0C
τ2
1 C0 · · ·Cτµ1 C0)| ≤ γk

′′ |Tr((C0C1)
k2)|.

This together with (4) and (5) implies for k1 = k − 2k2 the inequality

|Tr(Cj11 Cj20 · · ·Cjm−1

1 Cjm0)| ≤ γk1 |Tr((C0C1)
k2)|(6)

≤ γk1(ρ2k2 + γ2k2).

246 MARKUS BRÖKER AND XINLONG ZHOU

If det(C1) > 0, let τ := min(τi : i = 1, . . . , µ) and γ1 := supj≥0(ρ(C
j
1C0))

1
j+1 .

Using the property of the trace we may write for some νi

Tr(Cτ11 C0C
τ2
1 C0 · · ·Cτµ1 C0) = Tr(C

ν1
1 (C

τ
1C0) · · ·Cνp1 (C

τ
1C0)(C

τ
1C0)).

Obviously, det(Cτ1C0) < 0, and thus the above process implies either

|Tr(Cν11 (C
τ
1C0) · · ·Cνp1 (C

τ
1C0)(C

τ
1C0))| ≤ γτ+1

1 |Tr(Cν11 (C
τ
1C0) · · ·Cνp1 (C

τ
1C0))|,

or

|Tr(Cν11 (C
τ
1C0) · · ·Cνp1 (C

τ
1C0)(C

τ
1C0))| ≤ γ2τ+2

1 |Tr(Cν11 (C
τ
1C0) · · ·Cνp1)|.

Hence, for some j ≥ τ + 1 and some τ ′i there holds

|Tr(Cτ11 C0C
τ2
1 C0 · · ·Cτµ1 C0)| ≤ γj1|Tr(Cτ

′
1

1 C0C
τ ′
2

1 C0 · · ·C
τ ′
µ′

1 C0)|.(7)

We observe that the number of matrix products on the right-hand side of inequality (7)
is reduced by at least τ + 1. We may therefore repeat this process for τ ′ := min(τ ′j :
j = 1, . . . , µ′) instead of τ to reduce the number of the products on the right-hand
side of (7). In this way we obtain finally from (3) and (7) for some ν

|Tr(Cτ11 C0C
τ2
1 C0 · · ·Cτµ1 C0)| ≤ γ

µ−ν−1+
∑µ

i=1
τi

1 (γν+1
1 + γν+1).(8)

It follows from (4)–(6) and (8) that if det(C1)
= 0, then, as ρ ≥ γ1, γ, one has

ρ(Cd1Cd2 · · ·Cdk) ≤ 4ρk.
Using Lemma 3 we conclude from the last inequality and the fact that ρ ≤ ρ(C0, C1)
the desired identity in case det(C1)
= 0.

It remains to deal with the case det(C1) = 0. Clearly there exists a sequence
εn with limn→∞ εn = 0 such that for C1,εn := C1 + εnI the determinant of C1,εn is
different from zero, i.e., det(C1,εn)
= 0. The joint spectral radius is continuous, as
shown in [12]. Thus, limn→∞ ρ(C0, C1,εn) = ρ(C0, C1). Now the above calculations
imply for some in and jn

ρ(C0, C1) = lim
n→∞

(
ρ(Cin0 Cjn1,εn

)
) 1

in+jn
.

We may assume one of the in and jn →∞ (or for a subsequence of n). Otherwise, if
both in and jn are bounded, there is nothing to do. Let jn →∞. Then

ρ(Cin0 Cjn1,εn
) ≤ ||Cin0 || ||Cjn1,εn

||.(9)

Obviously for any δ > 0 there exists p such that

||Cτ1 || ≤ (ρ(C1) + δ)τ ∀ τ ≥ p.

Hence, for some D > 0 we conclude

||Cjn1,εn
|| =

∣∣∣∣∣
∣∣∣∣∣
jn∑
τ=0

(
jn
τ

)
εjn−τn Cτ1

∣∣∣∣∣
∣∣∣∣∣

≤
jn∑
τ=0

(
jn
τ

)
εjn−τn (ρ(C1) + δ)τ +Dεjn−pn jpn

≤ (ρ(C1) + δ + εn)
jn +Dεjn−pn jpn.

JOINT SPECTRAL RADIUS 247

It follows from this estimate that lim supn→∞ ||Cjn1,εn
|| 1

jn ≤ ρ(C1) + δ. This inequality
is valid for arbitrary δ > 0. Thus,

lim sup
n→∞

||Cjn1,εn
|| 1

jn ≤ ρ(C1).

Combining this estimate with (9) we get

lim
n→∞

(
ρ(Cin0 Cjn1,εn

)
) 1

in+jn ≤ max{ρ(C0), ρ(C1)},

from which the equality of our lemma follows.
From the proof of the above lemma we obtain the following corollary.
Corollary 5. Suppose C0 and C1 are two 2× 2 matrices.
(i) If det(C0) ≤ 0 and det(C1) ≤ 0, then

ρ(C0, C1) = max{(ρ(C0C1))
1
2 , ρ(C0), ρ(C1)}.

(ii) If det(C0) ≤ 0 and det(C1) ≥ 0, then

ρ(C0, C1) = sup
j≥0

(
ρ(Cj1C0)

) 1
j+1

.

It is clear that (ii) of Corollary 5 implies that for some j′ one has

ρ(C0, C1) = max

{
max

0≤j≤j′

(
ρ(Cj1C0)

) 1
j+1

, ρ(C1)

}
.(10)

Otherwise we would have ρ(C0, C1) > ρ(C1) and for any j
′ > 1

ρ(C0, C1) = sup
j≥j′

(
ρ(Cj1C0)

) 1
j+1

≤ sup
j≥j′

(
||Cj1 ||

1
j+1 ||C0|| 1

j+1

)
,

which, however, implies ρ(C0, C1) ≤ ρ(C1). The so-called finiteness conjecture (see
[6], [7], and [15]) for two matrices asserts that there exists some k such that

ρ(A0, A1) = sup
di=0,1

(ρ(Ad1Ad1 · · ·Adk))
1
k ,

where ρ(·) on the right-hand side is the usual spectral radius of a matrix. The af-
firmative answer of this conjecture will imply the existence of a terminating proce-
dure for the estimation of ρ(A0, A1), which may lead to find some effectively com-
putable algorithm. This conjecture is still not settled. On the other hand, if A0, A1

can be simultaneously upper-triangularized or simultaneously Hermitianized, then
ρ(A0, A1) = max{ρ(A0), ρ(A1)} (see [11]). That is, for this case the finiteness conjec-
ture is true. Lemma 4 gives a partial answer to this conjecture.

Proof of Theorem 1. Using Theorem A we need only show that

sup
i+j≥1, i,j≥0

ρ(Bi0B
j
1) < 1(11)

248 MARKUS BRÖKER AND XINLONG ZHOU

implies ρ(B0, B1) < 1. To see this we write

B0 =

(
b0 0
b2 b1

)
and B1 =

(
b1 b0
0 b2

)
.

Hence, if b0 · b1 ≤ 0 or b1 · b2 ≤ 0, then by Lemma 4

ρ(B0, B1) = sup
i+j≥1, i,j≥0

(
ρ(Bi0B

j
1)
) 1

i+j

.

From (11) the estimate ρ(B0, B1) < 1 follows. If b0 · b1 > 0 and b1 · b2 > 0, then, as
a(1) = 2, we must have b0 + b1 + b2 = 1, which in turn implies that all b0, b1, and
b2 are positive. Thus, there exists a norm such that max{||B0||, ||B1||} < 1. As one
always has ρ(B0, B1) ≤ max{||B0||, ||B1||}, we conclude ρ(B0, B1) < 1.

Proof of Theorem 2. We verify first that if a(z) = (1 + z2)(α + (1 − α)z) with
0 < α < 1 or a(z) = (1 + z)b(z) with supi+j≥1, i,j≥0 ρ(B

i
0B

j
1) < 1, then (1) has a

continuous, compactly supported solution ϕ. Clearly, by Theorem 1 we need only
show that if a(z) = (1 + z2)(α + (1 − α)z) with 0 < α < 1, then (1) has such a
solution. To see this we apply Theorem A to the subdivision scheme generated by the
coefficients of (1 + z)(α+ (1− α)z) to obtain a ϕ̃. Then the function ϕ defined by

ϕ(x) := ϕ̃(x) + ϕ̃(x− 1)

satisfies (1).
To verify the opposite we distinguish whether ϕ is stable or not (see, e.g., [13]

for the definition of stability). When ϕ is stable, then as shown in [13] the iterates
Snψ converge uniformly to ϕ. Hence, Theorem 1 tells us that a(z) = (1 + z)b(z) and
supi+j≥1, i,j≥0 ρ(B

i
0B

j
1) < 1.

Suppose now ϕ is not stable. Since N = 3 and ai is real, we conclude from [14]
(see Theorem 1 of [14]) that

a(z) = (1 + z2)(α+ (1− α)z).

On the other hand, we notice that for any scheme {aj}Nj=0 with a(1) = 2 there is up
to a factor a unique compactly supported distribution satisfying the corresponding
equation (1) (see [2] and [6]). Using this we obtain a unique compactly supported
distributional solution ϕ̃ of the dilation equation (1) generated by the coefficients of
(1 + z)(α + (1 − α)z). As proved in [13] there holds ϕ(x) = ϕ̃(x) + ϕ̃(x − 1). Thus,
ϕ̃ is continuous. Moreover, by [14], ϕ̃ is stable. Therefore, the iterates Snψ defined
by the coefficients of (1 + z)(α+ (1− α)z) converge uniformly to ϕ̃, which, however,
implies max{|α|, |1− α|} < 1, as Theorem 1 shows.

3. Applications. A wavelet basis for L2(R) is an orthonormal basis {2k/2ψ(2k ·
−j)}k,j∈Z generated from a single function ψ, the wavelet. The variety of applications
of this concept demands to have wavelet bases with specific properties available. It is,
therefore, important to have means available by which wavelets with desired properties
can be constructed. On the other hand, it is useful to have a ψ with compact support.
One method to obtain such ψ is to use the compactly supported solution ϕ of the
dilation equation (1). Using this ϕ, one can realize the wavelet ψ by

ψ(x) =
∑
i

(−1)ia1−iϕ(2x− i),

JOINT SPECTRAL RADIUS 249

✻

✲

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

❅
❅

❅
❅

❅
❅

❅❅

❅
❅❅

❅
❅❅

(1
2 ,

1
2)

Fig. 1. The circle (b0 − 1/2)2 + (b2 − 1/2)2 = 1/2 with b0 on the horizontal axis. The point
which produces the smoothest ϕ is between two points of the circle and its b0 is about 0.643198.

whenever the scaling function ϕ defines a multiresolution analysis. Cohen [3] and
Lawton [16] have characterized the coefficients {ai}Ni=0 that give a multiresolution
analysis. For N = 3 these are identified as a0+a2 = 1, a1+a3 = 1, and (a0−1/2)2+
(a3 − 1/2)2 = 1/2, except (a0, a3) = (1, 1). That means the associated polynomial
satisfies a(z) = (1+z)(b0+b1z+b2z

2) and (b0, b2) is on the circle (see Figure 1), except
b0 = b2 = 1 (see [11]). As in [4] we shall call such ϕ an orthogonal scaling function.
It is clear that the coefficients of the Daubechies scaling function D4 and those given
in (2) satisfy this criterion. Moreover, the supremum of the Hölder exponent of D4

is − log2((1 +
√
3)/4) (see [6]). The exponent of ϕ of (2) is approximately 0.60 (see

[11]). Furthermore, Colella and Heil conjecture in [11] that this ϕ has the largest
Hölder exponent occurring for the points on the circle of Figure 1. To continue our
discussion, let us consider the points (b0, b2) on this circle with b0 ≥ 1 or b2 ≥ 1.
Evidently for these points ρ(B0, B1) ≥ 1 holds; hence there is no continuous scaling
function for (1) with such coefficients. We shall therefore focus on those points of this
circle for which 0 ≤ b0 ≤ 1 and b2 ≤ 0. The case 0 ≤ b2 ≤ 1 and b0 ≤ 0 can be treated
in the same way.

The matrices generated by these coefficients are

B0 =

(
b0 0
b2 b1

)
and B1 =

(
b1 b0
0 b2

)
.

Obviously, b1 = 1− b0 − b2 ≥ 0. Thus by (10) one obtains for some j′

ρ(B0, B1) = max

{
max

0≤j≤j′

(
ρ(Bj0B1)

) 1
j+1

, ρ(B0)

}
.

250 MARKUS BRÖKER AND XINLONG ZHOU

On the other hand, it is known (see, e.g., [4]) that in these cases the supremum of the
Hölder exponent of the scaling function defined by these coefficients is− log2 ρ(B0, B1).
In what follows we will present an algorithm with which we can calculate the value

max0≤j≤j′(ρ(B
j
0B1))

1
j+1 very quickly. Let k be the number satisfying

max
0≤j≤j′

(
ρ(Bj0B1)

) 1
j+1

=
(
ρ(Bk0B1)

) 1
k+1 .

Calculation (see Table 1) shows that in order to find this value one needs at most
k + C steps. We will use this algorithm to find the smoothest orthogonal scaling
function. We will then compare our result with the smoothness conjecture of Colella
and Heil (see [5]).

To begin with we notice that if b0
= b1 (i.e., b0
= 0.6), there exists a 2× 2 matrix
T , such that TB0T

−1 = diag(b0, b1). Hence, some calculations yield

ρ(Bj0B1) = ρ((TB0T
−1)j(TB1T

−1))(12)

= bj+1
0

(
|α+ βuj+1|+

√
(α+ βuj+1)2 + γuj+1

)

=: bj+1
0 F1(u

j+1),

where 2α = b1/b0 + b2/(b0 − b1), 2β = −b2/(b0 − b1), γ = −b2/b0, and u = b1/b0. In
case b0 = 0.6, we use the continuity of the spectral radius to obtain from above

ρ(Bj0B1) =
0.6j+1

6

(
|3− (j + 1)|+

√
(3− (j + 1))2 + 12

)
(13)

=: 0.6j+1G(j + 1).

Let us determine next j0 such that

sup
j≥0

(
ρ(Bj0B1)

) 1
j+1

= max
0≤j≤j0

(
ρ(Bj0B1)

) 1
j+1

.(14)

Case 1. b0 = 0.6. For this case the corresponding scaling function is given by (2).
Using (13) one can easily verify that for y ≥ 14 there holds

d ln(G(y))
1
y

dy
=

1

y2G(y)
{−G(y) lnG(y) + yG′(y)} < 0.

That means

ρ(B0, B1) = max

{
max

0≤j≤14

(
ρ(Bj0B1)

) 1
j+1

, ρ(B0)

}
.

Calculations give

ρ(B0, B1) =
(
ρ(B12

0 B1)
) 1

13 = 0.65967890896

and − log2 ρ(B0, B1) = 0.6001641146. This gives an affirmative answer to a conjecture
raised by Colella and Heil (see section 1).

Case 2. 0.6 < b0 ≤ (1 +
√
3)/4. In this case we have u < 1, α < 0, and

β > 0. Putting k0 := min{j : −α − βuj > 0}, we get F1(u
j+1) = −α − βuj+1 +

JOINT SPECTRAL RADIUS 251

√
(α+ βuj+1)2 + γuj+1 ∀ j ≥ k0. We need to calculate maxj≥k0(F1(u

j))1/j . Let us
consider the set of j ≥ k0 satisfying

−F1(u
j) lnF1(u

j) + F ′
1(u

j)uj lnuj < 0.(15)

In what follows we shall prove that if F1(0) > 1, then there exists a number k2

such that (15) holds ∀ j ≥ k2. Evidently, in this case one has (F1(u
j))1/j

< maxj≥k0(F1(u
j))1/j ∀ j ≥ k2 + 1. On the other hand, it is easy to see that

for 0 ≤ y ≤ uk0 the function F1(y) is monotonically decreasing, F1(0) = −2α, and
F ′

1(y) = (−βF1(y)+γ/2)/
√
(α+ βy)2 + γy. If F1(0) ≤ 1, we conclude from the above

that supj≥k0(F1(u
j))1/j = 1. Hence,

ρ(B0, B1) = max

{
max

0≤j≤k0

(
ρ(Bj0B1)

) 1
j+1

, ρ(B0)

}
.(16)

Assume now F1(0) > 1. Then for j ≥ k0 we have

−F1(u
j) lnF1(u

j) + F ′
1(u

j)uj lnuj ≤ F1(u
j)√

(α+ βuj)2 + γuj

×
(
−
√
(α+ βuj)2 + γuj lnF1(u

j)− βuj lnuj
)
.

Denote k1 := min{j : j ≥ k0 and 2|α + βuj | > 1}. Since F1(u
j) > 2|α + βuj |

provided j ≥ k0, we have ∀ j ≥ k1

−
√
(α+ βuj)2 + γuj lnF1(u

j)− βjuj lnu < −|α+ βuj | ln(2|α+ βuj |)− βuj lnuj .
The term on the right side is a decreasing function of j. Let k2 ≥ k1 be a number
such that

−|α+ βuk2 | ln(2|α+ βuk2 |)− βk2u
k2 lnu ≤ 0.

Then (15) holds ∀ j ≥ k2. In other words, we have

sup
j≥k0

(F1(u
j))1/j = max

k0≤j≤k2+1
(F1(u

j))1/j ,

from which relation (14) follows with j0 := k2 + 1. Hence,

ρ(B0, B1) = max

{
max

0≤j≤j0

(
ρ(Bj0B1)

) 1
j+1

, ρ(B0)

}
.(17)

The above consideration suggests the following algorithm for the computation of
ρ(B0, B1).

Algorithm 1. If 0.6 ≤ b0 ≤ (1 +
√
3)/4,

(1) find k0;
(2) if F1(0) ≤ 1, then calculate ρ(B0, B1) by using (16);
(3) if F1(0) > 1, then find k2 and calculate ρ(B0, B1) by using (17).
Later we will use this algorithm to find the smoothest ϕ.
Case 3. 0 < b0 < 0.6. Like (12) we have with the same α, β, and γ

ρ(Bj0B1) = bj+1
1

(
|αuj+1 + β|+

√
(αuj+1 + β)2 + γuj+1

)

=: bj+1
1 F2(u

j+1),

252 MARKUS BRÖKER AND XINLONG ZHOU

Table 1

The number k satisfies ρ(B0, B1) = (ρ(Bk
0B1))

1
k+1 , −− means that ρ(B0, B1) = ρ(B0) or

ρ(B1), and h = − log2 ρ(B0, B1).

b0 k2 k ρ(B0, B1) h

0.590 14 11 0.6637328532 0.5913254088
0.600 17 12 0.6596789090 0.6001641146
0.6431 25 22 0.6470557051 0.6280381756
0.6431982 25 22 0.6470546253 0.6280405832
0.6431983 25 23 0.6470546270 0.6280405792
0.6432 25 23 0.6470546638 0.6280404972
0.645 28 25 0.6471430784 0.6278433785
0.6471 36 34 0.6475244074 0.6269935210
0.650 −− −− 0.6500000000 0.6214883767

where u = b0/b1. We notice that F2 is obtained by exchanging the positions of α
and β in the definition of F1. Moreover, in case 0 < b0 < 0.6 one can easily obtain
from (12) and the fact b0 + b1 + b2 = 1 that b0 < b1, α > 0, and β < 0. Hence, we
can use the same process as in Case 2 to obtain first k0, which is ln(|β|/α)/ lnu. The
number k1 is now min{j : j ≥ k0 and 2|αuj + β| > 1 }. Finally, let the number
k2 ≥ k1 be such that

−|αuk2 + β| ln(2|αuk2 + β|)− αk2u
k2 lnu ≤ 0.(18)

The algorithm to compute ρ(B0, B1) for these b0 is the following.
Algorithm 2. If 0 < b0 < 0.6,
(1) put k0 := min{j : −αuj − β > 0};
(2) if F2(0) ≤ 1, then calculate ρ(B0, B1) by using (16) with k0 of step (1);
(3) if F2(0) > 1, then find k2 by (18) and calculate ρ(B0, B1) by using (17) with

this k2.
The numerical results (see Table 1) were obtained by using Algorithms 1 and 2,

respectively. Figure 2 illustrates the joint spectral radius ρ(B0, B1) with (b0, b2) on
the circle of Figure 1 and 0 ≤ b0 ≤ 1. We recall that D4 is given by b0 = (

√
3 + 1)/4,

which is irrational. Figure 2 tells us that it is better in practice to replace this b0 by
some rational number b′ < b0. To find that (b0, b2) on the circle of Figure 1 which
has the smallest joint spectral radius ρ(B0, B1), let us denote f(b0, j) := F1(u

j),
where F1 is defined in (12) and u = b1/b0. We notice that, by (12), for fixed b0 the
function gb0(y) := (f(b0, y))

1/y and its second derivate are continuous ∀ y ≥ k0, where
k0 := min{j : F1(u

j) ≥ 1}. Thus gb0 is only defined for 2|α| > 1, where α is given
by (12). This condition can be fulfilled if 0.6 < b0 < 0.6471.

The following result gives a characterization of the smallest joint spectral radius
ρ(B0, B1) and the corresponding point (b0, b2) on the circle of Figure 1.

Theorem 6. Let (b0, b2) be on the circle of Figure 1 with b0 ≥ 0. Then the
smallest joint spectral radius ρ(B0, B1) is given by b0, which is the unique solution of

(f(b0, 23))
24 = (f(b0, 24))

23, b0 ∈ (0.6431, 0.6432).(19)

Moreover, calculation shows that b0 is approximately 0.64319821226 and the joint
spectral radius for this b0 is about 0.64705462514.

Proof. For simplicity we shall regard ρ(B0, B1) as a function of b0 (say, ρ(b0)). The
function ρ(x) is continuous (see [12]). We prove our assertion by showing that the b0

JOINT SPECTRAL RADIUS 253

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2. The curve of ρ(B0, B1) with 0 ≤ b0 ≤ 1 and (b0, b2) on the circle of Figure 1.

of the theorem is in the interval (0.6431, 0.6432) and that both functions xf1/23(x, 23)
and xf1/24(x, 24) are monotone in this interval. Using Algorithm 1 one gets that both
end points of this interval do not give the smallest joint spectral radius; thus b0 of
this theorem must satisfy (19).

First, we will show that the b0, giving the smallest joint spectral radius is not
in the interval [0, 0.6]. In fact, using Table 1 we need only show that for b0 in this
interval the corresponding joint spectral radius is greater than 0.6471. With this in
mind, we notice that, as ρ(B0, B1) ≥ b1 = 1 − b0 − b2, one has for 0 ≤ b0 ≤ 1/2
the estimate ρ(B0, B1) ≥

√
2/2 > 0.6471. For b0 ∈ [0.5, 0.6] we use the notation of

Algorithm 2 to obtain, with u = b0/b1 and j ≥ 4,

ρ(B0, B1) ≥ b1(2|αuj + β|) 1
j

≥ b1

(
γu

j−4∑
i=0

ui

) 1
j

=: b1r(b0, j).

Obviously, ρ(B0, B1) ≥ b1max4≤j≤13 r(b0, j). By the relation b1 = 1 − b0 − b2 one
may regard b1 as a function of b0 (say, b1(b0)), which is decreasing. Moreover, for
these j the function r(x, j) is increasing on [0.5, 0.6]. Thus, one may use the following
algorithm to give a lower estimate of ρ(B0, B1).

Algorithm 3.
(i) For a given positive integer M denote xk = 0.5+0.1k/M , k = 0, 1, . . . ,M +1;
(ii) for k = 0, . . . ,M + 1 calculate b1(xk) and max4≤j≤13 r(xk, j) =: r(xk, jk).

It is clear that for x ∈ [xk, xk+1] the joint spectral radius ρ(B0, B1) with b0 = x
satisfies

ρ(B0, B1) ≥ b1(xk+1)r(xk, jk).

254 MARKUS BRÖKER AND XINLONG ZHOU

Computation shows that with M = 100 the right-hand side of the above inequality is
greater than 0.6471 for k = 0, 1, . . . ,M .

Now Table 1 tells us that if 0.6471 ≤ x ≤ 1, then ρ(x) ≥ x ≥ 0.6471 >
ρ(0.6431982). Thus, the b0 of this theorem is in the interval (0.6, 0.6471).

Next we investigate the case 0.6 < b < 0.6471. In what follows we shall prove
g′′b (y) ≤ 0 for y > k0. To this end we use the notations of (12) and put z = uy. Using
the relationship between gb and F1 and straightforward calculation we need only to
prove for 0 < z < uk0 < 1 that

I := F ′
1(z)(− lnF1(z) + ln z) + F ′′

1 (z)z ln z ≥ 0.
As F ′

1(z) = (−βF1(z) + γ/2)/
√
(α+ βz)2 + γz ≤ 0 and

F ′′
1 (z) =

−βF ′
1(z)

((α+ βz)2 + γz)
1
2

− (−βF1(z) + γ/2)(β(α+ βz) + γ
2)

((α+ βz)2 + γz)
3
2

=
F ′

1(z)

(α+ βz)2 + γz

{(
βF1(z)− γ

2

)
− 2β(α+ βz)

}
,

we get

I = −F ′
1(z) lnF1(z) +

F ′
1(z) ln z

(α+ βz)2 + γz

{
((α+ βz)2 + γz)

+z
(
βF1(z)− γ

2

)
− 2βz(α+ βz)

}
.

Noticing that −βF1(z) + γ/2 ≤ 0, −(α + βz) ≥ 0, and F1(z) ≥ 1 we obtain I ≥ 0,
which verifies our assertion.

The convexity of gb implies that if for a given b there exist two different j and j
′

such that

(f(b, j))
1
j = (f(b, j′))

1
j′

and

ρ(b) = b(f(b, k))
1
k , k = j, j′,(20)

then |j − j′| = 1. Furthermore, for each b0 there exist at most two j satisfying (20).
Let j(b) be the smaller j in (20). We claim that j(b) is a nondecreasing function
of b. To see this, we notice that if j(b) > j(b + δi) for δi > 0 and limi→∞ δi = 0,
then, since j(b) is an integer, one must have lim infi→∞ j(b + δi) ≤ j(b) − 1 and for
j′ := lim infi→∞ j(b + δi) there holds ρ(b) = b(f(b, j′))1/j

′
, which, however, leads to

a contradiction, as j(b) is the smaller j of (20). Thus for small δ > 0 one must have
j(b) ≤ j(b+ δ). Table 1 implies that the j in (20) lies between 13 and 35.

To reach our goal we need also the following assertion: let j = 13, . . . , 35 and
x ∈ (0.6, 0.6471). If f(x′, j) ≥ 1, then f(x, j + 1) is a decreasing function of x ≤ x′.
Indeed, let y be such that (x, y) is on the circle of Figure 1, u = (1 − x − y)/x, and
γ = −y/x. Then by the definition of f we have

f(x, j) =
1

2

{
−u+ γ

1− uj
1− u

}
+

√(
1

2

{
−u+ γ

1− uj
1− u

})2

+ γuj(21)

=: Aj(x) +
√
A2
j (x) +Bj(x).

JOINT SPECTRAL RADIUS 255

From this we get

∂

∂x
f(x, j) =

2f(x, j)A′
j(x) +B′

j(x)

2f(x, j)− 2Aj(x) .(22)

Furthermore,

2A′
j(x) =

(
−u′ + γ′

γ
(1 + u)

)
+
γ′

γ
(2Aj(x)− 1)

+ γ

(
j−1∑
i=0

ui

)′

.

Calculation shows that the first term on the right-hand side is −b′2/γb20, which is
nonpositive. As u and γ are decreasing with respect to x, we obtain from above that
Aj(x) is decreasing provided 2Aj(x) ≥ 1. On the other hand, f(x, j) ≥ 1 is equivalent
to 2Aj(x) + Bj(x) ≥ 1. Thus, the assertion follows from the above calculation and
the fact that Aj+1(x) = Aj(x) +Bj(x)/2. This assertion suggests that we should use
the following algorithm.

Algorithm 4.
(i) For δ > 0 and M define xk+1 := xk + δ and k < M ;
(ii) determine jk such that

max
13≤j≤35

f
1
j (xk, j) = f

1
jk (xk, jk) =: dk;

(iii) with this jk and xk calculate

rk := xk−1f
1
j′ (xk, j

′),

where j′ = jk + 1 when Ajk(xk) < 1/2 and j
′ = jk otherwise.

As ρ(xk) ≥ xk, it is clear that dk ≥ 1. Thus the above assertion implies that
f(x, j′) is decreasing for x ≤ xk. Now for x ∈ [xk−1, xk] we obtain

ρ(x) ≥ xf
1
j′ (x, j′) ≥ xk−1f

1
j′ (xk, j

′).

With δ = 0.0000001 we obtain that for x0 = 0.6 and xM = 0.6431 the right-hand side
of the last inequality is greater than 0.64705463. This means that the joint spectral
radius for b0 ∈ [0.6, 0.6431] is greater than the spectral radius with b0 = 0.6431982
(see Table 1). Similarly, with δ = 0.00000001 and x0 = 0.6432 we conclude that the
joint spectral radius for b0 ∈ [0.6432, 0.6471] is greater than 0.64705463.

Therefore, the smallest joint spectral radius is given by a point in [0.6431, 0.6432].
Using Algorithm 1 we can show that for x ∈ [0.6431, 0.6432] the j of (20) is 23 or
24 (see Table 1). Thus, it remains to prove that, with j = 23 or 24, the function
xf1/j(x, j) is monotone in this interval, that is, to prove that

∂

∂x
(xf

1
j (x, j))
= 0, x ∈ [0.6431, 0.6432].(23)

To see this, assume that there exist x ∈ [0.6431, 0.6432] and j = 23 or 24 such that (23)
is not true. Thus

jf(x, j) + x
∂

∂x
f(x, j) = 0.

256 MARKUS BRÖKER AND XINLONG ZHOU

Using (21) and (22) we obtain from this that

2j(f(x, j)−Aj(x))f(x, j) = −xB′
j(x)− 2xA′

j(x)f(x, j).(24)

We recall that Aj(z) is decreasing for z ≤ x′ if 2Aj(x′) ≥ 1. For x′ = 0.6432 one
can show that 1.14 ≤ 2Aj(x′) ≤ 1.16. Thus, Aj is decreasing in [0.6431, 0.6432]. In
what follows we shall prove that ∀ x ∈ [0.6431, 0.6432] both sides of (24) are different.
Thus (23) is valid. To this end, denote x0 = 0.6431, δ = 0.000001, and xi = x0 + δi.
It is clear that x100 = 0.6432. Let R(x) be the right-hand side of (24) and L(x) be the
left one. We show R(x)
= L(x) for x ∈ [xi, xi+1], i = 0, . . . , 99. L(x) is decreasing;
hence L(x) is between L(xi+1) and L(xi) for x ∈ [xi, xi+1]. To estimate the lower
and the upper bound of R(x), we notice that (x, y) is on the circle of Figure 1 and
u = (1 − x − y)/x, γ = −y/x. One can easily verify that all these functions are
decreasing on [0.6431, 0.6432]. Having this in mind, we observe that

2A′
j(x) = −u′ + γ′

1− uj
1− u +

γu′

1− u
1− uj
1− u −

(j)γuj−1u′

1− u
= 2Aj(x)

(
γ′

γ
+

u′

1− u
)
+

(
γ′u
γ
+
(2u− 1− jγuj−1)u′

1− u
)

=: 2Aj(x)I(x) + I(x, j).

The functions I(x) and I(x, j) are nonpositive for x in [0.6431, 0.6432], as γ′, u′ are
nonpositive and (2u− 1− jγuj−1) ≥ 0. Moreover, one has

|xI(x)| = (1− u)−1

(
2 +

(2x− 1)2
|y|(1− 2y)

)

and

|xI(x, j)| = ux|I(x)| − x|u′| − x|u′|jγu
j−1

1− u .

From this we get the lower and the upper bound (say, li and ui) for R(x) with
x ∈ [xi, xi+1]. Computation shows that for j = 23 there holds L(xi) < li and
L(xi+1) > ui, provided j = 24 (i = 0, . . . , 99).

Acknowledgment. The authors are indebted to the referees for various helpful
comments on this paper and for the information concerning the results of Maesumi.

REFERENCES

[1] M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl., 166
(1992), pp. 21–27.

[2] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary Subdivision, Mem. Amer.
Math. Soc. 453, AMS, Providence, RI, 1991.

[3] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroirs en quadrature, Ann. Inst. H.
Poincaré Anal. Non Linéaire, 7 (1990), pp. 57–61.

[4] D. Colella and C. Heil, The characterization of continuous, four-coefficient scaling functions
and wavelets, IEEE Trans. Inform. Theory, 38 (1992), pp. 876–881.

[5] D. Colella and C. Heil, Characterizations of scaling functions: Continuous solutions, SIAM
J. Matrix Anal. Appl., 15 (1994), pp. 496–518.

[6] I. Daubechies and J. C. Lagarias, Two-scale difference equations I. Existence and global
regularity of solutions, SIAM J. Math. Anal., 22 (1991), pp. 1388–1410.

[7] I. Daubechies and J. C. Lagarias, Two-scale difference equations II. Local regularity, infinite
products of matrices and fractals, SIAM J. Math. Anal., 23 (1992), pp. 1031–1079.

JOINT SPECTRAL RADIUS 257

[8] I. Daubechies and J. C. Lagarias, Sets of matrices all infinite products of which converge,
Linear Algebra Appl., 162 (1992), pp. 227–263.

[9] N. Dyn, J. A. Gregory, and D. Levin, A 4-point interpolatory subdivision scheme for curve
design, Comput. Aided Geom. Design, 4 (1987), pp. 257–268.

[10] G. Gripenberg, Computing the joint spectral radius, Linear Algebra Appl., 234 (1996), pp. 43–
60.

[11] C. Heil and D. Colella, Dilation equation and the smoothness of compactly supported
wavelets, in Wavelets: Mathematics and Applications, J. J. Benedetto and M. W. Fra-
zier, eds., Stud. Adv. Math., CRC Press, Boca Raton, FL, 1994, pp. 163–201.

[12] C. Heil and G. Strang, Continuity of the joint spectral radius: Application to wavelets, in
Linear Algebra for Signal Processing, A. Bojanczyk and G. Cybenko, eds., IMA Vol. Math.
Appl. 69, Springer-Verlag, New York, 1995, pp. 51–61.

[13] R. Q. Jia, Subdivision schemes in Lp spaces, Adv. Comput. Math., 3 (1995), pp. 309–341.
[14] R. Q. Jia and J. Z. Wang, Stability and linear independence associated with wavelet decom-

positions, Proc. Amer. Math. Soc., 117 (1993), pp. 1115–1124.
[15] J. C. Lagarias and Y. Wang, The finiteness conjecture for the generalized spectral radius of

a set of matrices, Linear Algebra Appl., 214 (1995), pp. 17–42.
[16] W. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelet bases,

J. Math. Phys., 32 (1991), pp. 57–61.
[17] M. Maesumi, Optimum unit ball for joint spectral radius: An example from four-coefficient

MRA, in Approximation Theory VIII, L. L. Schumaker, ed., Ser. Approx. Decompos. 6,
World Scientific, River Edge, NJ, 1995, pp. 267–274.

[18] M. Maesumi, Joint spectral radius and Hölder regularity of wavelets, Comput. Math. Appl.,
40 (2000), pp. 145–155.

[19] C. A. Micchelli and H. Prautzsch, Uniform refinement of curves, Linear Algebra Appl.,
114/115 (1989), pp. 841–870.

[20] G. C. Rota and G. Strang, A note on the joint spectral radius, Indag. Math., 22 (1960),
pp. 379–381.

[21] Y. Wang, Two-scale dilation equations and the cascade algorithm, Random Comput. Dynam,
3 (1995), pp. 289–307.

A GEOMETRIC APPROACH TO THE CARLSON PROBLEM∗

ALBERT COMPTA† AND JOSEP FERRER†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 258–275

Abstract. The possible observability indices of an observable pair of matrices, when supplemen-
tary subpairs are prescribed, are characterized when the “quotient” one is nilpotent. The geometric
techniques used are also valid in the classical Carlson problem for square matrices.

Key words. Carlson problem, supplementary pairs of matrices, (C,A)-invariant subspaces,
block similarity, Littlewood–Richardson sequences, Brunovsky–Kronecker reduced form

AMS subject classifications. 15A04, 15A21, 93B10, 93B27

PII. S0895479898349148

1. Introduction. This work is a contribution to the problem analogous to the
Carlson problem, but involves pairs of matrices instead of single square matrices.
In addition, it should be emphasized that the geometric techniques used can also
be applied to construct explicit solutions (see section 7) and to study the classical
Carlson problem (section 2).

Because of our geometric approach, it is convenient to deal with vertical pairs of
matrices, corresponding to linear maps defined on a subspace (see [5]). The dual case
of horizontal pairs of matrices, corresponding to maps defined modulo a subspace, is
more appropriate to matricial techniques (as in [3]).

So pairs of matrices P = (AC), where A : C
n −→ C

n, C : C
n −→ C

m (m ≤ n), are
considered with the following equivalence relation (named “block-similarity” in [8] or
“equivalence” in [11]), which generalizes the usual similarity between square matrices:
P and P ′ are block-similar if

P ′ ≡
(
A′

C ′

)
=

(
Q S
0 T

)(
A
C

)
Q−1

or, equivalently,

A′ = Q(A+ FC)Q−1, C ′ = TCQ−1,

where Q and T are nonsingular, and F = Q−1S. Throughout the paper, the letters
BK (from Brunovsky–Kronecker) will denote the invariants, reduced canonical form,
etc., relative to this equivalence relation (see, for example, [8, pp. 96–209] or [5, p. 52]).

With this notation, the general Carlson problem for pairs of matrices can be
formulated as follows: characterization of the possible BK-invariants of the pair

P =

(
A
C

)
=

A1 A3

0 A2

C1 C3

0 C2

∗Received by the editors December 11, 1998; accepted for publication (in revised form) by D.
Boley January 20, 2000; published electronically June 20, 2000. This work was partially supported
by DGICYT grant PB94-1365-C03-03. This work was partially presented in the ILAS Conference,
Madison, WI, 1998 and in the SSC’98 Conference, Nantes, France, 1998.

http://www.siam.org/journals/simax/22-1/34914.html
†Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647,

08028 Barcelona, Spain (compta@ma1.upc.es, ferrer@ma1.upc.es).

258

A GEOMETRIC APPROACH TO THE CARLSON PROBLEM 259

when A3, C3 vary, if the pairs (or equivalently its BK-invariants) P1 = (A1

C1
) and

P2 = (A2

C2
) are fixed.

In system theory, this problem arises in a natural way, for example, when two
systems are composed in a “simple cascade” (see [8], [1]).

Baragaña and Zaballa [2] characterize these possible BK-invariants for the par-
ticular case when P2 is observable. Here, the “supplementary” (see Remark 4.7)
particular case is considered, when P2 is an endomorphism (i.e., C2 = 0). When it
has a single eigenvalue, Theorem 3.1 gives implicit and explicit characterizations of
the possible BK-indices of P , the former being in some sense analogous to the ex-
istence of Littlewood–Richardson sequences for the classical Carlson problem. The
proof of these implicit characterizations is constructive, so that some examples of
explicit solutions P are included in the last section.

Section 2 contains a geometric approach to the classical Carlson problem, which
is taken as a motivation of the techniques used in this paper. Section 3 contains the
precise definitions and statement of the main theorem (Theorem 3.1), whose proof is
delayed until section 5 (necessity) and section 6 (sufficiency), after a geometric refor-
mulation of the problem (Corollary 4.5) in section 4. Some examples are presented in
section 7.

In this paper, X will be a finite-dimensional vector space over the complex num-
bers C, and Y , W , . . . will denote vector subspaces of X. If B ⊂ X is a subset,
[B] will be the subspace spanned by the vectors in B. A basis B of X will be called
adapted to the subspaces Y , W , . . . if B ∩ Y , B ∩W , . . . are respective bases.

C
p×q means the set of complex matrices having p rows and q columns. C

p×q ×
C
p′×q′ means the set of vertical pairs of matrices, the one at the top being of C

p×q

and the one at the bottom of C
p′×q′ .

In the paper, a partition

a = (a1, a2, . . . , a�(a), 0, . . . , 0)

will be a finite nonincreasing sequence of nonnegative integers

a1 ≥ a2 ≥ · · · ≥ a�(a) > 0,

where �(a) is called its length. We note |a| = a1 + a2 + · · ·+ a�(a) (named its weight).
Its conjugate partition (see [7, p. 54]) a∗ = (a∗1, a

∗
2, . . .) is defined by means of

a∗j = #{1 ≤ i ≤ �(a) : ai ≥ j},
where the symbol # means “cardinal.” Notice that a∗1 = �(a), �(a∗) = a1, |a∗| = |a|,
(a∗)∗ = a.

Given two partitions a and b, symbol a ≺ b means |a| = |b| and
a1 + · · ·+ ai ≤ b1 + · · ·+ bi (i ≥ 1).

The Segre characteristic relative to any square matrix eigenvalue is the partition of
the sizes of his Jordan blocks.

2. A geometric approach to the classical Carlson problem. Let us see
how the geometric tools used in this paper arise in a natural way in the classical
Carlson problem concerning square matrices. We recall the key theorem is due to
Klein [9], relating the decomposition of p-modules with the existence of so-called LR-
sequences. On the other hand, [6] proves the equivalence between the Carlson problem

260 ALBERT COMPTA AND JOSEP FERRER

and the one of invariant factors of the product of polynomial matrices, which in turn
is related by [10] with the decomposition of p-modules. To summarize, we have the
following well known result which reduces the Carlson problem to the existence of
LR-sequences.

Theorem 2.1. Let there be three partitions

ω = (ω1, ω2, . . .), |ω| = n,
w = (w1, w2, . . .), |w| = d,
b = (b1, b2, . . .), |b| = n− d.

The following conditions are equivalent:
(I) For any nilpotent matrices A1 ∈ C

d×d and A2 ∈ C
(n−d)×(n−d) having Segre

characteristic w∗ and b∗, respectively, there is a matrix Z ∈ C
d×(n−d) such that the

matrix

A =

(
A1 Z
0 A2

)
∈ C

n×n(2.1)

has Segre characteristic ω∗.
(II) There is a finite sequence of partitions (named after Littlewood–Richardson)

w0, w1, . . . , ws (s = �(b)) such that w0 = w, ws = ω, and, for all i, j ≥ 1,
(a) |wj | − |wj−1| = bj,
(b) wj+1

1 = wj1; w
j
i ≥ wj−1

i ≥ wji+1,

(c)
∑
�≤i+1(w

j+1
� − wj�) ≤

∑
�≤i(w

j
� − wj−1

�).
From a geometric point of view, let us consider an endomorphism f : X −→ X,

and W ⊂ X an invariant subspace (i.e., f(W) ⊂ W). Then, in any basis B of X
adapted to W , the matrix of f has the form (2.1) above, where A1 and A2 are the
matrices of the natural endomorphisms

f̂ :W −→W,
f̃ :
X

W
−→ X

W
,

respectively, in the bases induced by B in a natural way.
If condition (I) holds, let us consider the subspaces

W j
i = Ker f i ∩ f−j(W) (i, j ≥ 0),

which can be organized in the following diagram:

W ⊂ f−1(W) ⊂ f−2(W) ⊂ · · · ⊂ f−s(W) = X
‖ ‖ ‖ ‖ ‖

Ker f̂n ⊂ W 1
n ⊂ W 2

n ⊂ · · · ⊂ W s
n = Ker fn

∪ ∪ ∪ ∪ ∪
...

...
...

...
∪ ∪ ∪ ∪ ∪

Ker f̂ i ⊂ W 1
i ⊂ W 2

i ⊂ · · · ⊂ W s
n = Ker f i

∪ ∪ ∪ ∪ ∪
...

...
...

...
...

∪ ∪ ∪ ∪ ∪
Ker f̂ ⊂ W 1

1 = W 2
1 = · · · = W s

1 = Ker f

,

A GEOMETRIC APPROACH TO THE CARLSON PROBLEM 261

where s = �(b).
Notice that W j

0 = 0 for all j ≥ 0 and

ωi = dimKer f i − dimKer f i−1,

wi = dimKer f̂ i − dimKer f̂ i−1,

bj = dim f−j(W)− dim f−j+1(W).

Then, it can be proved that condition (II) holds by taking

wji = dimW j
i − dimW j

i−1.

In fact, condition (II)(a) is trivial, and the other ones are equivalent to the injectivity
of the maps

W j
i+1

W j
i

−→ W j−1
i

W j−1
i−1

,
W j+1
i

W j
i

−→ W j
i−1

W j−1
i−1

induced by f .

3. Precise definitions and statement of the main theorem. As a natural
generalization of the Carlson problem, let us consider pairs of matrices of the form

P =

(
A
C

)
=

A1 Z
0 A2

C1 C3

0 C2

 ,

P1 ≡
(
A1

C1

)
, P2 ≡

(
A2

C2

)
,

where A1 and A2 are square matrices. One wonders about the existence of, the way
to obtain, etc., matrices Z when P1, P2, and C3 as well as the block-similarity class
of P are prescribed. Obviously, in the classical Carlson problem one assumes that
C1 = 0, C2 = 0, and C3 = 0, that is to say, P , P1, and P2 are endomorphisms.

In this paper, we consider the case when P is observable (and therefore so is P1)
with prescribed observability indices, and P2 is an endomorphism (i.e., C2 = 0; see
Remark 4.7) having only an eigenvalue λ. We recall that the observability indices of
P form the dual partition of

ri = rang

C
CA
...
CAi

− rang

C
CA
...
CAi−1

and P is observable if

rang

C
CA
...
CAn−1

 = n.

In fact, one can assume that P1 is a BK-matrix, C3 = 0, and A2 is a nilpotent
Jordan matrix. This remark and the main results in this paper are summarized in
the following theorem.

262 ALBERT COMPTA AND JOSEP FERRER

Theorem 3.1. Let there be three partitions:

R = (R1, R2, . . .), |R| = n,
r = (r1, r2, . . .), |r| = d,
b = (b1, b2, . . .), |b| = n− d.

The following conditions are equivalent:
(I) For any observable pair P1 ∈ C

d×d × C
r1×d having observability indices r∗,

any square matrix A2 ∈ C
(n−d)×(n−d) having only one eigenvalue λ, with Segre char-

acteristic b∗, and any matrix C3 ∈ C
r1×(n−d) there is a matrix Z ∈ C

d×(n−d) such
that the pair

P =

 A1 Z

0 A2

C1 C3

is observable having observability indices R∗.
(I′) Condition (I) holds in the particular case when P1 is a BK-matrix, A2 is a

nilpotent Jordan matrix, and C3 = 0.
(II) There is a finite sequence of partitions r0, r1, . . . , rs (s = �(b)) such that

r0 = r, rs = R, and for all i, j ≥ 1
(a) |rj | − |rj−1| = bj,
(b) rj1 = rj−1

1 , rj−1
i ≥ rji+1 ≥ rj−1

i+1 ,

(c)
∑
�≥i+1(r

j+1
� − rj�) ≤

∑
�≥i(r

j
� − rj−1

�).

(II′) There is a finite sequence of partitions c0, c1, . . . , cs (s = �(b)) such that
c0 = r∗, cs = R∗, and for all ν, j, i ≥ 1

(a) |cj | − |cj−1| = bj,
(b) �(cj) = r1, c

j−1
ν ≤ cjν ≤ cj−1

ν + 1,
(c)

∑
η∈I(i+1,j+1)(c

j+1
η − cjη) ≤

∑
η∈I(i,j)(c

j
η− cj−1

η), where I(i, j) = {η : cjη ≥ i}.
(III) (see [3]) b1 ≤ r1 = R1, (R∗)ν ≥ (r∗)ν (ν = 1, 2, . . .), and R∗ − r∗ ≺ b∗,

where R∗ − r∗ is assumed to be reordered to become nonincreasing.
Remark 3.2. Notice that conditions (II)(a)–(II)(c) are similar to the Littlewood–

Richardson ones which appear in the classical Carlson problem (see Theorem 2.1).
In fact, (II)(a) and (II)(b) are almost the same, whereas (II)(c) is in some sense
“opposite.”

Remark 3.3. Condition (III) has been suggested by [3] by means of fully different
methods. In fact, it is an immediate consequence of (II′)(a) and (II′)(b). Likewise
(see the preceding remark) condition (III), except where b1 ≤ r1 = R1 (which holds
only if Ker f ⊂ W), is a necessary condition in the classical Carlson problem, but in
that case it is not sufficient.

Remark 3.4. When (III) holds, explicit solutions Z can be computed by means
of (II), thus being nonequivalent for different sequences r0, r1, . . . , rs (see section 7).

Remark 3.5. Conditions (II)–(II′) can be sketched by means of the usual diagrams
representing partitions in a way similar to the Littlewood–Richardson sequences.

In order to do that, let us take cj = (rj)∗ and represent them by a diagram Dj

formed by rj1 (= r1) towers having heights cj1, c
j
2, . . . , or, equivalently, each floor being

rj1, r
j
2, . . . large. Then, Dj should be obtained by adding bj blocks to Dj−1 (condition

(II)(a) or (II′)(a)), in such a way that the rules (II)(b) and (II)(c), or equivalently,
(II′)(b) and (II′)(c), are respected.

A GEOMETRIC APPROACH TO THE CARLSON PROBLEM 263

Condition (II)(b) says that the (i + 1)-flat can increase up to the length of the
i-one in Dj−1. That is to say, each tower can increase one block maximum (condition
(II′)(b)). As for the rule (II)(c), let us represent partition b by an analogous diagram
and label the blocks on the jth floor bj blocks. Recall that the rule (II)(b), or
equivalently, (II′)(b), means that to obtain Dj , the blocks labeled “j” should be
assigned to different towers of Dj−1. Then, condition (II)(c), or (II′)(c), means that
the number of (j + 1)-blocks installed at levels greater than (i + 1) are at most the
number of j-blocks at levels greater than i (for all i).

For instance, if b = (3, 2) and r = (4, 3, 2, 1), then the sequences

1 2
∗ 1
∗ ∗ 1
∗ ∗ ∗ 2
∗ ∗ ∗ ∗

2
1
∗ 1
∗ ∗ 1
∗ ∗ ∗ 2
∗ ∗ ∗ ∗

are allowed, whereas

2 2
∗ 1
∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ ∗

is not.
Proof of the equivalence (I) and (I′), and (II) and (II′). To see that (I′) implies

(I), notice that

Q1 Q12 S1

0 Q2 0

0 0 T1

A1 Z

0 A2

C1 C3

(
Q1 Q12

0 Q2

)−1

=

Q1(A1 +Q−1
1 S1C1)Q

−1
1 . . .

0 Q2A2Q
−1
2

T1C1Q
−1
1 T1(−C1Q

−1
1 Q12 + C3)Q

−1
2

.

Hence, P1 can be reduced to a BK-matrix, A2 to a Jordan matrix, and C3 to 0
(since C1 has the maximal rank, after eliminating, if necessary, its null rows and the
corresponding ones in C3). Furthermore, one can assume λ = 0 because

P − λ
(
In
0

)
, P1 − λ

(
Id
0

)

are block-similar to P and P1, respectively.
The equivalence (II) ⇔ (II′) is a straightforward computation, taking cj = (rj)∗

(see Remark 3.5).

264 ALBERT COMPTA AND JOSEP FERRER

The next three sections are devoted to prove that conditions (I)–(I′) are equivalent
to the (II)–(II′) ones. In fact, in section 4 we introduce a geometric version (I′′) of (I)–
(I′), and in sections 5 and 6 we prove that (II) is a necessary and sufficient condition
for (I′′), respectively.

Proof of the equivalence (II′) and (III). As it has been already remarked, (III)
follows immediately from (II′)(a)–(II′)(b) (use Remark 3.5). Conversely, if (III) holds,
the following strategy allows us to construct recurrently a sequence c0, c1, . . . , cs which
verifies condition (II′): for each j = 1, 2, . . . , let cj be a maximal (with regard to the
partial ordering ≺) partition such that

(a) |cj | − |cj−1| = bj ,
(b) �(cj) = r1, c

j−1
ν ≤ cjν ≤ cj−1

ν + 1,
(c′) cs − cj ≺ (bj)∗,

where bj = (bj+1, bj+2, . . . , bs).
Notice that the set of partitions verifying (a)–(c′) is not empty because, in gen-

eral, if (α1, α2, . . .) ≺ (δ1, δ2, . . . , δ�), then (α1 − 1, α2 − 1, . . . , α� − 1, α�+1, . . .) ≺
(δ1 − 1, δ2 − 1, . . . , δ� − 1), where the left member is assumed reordered to become
nonincreasing. The proposed strategy takes cj as a maximal element in this nonempty
set.

By construction, conditions (II′)(a) and (II′)(b) are verified. Finally, let us see
that if (II′)(c) does not hold, then cj−1 is not in fact maximal among the partitions
verifying (a)–(c′) in the previous step. Broadly speaking, the following lemma shows
that if the sequence c0, . . . , cj−1, cj , cj+1, . . . verifies (a)–(c′) and

cjµ = cj−1
µ , cjη = cj−1

η + 1,

cj+1
µ = cjµ + 1, cj+1

η = cjη,

then conditions (a)–(c′) are verified too if the partition cj is replaced by c̄j , which
differs from cj only in

c̄jµ = cj−1
µ + 1, c̄jη = cj−1

η

(that is to say, we have permuted the increasing order of the “towers” µ, η (see Remark
3.5)). In particular, if cj+1

µ > cj+1
η , then cj ≺ c̄j , so that cj was not in fact maximal

among the partitions verifying (a)–(c′).
Lemma 3.6. Let α, δ be partitions such that

α ≡ (α1, α2, . . .) ≺ δ ≡ (δ1, . . . , δ�).

Assume that there is β such that

(β1, β2, . . .) ≺ (δ1 − 1, . . . , δ� − 1),

|β| = |α| − �,
βµ = αµ, βη = αη − 1,

αν − 1 ≤ βν ≤ αν for all ν.

Then partition ᾱ defined by

ᾱν = αν if ν �= µ, η,
ᾱµ = αµ + 1, ᾱη = αη − 1

verifies ᾱ ≺ δ.

A GEOMETRIC APPROACH TO THE CARLSON PROBLEM 265

Proof. If αη = αµ + 1, then ᾱ = α and there is nothing to prove.
If αη > αµ + 1, then ᾱ ≺ α ≺ δ.
If αη ≤ αµ, we can assume (reordering, if it is necessary) αµ−1 > αµ ≥ αη > αη+1

(or µ = 1 and α1 ≥ αη > αη+1). Then the order in α and ᾱ is the same and we have∑
ν≤µ0

ᾱν =
∑
ν≤µ0

αν if µ0 < µ or µ0 ≥ η,

and∑
ν≤µ0

ᾱν = 1 +
∑
ν≤µ0

αν ≤ 1 + min(µ0 − 1, �− 1) +
∑
ν≤µ0

βν

≤ 1 + min(µ0 − 1, �− 1) +
∑

η≤min(µ0,�)

(δν − 1) =
∑
ν≤µ0

δν if µ ≤ µ0 < η.

4. Geometric formulation. Let us consider a geometric approach, analogous
to the one in section 2 for square matrices. The study of pairs of matrices (see [5])

P =

(
A
C

)
∈ C

(n+m)×n

under the block-similarity is equivalent to the one of linear maps defined on a subspace
f : Y −→ X, Y ⊂ X (dimY = n, dimX = n + m) under the following natural
equivalence relation: f ∼ f ′ if and only if there is an automorphism ϕ of X, such that
ϕ(Y) = Y and ϕ ◦ f = f ′ ◦ ϕ̂ (where ϕ̂ means the restriction of ϕ to the subspace Y).

In fact, it is sufficient to consider P to be the matrix of f in any basis of X
adapted to Y . In particular, the condition of C having the maximal rank is equivalent
to X = Y + f(Y). (This equality will hold throughout the paper.)

In these conditions, the observability indices of P (or f) can be computed as the
conjugate partition of dimY0 − dimY1,dimY1 − dimY2, . . . , where

Yi = f
−i(Y), Y = Y0 ⊃ Y1 ⊃ · · · ⊃ Yk = Yk+1 ≡ Y∞.

In particular, P (or f) is observable if and only if Y∞ = {0}. Notice that then f
is injective.

A subspace W ⊂ Y is f -invariant (or (C,A)-invariant) if and only if f(W)∩ Y ⊂
W (see [1], [4]). Let us see that the special form of P in section 3 appears in a natural
way when invariant subspaces are considered.

Definition 4.1. Let f : Y −→ X be a linear map defined on a subspace Y ⊂ X,
and W ⊂ Y an f-invariant subspace. Then

f̂ :W −→W + f(W),

f̃ :
Y

W
−→ X

W + f(W)

will be the maps induced in a natural way by f .
Remark 4.2. It is clear that f̂ is a linear map defined on a subspace. Moreover, if

W is f -invariant, f̃ can also be considered to be of this kind by means of the following
identification:

Y

W
=

Y

W + (f(W) ∩ Y)
∼= Y + f(W)

W + f(W)

⊂ Y + f(Y)

W + f(W)
=

X

W + f(W)
.

266 ALBERT COMPTA AND JOSEP FERRER

Proposition 4.3 (see [1], [4]). Let f : Y −→ X be as above, and W ⊂ Y an

f-invariant subspace. If Wi = f̂
−i(W), then Wi = Yi ∩W .

In particular, if f is observable, then f̂ is observable too. Moreover, if their
observabiblity indices are (R1, R2, . . .)

∗ and (r1, r2, . . .)
∗, respectively, then ri ≤ Ri

for all i = 1, 2,
Let us characterize geometrically the special form of the matrices involved in this

problem.
Proposition 4.4. Let f : Y −→ X as above, and a subspace W ⊂ Y .
(1) W is f-invariant if and only if the matrix of f in any basis adapted to W ⊂

Y ⊂ Y + f(W) ⊂ X has the form

(
A
C

)
=

A1 A3

0 A2

C1 C3

0 C2

 ,

where (A1

C1
) is the matrix of f̂ in the same basis.

(2) In the conditions of (1), the pair (A2

C2
) is the matrix of f̃ in the basis induced

in a natural way by the one considered in X.
(3) In the above conditions, if f is observable, then f̃ is an endomorphism if and

only if there is a basis of X adapted to W ⊂ Y ⊂ X such that the matrix of
f has the form

 A1 A3

0 A2

C1 0

 .

Proof .
(1) It is a direct consequence of the inclusion f(W)∩Y ⊂W which characterizes

the f -invariant subspaces.
(2) It is straightforward.

(3) Because of Remark 4.2, f̃ is an endomorphism if and only if f(Y) ⊂ Y +f(W).
Obviously, this relation is verified for the matrices of the form considered.
Conversely, taking anti-images in this inclusion, Y = Y1 +W . Hence, there
is a subspace V such that

Y = V ⊕W, Y1 = V ⊕W1.

The latter implies f(V) ⊂ Y , so that in any basis adapted to W,V ⊂ Y ⊂ X
the matrix of f has the desired form.

Therefore, conditions (I)–(I′) in Theorem 3.1 can be translated in the following
geometric way, which will be used in the proof of the main theorem.

Corollary 4.5. Within the context of Theorem 3.1, conditions (I)–(I′) are
equivalent to the following condition:

(I′′) There is a linear map defined on a subspace f : Y −→ X, Y ⊂ X, and a
f-invariant subspace W ⊂ Y such that

(1) f is observable, having observability indices R∗;
(2) f̂ is observable, having observability indices r∗;
(3) f̃ is a nilpotent endomorphism, having Segre characteristic b∗.

A GEOMETRIC APPROACH TO THE CARLSON PROBLEM 267

Remark 4.6. From the proof of (3) in Proposition 4.4, it follows that if f is

observable, then f̃ is an endomorphism if and only if

dimY − dimW = dimY1 − dimW1.

Then a necessary condition for (I′′) above is R1 = r1.

Remark 4.7. The assumption that f̃ is an endomorphism is not a significant
restriction. In general, if one considers the decreasing stationary chain of subspaces

Y = Y 0 ⊃ Y 1 ⊃ · · · ⊃ Y h = Y h+1 ≡ Y∞ (⊃W),

Y j = f−1(Y j−1) +W,

then for the restriction f∞ : Y∞ −→ X one has that f̃∞ is an endomorphism, whereas
the map induced by f in Y/Y∞ is observable.

5. Proof of the necessity. Now let f : Y −→ X and W ⊂ X be as in (I′′) of
Corollary 4.5. Following the pattern in section 2 in order to prove that condition (II) in
Theorem 3.1 is verified, a double family of subspaces will be introduced: W j

i = Yi∩W j ,

where W j is defined in such a way that Ker f̃ j =W j/W , as will be seen below.
Notice that, as it has been recalled in section 4 (see [5]),

Ri = dimYi−1 − dimYi,

ri = dimWi−1 − dimWi,

where Yi = f
−i(Y), Wi = f̂

−i(W) = f−i(W) ∩W = Yi ∩W .
Definition 5.1. Let f : Y −→ X and W ⊂ Y be as in (I′′) of Corollary 4.5.

Then

W 0 =W,

W j = f−1(W j−1 + f(W)) = f−1(W j−1) +W, j ≥ 1.

Proposition 5.2. With the notation in the above definition,

(1) Ker f̃ j = W j

W for all j ≥ 1;

(2) W = W 0 ⊂ W 1 ⊂ · · · ⊂ W �(b) = W �(b)+1 = · · · = Y , bj = dimW j −
dimW j−1 for all j ≥ 1;

(3) the subspaces W j are f-invariant. In fact, they verify f(W j) ∩ Y ⊂ W j−1

for all j ≥ 1.
Proof. (1) We proceed by induction, using the identification in Remark 4.2. It is

obvious for j = 0. Assume that

Ker f̃ j =
W j

W
∼= W j + f(W)

W + f(W)
⊂ X

W + f(W)
.

Then

Ker f̃ j+1 = f̃−1(Ker f̃ j)

=
f−1(W j + f(W)) +W

W
=
W j+1

W
.

(2) It follows immediately from (1).

268 ALBERT COMPTA AND JOSEP FERRER

(3) The proof also follows by induction. For j = 1, we have

f(W 1) ∩ Y = f(f−1(W) +W) ∩ Y
⊂ (W + f(W)) ∩ Y ⊂W.

If the property is verified by W j , then

f(W j+1) ∩ Y = f(f−1(W j) +W) ∩ Y
⊂ (W j + f(W)) ∩ Y
⊂ (W j + f(W j)) ∩ Y ⊂W j +W j−1 =W j .

For each f -invariant subspace W j , we consider the natural finite chain (W j
i).

Definition 5.3. In the conditions of Definition 5.1, we define for all j ≥ 0

W j
i = f−i(W j) ∩W j = Yi ∩W j , i ≥ 0,

rji = dimW j
i−1 − dimW j

i , i ≥ 1.

Remark 5.4.
(1) It will be useful to bear in mind the following finite diagram:

· · · ⊂ f(W1)⊂ W ⊂ W 1 ⊂ · · · ⊂W j−1⊂ W j ⊂ · · · ⊂W �(b) = Y

∪ ∪ ∪ ∪ ∪ ∪ ∪
· · · ⊂ f(W2)⊂ W1 ⊂ W 1

1 ⊂ · · · ⊂W j−1
1 ⊂ W j

1 ⊂ · · · ⊂W �(b)
1 = Y1

∪ ∪ ∪ ∪ ∪ ∪ ∪
...

...
...

...
...

...
...

∪ ∪ ∪ ∪ ∪ ∪
· · · ⊂Wi−1⊂W 1

i−1⊂ · · · ⊂W j−1
i−1 ⊂W j

i−1⊂ · · · ⊂W �(b)
i−1 =Yi−1

∪ ∪ ∪ ∪ ∪ ∪
· · · ⊂ Wi ⊂ W 1

i ⊂ · · · ⊂W j−1
i ⊂ W j

i ⊂ · · · ⊂W �(b)
i = Yi

∪ ∪ ∪ ∪ ∪ ∪
...

...
...

...
...

...

.

(2) Notice that

Y

W
∼= ⊕

i≥0
1≤j≤�(b)

W j
i

W j−1
i +W j

i+1

,

dim
W j
i

W j−1
i +W j

i+1

= dimW j
i − dimW j−1

i − dimW j
i+1 + dimW j

i+1 = rji+1 − rj−1
i+1 .

These facts will guide the construction in the next section.
From the definitions and (3) of Proposition 5.2, it follows that f(W j

i) ⊂ W j−1
i−1

for all i, j ≥ 1. Some basic properties of these maps are summarized in the following
proposition.

Proposition 5.5. In the conditions of the above definition,
(1) f−1(W j−1

i−1) =W j
i ;

(2) the induced maps

A GEOMETRIC APPROACH TO THE CARLSON PROBLEM 269

(i)
W j

i

W j
i+1

−→ W j−1
i−1

W j−1
i

,

(ii)
W j+1

i

W j
i

−→ W j
i−1

W j−1
i−1

are injective for all i, j ≥ 1.
Proof.
(1) f−1(W j−1

i−1) = f−1(Yi−1∩W j−1) = Yi∩f−1(W j−1) = Yi∩[f−1(W j−1)+W] =

Yi ∩W j =W j
i .

(2) It is a direct consequence of (1).
Finally, let us use the above construction to prove that condition (I′′) of Corollary

4.5 implies (II) of Theorem 3.1. Let there be (rj)∗, 0 ≤ j ≤ �(b), the observability
indices of the restriction of f to each subspace W j , that is to say

rj = (rj1, r
j
2, . . .)

(see Definition 5.3). Notice that this restriction is observable (see Proposition 4.3 and
(3) of Proposition 5.2); hence |rj | = dimW j .

Let us see that, in fact, these partitions verify the properties in (II) of Theorem
3.1:

(a) Obviously r0 = r, r�(b) = R. Moreover,

|rj | − |rj−1| = dimW j − dimW j−1

= dimKer f̃ j − dimKer f̃ j−1 = bj

for all 1 ≤ j ≤ �(b).
(b) From Proposition 4.3, rj−1

i ≤ rji for all i, j ≥ 1. The equality holds for i = 1,
according to Remark 4.6.
The inequality rji ≤ rj−1

i−1 follows from the injectivity of (2)(i) in Proposition
5.5.

(c) Finally, condition (c) is a consequence of the injectivity of (2)(ii) in Proposi-
tion 5.5.

6. Proof of the sufficiency. Let partitions R, r, b and r1, r2, . . . , rs be given,
which verify (a)–(c) in (II) of Theorem 3.1. f : Y −→ X, W ⊂ Y will be constructed
in such a way that conditions (I′′)(1), (I′′)(2), and (I′′)(3) in Corollary 4.5 are verified.

Let W ⊂ Y ⊂ X be vector spaces having dimension |r|, |R|, and |R| + R1,

respectively. Let f̂ : W −→ X be an observable linear map having observability
indices r∗, so that condition (I′′)(2) in Corollary 4.5 is verified. Also, a BK-basis of
W is formed by r1 − r2 BK-chains having length 1, r2 − r3 BK-chains having length
2, etc. Let

B0 = ∪
1≤i≤�(r)

B0
i ;

B0
i = {e0i,k; 1 ≤ k ≤ ri − ri+1}

be a set of generators of these BK-chains. Hence

Wi = [B0
i+1; B

0
i+2, f(B

0
i+2); B

0
i+3, f(B

0
i+3), f

2(B0
i+3); . . .]

for all 1 ≤ i ≤ �(r).
Now, f̂ must be extended to f : Y −→ X verifying (I′′)(1) and (I′′)(3) in Corollary

4.5. In order to achieve that, we consider any supplementary subspace W of W in Y ,

270 ALBERT COMPTA AND JOSEP FERRER

and any basis B of it. Taking into account Remark 5.4, W should be split into direct

summands V
j

i having a dimension

dji+1 = rji+1 − rj−1
i+1 (i ≥ 0, 1 ≤ j ≤ �(b)),

respectively, and then f will be defined on each of these subspaces V
j

i . First, B is
distributed (in any way) into subsets having cardinal dji+1:

B = ∪
i≥0

1≤j≤�(b)

Bji+1,

Bji+1 = {eji+1,k; 1 ≤ k ≤ dji+1}.
(Notice that Bji+1 = ∅ if dji+1 = 0; in particular, Bj1 = ∅, and Bji+1 = ∅ if i ≥ �(rj).)
Second, V

j

i = [Bji+1] (i ≥ 0, 1 ≤ j ≤ �(b)), so that

Y =W ⊕W =W ⊕

 ⊕

i≥0
1≤j≤�(b)

V
j

i

 ,

dimV
j

i = dji+1 = rji+1 − rj−1
i+1 .

(Notice that V
j

0 = {0}, and V
j

i = {0} if i ≥ �(rj).)
Considering the diagram

· · · · · ·
⊕ ⊕

· · · ⊕ V
j−1

i ⊕ V
j

i ⊕ · · ·
⊕ ⊕

· · · ⊕ V
j−1

i+1 ⊕ V
j

i+1 ⊕ · · ·
⊕ ⊕
· · · · · ·

and defining, for i ≥ 0, 0 ≤ j ≤ �(b),

V ji =Wi ⊕
(
⊕
�≥i

1≤h≤j

V
h

�

)
,

the following diagram is obtained:

· · · ⊂ W ⊂ V 1 ⊂ · · · ⊂ V �(b) = Y
∪ ∪ ∪ ∪

· · · ⊂ W1 ⊂ V 1
1 ⊂ · · · ⊂ V

�(b)
1 ≡ V1

∪ ∪ ∪ ∪
· · · · · · · · · · · ·

(where V j ≡ V j0 and Vi ≡ V �(b)i), analogous to the one in Remark 5.4. Now, f will

be defined on each V
j

i in such a way that the corresponding subspaces W j
i (according

to Definition 5.3) are just V ji . Then, as desired, the observability indices of f will be

R∗ and the Segre characteristic of f̃ will be b∗, bj = |rj | − |rj−1|, so that the proof of
the sufficiency will be finished.

To define f , in fact, two extensions, f∗, f∗ : Y −→ X of f̂ , will be defined and
then f = 1

2 (f∗ + f∗).

A GEOMETRIC APPROACH TO THE CARLSON PROBLEM 271

(1) For each i ≥ 1, f∗ on V
j

i will be defined by increasing recurrence over 1 ≤
j ≤ �(b).
For j = 1,

f∗(e1i+1,k) = e0i,k ∈ B0
i ⊂Wi−1.

It is possible because the hypothesis (II)(b) implies

dimV
1

i = r1i+1 − ri+1 ≤ ri − ri+1 = #B0
i .

For j ≥ 2,

f∗(e
j
i+1,k) = ej−1

i,k ∈ Bj−1
i ⊂ V j−1

i−1

if 1 ≤ k ≤ min{bji+1, b
j−1
i }, and taking images

f∗(e
j
i+1,k) ∈ Bj−2

i ∪Bj−3
i ∪ · · · ∪B0

i

⊂ V j−2

i−1 ⊕ · · · ⊕ V
1

i−1 ⊕Wi−1

in such a way that f∗ is injective if dj−1
i < k ≤ dji+1.

It is possible because, as above,

dim(V
1

i ⊕ · · · ⊕ V
j

i) = (r1i+1 − ri+1) + (r2i+1 − r1i+1) + · · ·+ (rji+1 − rj−1
i+1)

= −ri+1 + rji+1 ≤ −ri+1 + rj−1
i

= (ri − ri+1) + (r1i − ri) + · · ·+ (rj−1
i − rj−2

i)

= #B0
i + #B1

i + · · ·+ #Bj−2
i + #Bj−1

i .

(2) Now

f∗(e1i+1,k) = f∗(e1i+1,k) = e0i,k.

For each j ≥ 2, f∗ is defined on V
j

i by decreasing recurrence over 1 ≤ i <
�(rj).
For 1 ≤ k ≤ min{dji+1, d

j−1
i },

f∗(eji+1, k) = f∗(e
j
i+1,k) = ej−1

i,k

and for dj−1
i < k ≤ di+1, taking images

f∗(eji+1,k) ∈ Bj−1
i+1 ∪Bj−1

i+2 ∪ · · · ∪Bj−1
�(rj−1)

⊂ V j−1

i ⊕ V j−1

i+1 ⊕ · · · ⊕ V
j−1

�(rj−1)−1

in such a way that f∗ is injective.
This is possible because of hypothesis (II)(c):

dim

(
⊕
�≥i
V
j

�

)
=
∑
�>i

(rj� − rj−1
�) ≤

∑
�>i−1

(rj−1
� − rj−2

�) = dim

(
⊕

�≥i−1
V
j−1

�

)
.

(3) Finally, f = 1
2 (f∗ + f∗). Obviously, it is an extension of f̂ .

272 ALBERT COMPTA AND JOSEP FERRER

The proof of Theorem 3.1 will be finished if V ji = W j
i , or, equivalently, Yi = Vi,

W j = V j .
Obviously, V0 = Y . Hence, it is sufficient to prove the following lemma.
Lemma 6.1. With the above notation,
(1) f−1(V j−1) +W = V j for all j ≥ 1;
(2) f−1(Vi−1) = Vi for all i ≥ 1.
Proof. Previously notice that if a vector ej−1

i,k ∈ B belongs to f∗(B) and also to
f∗(B), then either

ej−1
i,k = f∗(e

j
i+1,k) = f∗(eji+1,k) = f(eji+1,k)

or there are some unique h > 0 and � ≥ 0 such that

ej−1
i,k ∈ f∗(Bj+hi+1) ∩ f∗(Bji−�).

(1) By construction

f(V j) ⊂ V j−1 + f(W).

Hence

V j ⊂ f−1(V j−1) +W.

For the opposite inclusion, assume x �∈ V j and let J be the maximum index J > j such

that x has some nonzero component in V
J ≡ ⊕i V Ji . Then f∗(x) should have some

nonzero component in V
J−1 ≡ ⊕i V J−1

i . According to the previous note, and bearing
in mind the definition of J , this component cannot be canceled by any component

of f∗(x), so that f(x) has in fact some nonzero component in V
J−1

. Therefore,
f(x) �∈ V j−1 + f(W).

(2) By construction, f(Vi) ⊂ Vi−1. Hence, Vi ⊂ f−1(Vi−1). For the oppo-
site inclusion, we proceed by increasing recurrence over i, in an analogous way to
(1).

7. Construction of solutions. When condition (III) of Theorem 3.1 holds,
explicit solutions Z verifying (I)–(I′) can be obtained by means of the construction in
section 6, starting on any sequence of partitions verifying (II). Two of such solutions
Z, Z ′ will be called equivalent if the associated matrices can be transformed one into
the other by means of a change of basis preserving their block structure, that is to
say, if

Q1 Q12 S1

0 Q2 0

0 0 T1

A1 Z

0 A2

C1 C3

(

Q1 Q12

0 Q2

)−1

=

A1 Z′

0 A2

C1 C3

,

where Q1, Q2, and T1 are nonsingular. Clearly, different sequences of partitions as in
(II) lead to nonequivalent solutions. Example 7.3 shows that nonequivalent solutions
are possible even for the same sequence of partitions.

Example 7.1. Clearly, the partitions

R = (2, 2, 1), r = (2), b = (1, 1, 1)

A GEOMETRIC APPROACH TO THE CARLSON PROBLEM 273

verify condition (III) of Theorem 3.1. Two sequences of partitions verifying (II) are
possible:

(2, 1), (2, 2), (2, 2, 1);

(2, 1), (2, 1, 1), (2, 2, 1).

According to the construction in section 6, they lead, respectively, to the following
nonequivalent solutions:

0 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

,

0 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

.

Example 7.2. In general, condition (III) of Theorem 3.1 holds if b = (1, 1, . . . , 1).
It is not difficult to see that a sequence of partitions rj , 0 ≤ j ≤ �(b), verifying (II)
can be constructed by recurrence as follows:

rji(j) = rj−1
i(j) + 1,

rji = rj−1
i if i �= i(j),

where

i(j) = max{i : rj−1
i < Ri, rj−1

i < rj−1
i−1 }.

Then, as in the previous example, explicit solutions can be obtained by means of the
construction in section 6.

Example 7.3. Let us consider the partitions

R = (2, 2, 1, 1), r = (2), b = (1, 1, 1, 1).

It is a straightforward computation to see that the solutions

0 0 0 λ 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0

are nonequivalent for different values of λ ∈ C, although all of them correspond to
the sequence of partitions

(2, 1), (2, 2), (2, 2, 1), (2, 2, 1, 1).

In a similar way to the “condensation lemma” for the classical Carlson problem,
let us see that many zero entries can be prescribed in the Z solutions.

Lemma 7.4. Let R, r, b be three partitions verifying the conditions in Theorem
3.1, and consider the particular case in (I′). Then

274 ALBERT COMPTA AND JOSEP FERRER

(1) for any Z solution, there is an equivalent Z ′ solution having nonzero entries
only in the r1 rows corresponding to the null ones in A1;

(2) moreover, Z ′ can be chosen in such a way that its entries in the b1 columns
corresponding to the null ones in A2 are also 0, except one of them in each
column, which can be valued 1 and are placed in different rows.

Proof. (1) It is immediate that each vector in the basis of Y , not in W , can be
changed by adding a vector in W in such a way that its image by f would be a linear
combination of the generators of the BK-chains of W . Explicitly, assume P1 = (NE)
is a BK-matrix and A2 = J is a nilpotent Jordan matrix. Notice that

I Q12 0

0 I 0

0 0 I

N Z

0 J

E 0

(

I Q12

0 I

)−1

=

0 Z −NQ12 + Q12J

0 J

E EQ12

.

Let us choose Q12 in such a way that EQ12 = 0 and Z ′ = Z −NQ12 +Q12J verifies
the desired property. For the first, it is sufficient to make null the rows in Q12

corresponding to the lowest one in each block of N . The remaining rows of Q12 can
be computed easily by recurrence in order to cancel all the rows in Z except those
corresponding to null ones in N . For example, let

N =

0 0

1 0

0 0 0

1 0 0

0 1 0

, J =

0

0 0 0

1 0 0

0 1 0

, Q12 =

a1 a2 a3 a4
0 0 0 0
c1 c2 c3 c4
d1 d2 d3 d4
0 0 0 0

.

Then EQ12 = 0,

−NQ12 +Q12J =

0 a3 a4 0
−a1 −a2 −a3 −a4

0 c3 c4 0
−c1 −c1 + d3 −c3 + d4 −c4
−d1 −d2 −d3 −d4

 .

It is clear that Q12 can be chosen in such a way that Z − NQ12 + Q12J has zero
entries in the second, fourth, and fifth rows.

(2) From Proposition 5.5, it follows immediately that, for all i ≥ 1, the maps
induced by f

W 1
i

W 1
i+1 +Wi

−→ Wi−1

Wi + f(Wi)

are injective. Notice that the vectors in W 1/W are the eigenvectors of f̃ . Thus,

because of the above injectivities, the images of a basis of f̃ -eigenvectors (in fact, of

A GEOMETRIC APPROACH TO THE CARLSON PROBLEM 275

a set of representative vectors in W 1) can be extended to a family of BK-generators

of f̂ .
Solutions having a minimal number of nonzero entries arise when the subspace

W is “marked” [8], [4], that is to say, when there is some BK-basis of f̂ extendible
to a BK-basis of f .

Corollary 7.5. Let R, r, b be three partitions verifying the conditions in The-
orem 3.1 and Corollary 4.5. Then the following assertions are equivalent:

(1) In terms of condition (I′), there is some solution Z whose only nonzero entries
are those referred to in part (2) of Lemma 7.4, that is to say, b1 1-valued
entries placed in (different) columns corresponding to the null ones in J , and
in (different) rows corresponding to the null ones in N .

(2) There is an f-marked subspace W verifying (I′′) of Corollary 4.5.
(3) With the notation in (III): R∗ − r∗ = b∗.

REFERENCES

[1] I. Baragaña and I. Zaballa, Block similarity invariants of restrictions to (A,B)-invariants
subspaces, Linear Algebra Appl., 220 (1995), pp. 31–62.

[2] I. Baragaña and I. Zaballa, Feedback invariants of supplementary pairs of matrices, Auto-
matica J. IFAC, 33 (1997), pp. 2119–2130.

[3] I. Baragaña and I. Zaballa, Feedback Invariants of Restrictions and Quotients: Series and
Parallel Connected Systems, Preprint, 1998.

[4] A. Compta and J. Ferrer, On (A,B)t-invariant subspaces having extendible Brunovsky bases,
Linear Algebra Appl., 255 (1997), pp. 185–201.

[5] J. Ferrer and F. Puerta, Similarity of non-everywhere defined linear maps, Linear Algebra
Appl., 168 (1992), pp. 27–55.

[6] I. Gohberg, and M.A. Kaashoek, Unsolved problems in matrix and operator theory II. Partial
multiplicities for products, Integral Equations Operator Theory, 2 (1979), pp. 116–120.

[7] I. Gohberg, M.A. Kaashoek, and F. van Schagen, Partially Specified Matrices and Opera-
tors: Classification, Completion, Applications, Oper. Theory Adv. Appl. 79, Birkhäuser-
Verlag, Basel, 1995.

[8] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Matrices with Applica-
tions, John Wiley, New York, 1986.

[9] T. Klein, The multiplication of Schur functions and extensions of p-modules, J. London Math.
Soc., 43 (1968), pp. 280–284.

[10] R.C. Thompson, Smith invariants of a product of integral matrices, Contemp. Math., 47
(1985), pp. 401–435.

[11] W.M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer, New York,
1979.

THE USE AND PROPERTIES OF TIKHONOV FILTER MATRICES∗

MÅRTEN GULLIKSSON† AND PER-ÅKE WEDIN†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 276–281

Abstract. We consider the concept of Tikhonov filter matrices in connection with discrete ill-
posed and rank-deficient linear problems. Important properties of the Tikhonov filter matrices are
given together with their filtering and regularization effects.

We also present new perturbation identities for the Tikhonov regularized linear least squares
problem using filter matrices generalizing well-known perturbation identities for the linear least
squares problem and pseudoinverses.

Key words. Tikhonov regularization, rank-deficient, pseudoinverse, filter factors

AMS subject classification. 65K

PII. S0895479899355025

1. Introduction. One way of getting a useful solution to a discrete ill-posed or
rank-deficient linear problem is by regularization. The main idea of regularization is
to find a new problem or method that damps the effect of noise in input data. This
can be realized by using the filter matrices to be considered in detail in this paper.

To be more specific we consider the linear approximation problem

Jx ≈ b,(1.1)

where J ∈ �m×n has rank r ≤ n and b ∈ �m. We will assume that m ≥ n for
simplicity. In fact, this is always the case when the problem is attained from an
ill-posed infinite dimensional problem.

The regularization problem we will use is the Tikhonov problem

min
x
‖Jx− b‖2 + µ2‖x‖2,(1.2)

where ‖ · ‖ is the 2-norm. The solution to the Tikhonov problem (1.2) may be written
as

xreg = J#b,(1.3)

where

J# = (JTJ + µ2I)−1JT(1.4)

is the Tikhonov regularized inverse and µ > 0 is a regularization parameter.
We make the following definition of filter matrices also suggested by Hansen [3].
Definition 1.1. The Tikhonov filter matrices are defined as

PR = JJ#, PN ′ = Im − JJ#,

PR′ = J#J, PN = In − J#J.

∗Received by the editors April 26, 1999; accepted for publication (in revised form) by G. Golub
January 31, 2000; published electronically June 20, 2000.

http://www.siam.org/journals/simax/22-1/35502.html
†Department of Computer Science, Ume̊a University, S-901 87, Ume̊a, Sweden (marten@cs.umu.

se, per-ake.wedin@cs.umu.se).

276

TIKHONOV FILTER MATRICES 277

The filter matrices PR and PR′ are sometimes called the influence matrix and the
resolution matrix [3], respectively.

In the next section we will state some important properties of the filter matrices
to be used in the following sections.

The filter matrices are closely related to the filtering of noise in b, and these
aspects will be discussed briefly in section 3. A similar exposition can be found in [3].

In section 4 we derive perturbation identities for the Tikhonov inverse and the
Tikhonov problem using filter matrices.

2. Properties of the Tikhonov inverse and the filter matrices. In this
section we state some of the properties of J# and the filter matrices connected to the
pseudoinverse of J and projections. The main tool for expressing these properties is
the SVD of J , i.e.,

J = UΣV T , Σ = diag(σ1, . . . , σn).

The singular values, σi, are ordered as σ1 ≥ σ2 ≥ · · · ≥ σn. We assume that J has
rank r, giving σr 	= 0 and σi = 0, i = r + 1, . . . , n. The matrices U ∈ �m×m and
V ∈ �n×n are orthogonal. For more details on the SVD we refer to [1].

If we partition U , V as

U = (U1
r
, U2
m−r

), V = (V1
r
, V2
n−r

)

and define

Σ1 = diag(σ1, . . . , σr),(2.1)

then the SVD can be written as

J = U1Σ1V
T
1 .

We note that U1 spans the range space of J , R(J), U2 spans the null space of JT ,
N (JT), V1 spans the range space of JT , R(JT), and V2 spans the null space of J ,
N (J).

By defining

Σ#
1 = diag

(
σ1

σ2
1 + µ2

, . . . ,
σr

σ2
r + µ2

)
(2.2)

we can write the Tikhonov inverse on the form

J# = V1Σ
#
1 U

T
1 .(2.3)

Further, the pseudoinverse of J can be written as

J† = V1Σ
−1
1 UT1(2.4)

and some algebra reveals that

J# = J† − µ2V1Σ
#
1 Σ−2

1 UT1 ,

giving the well-known fact

J# → J†

278 MÅRTEN GULLIKSSON AND PER-ÅKE WEDIN

as µ tends to zero.
Inserting the form on J# in (2.3) into the definition of the filter matrices we get

PR = U1Σ
#
1 Σ1U

T
1 , PR′ = V1Σ

#
1 Σ1V

T
1 .(2.5)

Further, if we use the fact that I = UUT = U1U
T
1 + U2U

T
2 we have that

PR = PR(J) − µ2U1Σ
#
1 Σ−1

1 UT1 , PN ′ = PN (JT) + µ2U1Σ
#
1 Σ−1

1 UT1 ,(2.6)

where PR(J) = U1U
T
1 and PN (JT) = U2U

T
2 are the orthogonal projections on R(J)

and N (JT), respectively. Similarily, it is easily shown that

PR′ = PR(JT) − µ2V1Σ
#
1 Σ−1

1 V T1 , PN = PN (J) + µ2V1Σ
#
1 Σ−1

1 V T1 ,(2.7)

where PR(JT) = V1V
T
1 and PN (J) = V2V

T
2 are the orthogonal projections on R(JT)

and N (J), respectively. Thus, we can conclude that the filter matrices are close to
the corresponding projections and that

PR → PR(J), PN ′ → PN (JT), PR′ → PR(JT), PN → PN (J)(2.8)

as µ tends to zero.
When working with the Tikhonov inverse and filter matrices there are several

important relations that are useful.
Lemma 2.1.
(1) The filter matrices are symmetric with eigenvalues (equal to the singular val-

ues) in [0, 1].
(2) The following relations hold:

J# = J†PR = PR′J†(2.9)

and

µ2(J#)T = JPN = PN ′J.(2.10)

(3) The filter matrices satisfy the commutative rules

PRPN ′ = PN ′PR, PR′PN = PNPR′ .(2.11)

Proof.
(1) The form of the filter matrices in (2.5) show that they are symmetric and

that the eigenvalues of PR and PR′ are σ2
i /(σ

2
i + µ2) ≤ 1. Further, these

eigenvalues are nonnegative and thus the eigenvalues of PN ′ = I − PR and
PN = I − PR′ will be nonnegative and less than or equal to one.

(2) From the form of J# = V1Σ
#
1 U

T
1 in (2.3), J† = V1Σ

−1
1 UT1 in (2.4), and (2.5)

we get

J# = V1Σ
#
1 U

T
1 = V1Σ

−1
1 UT1 · U1Σ

#
1 Σ1U

T
1 = J†PR,

showing the first identity in (2.9). From (2.5) we have

PR′J† = V1Σ
#
1 Σ1V

T
1 · V1Σ

−1
1 UT1 = V1Σ

#
1 U

T
1 = J#,

establishing the second identity in (2.9).

TIKHONOV FILTER MATRICES 279

To show µ2(J#)T = JPN in (2.10) we use (2.6) and (2.7) to get

JPN = J(PN (J) + µ2V1Σ
#
1 Σ−1

1 V T1)µ2JV1Σ
#
1 Σ−1

1 V T1

= µ2U1Σ1V
T
1 · V1Σ

#
1 Σ−1

1 V T1 = µ2U1Σ
#
1 V

T
1 = µ2(J#)T .

Further,

PN ′J = (PN (JT) + µ2U1Σ
#
1 Σ−1

1 UT1)J = µ2U1Σ
#
1 Σ−1

1 UT1 J = µ2(J#)T ,

concluding the proof of (2.10).
(3) From (2.5), (2.6), and (2.7) we get

PRPN ′ = U1Σ
#
1 Σ1U

T
1 · (PN (JT) + µ2U1Σ

#
1 Σ−1

1 UT1) = µ2U1(Σ
#
1)2UT1

and

PN ′PR = (PN (JT) + µ2U1Σ
#
1 Σ−1

1 UT1) · U1Σ
#
1 Σ1U

T
1 = µ2U1(Σ

#
1)2UT1 ,

attaining the first relation in (2.11). The second relation in (2.11) is derived
in completely the same way or by just substituting JT for J in the first
relation.

3. The filter matrices in a regularization context. Assume that b = bexact+
δb, where δb is the noise in b. Further, define the least norm solution

x† = J†b(3.1)

as the nonfiltered solution and the “exact” solution as

xexact = J†bexact.(3.2)

Generally, for a very ill-conditioned J the least norm solution x† is not a good solution
since it does not filter out the noise in b. On the other hand, from (2.9) we see that
the Tikhonov regularized solution is

xreg = J#b = J†PRb(3.3)

giving

xreg = J†PRbexact + J†PRδb,

clearly showing how the regularization filters the noise. Further, from (2.9) we get

xreg = PR′xexact + J†PRδb

or, using the definition of the filter matrix PR′ = I − PN ′ ,

xreg − xexact = −PNxexact + J†PRδb.(3.4)

The first term in the right-hand side of (3.4) is the regularization error.

280 MÅRTEN GULLIKSSON AND PER-ÅKE WEDIN

4. A new perturbation identity using filter matrices. In [4] the perturba-
tion identity

J̃† − J† = −J̃†FJ† + J̃†(J̃†)TFTPN (JT) + PN (J̃)F
T (J†)TJ†(4.1)

with the perturbation F = J̃ − J was derived. In this section we will generalize this
identity to the Tikhonov problem using filter matrices instead of projections.

The following lemma is the first step toward the general perturbation identity.

Lemma 4.1. Define F = J̃ − J . Then

J̃# − J# = −J̃#FJ# +
1

µ2
P̃NFTPN ′ .(4.2)

Proof. From the definition of F we have

1

µ2
P̃NFTPN ′ =

1

µ2
P̃N J̃TPN ′ − 1

µ2
P̃NJTPN ′ (from (2.10))

= J̃#(I − JJ#)− (I − J̃#J̃)J# (from the definition of F)

= J̃# − J# + J̃#FJ#,(4.3)

proving the lemma.

We are now ready to state the main perturbation identity of this section.

Theorem 4.2. Let F = J̃ − J . Then

J̃# − J# = −J̃#FJ# + J̃#(J̃#)TFTP 2
N ′ + P̃ 2

NF
T (J#)TJ#

+ µ2J̃#(J̃#)TFT (J#)TJ# +
1

µ2
P̃ 2
NF

TP 2
N ′ .(4.4)

Proof. Using P̃R′ + P̃N = I and PR + PN ′ = I we get

1

µ2
P̃NFTPN ′ =

1

µ2
(P̃R′ + P̃N)P̃NFTPN ′(PR + PN ′)

=
1

µ2
P̃R′ P̃NFTP 2

N ′ +
1

µ2
P̃ 2
NF

TPN ′PR(4.5)

+
1

µ2
P̃R′ P̃NFTPN ′PR +

1

µ2
P̃ 2
NF

TP 2
N ′ .

We get (4.4) by inserting PN ′PR = µ2(J#)TJ# and P̃R′ P̃N = µ2J̃#(J̃#)T , attained
from (2.10).

By comparing the new result (4.4) with (4.1) we notice the similarity and the
extra two terms

µ2J̃#(J̃#)TFT (J#)TJ# +
1

µ2
P̃ 2
NF

TP 2
N ′ .(4.6)

Moreover, it is easily seen that the first three terms in the right-hand side of (4.4)
tend to the corresponding three terms in (4.1) and, consequently, that the two terms
in (4.6) tend to zero as µ tends to zero.

We end this section with a perturbation identity for the Tikhonov problem that
is a direct consequence of Theorem 4.2.

TIKHONOV FILTER MATRICES 281

Corollary 4.3. Let x̃reg = J̃#b and xreg = J#b be the solutions of the perturbed
and unperturbed Tikhonov problem (1.2). Then

x̃reg − xreg = −J̃#Fxreg +
1

µ2
P̃NFT (b− Jxreg)

= −J̃#Fxreg + J̃#(J̃#)TFTPN ′(b− Jxreg) + P̃ 2
NF

T (J̃#)Txreg

+ µ2J̃#(J̃#)TFT (J#)Txreg +
1

µ2
P̃ 2
NF

TPN ′(b− Jxreg).(4.7)

Proof. The identity (4.7) follows by multiplying (4.4) with b and using PN ′b =
b− Jxreg.

5. Differentiating the filter matrices.
Theorem 5.1. Let dJ be the known differential of J , and let dPR and dPR′ be

the differentials of the filter matrices. Then

dJ# = −J#dJJ# + (JTJ + µ2I)−1(dJ)TPN ′ ,(5.1)

dPR = PN ′dJJ# + (J#)T (dJ)TPN ′ , dPN ′ = −dPR,(5.2)

dPR′ = J#dJPN + PN (dJ)T (J#)T , dPN = −dPR′ .(5.3)

Proof. The identity (5.1) follows directly from the perturbation identity (4.2) or
by differentiating J# = (JTJ + µ2I)−1JT .

Identity (5.2) is proved by using

dPR = (dJ)J# + J(dJ#)

and taking the expression for dJ# from identity (5.1).
To derive the identity (5.3) we begin by differentiating dPR′ = dJ#J+J#dJ and

then we insert the expression for dJ# in (5.1) to get

dPR′ = J#dJPN + (JTJ + µ2I)−1(dJ)TPN ′J.(5.4)

We get (5.3) by using µ2(J#)T = PN ′J from (2.10) and

(JTJ + µ2I)−1 =
1

µ2
(JTJ + µ2I)−1(JTJ + µ2I − JTJ) =

1

µ2
(I − J#J) =

1

µ2
PN

in (5.4).
We note that by letting µ→ 0 in identity (5.2) we get the well-known identity in

[2],

dPR(J) = PN (JT)dJJ
† + (J†)T (dJ)TPN (JT).(5.5)

Acknowledgments. First we wish to thank the anonymous referees for reading
the manuscript with such care and expertise.

Second, we wish to thank Yimin Wei, Fudan University, China, for reading and
commenting on the manuscript.

REFERENCES

[1] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[2] G. H. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear least

squares problems whose variables separate, SIAM J. Numer. Anal., 10 (1973), pp. 413–432.
[3] P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear

Inversion, SIAM, Philadelphia, PA, 1998.
[4] P.-Å. Wedin, Perturbation theory for pseudo-inverses, BIT, 13 (1973), pp. 217–232.

S+: EFFICIENT 2D SPARSE LU FACTORIZATION ON
PARALLEL MACHINES∗

KAI SHEN† , TAO YANG† , AND XIANGMIN JIAO‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 282–305

Abstract. Static symbolic factorization coupled with supernode partitioning and asynchronous
computation scheduling can achieve high gigaflop rates for parallel sparse LU factorization with
partial pivoting. This paper studies properties of elimination forests and uses them to optimize
supernode partitioning/amalgamation and execution scheduling. It also proposes supernodal matrix
multiplication to speed up kernel computation by retaining the BLAS-3 level efficiency and avoiding
unnecessary arithmetic operations. The experiments show that our new design with proper space
optimization, called S+, improves our previous solution substantially and can achieve up to 10
GFLOPS on 128 Cray T3E 450MHz nodes.

Key words. Gaussian elimination with partial pivoting, LU factorization, sparse matrices,
elimination forests, supernode amalgamation and partitioning, asynchronous computation scheduling

AMS subject classifications. 65F50, 65F05

PII. S0895479898337385

1. Introduction. The solution of sparse linear systems is a computational bot-
tleneck in many scientific computing problems. When dynamic pivoting is required
to maintain numerical stability in direct methods for solving nonsymmetric linear
systems, it is challenging to develop high performance parallel code because pivoting
causes severe caching miss and load imbalance on modern architectures with mem-
ory hierarchies. The previous work has addressed parallelization on shared mem-
ory platforms or with restricted pivoting [4, 13, 15, 19]. Most notably, the recent
shared memory implementation of SuperLU has achieved up to 2.58 GFLOPS on 8
Cray C90 nodes [4, 5, 23]. For distributed memory machines, we proposed an ap-
proach that adopts a static symbolic factorization scheme to avoid data structure
variation [10, 11]. Static symbolic factorization eliminates the runtime overhead of
dynamic symbolic factorization with a price of overestimated fill-ins and, thereafter,
extra computation [15]. However, the static data structure allowed us to identify data
regularity, maximize the use of BLAS-3 operations, and utilize task graph scheduling
techniques and efficient runtime support [12] to achieve high efficiency.

This paper addresses three issues to further improve the performance of paral-
lel sparse LU factorization with partial pivoting on distributed memory machines.
First, we study the use of elimination trees in optimizing matrix partitioning and
task scheduling. Elimination trees or forests are used extensively in sparse Cholesky
factorization [18, 26, 27] because they have a more compact representation of paral-
lelism than task graphs. For sparse LU factorization, the traditional approach uses
the elimination tree of ATA, which can produce excessive false computational de-
pendency. In this paper, we use the elimination trees (forest) of A to guide matrix

∗Received by the editors April 15, 1998; accepted for publication (in revised form) by S. Vavasis
February 14, 2000; published electronically June 20, 2000. This work was supported in part by NSF
CCR-9702640 and by DARPA through UMD (ONR Contract number N6600197C8534).

http://www.siam.org/journals/simax/22-1/33738.html
†Department of Computer Science, University of California at Santa Barbara, CA 93106 (kshen@

cs.ucsb.edu, tyang@cs.ucsb.edu).
‡Department of Computer Science, University of Illinois at Urbana–Champaign, IL 61801 (jiao@

cs.uiuc.edu).

282

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 283

partitioning and parallelism control in LU factorization. We show that improved su-
pernode partitioning and amalgamation effectively control extra fill-ins and produce
optimized supernodal partitioning. We also use elimination forests to identify data
dependence and potential concurrency among pivoting and updating tasks and thus
maximize utilization of limited parallelism.

Second, we propose a fast and space-efficient kernel for supernode-based matrix
multiplication to improve the performance of sparse LU factorization. This is based
on the observation that nonzero submatrices generated by supernodal partitioning
and amalgamation have special patterns. Namely, they contain either dense subrows
or subcolumns. This new kernel avoids unnecessary arithmetic operations while it
retains the BLAS-3 level efficiency.

Third, we evaluate the space requirement of static factorization and propose an
optimization scheme that acquires memory on the fly only when it is necessary. This
scheme can effectively control peak memory usage, especially when static symbolic
factorization overestimates fill-ins excessively.

Our new design with these optimizations, called S+, improves our previous code
by more than 50% in execution time. In particular, S+ without space optimization
achieved up to 8.25 GFLOPS on 128 T3E 300MHz nodes and 10.85 GFLOPS1 on
128 T3E 450MHz nodes. The space optimization technique slightly degrades overall
time efficiency, but it reduces space requirement by up to 68% in some cases. S+

with space optimization can still deliver up to 10.00 GFLOPS on 128 Cray 450MHz
T3E nodes. Notice that we only count true operations, in the sense that no extra
arithmetic operation introduced by static factorization or amalgamation is included
in computing gigaflop rates of our algorithm.

The rest of this paper is organized as follows. Section 2 gives the background
knowledge for sparse LU factorization. Section 3 presents a modified definition and
properties of elimination trees for sparse LU factorization and their applications in
supernode partitioning and amalgamation. Section 4 describes our strategies of ex-
ploiting 2D asynchronous parallelism. Section 5 discusses a fast matrix multiplica-
tion kernel suitable for submatrices derived from supernode partitioning. Section 6
presents experimental results on Cray T3E. Section 7 discusses space optimization for
S+. Section 8 concludes the paper. A summary of notations and the proof for each
theorem are listed in the appendix.

2. Background. LU factorization with partial pivoting decomposes a nonsym-
metric sparse matrix A into two matrices L and U , such that PA = LU , where L is a
unit lower triangular matrix, U is an upper triangular matrix, and P is a permutation
matrix containing pivoting information.

Static symbolic factorization. A static symbolic factorization approach is pro-
posed in [14] to identify the worst case nonzero patterns for sparse LU factorization
without knowing numerical values of elements. The basic idea is to statically con-
sider all possible pivoting choices at each elimination step, and space is allocated for
all possible nonzero entries. Static symbolic factorization annihilates data structure
variation, and hence it improves predictability of resource requirements and enables
static optimization strategies. On the other hand, dynamic factorization, which is
used in SuperLU [4, 23], provides more accurate control of data structures on the fly.

1We reported a performance record of 11.04 GFLOPS in an earlier paper [29]. We later found that
the operation count included extra computation due to amalgamation. In this paper, we disabled
amalgamation in operation counting.

284 KAI SHEN, TAO YANG, AND XIANGMIN JIAO

But it is challenging to parallelize dynamic factorization with low runtime overhead
on distributed memory machines.

The static symbolic factorization for an n × n matrix is outlined as follows. At
each step k(1 ≤ k < n), each row i ≥ k that has a nonzero element in column k is
a candidate pivot row for row k. As the static symbolic factorization proceeds, at
step k the nonzero structure of each candidate pivot row is replaced by the union
of the structures of all these candidate pivot rows except the elements in the first
k − 1 columns. Using an efficient implementation [21] for the symbolic factorization
algorithm proposed in [14], this preprocessing step can be very fast. For example, it
costs less than one second for most of our test matrices, and at worst it costs two
seconds on a single node of Cray T3E. The memory requirement is also fairly small.
If LU factorization is used in an iterative numerical method, then the cost of symbolic
factorization together with other preprocessing is amortized over multiple iterations.

In the previous work, we show that static factorization does not produce too many
fill-ins for most of our test matrices, even for large matrices using a simple matrix
ordering strategy (minimum degree ordering) [10, 11]. For a few matrices that we
have tested, static factorization generates an excessive number of fill-ins. In section 7,
we discuss space optimization for S+ in addressing such a problem.

L/U supernode partitioning. After the fill-in pattern of a matrix is predicted,
the matrix is further partitioned using a supernodal approach to improve caching
performance. In [23], a nonsymmetric supernode is defined as a group of consecutive
columns, in which the corresponding L part has a dense lower triangular block on the
diagonal and the same nonzero pattern below the diagonal. Based on this definition,
in each column block the L part only contains dense subrows. We call this partitioning
scheme L supernode partitioning. Here by “subrow” we mean the contiguous part of
a row within a supernode.

After an L supernode partitioning has been performed on a sparse matrix A,
the same partitioning is applied to the rows of A to further break each supernode
into submatrices. This is also known as U supernode partitioning. Since coarse-
grain partitioning can reduce available parallelism and produce large submatrices
that do not fit into the cache, an upper bound on the supernode size is usually
enforced in the L/U supernode partitioning. After the L/U supernode partitioning,
each diagonal submatrix is dense, and each nonzero off-diagonal submatrix in the L
part contains only dense subrows, and furthermore, each nonzero submatrix in the
U part of A contains only dense subcolumns [11]. This is the key to maximize the
use of BLAS-3 subroutines [7] in our algorithm. And on most current commodity
processors with memory hierarchies, BLAS-3 subroutines usually outperform BLAS-
2 subroutines substantially when implementing the same functionality [7]. Figure 1
illustrates an example of a partitioned sparse matrix, and the black areas depict dense
submatrices, subrows, and subcolumns.

Data mapping. After symbolic factorization and matrix partitioning, a parti-
tioned sparse matrix A has N × N submatrix blocks. For example, the matrix in
Figure 1 has 8 × 8 submatrices. Let Ai,j denote the submatrix in A with row block
index i and column block index j. Let Li,j and Ui,j denote a submatrix in the lower
and upper triangular part of matrix A, respectively. For block-oriented matrix compu-
tation, 1D column block cyclic mapping and 2D block cyclic mapping are commonly
used. In 1D column block cyclic mapping, a column block of A is assigned to one
processor. In 2D mapping, processors are viewed as a 2D grid, and a column block is
assigned to a column of processors. 2D sparse LU factorization is more scalable than

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 285

4 5 6 7 8

1

2

8

21 3

3

4

5

7

6

Fig. 1. Example of a partitioned sparse matrix.

for k = 1 to N
Perform task Factor(k);
for j = k + 1 to N with Uk,j �= 0

Perform task Update(k, j);
endfor

endfor

Fig. 2. Partitioned sparse LU factorization with partial pivoting.

1D data mapping [10]. However, 2D mapping introduces more overhead for pivoting
and row swapping. Since asynchronous execution requires extensive use of buffers, in
designing 2D codes we need to pay special attention to the usage of buffer space so
that our 2D code is able to factorize larger matrices under memory constraints.

Program partitioning. Each column block k is associated with two types of
tasks: Factor(k) and Update(k, j) for 1 ≤ k < j ≤ N . Task Factor(k) factorizes all
the columns in the kth column block, and its function includes finding the pivoting
sequence associated with those columns and updating the lower triangular portion
of column block k. The pivoting sequence is held until the factorization of the kth
column block is completed. Then the pivoting sequence is applied to the rest of the
matrix. This is called “delayed pivoting” [3]. Task Update(k, j) uses column block
k (Lk,k, Lk+1,k, . . . , LN,k) to modify column block j. That includes “row swapping”
that applies the pivoting derived by Factor(k) to column block j, “scaling” that uses
the factorized submatrix Lk,k to scale Uk,j , and “updating” that uses submatrices
Li,k and Uk,j to modify Ai,j for k + 1 ≤ i ≤ N . Figure 2 outlines the partitioned LU
factorization algorithm with partial pivoting.

3. Elimination forests and nonsymmetric supernode partitioning. In
this section, we study properties of elimination forests [1, 15, 16, 25]2 and use them
to design more robust strategies for supernode partitioning and parallelism detection.
As a result, both sequential and parallel versions of our code can be improved.

We will use the following notations in our discussion. Let A be the given n × n
sparse matrix. Notice that the nonzero structure of matrix A changes after symbolic

2An elimination forest has only one tree when the corresponding sparse matrix is irreducible. In
that case, it is also called an elimination tree.

286 KAI SHEN, TAO YANG, AND XIANGMIN JIAO

factorization and the algorithm design discussed in the rest of this paper addresses A
after symbolic factorization. Let ai,j be the element in A with row index i and column
index j, and let ai:j,s:t be the submatrix in A from row i to row j and from column
s to t. Let lk be column k in the lower triangular part, and let uk be row k in the
upper triangular part of A after symbolic factorization. Notice that both lk and uk
include ak,k. To emphasize nonzero patterns of A, we use the symbol “̂ ” to express
the nonzero structure after symbolic factorization. Expression âi,j �= 0 means that
ai,j is not zero after symbolic factorization. We assume that every diagonal element
in the original sparse matrix is nonzero. Notice that for any nonsingular matrix that
does not have a zero-free diagonal, it is always possible to permute the rows of A to
obtain a matrix with zero-free diagonal [8]. Let l̂k be the index set of nonzeros in
lk, i.e., {i | âi,k �=0 ∧ i≥k}. Similarly, let ûk be the index set of nonzeros in uk, i.e.,

{j | âk,j �=0 ∧ j≥k}. Symbol |l̂k| (or |ûk|) denotes the cardinality of l̂k (or ûk).

3.1. The definition of elimination forests. We study the elimination forest
of a matrix that may or may not be reducible. Previous research on elimination
forests has shown that an elimination forest contains information about all potential
dependency if the corresponding sparse matrix is irreducible [1, 15, 16, 25]. Al-
though it is always possible to decompose a reducible matrix into several smaller
irreducible matrices, the decomposition introduces extra burden on software design
and implementation. Instead, we generalize the original definition of elimination tree
to reducible matrices. Our definition, listed in Definition 3.1, differs from the original
definition by imposing condition |l̂k| > 1. Imposing this condition not only avoids
some false dependency but also allows us to derive the same properties for irreducible
matrices and for reducible matrices, which are summarized in Theorems 3.2 and 3.4.
Note that when A is irreducible, the condition |l̂k| > 1 holds for all 1 ≤ k < n and
the new definition generates the same elimination forest as the original definition. In
practice, we find that some test matrices can have up to 50% of columns with zero
lower-diagonal nonzeros after symbolic factorization.

Definition 3.1. An LU elimination forest for an n× n matrix A has n vertices
numbered from 1 to n. For any two numbers k and j (k < j), there is an edge from
vertex j to vertex k in the forest if ak,j is the first off-diagonal nonzero in ûk and

|l̂k| > 1. Vertex j is called the parent of vertex k, and vertex k is called a child of
vertex j.

An elimination forest for a given matrix can be generated in a time complexity
of O(n) if computed as a byproduct of symbolic factorization. Figure 3 illustrates a
sparse matrix after symbolic factorization and its elimination forest. We now discuss
two properties of an elimination forest for a general sparse matrix.

Theorem 3.2. If vertex j is an ancestor of vertex k in the elimination forest,
then {r | r∈l̂k ∧ j≤r≤n} ⊆ l̂j, and {c | c∈ûk ∧ j≤c≤n} ⊆ ûj.

Theorem 3.2 (illustrated in Figure 4) captures the structural containment between
two columns in L and between two rows in U . It indicates that the nonzero struc-
ture of lj (or uj) subsumes lk (or uk) if the corresponding vertices have an ancestor
relationship. This information will be used for designing supernode partitioning with
amalgamation in the next subsection.

Definition 3.3. Let j > k; lk directly updates lj if task Update(k, j) is per-

formed in LU factorization, i.e., âk,j �= 0 and |l̂k| > 1. lk indirectly updates lj if
there is a sequence s1, s2, . . . , sp such that s1 = k, sp = j, and lsq directly updates
lsq+1 for each 1 ≤ q ≤ p− 1.

Theorem 3.4. Let k < j; lk directly or indirectly updates lj in LU factorization

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 287

Nonzeros in the original matrix

Elimination Forest

5

2

1

Fill-in entries generated by symbolic factorization

1

8

2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

7

6

4

3

Fig. 3. A sparse matrix and its elimination forest.

uj
lk

uk

lj

Fig. 4. An illustration of Theorem 3.2 (vertex j is an ancestor of vertex k in the elimination
forest).

if and only if vertex j is an ancestor of vertex k in the elimination forest.
Theorem 3.4 indicates dependency information during numerical factorization,

which can guide the scheduling of asynchronous parallelism.

3.2. 2D L/U supernode partitioning and amalgamation. Given a non-
symmetric matrix A after symbolic factorization, in [11] we have described a two-stage
L/U supernode partitioning method: At stage 1, a group of consecutive columns that
have the same structure in the L part is considered as one supernode column block.
Then the L part is sliced as a set of consecutive column blocks. After an L supernode
partition has been obtained, at stage 2 the same partition is applied to rows of the
matrix to break each supernode column block further into submatrices.

We examine how elimination forests can be used to guide and improve the 2D
L/U supernode partitioning. The following corollary is a straightforward result of
Theorem 3.2, and it shows that we can easily traverse an elimination forest to identify
supernodes. Notice that each element in a dense structure can be a nonzero or a fill-in
due to static symbolic factorization.

Corollary 3.5. If for each k ∈ {s + 1, s + 2, . . . , t} vertex k is the parent of

vertex k − 1 and |l̂k| = |l̂k−1| − 1, then after symbolic factorization, (1) diagonal
block as:t, s:t is completely dense, (2) at+1:n,s:t contains only dense subrows, and (3)

288 KAI SHEN, TAO YANG, AND XIANGMIN JIAO

Fill-in entries generated by supernode amalgamationNonzeros in original matrix

Fill-in entries generated by symbolic factorization

3 4 5 6 7 82 2 3 4 5 6 7 81

8

1

2

3

4

5

6

7

1

8

1

2

3

4

5

6

7

(b)(a)

R(1:2)

R(3:4)

R(5:5)

R(6:8)

Fig. 5. (a) Supernode partitioning for the matrix in Figure 3; (b) The result of supernode
amalgamation with 4 related L/U supernodes.

as:t,t+1:n contains only dense subcolumns.
The partitioning algorithm using the above corollary is briefly summarized as

follows. For each pair of two consecutively numbered vertices with the parent/child
relationship in the elimination forest, we check the size difference between the two
corresponding columns in the L part. If the difference is one, we assign these two
columns into an L supernode. Since if a submatrix in a supernode is too large, it
won’t fit into the cache and also because large grain partitioning reduces available
parallelism, we usually enforce an upper bound on the supernode size. Notice that U
partitioning is applied after the L partitioning is completed. We need not check any
constraint on U because as long as a child/parent pair (i, i−1) satisfies |l̂i| = |l̂i−1|−1,
it also satisfies |ûi| = |ûi−1| − 1 due to Theorem 1 in [10, 11]. Hence the structures
of ui and ui−1 are identical. Figure 5(a) illustrates supernode partitioning of the
sparse matrix in Figure 3. There are 6 L/U supernodes in this figure. From the L
partitioning point of view, columns from 1 to 5 are not grouped, but columns 6, 7,
and 8 are clustered together.

For most of the test matrices in our experiments, the average supernode size after
the above partitioning strategy is very small, about 1.5 to 2 columns. This leads to
relatively fine grained computation. In practice, amalgamation is commonly adopted
to increase the average supernode size by introducing some extra zero entries in the
dense structures of supernodes. In this way, caching performance can be improved
and interprocessor communication overhead may be reduced. For sparse Cholesky
factorization (e.g., [26]), the basic idea of amalgamation is to relax the restriction
that all the columns in a supernode must have exactly the same off-diagonal nonzero
structure. In a Cholesky elimination tree, a parent could be merged with its children
if merging does not introduce too many extra zero entries into a supernode. Row and
column permutations are needed if the parent is not consecutive with its children.
For sparse LU factorization, such a permutation may alter the result of symbolic
factorization. In our previous approach [11], we simply compare consecutive columns
of the L part and make a decision on merging if the total number of difference is

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 289

under a preset threshold. This approach is simple, resulting in a bounded number of
extra zero entries included in the dense structure of an L supernode. However, the
result of partitioning may lead to too many extra zero entries in the dense structure
of a U supernode. Using Theorem 3.2, we can remedy this problem as follows by
partitioning L and U parts simultaneously and controlling the number of fill-ins in
both L and U .

We consider a supernode containing elements from both L and U parts and refer
to a supernode after amalgamation as a relaxed L/U supernode. The definition is
listed below.

Definition 3.6. A relaxed L/U supernode R(s:t) contains three parts: the diag-
onal block as:t,s:t, the L supernode part at+1:n,s:t, and the U supernode part as:t,t+1:n.
The supernode size of R(s : t) is t− s+ 1.

A partitioning example illustrated in Figure 5(b) has four relaxed L/U supern-
odes: R(1 : 2), R(3 : 4), R(5 : 5), and R(6 : 8). The following corollary, which is also
a straightforward result of Theorem 3.2, can be used to bound the nonzero structure
of a relaxed L/U supernode.

Corollary 3.7. If for each k where s+1 ≤ k ≤ t, vertex k is the parent of vertex
k−1 in an elimination forest, then {i | i∈l̂k ∧ t≤i≤n} ⊆ l̂t and {j | j∈ûk ∧ t≤j≤n} ⊆
ût.

Using Corollary 3.7, in R(s : t) the ratio of extra fill-ins introduced by amalga-
mation compared with the actual nonzeros can be computed as

z =
(t− s+ 1)2 + (t− s+ 1)× (|l̂t|+ |ût| − 2)

nz(R(s : t))
− 1,

where nz() gives the number of nonzero elements in the corresponding structure in-

cluding fill-ins created by symbolic factorization. Also notice that both l̂t and ût
include diagonal element at,t.

Thus our heuristic for 2D partitioning is to traverse the elimination forest and
find relaxed supernodes R(s : t) satisfying the following conditions:

(1) For each i where s + 1 ≤ i ≤ t, vertex i is the parent of vertex i − 1 in the
elimination forest,

(2) the extra fill-in ratio, z, is less than the predefined threshold, and
(3) t− s+ 1 ≤ the predefined upper bound for supernode sizes.

The complexity of such a partitioning algorithm with amalgamation is O(n), which is
very low and is made possible by Corollary 3.7. Our experiments show that the above
strategy is very effective. The number of total extra fill-ins doesn’t change much when
the upper bound for z is in the range of 10− 100%, and it seldom exceeds 2% of the
total nonzeros in the whole matrix. In terms of upper bound for supernode size, 25
gives the best caching and parallel performance on the T3E. Thus all the experiments
in section 6 are completed with z ≤ 30% and supernode size ≤ 25. Figure 5(b) is the
result of supernode amalgamation for the sparse matrix in Figure 3 using condition
z ≤ 30%.

In the rest of this paper, we will simply refer to relaxed L/U supernodes as
supernodes.

Compressed storage scheme for submatrices. In our implementation, every
submatrix is stored in a compressed storage scheme with a bit map to indicate its
nonzero structure. In addition to the storage saving, the compressed storage scheme
can also eliminate certain unnecessary computations on zero elements, which will
be discussed in details in section 5. For an L submatrix, its subrows are stored

290 KAI SHEN, TAO YANG, AND XIANGMIN JIAO

0
1
1
0
1
0

0 0 0 0 0 0 0 0

x x x x x x x x
0 0 0 0 0 0 0 0
x x x x x x x x
0 0 0 0 0 0 0 0

x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

(B) Compressed storage (C) Bitmap(A) An L submatrix

Fig. 6. An illustration of a compressed storage scheme for an L submatrix.

in a consecutive space even though their corresponding row numbers may not be
consecutive. The bit map is used to identify dense subrows in L submatrices. A bit
is set to 0 if the corresponding subrow is 0 and set to 1 otherwise. Figure 6 illustrates
such a storage scheme for a 6×8 L submatrix. In this example, the second, third, and
fifth subrows are dense and all other subrows are completely zero. The strategy for a
U submatrix is the same except in a subcolumn-oriented fashion. Since level-1 cache
is not large in practice and the supernode size is limited to fit the cache (limit is 25
on Cray T3E), we can use a 32-bit word to store the bit map of each submatrix and
can determine efficiently if a subrow is dense using a single logical “and” operation.

Space overhead for a submatrix includes the bit map and global matrix index.
Index information is piggybacked on a message when sending submatrices among
processors. In terms of space for bit maps, if a submatrix is completely zero, its bit
map vector is not needed. For a nonzero submatrix, the size of its bit map is just one
word. Thus numerical values of the sparse matrix always dominate the overall storage
requirement and space overhead for bit map vectors is insignificant. It should also be
noted that in a future CPU architecture with a large level-1 cache, a 32-bit word may
not be sufficient and that some minor changes in the implementation are needed to
use two words or more. In this case, using more than one word for a bit vector should
not cause space concern because amalgamation ensures that the average submatrix
size is not too small. Also this compression scheme can be turned off for an extremely
small submatrix (but we do not expect such a thing is needed in practice).

4. 2D asynchronous parallelism exploitation. In this section, we present
scheduling strategies for exploiting asynchronous 2D parallelism so that different up-
dating stages can be overlapped. After 2D L/U supernode partitioning and amalga-
mation, the n× n sparse matrix A is 2-dimensionally partitioned into N ×N subma-
trices. Let symbol Ai,j denote the submatrix in row block i and column block j, and
let Ai:j,s:t denote all submatrices from row block i to j and from column block s to t.
Let Li,j and Ui,j (i �= j) denote submatrices in the lower and upper triangular parts,
respectively. Our 2D algorithm uses the standard cyclic mapping since it tends to
distribute data evenly, which is important to solve large problems. In this scheme, p
available processors are viewed as a 2D grid: p = pr × pc. Then block Ai,j is assigned
to processor Pi mod pr, j mod pc .

In section 2, we have described two types of tasks involved in LU factorization.
One is Factor(k), which is to factorize all the columns in the kth column block,
including finding the pivoting sequence associated with those columns. The other is
Update(k, j), which is to apply the pivoting sequence derived from Factor(k) to the
jth column block and modify the jth column block using the kth column block, where
k < j and Uk,j �= 0. The 2D data mapping enables parallelization of a single Factor(k)

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 291

or Update(k, j) task on pr processors because each column block is distributed into
pr processors. The main challenge is the coordination of pivoting and data swapping
across a subset of processors to exploit as much parallelism as possible with low buffer
space demand.

For task Factor(k), the computation is distributed among processors in column
k mod pc of the processor grid, and global synchronization among this processor
column is needed for correct pivoting. To simplify the parallelism control of task
Update(k, j) we split it into two subtasks: ScaleSwap(k), which does scaling and de-
layed row interchange for submatrices Ak:N, k+1:N , and Update2D(k, j), which mod-
ifies column block j using column block k. For ScaleSwap(k), the synchronization
among processors within the same column of the grid is needed. For Update2D(k, j),
no synchronization among processors is needed as long as the desired submatrices in
column blocks k and j are made available to processor Pi mod pr, j mod pc , where
k + 1 ≤ i ≤ N .

We discuss three scheduling strategies below. The first one as reported in [9] is a
basic approach in which computation flow is controlled by pivoting tasks Factor(k).
The order of execution for Factor(k), k = 1, 2, . . . , N is sequential, but Update2D()
tasks, where most of the computation comes from, can execute in parallel among all
processors. Let symbol Update2D(k, ∗) denote tasks Update2D(k, t) for k+1 ≤ t ≤ N .
The asynchronous parallelism comes from two levels. First, a single stage of tasks
Update2D(k, ∗) can be executed concurrently on all processors. In addition, different
stages of Update2D() tasks from Update2D(k, ∗) and Update2D(k′, ∗), where k �= k′,
can also be overlapped.

The second approach is called factor-ahead, which improves the first approach by
letting Factor(k+1) start as soon as Update2D(k, k+1) completes. This is based on
an observation that in the basic approach, after all tasks Update2D(k, ∗) are done,
all processors must wait for the result of Factor(k + 1) to start Update2D(k + 1, ∗).
It is not necessary that Factor(k + 1) has to wait for the completion of all tasks
Update2D(k, ∗). This idea has been used in the dense LU algorithm [17], and we ex-
tend it for asynchronous execution and incorporate a buffer space control mechanism.
The details are in [10].

The factor-ahead technique still imposes a constraint that Factor(k+1) must be
executed after the completion of Factor(k). In order to exploit potential parallelism
between Factor() tasks, our third design is to utilize dependence information repre-
sented by elimination forests. Since we deal with a partitioned matrix, the elimination
forest defined in Definition 3.1 needs to be clustered into a supernodewise elimina-
tion forest. We call the new forest a supernodal elimination forest. And we call the
elementwise elimination forest a nodal elimination forest.

Definition 4.1. A supernodal elimination forest has N nodes. Each node cor-
responds to a relaxed L/U supernode. Supernode R(i1 : i2) is the parent of supernode
R(j1 : j2) if there exists vertex i ∈ {i1, i1+1, . . . , i2} and vertex j ∈ {j1, j1+1, . . . , j2}
such that i is j’s parent in the corresponding nodal elimination forest.

A supernodal elimination forest can be generated efficiently in O(n) time using
Theorem 4.2 below. Figure 7 illustrates the supernodal elimination forest for Fig-
ure 5(b). The corresponding matrix is partitioned into 4× 4 submatrices.

Theorem 4.2. Supernode R(i1 : i2) is the parent of supernode R(j1 : j2) in the
supernodal elimination forest if and only if there exists vertex i ∈ {i1, i1 + 1, . . . , i2},
which is the parent of vertex j2 in the nodal elimination forest.

Finally, the following theorem indicates computation dependence among supern-

292 KAI SHEN, TAO YANG, AND XIANGMIN JIAO

Supernode 3 - R(5:5)

Supernode 1 - R(1:2)

Supernode 2 - R(3:4)

Supernode 4 - R(6:8)

Fig. 7. Supernodal elimination forest for the matrix in Figure 5(b).

odes and exposes the possible parallelism that can be exploited.
Theorem 4.3. The L part of supernode R(j1 : j2) directly or indirectly updates

the L part of supernode R(i1 : i2) if and only if R(i1 : i2) is an ancestor of supernode
R(j1 : j2).

Our design for LU factorization task scheduling using the above forest concept
is different from the ones for Cholesky factorization [1, 26] because pivoting and row
interchanges complicate the flow control in LU factorization. Using Theorem 4.3, we
are able to exploit some parallelism among Factor() tasks. After tasks Factor(i) and
Update2D(i, k) have finished for every child i of supernode k, task Factor(k) is ready
for execution. Because of the space constraint on the buffer size, our current design
does not fully exploit the parallelism, and this design is explained below.

Space complexity. We examine the degree of parallelism exploited in our al-
gorithm by determining the maximum number of updating stages that can be over-
lapped. Using this information we can estimate the extra buffer space needed per
processor for asynchronous execution. This buffer is used to accommodate nonzeros
in Ak:N,k and the pivoting sequence at each elimination step k. We define the stage
overlapping degree for updating tasks as

max{|k − k′| ∣∣ Update2D(k, ∗) and Update2D(k′, ∗) can execute concurrently.}
It is shown in [10] that for the factor-ahead approach, the reachable overlapping

degree is pc among all processors and the extra buffer space complexity is about
2.5·BSIZE

n · S1, where S1 is the sequential space size for storing the entire sparse
matrix and BSIZE is the maximum supernode size. This complexity is very small
for a large matrix. Also because 2D cyclic mapping normally leads to a uniform data
distribution, our factor-head approach is able to handle large matrices.

For the elimination forest guided approach, we enforce a constraint so that the
above size of extra buffer space (2.5·BSIZE

n · S1) is also sufficient. This constraint is
so that any processor that executes both Factor(k) and Factor(k′), where k < k′,
Factor(k′) cannot start until Factor(k) completes. In other words, Factor() tasks
are executed sequentially on each single processor column, but they can be concurrent
across all processor columns. As a result, our parallel algorithm is space-scalable for
handling large matrices. Allocating more buffers can relax the above constraint and
increase the degree of stage overlapping. However, our current experimental study
does not show a substantial advantage from doing that, and we plan to investigate
this issue further in the future. Figure 8 shows our elimination forest guided approach
based on the above strategy.

Example. Figures 9(a) and (b) are the factor-ahead and elimination forest guided
schedules for the partitioned matrix in Figure 5(b) on a 2× 2 processor grid. Notice
that some of the Update2D() tasks, such as U(1, 2), are not listed because they do
not exist due to the matrix sparsity. To simplify our illustration, we assume that

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 293

(01) Let (my rno,my cno) be the 2D coordinates of this processor;

(02) Let m be the smallest column block number owned by this

processor.

(03) if m doesn’t have any child supernode then
(04) Perform task Factor(m) for blocks this processor owns;

(05) endif
(06) for k = 1 to N − 1
(07) Perform ScaleSwap(k) for blocks this processor owns;

(08) Let m be the smallest column block number (m > k) this

processor owns.

(09) Perform Update2D(k,m) for blocks this processor owns;

(10) if column block m is not factorized

and all m’s child supernodes have been factorized then
(11) Perform Factor(m) for blocks this processor owns;

(12) endif
(13) for j = m+ 1 to N
(14) if my cno = j mod pc then
(15) Perform Update2D(k, j) for blocks this processor owns;

(16) endif
(17) endfor
(18) endfor

Fig. 8. Supernode elimination forest guided 2D approach.

PC2

F(2)

S(1)

PC1

F(1)

S(1)

F(4)

U(3,4)

S(3)

U(2,4)

S(2)

U(1,4)U(1,3)

F(3)

S(2)

S(3)

Idle

Idle

(b) Elimination Forest
Guided Approach

PC2PC1

Idle

S(1)

F(2)

U(1,4)

S(2)

U(2,4)

S(3)

U(3,4)

F(4)

F(1)

S(1)

U(1,3)

F(3)

S(2)

S(3)

Idle

Idle

Idle

(a) Factor-ahead Approach

Fig. 9. Task schedules for matrix in Figure 5(b). F () stands for Factor(), S() stands for
ScaleSwap(), U() stands for Update2D(), and PC stands for Processor Column.

294 KAI SHEN, TAO YANG, AND XIANGMIN JIAO

i,k k,j

=

L

=

i,j tmp Ai,j

= -

Step 1:

Step 2:

if target block is in L factor if target block is in U factor

OR

Ai,j tmp Ai,j

tmp

X

-
A

U

Fig. 10. An illustration of Supernodal GEMM. Target block Ai,j could be in the L part or U part.

Factor(), ScaleSwap(), and Update2D() each take one unit time and that communi-
cation cost is zero. In the factor-ahead schedule, Factor(3) is executed immediately
after Update2D(1, 3) on the processor column 1. The basic approach would schedule
Factor(3) after ScaleSwap(2). Letting Factor() tasks complete as early as possible
is important since many updating tasks depend on Factor() tasks. In the elimination
forest based schedule, Factor(2) is executed in parallel with Factor(1) because there
is no dependence between them, represented by the forest in Figure 7. As a result,
the length of this schedule is one unit shorter than the factor-ahead schedule.

5. Fast supernodal GEMM kernel. We examine how the computation-domi-
nating part of the LU algorithm can be efficiently implemented using the highest level
of BLAS possible. Computations in task Update2D() involve the following supernode
block multiplication: Ai,j = Ai,j − Li,k ∗ Uk,j , where k < i and k < j. As we
mentioned in the end of section 3.2, submatrices like Ai,j , Li,k, and Uk,j are all stored
in a compressed storage scheme with bit maps that identify their dense subcolumns or
subrows. As a result, the BLAS-3 GEMM routine [7] may not be directly applicable
to Ai,j = Ai,j −Li,k ∗Uk,j because subcolumns or subrows in those submatrices may
not be consecutive and the target block Ai,j may have a nonzero structure different
from that of product Li,k ∗ Uk,j .

There could be several approaches to circumvent the above problem. One ap-
proach is to use a mixture of BLAS-1/2/3 routines. If Li,k and Ai,j have the same
row sparse structure, and Uk,j and Ai,j have the same column sparse structure, BLAS-
3 GEMM can be directly used to modify Ai,j . If only one of the above two conditions
holds, then the BLAS-2 routine GEMV can be employed. Otherwise only the BLAS-
1 routine DOT can be used. In the worst case, the performance of this approach is
close to the BLAS-1 performance. Another approach is to treat nonzero submatrices
of A as dense during space allocation and submatrix computation, and hence BLAS-3
GEMM can be employed more often. But considering the average density of subma-
trices is only around 51% for our test matrices, this approach normally leads to an
excessive amount of extra space and unnecessary arithmetic operations.

We propose the following approach called Supernodal GEMM to minimize unnec-
essary computation but retain high efficiency. The basic idea is described as follows.
If the BLAS-3 GEMM is not directly applicable, we divide the operation into two
steps. At the first step, we ignore the target nonzero structure of Ai,j and directly
use BLAS-3 GEMM to compute Li,k ∗ Uk,j . The result is stored in a temporary
block. At the second step, we merge this temporary block with Ai,j using subtrac-
tion. Figure 10 illustrates these two steps. Since the computation of the first step is

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 295

Table 1
Test matrices and their statistics.

Factor entries
|A|

Matrix Order |A| Dynamic Static ATA Application domain
sherman5 3312 20793 12.03 15.70 20.42 Oil reservoir modeling
lnsp3937 3937 25407 17.87 27.33 36.76 Fluid flow modeling
lns3937 3937 25407 18.07 27.92 37.21 Fluid flow modeling
sherman3 5005 20033 22.13 31.20 39.24 Oil reservoir modeling
jpwh991 991 6027 23.55 34.02 42.57 Circuit physics
orsreg1 2205 14133 29.34 41.44 52.19 Oil reservoir simulation
saylr4 3564 22316 30.01 44.19 56.40 Oil reservoir modeling
goodwin 7320 324772 9.63 10.80 16.00 Fluid mechanics
e40r0100 17281 553562 14.76 17.32 26.48 Fluid dynamics
raefsky4 19779 1316789 20.36 28.06 35.68 Container modeling
inaccura 16146 1015156 9.79 12.21 16.47 Structure problem
af23560 23560 460598 30.39 44.39 57.40 Navier–Stokes solver
fidap011 16614 1091362 23.36 24.55 31.21 Finite element modeling
vavasis3 41092 1683902 29.21 32.03 38.75 PDE

more expensive than the second step, our code for multiplying supernodal submatrices
can achieve performance comparable to BLAS-3 GEMM. A further optimization is to
speed up the second step since the result merging starts to play some role for the total
time after the GEMM routine reduces the cost of the first step. Our strategy is that
if the result block and Ai,j have the same row sparse structure or the same column
sparse structure, the BLAS-1 AXPY routine should be used to avoid scalar opera-
tions. And to increase the probability of structure consistency between the temporary
result block and Ai,j , we treat some of the L and U submatrices as dense during the
space allocation stage if the percentage of nonzeros in such a submatrix compared to
the entire block size exceeds a threshold. For Cray-T3E, our experiments show that
threshold 85% is the best to reduce the result merging time with small space increase.

6. Experimental studies on Cray T3E. S+ has been implemented on Cray
T3E using its SHMEM communication library. Most of our experiments were con-
ducted on a T3E machine at San Diego Supercomputing Center (SDSC). Each Cray-
T3E processing element at SDSC has a clock rate of 300MHz, an 8KB internal cache,
96KB second level cache, and 128MB memory. The peak bandwidth between nodes
is reported as 500MB/s, and the peak round trip communication latency is about 0.5-
2µs [28]. We have observed that when the block size is 25, double-precision GEMM
achieves 388 MFLOPS while double-precision GEMV reaches 255 MFLOPS. We have
used a block size 25 in our experiments. We also obtained access to a Cray-T3E at
the NERSC division of the Lawrence Berkeley Lab. Each node in this machine has a
clock rate of 450MHz and 256MB memory. We have done one set of experiments to
show the performance improvement on this faster machine.

In this section, we report the overall sequential and parallel performance of S+

without incorporating space optimization techniques, and we measure the effectiveness
of the optimization strategies proposed in sections 3 and 4. In the next section,
we will study the memory requirement of S+ with and without space optimization.
Table 1 shows the statistics of the test matrices used in this section. Column 2 is
the orders of the matrices, and column 3 is the number of nonzeros before symbolic
factorization. In columns 4, 5, and 6 of this table, we have also listed the total
number of nonzero entries divided by |A| using three methods. Those nonzero entries
including fill-ins are produced by dynamic factorization, static symbolic factorization,

296 KAI SHEN, TAO YANG, AND XIANGMIN JIAO

Table 2
Sequential performance on a 300MHz Cray T3E node. The symbol“-” implies that the data is

not available due to insufficient memory or is not meaningful due to paging.

Matrix Sequential S+ SuperLU Sequential S∗ Time ratio

Time MFLOPS Time MFLOPS Time MFLOPS S+

SuperLU
S+

S∗
sherman5 0.65 (0.04) 38.6 0.78 32.2 0.94 26.7 0.83 0.69
lnsp3937 1.48 (0.08) 22.9 1.73 19.5 2.00 16.9 0.86 0.74
lns3937 1.58 (0.09) 24.2 1.84 20.8 2.19 17.5 0.86 0.72

sherman3 1.56 (0.03) 36.2 1.68 33.6 2.03 27.8 0.93 0.77
jpwh991 0.52 (0.03) 31.8 0.56 29.5 0.69 23.9 0.93 0.75
orsreg1 1.60 (0.04) 35.0 1.53 36.6 2.04 27.4 1.05 0.78
saylr4 2.67 (0.07) 37.2 2.69 36.9 3.53 28.1 0.99 0.76

goodwin 10.26 (0.35) 65.2 - - 17.0 39.3 - 0.60

or Cholesky factorization of ATA. The result shows that for these tested matrices,
the total number of nonzeros predicted by static factorization is within 40% of what
dynamic factorization produces. But the ATA approach overestimates substantially
more nonzeros, which indicates that the elimination tree of ATA can introduce too
many false dependency edges. All matrices are ordered using the minimum degree
algorithm3 on ATA and the permutation algorithm for zero-free diagonal [8].

In calculating the MFLOPS achieved by our parallel algorithm, we do not include
extra floating point operations introduced by static fill-in overestimation and supernode
amalgamation. The achieved MFLOPS are computed by using the following formula:

Achieved MFLOPS =
True operation count

Elapsed time of our algorithm on the T3E
.

The true operation count is obtained by running SuperLU without amalgamation.
Amalgamation can be turned off in SuperLU by setting the relaxation parameter for
amalgamation to 1 [6, 24].

6.1. Overall code performance. Table 2 lists the sequential performance of
S+, our previous design S∗, and SuperLU.4 The result shows S+ can actually be faster
than SuperLU because of the use of new supernode partitioning and matrix multipli-
cation strategies. The test matrices are selected from Table 1 that can be executed
on a single T3E node. The performance improvement ratios from S∗ to S+ vary from
22% to 40%. Notice that time measurement in Table 2 excludes symbolic preprocess-
ing time. However, symbolic factorization in our algorithms is very fast and takes only
about 4.2% of numerical factorization time for the matrices in Table 2. And this ratio
tends to decrease as the matrix size increases. This preprocessing cost is insignificant,
especially when LU factorization is used in an iterative algorithm. In Table 2, we list
the time of symbolic factorization for each matrix inside the parentheses behind the
time of S+.

For parallel performance, we compare S+ with a previous version [10] in Table 3,
and the improvement ratio in terms of MFLOPS varies from 16% to 116%, in average
more than 50%. Table 4 shows the absolute performance of S+ on the Cray T3E ma-
chine with 450MHz CPU. The highest performance reached is 10.85 GFLOPS, while
for the same matrix, 8.25 GFLOPS is reached on the T3E with 300MHz processors.

3A MATLAB program is used for minimum degree ordering.
4We did not compare with another well-optimized package UMFPACK [2] because SuperLU has

been shown to be competitive to UMFPACK [4].

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 297

Table 3
MFLOPS performance of S+ and S∗ on the 300MHz Cray T3E.

Matrix P=8 P=16 P=32 P=64 P=128

S∗ S+ S∗ S+ S∗ S+ S∗ S+ S∗ S+

goodwin 215.2 403.5 344.6 603.4 496.3 736.0 599.2 797.3 715.2 826.8
e40r0100 205.1 443.2 342.9 727.8 515.8 992.8 748.0 1204.8 930.8 1272.8
raefsky4 391.2 568.2 718.9 1072.5 1290.7 1930.3 2233.3 3398.1 3592.9 5133.6
inaccura 272.2 495.5 462.0 803.8 726.0 1203.6 1172.7 1627.6 1524.5 1921.7
af23560 285.4 432.1 492.9 753.2 784.3 1161.3 1123.2 1518.9 1512.7 1844.7
fidap011 489.3 811.2 878.1 1522.8 1524.3 2625.0 2504.4 4247.6 3828.5 6248.4
vavasis3 795.5 937.3 1485.5 1823.7 2593.5 3230.8 4406.3 5516.2 6726.6 8256.0

Table 4
Experimental results of S+ on the 450MHz Cray T3E. All times are in seconds.

Matrix P=8 P=16 P=32 P=64 P=128
Time MFLOPS Time MFLOPS Time MFLOPS Time MFLOPS Time MFLOPS

goodwin 1.21 552.6 0.82 815.4 0.69 969.0 0.68 983.2 0.67 997.9
e40r0100 4.06 609.4 2.50 989.7 1.87 1323.2 1.65 1499.6 1.59 1556.2
raefsky4 38.62 814.6 20.61 1526.3 11.54 2726.0 6.80 4626.2 4.55 6913.8
inaccura 6.56 697.2 4.12 1110.1 2.80 1633.4 2.23 2050.9 1.91 2394.6
af23560 10.57 602.1 6.17 1031.5 4.06 1567.5 3.47 1834.0 2.80 2272.9
fidap011 21.58 1149.5 11.71 2118.4 6.81 3642.7 4.42 5612.3 3.04 8159.9
vavasis3 62.68 1398.8 33.68 2603.2 19.26 4552.3 11.75 7461.9 8.08 10851.1

6.2. Effectiveness of the proposed optimization strategies. Elimination
forest guided partitioning and amalgamation. Our new strategy for supernode
partitioning with amalgamation simultaneously clusters columns and rows using struc-
tural containment information implied by an elimination forest. Our previous design
S∗ [10, 11] does not consider the bounding of nonzeros in the U part. We compare
our new code S+ with a modified version using the previous partitioning strategy.
The performance improvement ratio by using the new strategy is listed in Figure 11,
and an average of 20% improvement is obtained. The ratio for matrix “af23560” is
not substantial because this matrix is very sparse and the partitioning/amalgamation
strategy cannot produce large supernodes.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

#proc

P
T

(o
ld

_m
et

ho
d)

/P
T

(n
ew

_m
et

ho
d)

−
1 *: goodwin
o: e40r0100
+: af23560
x: fidap011

Fig. 11. Performance improvement by using the new supernode partitioning/amalgamation
strategy.

298 KAI SHEN, TAO YANG, AND XIANGMIN JIAO

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

#proc

P
T

(B
la

s−
1/

2/
3)

/P
T

(S
G

E
M

M
)−

1

*: goodwin
o: e40r0100
+: af23560
x: fidap011

Fig. 12. Performance improvement by using the supernodal GEMM.

Table 5
Performance improvement by using the elimination forest guided approach.

Matrix Improvement over Basic Improvement over Factor-ahead
P=16 P=32 P=64 P=128 P=16 P=32 P=64 P=128

goodwin 41% 35% 19% 21% 8% 12% 10% 14%
e40r0100 38% 40% 30% 27% 15% 17% 12% 15%
raefsky4 21% 21% 34% 34% 7% 10% 11% 13%
inaccura 21% 28% 26% 27% 7% 13% 9% 13%
af23560 31% 37% 32% 30% 10% 15% 10% 13%
fidap011 24% 28% 36% 38% 8% 12% 11% 15%
vavasis3 17% 16% 31% 28% 3% 6% 8% 12%

Effectiveness of supernodal GEMM. We assess the gain due to the introduc-
tion of our supernodal GEMM operation. We compare S+ with a modified version
using an approach that mixes BLAS-1/2/3 as described in section 5. We do not com-
pare our approach with the approach that treats all nonzero blocks as dense since it
introduces too much extra space and computation. The performance improvement
ratio of our supernodal approach over the mixed approach is listed in Figure 12. The
improvement is not substantial for matrix “e40r0100” and is none for “goodwin”.
This is because they are relatively dense and the mixed approach has been employing
BLAS-3 GEMM most of the time. For the other two matrices that are relatively
sparse, the improvement ratio can be up to 10%.

A comparison of the control strategies for exploiting 2D parallelism.
In Table 5 we assess the performance improvement by using the elimination forest
guided approach against the factor-ahead and basic approaches described in section 4.
Compared to the basic approach, the improvement ratios vary from 16% to 41% and
the average is 28%. Compared to the factor-ahead approach, the average improvement
ratio is 11% and the ratios tend to increase when the number of processors increases.
This result is expected in the sense that the factor-ahead approach improves the
degree of computation overlapping by scheduling factor tasks one step ahead, while
using elimination forests can exploit more parallelism.

7. Space optimization. For all matrices tested above, static symbolic factor-
ization provides fairly accurate prediction of nonzero patterns and only creates 10%
to 50% more fill-ins compared to dynamic symbolic factorization used in SuperLU.

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 299

Table 6
Circuit and device simulation test matrices and their statistics.

Factor entries/|A|
Matrix Order |A| Dynamic Static ATA
TIa 3432 25220 24.45 42.49 307.1
TId 6136 53329 27.53 61.41 614.2
TIb 18510 145149 91.84 278.34 1270.7
memplus 17758 99147 71.26 168.77 215.19
wang3 26064 177168 197.30 298.12 372.71

However, for some matrices, especially those in circuit and device simulation, static
symbolic factorization creates too many fill-ins. Table 6 shows characteristics of five
matrices from circuit and device simulations. Static symbolic factorization does pro-
duce a large number of fill-ins for these matrices (up to 3 times higher than dynamic
symbolic factorization using the same matrix ordering5). Our solution needs to pro-
vide a smooth adaptation in handling such cases.

For the above cases, we find that a significant number of predicted fill-ins remain
zero throughout numerical factorization. This indicates that space allocated to those
fill-ins is unnecessary. Thus our first space-saving strategy is to delay the space
allocation decision and acquire memory only when a submatrix block becomes truly
nonzero during numerical computation. Such a dynamic space allocation strategy
can lead to a relatively small space requirement even if static symbolic factorization
excessively over-predicts fill-ins. Another strategy is to examine if space recycling
for some nonzero submatrices is possible since a nonzero submatrix may become
zero during numerical factorization due to pivoting. This has a potential to save
significantly more space since the early identification of zero blocks prevents their
propagation in the update phase of numerical factorization.

Space requirements. We have conducted experiments [20] to study memory
requirement by incorporating the above space optimization strategies into S+ on a
SUN Ultra-1 with 320MB memory. In the following study, we refer to the revised
S+ with space optimization as SpaceS+. Table 7 lists the space requirement of S+,
SuperLU, and SpaceS+ for the matrices from Tables 1 and 6. Matrix vavasis3 is
not listed because its space requirement is too high for all three algorithms on this
machine.

The result in Table 7 shows that our space optimization strategies are effective.
SpaceS+ uses slightly less space compared to S+ for matrices in Table 1 and 37% less
space on average for matrices in Table 6 (68% less space for matrix TIb). Compared to
SuperLU, our algorithm actually uses 3.9% less space on average while static symbolic
factorization predicts 38% more nonzeros. That is because the U structure in SuperLU
is less regular than that in S+ and the indexing scheme in S+ is simpler. Notice that
the space cost in our evaluation includes symbolic factorization. This part of the cost
ranges from 1% to 7% of the total cost. We also list the ratio of SpaceS+ processing
time to S+ and to SuperLU. Some entries are marked “-” instead of actual numbers
because we observed paging on these matrices that may affect the accuracy of the
result. In terms of average time cost, the new version is faster than SuperLU, which
is consistent with the results in section 6.1. It is also slightly faster than S+ because

5Using a different matrix ordering (MMD on AT +A), SuperLU generates fewer fill-ins on certain
matrices. This paper focuses algorithm design when ordering is given and studies performance using
one ordering method. An interesting future research topic is to study ordering methods that optimize
static factorization.

300 KAI SHEN, TAO YANG, AND XIANGMIN JIAO

Table 7
Space requirement in MB on a SUN Ultra-1 machine. The symbol “-” implies that the data is

not available due to insufficient memory or paging which affects the measurement.

Matrix Space requirement Space ratio Time ratio

S+ SuperLU SpaceS+ SpaceS+

SuperLU
SpaceS+

S+
SpaceS+

SuperLU
SpaceS+

S+

sherman5 3.061 3.305 2.964 0.90 0.97 0.853 0.959
sherman3 5.713 5.412 5.536 1.02 0.97 1.023 0.944
orsreg1 5.077 4.555 4.730 1.04 0.93 0.920 0.823
saylr4 8.509 7.386 8.014 1.09 0.94 0.964 0.870

goodwin 29.192 35.555 28.995 0.82 0.99 0.657 0.993
e40r0100 79.086 93.214 78.568 0.84 0.99 - -
raefsky4 303.617 272.947 285.920 1.05 0.94 0.707 0.921
af23560 170.166 147.307 162.839 1.11 0.96 0.869 0.984
fidap011 221.074 271.423 219.208 0.81 0.99 - -

TIa 8.541 6.265 7.321 1.17 0.86 0.675 0.629
TId 29.647 18.741 19.655 1.05 0.66 0.366 0.366

memplus 138.218 75.194 68.467 0.91 0.50 - -
TIb 341.418 221.285 107.711 0.49 0.32 - -

wang3 430.817 - 347.505 - 0.81 - -

Table 8
MFLOPS performance of SpaceS+ on 450MHz Cray T3E.

Matrix vavasis3 TIa TId TIb memplus wang3
MFLOPS on 128 nodes 10004.0 739.9 1001.9 2515.7 6548.4 6261.0
MFLOPS on 8 nodes 1492.9 339.6 281.5 555.7 1439.4 757.8

Table 9
Performance difference of S+ and SpaceS+ on 300MHz Cray T3E. A positive number indicates

an improvement of SpaceS+ over the original S+, while a negative number indicates a slowdown.

Matrix P=8 P=16 P=32 P=64 P=128
goodwin -7.28% -8.29% -8.10% -1.17% -4.69%
e40r0100 -6.81% -8.81% -11.34% -8.84% -7.13%
raefsky4 3.41% 2.52% -0.42% -1.82% -5.02%
af23560 -3.17% -3.98% -9.72% -4.56% -13.76%
vavasis3 7.65% -1.79% 5.02% -2.16% -6.13%

TIa 13.16% 10.42% 2.63% -2.94% -6.06%
TId 35.15% 23.81% 9.28% -2.50% -9.59%
TIb 352.20% 270.26% 209.27% 133.69% 78.10%

memplus 136.43% 115.38% 87.09% 61.84% 35.24%
wang3 10.51% 7.57% 3.52% 1.53% -5.17%

the early elimination of zero blocks prevents their propagation and hence reduces
unnecessary computation.

Parallel performance. Our experiments on Cray T3E show that the parallel
time performance of SpaceS+ is still competitive to S+. Table 8 lists performance of
SpaceS+ on vavasis3 and circuit simulation matrices in 450MHz T3E nodes. SpaceS+

can still achieve 10.00 GFLOPS on matrix vavasis3, which is not much less than the
highest 10.85 GFLOPS achieved by S+ on 128 450MHz T3E nodes. For circuit
simulation matrices, SpaceS+ delivers reasonable performance.

Table 9 is the time difference of S+ with and without space optimization on
300MHz T3E nodes. For the matrices with high fill-in overestimation ratios, we
observe that S+ with dynamic space management is better than S+. It is about
109% faster on 8 processors and 18% faster on 128 processors. As for other matrices,
on 8 processors SpaceS+ is about 1.24% slower than S+, while on 128 processors, it is

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 301

7% slower than S+. On average, SpaceS+ tends to become slower when the number of
processors becomes larger. This is because the lazy space allocation scheme introduces
new overhead for dynamic memory management and for row and column broadcasts
(blocks of the same L-column or U-row, now allocated in noncontiguous memory, can
no longer be broadcasted as a unit). This new overhead affects critical paths, which
dominate performance when parallelism is limited and the number of processors is
large.

8. Concluding remarks. Our experiments show that the proper use of elim-
ination forests allows for effective matrix partitioning and parallelism exploitation.
Together with the supernodal matrix multiplication algorithm, our new design can
improve the previous code substantially and set a new performance record. Our
experiments also show that S+ with dynamic space optimization can deliver high
performance for large sparse matrices with reasonable memory cost. Static symbolic
factorization may create too many fill-ins for some matrices, but our space optimiza-
tion techniques can effectively reduce memory requirements. Our comparison with
SuperLU indicates that the sequential version of S+ is highly optimized and can be
faster than SuperLU. Our evaluation has focused on using a simple, but popular,
ordering strategy. Different matrix reordering methods can result in different num-
bers of fill-ins. More investigation is needed to address this issue in order to reduce
overestimation ratios.

Performance of S+ is sensitive to the underlying message-passing library perfor-
mance. Our experiments use the SHMEM communication library on Cray T3E, and
recently we have implemented S+ using MPI 1.1. The MPI based S+ version is more
portable; however, the current version is about 30% slower than the SHMEM-based
version. This is because SHMEM uses direct remote memory access, while MPI
requires hand-shake between communication peers, which involves synchronization
overhead. We expect that more careful optimization on this MPI version can lead to
better performance, and use of one-side communication available in the future MPI-2
release may also help boosting performance. The source code of this MPI-based S+

version is available at http://www.cs.ucsb.edu/research/S+, and the HPC group in
SUN Microsystems plans to include it in their next release of the S3L library used for
SUN SMPs and clusters [22].

Acknowledgments. We would like to thank Bin Jiang and Steven Richman for
their contribution in implementing S+, Horst Simon for providing access to a Cray
T3E at the National Energy Research Scientific Computing Center, Stefan Boeriu
for supporting access to a Cray T3E at San Diego Supercomputing Center, Andrew
Sherman and Vinod Gupta for providing circuit simulation matrices, Tim Davis,
Apostolos Gerasoulis, Xiaoye Li, Esmond Ng, and Horst Simon for their help during
our research, and the anonymous referees for their valuable comments.

Appendix A. Notations.
A The sparse matrix to be factorized. Notice that elements of A change

during factorization. In this paper proposed optimizations are applied to A
after symbolic factorization.

ai,j The element in A with row index i and column index j.
ai:j,s:t The submatrix in A from row i to row j and from column s to t.
lk Column k in the low triangular part of A.
uk Row k in the upper triangular part of A.
âi,j âi,j �= 0 if and only if ai,j is nonzero after symbolic factorization.

302 KAI SHEN, TAO YANG, AND XIANGMIN JIAO

k j

(a) (b)

k

i

j

akk akj

aik aij

akk akj akm

ajj ajm

aik aij aim

Fig. 13. An illustration for the proof of Theorem 3.2.

l̂k The index set of nonzero elements in lk after symbolic factorization.
ûk The index set of nonzero elements in uk after symbolic factorization.

|l̂k| The cardinality of l̂k.
|ûk| The cardinality of ûk.
Ai,j The submatrix in the partitioned A with row block index i and column

block index j.
Ai:j,s:t The submatrices in the partitioned A from row block i to j and from

column block s to t.
Li,j The submatrix with block index i and j in the lower triangular part.
Ui,j The submatrix with block index i and j in the upper triangular part.
R(i : j) Relaxed L/U supernode, which contains a diagonal block, an L supernode

and a U supernode.

Appendix B. Proof of theorems.

B.1. Theorem 1. Proof. To prove the theorem holds when vertex j is an an-
cestor of vertex k, we need only to show that it holds if vertex j is the parent of vertex
k, because of the transitivity of “⊆”.

If vertex j is the parent of vertex k in this elimination forest, âk,j �= 0. Let ati,j
denote the symbolic value of ai,j after step t of symbolic factorization. Since ak,j is
not changed after step k of symbolic factorization, akk,j �= 0.

We first examine the L part as illustrated in Figure 13(a). For any i > k and

i ∈ l̂k, i.e., âi,k �= 0, we have aki,k �= 0. Because aki,k and akk,j are used to update aki,j ,

it holds that i ∈ l̂j . Therefore, {r | r∈l̂k ∧ j≤r≤n} ⊆ l̂j .

Next we examine the U part as illustrated in Figure 13(b). Since lk must contain
at least one nonzero off-diagonal element before step k of symbolic factorization, we
assume it is ak−1

i,k . Because ak,j is the first off-diagonal nonzero in ûk, and âk,i �= 0, we
know i ≥ j. For any m > j and m ∈ ûk, we prove m ∈ ûj as follows. Since âk,m �= 0

and aki,k �= 0, it follows that aki,j �= 0 and aki,m �= 0. Therefore, aji,j �= 0. As a result,

aki,m �= 0 and ajj,m �= 0. And we conclude that {c | c∈ûk ∧ j≤c≤n} ⊆ ûj .

B.2. Theorem 2. Proof. If lk directly updates lj in LU factorization, vertex k
must have a parent in the forest. Let

T = {t | t ≤ j and t is an ancestor of k in the elimination forest}.

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 303

k

i

akjakiakk

aii aij aim

Fig. 14. An illustration for the proof of Theorem 3.4.

Since k’s parent ≤ j, set T is not empty. Let i be the largest element in T . We
show i = j by contradiction as illustrated in Figure 14. Assume i < j. Following
Theorem 3.2, {c | c∈ûk ∧ i≤c≤n} ⊆ ûi. Since âk,j �= 0, we know âi,j �= 0. Let m be
i’s parent. Since i is the largest element in T and m > i, we know m �∈ T . Thus,
it holds that m > j. However, ai,m should be the first off-diagonal nonzero in ûi.
This is a contradiction since âi,j �= 0. Thus vertex j is an ancestor of vertex k in the
elimination forest.

If lk indirectly updates lj , there must be a sequence s1, s2, . . . , sp such that s1 = k,
sp = j, and lsq directly updates lsq+1 for each 1 ≤ q ≤ p − 1. That is, vertex sq+1 is
an ancestor of vertex sq for each 1 ≤ q ≤ p − 1. Thus, we conclude that vertex j is
an ancestor of vertex k.

Conversely, if vertex j is an ancestor of vertex k in the elimination forest, there
must be a sequence s1, s2, . . . , sp such that s1 = k, sp = j, and vertex sq+1 is the
parent of vertex sq for each q, where 1 ≤ q ≤ p − 1. Then for each 1 ≤ q ≤ p − 1,

lsq directly updates lsq+1
since |l̂sq | �= 1 and âsq,sq+1

�= 0. Thus, we conclude that lk
directly or indirectly updates lj during numerical factorization.

B.3. Theorem 3. Proof. The “if” part is an immediate result of Definition 4.1.
Now we prove the “only if” part. If R(i1 : i2) is the parent of R(j1 : j2) in the
supernodal elimination forest, there exists vertex i ∈ {i1, i1 + 1, . . . , i2} and vertex
j ∈ {j1, j1+1, . . . , j2} such that i is j’s parent in the corresponding nodal elimination
forest. Below we prove by contradiction that such a vertex j is unique and it must be
j2.

Suppose j is not j2, i.e., j1 ≤ j < j2. Since the diagonal block of R(j1 : j2)
is considered to be dense (including symbolic fill-ins after amalgamation), for every
u ∈ {j1, j1 + 1, . . . , j2 − 1}, u’s parent is u + 1 in the nodal elimination forest. Thus
j’s parent should be one in {j1 + 1, . . . , j2}; however, we also know that j’s parent is
i in the nodal elimination forest and j2 < i. That is a contradiction.

B.4. Theorem 4. Proof. If the L part of supernode R(j1 : j2) directly or
indirectly updates L supernode R(i1 : i2), there exists an lj (j ∈ {j1, j1 + 1, . . . , j2})
that directly or indirectly updates column li (i ∈ {i1, i1 + 1, . . . , i2}). Because of
Theorem 3.4, i is an ancestor of j. According to Definition 4.1, R(i1 : i2) is an
ancestor of supernode R(j1 : j2).

On the other hand, if R(i1 : i2) is an ancestor of supernode R(j1 : j2), for
each child/parent pair in the path from R(j1 : j2) to R(i1 : i2), we can apply both
Theorem 4.2 and Theorem 3.4. Then, it is easy to show that the L part of each
child supernode in this path directly or indirectly updates the L part of its parent

304 KAI SHEN, TAO YANG, AND XIANGMIN JIAO

supernode. Thus L part of supernode R(j1 : j2) directly or indirectly updates L part
of supernode R(i1 : i2).

REFERENCES

[1] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon, Progress in sparse matrix
methods for large sparse linear systems on vector supercomputers, Int. J. Supercomput.
Appl., 1 (1987), pp. 10–30.

[2] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse LU
factorization, SIAM Matrix Anal. Appl., 18 (1997), pp. 140–158.

[3] J. Demmel, Numerical linear algebra on parallel processors, in Lecture Notes for NSF-CBMS
Regional Conference in the Mathematical Sciences, San Francisco, CA, 1995.

[4] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 720–755.

[5] J. Demmel, J. Gilbert, and X. S. Li, An Asynchronous Parallel Supernodal Algorithm for
Sparse Gaussian Elimination, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 915–952.

[6] J. W. Demmel, J. R. Gilbert, and X. S. Li, SuperLU Users’ Guide, 1997.
[7] J. Dongarra, J. D. Croz, S. Hammarling, and R. Hanson, An extended set of basic linear

algebra subroutines, ACM Trans. Math. Software, 14 (1988), pp. 18–32.
[8] I. S. Duff, On algorithms for obtaining a maximum transversal, ACM Trans. Math. Software,

7 (1981), pp. 315–330.
[9] C. Fu, X. Jiao, and T. Yang, A comparison of 1-D and 2-D data mapping for sparse LU

factorization on distributed memory machines, in Proceedings of the Eighth SIAM Confer-
ence on Parallel Processing for Scientific Computing, Minneapolis, MN, 1997, CD-ROM,
SIAM, Philadelphia, PA, 1997.

[10] C. Fu, X. Jiao, and T. Yang, Efficient sparse LU factorization with partial pivoting on
distributed memory architectures, IEEE Trans. Parallel Distrib. Systems, 9 (1998), pp. 109–
125.

[11] C. Fu and T. Yang, Sparse LU factorization with partial pivoting on distributed memory
machines, in Proceedings of the ACM/IEEE Supercomputing, Pittsburgh, PA, 1996.

[12] C. Fu and T. Yang, Space and time efficient execution of parallel irregular computations, in
Proceedings of the ACM Symposium on Principles & Practice of Parallel Programming,
Las Vegas, NV, 1997, pp. 57–68.

[13] K. Gallivan, B. Marsolf, and H. Wijshoff, The parallel solution of nonsymmetric sparse
linear systems using H* reordering and an associated factorization, in Proceedings of the
ACM International Conference on Supercomputing, Manchester, NH, 1994, pp. 419–430.

[14] A. George and E. Ng, Symbolic factorization for sparse Gaussian elimination with partial
pivoting, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 877–898.

[15] A. George and E. Ng, Parallel sparse Gaussian elimination with partial pivoting, Ann. Oper.
Res., 22 (1990), pp. 219–240.

[16] J. R. Gilbert and E. Ng, Predicting structure in nonsymmetric sparse matrix factorizations,
in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W. H.
Liu, eds., Springer-Verlag, 1993, pp. 107–139.

[17] G. Golub and J. M. Ortega, Scientific Computing: An Introduction with Parallel Computing
Compilers, Academic Press, Boston, MA, 1993.

[18] A. Gupta, G. Karypis, and V. Kumar, Highly scalable parallel algorithms for sparse matrix
factorization, IEEE Trans. Parallel Distrib. Systems, 8 (1995).

[19] S. Hadfield and T. Davis, A Parallel Unsymmetric-pattern Multifrontal Method, Tech. Re-
port TR-94-028, Computer and Information Sciences Department, University of Florida,
Gainesville, FL, 1994.

[20] B. Jiang, S. Richman, K. Shen, and T. Yang, Efficient sparse LU factorization with lazy
space allocation, in Proceedings of the Ninth SIAM Conference on Parallel Processing for
Scientific Computing, San Antonio, Texas, 1999, CD-ROM, SIAM, Philadelphia, PA, 1997.

[21] X. Jiao, Parallel Sparse Gaussian Elimination with Partial Pivoting and 2-D Data Mapping,
Master’s thesis, Department of Computer Science, University of California at Santa Bar-
bara, Santa Barbara, CA, 1997.

[22] G. Kechriotis, private communication, 1999.
[23] X. S. Li, Sparse Gaussian Elimination on High Performance Computers, Ph.D. thesis, Com-

puter Science Division, EECS, University of California at Berkeley, Berkeley, CA, 1996.
[24] X. S. Li, private communication, 1998.

EFFICIENT 2D PARALLEL SPARSE LU FACTORIZATION 305

[25] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134–172.

[26] E. Rothberg, Exploiting the Memory Hierarchy in Sequential and Parallel Sparse Cholesky
Factorization, Ph.D. thesis, Department of Computer Science, Stanford University, CA,
1992.

[27] E. Rothberg and R. Schreiber, Improved load distribution in parallel sparse Cholesky fac-
torization, in Proceedings of Supercomputing ’94, Washington, D.C., 1994, pp. 783–792.

[28] S. L. Scott and G. M. Thorson, The Cray T3E network: Adaptive routing in a high perfor-
mance 3D Torus, in Proceedings of HOT Interconnects IV, Stanford University, Stanford,
CA, 1996.

[29] K. Shen, X. Jiao, and T. Yang, Elimination forest guided 2D sparse LU factoriza-
tion, in Proceedings of the 10th ACM Symposium on Parallel Algorithms and Ar-
chitectures, Puerto Vallarta, Mexico, 1998, pp. 5–15; also available online from
http://www.cs.ucsb.edu/research/S+/.

WHICH EIGENVALUES ARE FOUND BY THE LANCZOS
METHOD?∗

A. B. J. KUIJLAARS†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 306–321

Abstract. When discussing the convergence properties of the Lanczos iteration method for the
real symmetric eigenvalue problem, Trefethen and Bau noted that the Lanczos method tends to find
eigenvalues in regions that have too little charge when compared to an equilibrium distribution. In
this paper a quantitative version of this rule of thumb is presented. We describe, in an asymptotic
sense, the region containing those eigenvalues that are well approximated by the Ritz values. The
region depends on the distribution of eigenvalues and on the ratio between the size of the matrix and
the number of iterations, and it is characterized by an extremal problem in potential theory which
was first considered by Rakhmanov. We give examples showing the connection with the equilibrium
distribution.

Key words. Ritz values, equilibrium distribution, potential theory

AMS subject classifications. 65F15, 31A15

PII. S089547989935527X

1. Introduction. The Lanczos iteration is a popular method to compute eigen-
values of large real symmetric matrices. For a given real symmetric matrix A of size
N ×N , the Lanczos method starts from a nonzero vector b ∈ R

N and generates two
sequences of numbers (αk) and (βk) as follows. Put β0 = 0, v0 = 0, v1 = b/‖b‖2, and
for k = 1, 2, . . . ,

αk = 〈vk, Avk〉, βkvk+1 = Avk − αkvk − βk−1vk−1,

where βk is taken such that ‖vk+1‖2 = 1. The vectors v1, v2, . . . , vn are an orthonormal
basis of the nth Krylov subspace spanned by b, Ab, . . . , An−1b. The coefficients αk
and βk are collected in the tridiagonal matrices

Tn =

α1 β1

β1 α2 β2

β2 α3
. . .

. . .
. . . βn−1

βn−1 αn

for n ≤ N . The eigenvalues of Tn are called Ritz values, and they are easier to compute
because of the tridiagonal nature of Tn and because n is smaller than N . Some of
the Ritz values turn out to be accurate approximations of some of the eigenvalues of
A, also when n is much smaller than N . The Lanczos method is discussed in many
books, e.g., [6, 8, 11, 17, 21, 25].

It is of basic importance for an appreciation of the Lanczos method to understand
which eigenvalues of A are approximated by the Ritz values. Outliers in the spectrum

∗Received by the editors April 27, 1999; accepted for publication (in revised form) by M. Hanke
February 2, 2000; published electronically June 20, 2000. This work was supported in part by FWO
research project G.0278.97 and a research grant from the Fund for Scientific Research, Flanders.

http://www.siam.org/journals/simax/22-1/35527.html
†Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Leu-

ven, Belgium (arno@wis.kuleuven.ac.be).

306

WHICH EIGENVALUES ARE FOUND BY THE LANCZOS METHOD? 307

are approximated very well, while eigenvalues in the bulk of the spectrum are typically
harder to approximate. Trefethen and Bau [25] observe a relationship with electric
charge distributions, and they state the following rule of thumb:

The Lanczos iteration tends to converge to eigenvalues in
regions of “too little charge” for an equilibrium distribution;

(1.1)

see [25, page 279]. This may be understood as follows. Assume that the eigenvalues of
A are located on the interval [−1, 1], except perhaps for a few outliers. Then one has to
compare the distribution of eigenvalues with the equilibrium distribution of [−1, 1],
which is the measure with density 1/(π

√
1− λ2). The density of the equilibrium

distribution is infinite at the endpoints ±1. Thus if the eigenvalues of A are spread
out more evenly over the interval [−1, 1], then the Lanczos method tends to find the
extreme eigenvalues. On the other hand, if the eigenvalues of A are distributed like
the equilibrium distribution, then the Lanczos iteration is very much useless if n < N ,
and does not find any eigenvalue until n = N . See [10] for more on the connection
between potential theory and matrix iteration methods.

It is the goal of this paper to provide a quantitative version of the rule of thumb
(1.1). We relate the rule of thumb to recent insights, initiated by Rakhmanov [18],
on the zero distribution of polynomials satisfying a discrete orthogonality. This re-
lation is used to describe the region of “too little charge” in an asymptotic regime
where both N and n tend to infinity. The region depends on the asymptotic dis-
tribution of eigenvalues and on the ratio t = n/N . Specifically, we associate with
a distribution σ and ratio t ∈ (0, 1) an open subset Λ(t;σ) of R. Under reasonable
assumptions discussed in section 2, it is shown that eigenvalues in Λ(t;σ) are approx-
imated exponentially fast, and we give an estimate for the exponential convergence
rate in Theorem 3.1. See [3, 4], where similar ideas are used in connection with other
methods from numerical linear algebra.

The sets Λ(t;σ) are determined explicitly for the two cases

dσ =
1

π
√

1− λ2
dλ, λ ∈ [−1, 1],(1.2)

and

dσ =
1

2
dλ, λ ∈ [−1, 1](1.3)

in section 4. The first case corresponds to eigenvalues distributed according to the
equilibrium measure of [−1, 1], and it turns out that Λ(t;σ) = R \ [−1, 1] for all
t ∈ (0, 1). Thus only eigenvalues (if any) outside [−1, 1] are approximated. The
case (1.3) corresponds to equally spaced eigenvalues in [−1, 1]. We use results of
Rakhmanov [18] to prove that in this case

Λ(t;σ) = R \ [−r(t), r(t)](1.4)

with r(t) =
√

1− t2. Hence, in addition to eigenvalues outside [−1, 1], also some
extreme eigenvalues in the interval [−1, 1] are well approximated. We compare this
asymptotic result with the behavior of Ritz values computed for a diagonal matrix
with 201 equally spaced eigenvalues; see Figure 4.1 below.

A sufficient condition on the eigenvalue distribution σ is given in section 5, which
ensures the behavior (1.4) of the sets Λ(t;σ). In these cases extreme eigenvalues are

308 A. B. J. KUIJLAARS

approximated. To illustrate the possibility that interior eigenvalues are found by the
Lanczos iteration rather than the extreme eigenvalues, a condition on σ is given in
section 6 which implies that for all t ∈ (0, 1),

Λ(t;σ) = (R \ [−1, 1]) ∪ (−r(t), r(t))(1.5)

for some r(t) ∈ [0, 1). We apply these results to ultraspherical distributions

dσ(λ) = Cα(1− λ)αdλ, λ ∈ [−1, 1],(1.6)

in section 7. In (1.6) the constant Cα is such that σ is a probability measure. It follows
that for α > −1/2, the sets Λ(t;σ) have the form (1.4), while for α ∈ (−1,−1/2) we
have (1.5). This behavior illustrates the rule of thumb (1.1). Indeed, the equilibrium
distribution corresponds to α = −1/2, and for α > −1/2, there is less charge toward
the end of the interval [−1, 1], while for α < −1/2 there is more charge near the
endpoints and less charge near 0.

The nature of our results is different from the existing convergence results for the
Lanczos method, such as the error bounds of Kaniel [13] and Saad [20]; see also [17, 21].
These are a priori bounds valid for fixed n and N , while our estimates are valid in
an asymptotic regime when both n and N tend to infinity. The Kaniel–Saad bounds
may greatly overestimate the actual error, since they do not take into account the
fine structure of the spectrum. Our results require an a priori knowledge of the
asymptotic distribution of eigenvalues. Having this information, our asymptotic error
bounds are more precise. Other papers discussing convergence rates of the Lanczos
method include [12, 23, 24].

We emphasize that our results are of a theoretical nature and always assume exact
arithmetic.

2. Discrete orthogonal polynomials. The orthogonal polynomials come in as
follows. The Lanczos iteration is equivalent to a polynomial minimization problem.
Let pn(λ) = det(λI − Tn) be the characteristic polynomial of Tn. Then pn is a monic
polynomial of degree n that minimizes ‖pn(A)b‖2 among all monic polynomials of
degree n. The zeros of pn are of course equal to the Ritz values. The norm is equal
to

‖pn(A)b‖2 =

(
N∑
k=1

〈b, ek〉2pn(λk)2
)1/2

,(2.1)

where λ1, . . . , λN are the eigenvalues of A and e1, . . . , eN are the corresponding or-
thonormal eigenvectors. Thus pn is orthogonal with respect to the discrete measure

N∑
k=1

〈b, ek〉2δλk
,

which has mass 〈b, ek〉2 at the eigenvalue λk. Here δλk
is the Dirac measure concen-

trated at λk.
We are going to consider the situation where both N and n tend to infinity. We

assume that we have a sequence of matrices (AN) with AN a real symmetric matrix
of size N ×N . The eigenvalues of AN are denoted by

λ1,N < λ2,N < · · · < λN,N ,

WHICH EIGENVALUES ARE FOUND BY THE LANCZOS METHOD? 309

and they are assumed to be distinct. This is not an essential restriction, since all of
our results would remain valid if we would assume instead that AN is of size N ′×N ′

with N ′ ≥ N , and AN has exactly N distinct eigenvalues λ1,N < · · · < λN,N . Only
for ease of exposition we assume that all eigenvalues are distinct. We also assume
that the eigenvalues λk,N are all contained in a fixed bounded interval and that

lim
N→∞

1

N

N∑
k=1

δλk,N
= σ,(2.2)

with σ a Borel probability measure on R with compact support. The convergence
is in the sense of weak convergence of measure. Thus for every continuous function
f : R→ R,

lim
N→∞

1

N

N∑
k=1

f(λk,N) =

∫
f dσ.

The relation (2.2) expresses that σ is the asymptotic distribution of the eigenvalues.
In many practical situations, matrices AN appear as discretizations of a continuous
operator. The size N is related to the mesh size of the discretization. A relation
like (2.2) may then very well hold, where the measure σ is determined by the spectral
properties of the continuous operator; see, e.g., [1, 3, 12]. Note that (2.2) forces “most”
eigenvalues λk,N to be in—or close to—the support of the measure σ. However, it
does not exclude outliers lying anywhere on the real line, as long as their number is
o(N) as N →∞.

We also have for each N a starting vector bN ∈ R
N which we assume to be

normalized so that ‖bN‖2 = 1. Thus

N∑
k=1

〈bN , ek,N 〉2 = 1,

where (ek,N)Nk=1 is an orthonormal basis of eigenvectors of AN . We assume that the
vectors bN are chosen sufficiently random, so that none of its Fourier coefficients in
the basis (ek,N) is exponentially small as N →∞. That is, we assume

lim
N→∞

(
min

1≤k≤N
|〈bN , ek,N 〉|

)1/N

= 1.(2.3)

We need a further technical condition on the spacings of the eigenvalues, which
prevents them from being too close. A possible condition is to assume that there
exists c > 0 such that

|λk+1,N − λk,N | ≥ c

N
(2.4)

for all N and all k = 1, . . . , N − 1. This condition was used by Rakhmanov [18]
to prove Theorem 2.1 stated below. A more general condition was introduced by
Dragnev and Saff [9], which we will also use here. We assume that whenever, for each
N , an index k = kN ∈ {1, . . . , N} is chosen such that

lim
N→∞

λk,N = λ ∈ R,

310 A. B. J. KUIJLAARS

then

lim
N→∞

1

N

N∑
j=1,j �=k

log |λk,N − λj,N | =
∫

log |λ− λ′| dσ(λ′).(2.5)

As pointed out in [9], under the assumption (2.2) the condition (2.5) is strictly weaker
than (2.4). For example, the Chebyshev points λk,N = cos((k − 1/2)π/N) satisfy
(2.5) with dσ = 1/(π

√
1− λ2) dλ, but they do not satisfy (2.4); see [9, Lemma 3.2],

where also zeros of more general orthogonal polynomials are discussed. The condition
(2.5) also prevents eigenvalues from getting too close, but not as strictly as (2.4)
does. It is possible that (2.5) holds and to have a pair of eigenvalues at a distance
1/Np for some p > 0. On the other hand, two exponentially close eigenvalues, i.e.,
|λk+1,N − λk,N | ≤ e−cN for some c > 0, are not possible if (2.5) holds.

In what follows, we use Uµ to denote the logarithmic potential of a measure µ,
i.e.,

Uµ(λ) =

∫
log

1

|λ− λ′| dµ(λ
′).

Thus the right-hand side of (2.5) is equal to −Uσ(λ). It can be shown from (2.5) that
Uσ(λ) is a continuous function of λ ∈ C. In particular, σ has no mass points.

For 0 ≤ n ≤ N , we denote by pn,N the nth degree monic Lanczos polynomial
associated with AN . The zeros of pn,N are real and simple and we denote them by

θ1,n,N < θ2,n,N < · · · < θn,n,N .

The following is Rakhmanov’s result in the more general situation given by Dragnev
and Saff.

Theorem 2.1. Assume (2.2), (2.3), and (2.5). Let n,N →∞ in such a way that
n/N → t ∈ (0, 1). Then there is a Borel probability measure µt, depending only on t
and σ, such that

lim
N→∞

1

n

n∑
j=1

δθj,n,N
= µt(2.6)

and a real constant Ft such that

lim
N→∞

‖pn,N (AN)bN‖1/n2 = exp(−Ft).(2.7)

The measure µt satisfies

0 ≤ tµt ≤ σ,

∫
dµt = 1(2.8)

and minimizes the logarithmic energy∫ ∫
log

1

|λ− λ′| dµ(λ) dµ(λ
′)

among all measures µ satisfying 0 ≤ tµ ≤ σ and
∫
dµ = 1. The logarithmic potential

Uµt of µt is a continuous function on C, and the constant Ft is such that

Uµt(λ) = Ft for λ ∈ supp(σ − tµt),(2.9)

Uµt(λ) ≤ Ft for λ ∈ C.(2.10)

WHICH EIGENVALUES ARE FOUND BY THE LANCZOS METHOD? 311

The relations (2.8)–(2.10) characterize the pair (µt, Ft).
Proof. See Theorem 3.3 of [9]. In this paper it is assumed that supp(σ) is

connected. However, this is not essential. See also [15] or [2, Theorem 1.3].
We note that in [9] a more general situation is considered which also involves an

external field. Results similar to Theorem 2.1, under conditions different from (2.5),
were given in [16] and [2].

Using (2.2), (2.6), and (2.8) one can easily show that for an interval (a, b), one
has

lim
N→∞

#{j : θj,n,N ∈ (a, b)} −#{j : λj,N ∈ (a, b)}
N

= 0

if and only if

(a, b) ∩ supp(σ − tµt) = ∅.

Thus one can expect convergence of Ritz values only outside the support of σ − tµt.
The set R \ supp(σ − tµt) may still be too big. Instead we consider Λ(t;σ) defined in
terms of µt and Ft as

Λ(t;σ) := {λ ∈ R : Uµt(λ) < Ft}.(2.11)

From (2.9) it is clear that

Λ(t;σ) ⊂ R \ supp(σ − tµt),

but equality need not hold in general. As indicated in the introduction, the sets (2.11)
will be the regions of too little charge compared to the equilibrium distribution, as
will become clear in the rest of the paper.

3. Main result. We assume we are in a situation as described in the previous
section. That is, we have a sequence (AN) of real symmetric matrices with eigenvalues
λ1,N , . . . , λN,N . For 1 ≤ n ≤ N , we have the Ritz values θ1,n,N , . . . , θn,n,N generated
by the Lanczos iteration with starting vector bN . Our main result is the following.

Theorem 3.1. Assume (2.2), (2.3), and (2.5). Let k = kN be such that

lim
N→∞

λk,N = λ.

Let 0 < t < 1 and assume n = nN is such that n/N → t as N →∞. Then

lim sup
N→∞

(
min

1≤j≤n
|λk,N − θj,n,N |

)1/n

≤ exp (−(Ft − Uµt(λ))/2) ,(3.1)

where µt and Ft are as in Theorem 2.1.
Proof. We are going to estimate pn,N (λk,N) in two ways. First, we have

lim sup
N→∞

|pn,N (λk,N)|1/n = lim sup
N→∞

|〈bN , ek,N 〉pn,N (λk,N)|1/n

≤ lim sup
N→∞

‖pn,N (AN)bN‖1/n2

= exp(−Ft),(3.2)

where we used (2.3), (2.1), and (2.7), respectively.

312 A. B. J. KUIJLAARS

Next, we note that

|pn,N (λk,N)| =
n∏
j=1

|λk,N − θj,n,N |,

and to estimate the product, we are going to divide the Ritz values into three groups.
First we let j0 ∈ {1, . . . , n} be such that

θj0,n,N ≤ λk,N < θj0+1,n,N .(3.3)

(In case λk,N ≥ θn,n,N or λk,N < θ1,n,N , the proof simplifies, and we will not consider
this case explicitly.) Thus θj0,n,N and θj0+1,n,N are the Ritz values closest to λk,N .
We put

J0 := {j0, j0 + 1}.
For a given r > 0, we further introduce the sets

J1 := {j ∈ {1, . . . , n} : |θj,n,N − λ| < r, j �= j0, j �= j0 + 1},
J2 := {j ∈ {1, . . . , n} : |θj,n,N − λ| ≥ r}.

For N large enough, the sets J0, J1, and J2 form a partition of {1, . . . , n}. The set J2

contains the Ritz values that are “far” from λ. The weak convergence (2.6), together
with the fact that σ and thus µt have no mass points, implies that

lim
N→∞

1

n

∑
j∈J2

δθj,n,N
= µt − (µt)|r,

where we use (µt)|r to denote the restriction of µt to [λ− r, λ+ r]. Since λk,N → λ,
it then follows that

lim
N→∞

1

n

∑
j∈J2

log |λk,N − θj,n,N | = −Uµt−(µt)|r (λ).(3.4)

Since the eigenvalues of AN separate the Ritz values, it follows from (3.3) that

θj,n,N < λk+j−j0,N if j < j0

and

θj,n,N > λk+j−j0−1,N if j > j0 + 1.

Then

|λk,N − θj,n,N | ≥ |λk,N − λk+j−j0,N | if j < j0

and

|λk,N − θj,n,N | ≥ |λk,N − λk+j−j0−,N | if j > j0 + 1.

This implies that

∑
j∈J1

log |λk,N − θj,n,N | ≥
∑

i �=k, |λi,N−λ|<r
log |λi,N − λk,N |.(3.5)

WHICH EIGENVALUES ARE FOUND BY THE LANCZOS METHOD? 313

From (2.2) it follows that

lim
N→∞

1

N

∑
|λi,N−λ|≥r

log |λk,N − λi,N | = −Uσ−σ|r (λ),(3.6)

where σ|r is the restriction of σ to [λ− r, λ+ r], and from (2.5), we get

lim
N→∞

1

N

∑
i �=k

log |λk,N − λi,N | = −Uσ(λ).(3.7)

Combining (3.6) and (3.7) we see that

lim
N→∞

1

N

∑
i �=k, |λi,N−λ|<r

log |λk,N − λi,N | = −Uσ|r (λ).(3.8)

Then by (3.5) and (3.8) we get

lim inf
N→∞

1

N

∑
j∈J1

log |λk,N − θj,n,N | ≥ −Uσ|r (λ).(3.9)

Then by (3.4) and (3.9),

lim inf
N→∞

1

n

∑
j∈J1∪J2

log |λk,N − θj,n,N | ≥ −Uµt(λ) + U (µt)|r (λ)− 1

t
Uσ|r (λ).

This holds for every r > 0. Note that the left-hand side does not depend on r. Letting
r → 0, we get from Lebesgue’s dominated convergence theorem that the potentials of
(µt)|r and σ|r tend to 0. Therefore

lim inf
N→∞

1

n

∑
j �=j0,j0+1

log |λk,N − θj,n,N | ≥ −Uµt(λ),

and this is

lim inf
N→∞

∣∣∣∣ pn,N (λk,N)

(λk,N − θj0,n,N)(λk,N − θj0+1,n,N)

∣∣∣∣
1/n

≥ exp (−Uµt(λ)) ,(3.10)

which is the other estimate we need on |pn,N (λk,N)|.
Combining (3.2) and (3.10) we obtain

lim sup
N→∞

|(λk,N − θj0,n,N)(λk,N − θj0+1,n,N)|1/n ≤ exp (−(Ft − Uµt(λ))) .(3.11)

Then (3.1) follows, and the proof of the theorem is complete.
Remark 3.2. By (2.9)–(2.10) we always have Ft − Uµt(λ) ≥ 0. The theorem

does not give any information if Uµt(λ) = Ft. Then the right-hand side of (3.1) is 1
and we cannot expect to find a Ritz value close to λk,N . However, if Uµt(λ) < Ft, the
right-hand side of (3.1) is less than 1. Then for N large enough, every eigenvalue of
AN close to λ is approximated by some Ritz value at an exponential rate. Recalling
the definition of Λ(t;σ) given in (2.11), we see indeed that eigenvalues in Λ(t;σ) are
well approximated by the Lanczos iteration as n,N → ∞ and n/N → t. The set

314 A. B. J. KUIJLAARS

(2.11) is the region of too little charge for an eigenvalue distribution referred to in the
rule of thumb (1.1). This will also become clear from the examples.

Remark 3.3. The factor 1/2 in (Ft − Uµt(λ))/2 in (3.1) does not seem natural
at first sight. However, analyzing the proof of Theorem 3.1—especially (3.11)—it
becomes clear that the factor 1/2 appears if two Ritz values are exponentially close to
the same eigenvalue. This could happen, for example, in a situation which is perfectly
symmetric around 0 and where Ft−Uµt(0) > 0. If N is odd, then 0 is an eigenvalue.
If, in addition, n is even, then the Ritz values come in pairs, and there will be two
Ritz values close to 0. In such a case the exponential convergence rate (Ft−Uµt(λ))/2
arises. Such cases, however, are exceptional. In most cases, one expects only one Ritz
value to approximate a particular eigenvalue. Then we can conclude from (3.11) that
the exponential convergence rate in (3.1) improves to Ft − Uµt(λ).

However, it seems likely that the error estimate (3.1) is not best possible and can
be improved in all cases. More delicate estimates may lead to

lim sup
N→∞

(
min

1≤j≤n
|λk,N − θj,n,N |

)1/n

≤ exp(−(Ft − Uµt(λ)))

in general and to

lim sup
N→∞

(
min

1≤j≤n
|λk,N − θj,n,N |

)1/n

≤ exp(−2(Ft − Uµt(λ)))

in all but the exceptional cases. I am very grateful to one of the referees for pointing
out that (3.1) may be improved.

4. First examples. We have seen that, for a given eigenvalue distribution σ
and a ratio t = n/N , eigenvalues in the set

Λ(t;σ) = {λ ∈ R : Ft − Uµt(λ) > 0}
are well approximated by the Lanczos method if N is large. We will determine Λ(t;σ)
in a number of cases. In general, it is an open set, since Uµt is a continuous function,
and by (2.9) it is disjoint from the support of σ− tµt. In many cases, Λ(t;σ) is equal
to R \ supp(σ − tµt).

4.1. Eigenvalues distributed as the equilibrium distribution. Suppose
the eigenvalues of the matrices AN are distributed like the equilibrium distribution of
[−1, 1] as N →∞. This is, for example, the case if the eigenvalues are the Chebyshev
points

λk,N = cos

(
(k − 1/2)π

N

)
, 1 ≤ k ≤ N.

Then the measure σ from (2.2) is

dσ(λ) :=
1

π
√

1− λ2
dλ, λ ∈ [−1, 1].(4.1)

The equilibrium measure σ satisfies Uσ(λ) = log 2 if λ ∈ [−1, 1], and Uσ(λ) < log 2 if
λ ∈ C \ [−1, 1]; see, e.g., [19, 22]. It then follows from the relations (2.9)–(2.10) that
characterize the measure µt and the constant Ft that µt = σ and Ft = log 2 for every
t ∈ (0, 1). Thus

Λ(t;σ) = R \ [−1, 1](4.2)

WHICH EIGENVALUES ARE FOUND BY THE LANCZOS METHOD? 315

for every t ∈ (0, 1). We see that eigenvalues outside [−1, 1] (if any) are found by the
Lanczos iteration, but no eigenvalues in [−1, 1]. This confirms the idea from the rule
of thumb that a distribution of eigenvalues according to the equilibrium measure is
the worst possible case for the Lanczos iteration with n < N .

4.2. Equally spaced eigenvalues. Suppose the eigenvalues are (more or less)
equally spaced on [−1, 1], so that

dσ(λ) =
1

2
dλ, λ ∈ [−1, 1].(4.3)

The measures µt and the constants Ft for this case were determined by Rakhmanov [18];
see also [15]. Let t ∈ (0, 1) and

r = r(t) =
√

1− t2.(4.4)

Then

dµt
dλ

=

1

2t
for λ ∈ [−1,−r] ∪ [r, 1],

1

πt
arctan

t√
r2 − λ2

for λ ∈ [−r, r],

and

Ft = 1 + log
2√

1− t2 −
1

2t
log

1 + t

1− t .

Hence we have

R \ supp(σ − tµt) = R \ [−r, r] = R \ [−
√

1− t2,
√

1− t2].
In this case, one can show that Λ(t;σ) = R\ supp(σ− tµt); see also (5.6) below. Thus

Λ(t;σ) = R \ [−
√

1− t2,
√

1− t2].(4.5)

Thus the eigenvalues outside the interval [−√1− t2,√1− t2] are found by the Lanczos
iteration if n/N → t. These are the extreme eigenvalues on both sides, and their
number is approximately

(1− r)N = (1−
√

1− t2)N =
t2

1 +
√

1− t2N.

The measure (4.3) has less charge than the equilibrium measure (4.1) near the end-
points ±1 and more charge towards the middle of the interval [−1, 1], especially near
0. The sets (4.5) illustrate nicely the rule of thumb (1.1).

To see how Theorem 3.1, which is an asymptotic result, compares to a particular
situation with finite N , we performed experiments with diagonal matrices AN with
N equally spaced eigenvalues

λk,N = −1 + 2
k − 1

N − 1
, k = 1, . . . , N,

in the interval [−1, 1]. The starting vector b is the all-one vector.

316 A. B. J. KUIJLAARS

0 20 40 60 80 100 120 140 160 180 200

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

number of iterations

Fig. 4.1. The figure shows, for every number n of iterations, the Ritz values that are closer
than 10−4 to an eigenvalue. Calculations were done for a diagonal matrix with N = 201 equally
spaced eigenvalues in [−1, 1]. The figure also shows the curves ±r(t) from (4.4), with t = n/N .
These curves determine the sets Λ(t;σ) of eigenvalues that are well approximated in the asymptotic
sense; see (4.5).

The results for N = 201 are shown in Figure 4.1. For every iteration, the Ritz
values are calculated and compared with the eigenvalues. A “+” indicates a Ritz
value that is closer than 10−4 to one of the eigenvalues. Also shown are the curves
r(t) and −r(t) with t equal to the number of iterations n divided by N . According to
(4.5) the eigenvalues outside [−r(t), r(t)] are found if n/N → t. The figure is in good
agreement with the predicted asymptotic behavior. All Ritz values slightly bigger
than r(t) or slightly smaller than −r(t) are very close to an eigenvalue. Some Ritz
values inside the parabolic region bounded by ±r(t) are also close to an eigenvalue,
but not in any systematic way (apart from 0, which by symmetry is a Ritz value for
every odd-numbered iteration). These Ritz values are only “by accident” close to an
eigenvalue.

The computations were done with MATLAB, based on a code written by J.W.
Demmel for Lanczos iteration with full reorthogonalization. This code is part of a
collection of MATLAB codes accompanying the book [8].

5. A sufficient condition to find extreme eigenvalues. In this section we
give a sufficient condition on the eigenvalue distribution, which guarantees that the
Lanczos method finds the extreme eigenvalues. Our result is the following.

Theorem 5.1. Let σ be supported on [−1, 1] with a density w(λ) which is even
on [−1, 1], i.e., w(−λ) = w(λ). Assume

√
1− λ2w(λ) decreases for λ ∈ [0, 1]. Then

for every t ∈ (0, 1), there exists r(t) ∈ (0, 1] such that

Λ(t;σ) = R \ [−r(t), r(t)].(5.1)

The proof of the theorem is based on a number of lemmas related to extremal
measures in an external field. The connection of the measures µt with problems with

WHICH EIGENVALUES ARE FOUND BY THE LANCZOS METHOD? 317

external fields was pointed out by Rakhmanov [18], Kuijlaars and Rakhmanov [15],
and Dragnev and Saff [9]. We review here the necessary notions.

For a continuous function Q on a compact interval Σ, the problem is to minimize
∫ ∫

log
1

|λ− λ′| dν(λ) dν(λ
′) + 2

∫
Q(λ) dν(λ)

among all Borel probability measures ν supported on Σ. There is a unique minimizing
measure, denoted here by νQ, with a support SQ = supp(νQ). We call νQ the extremal
measure in the external field Q. The minimizer satisfies

UνQ(λ) +Q(λ) = C if λ ∈ SQ,(5.2)

UνQ(λ) +Q(λ) ≥ C if λ ∈ Σ,(5.3)

where C is a real constant. The relations (5.2)–(5.3) characterize the measure νQ and
the constant C.

Now assume we have a measure σ with compact support as before. Assume its
potential Uσ is continuous. Associated with σ we have the measures µt and the
constants Ft for t ∈ (0, 1) as described in Theorem 2.1. Then for t ∈ (0, 1)

νt :=
σ − tµt
1− t(5.4)

is a probability measure on Σ, and rewriting the relations (2.9)–(2.10) we can easily
show that νt is the extremal measure in the external field

Qt := − 1

1− tU
σ,(5.5)

with constants Ct := −(t/(1− t))Ft. A comprehensive account about extremal mea-
sures in external fields can be found in [22]. See also [7].

As far as the t-dependence is concerned, it is important for us to know that the
support of νt decreases as the parameter t increases; see [22, Theorem IV.1.6]. Thus
in view of (5.4) the support of σ − tµt is decreasing. Also it is known that

{λ : Uνt(λ) +Qt(λ) = Ct} =
⋂
ε>0

supp(νt−ε);

see [22, Theorem IV.1.6] or [5]. Then it is easy to see that

Λ(t;σ) = R \ {λ : Uνt(λ) +Qt(λ) = Ct} = R \
⋂
ε>0

supp(νt−ε).(5.6)

For the proof of Theorem 5.1, we need the following recent result.
Lemma 5.2. Let Q be a continuous external field on [0, 1] and let v be an integrable

function on [0, 1] such that

∫ 1

0

log |λ− λ′|v(λ′) dλ′ = Q(λ) if λ ∈ [0, 1].

Then the following hold.
(a) If

√
λ(1− λ)v(λ) is decreasing on [0, 1], then SQ = [0, r] for some r ∈ (0, 1].

318 A. B. J. KUIJLAARS

(b) If
√
λ(1− λ)v(λ) is increasing on [0, 1], then SQ = [r, 1] for some r ∈ [0, 1).

Proof. See Theorem 2 of [14], where this result was proved under the assumption
that Q is differentiable with a Hölder continuous derivative. The same proof works
in the present situation.

By a quadratic transformation we can use the lemma for even external fields on
[−1, 1].

Lemma 5.3. Let Q be an even continuous external field on [−1, 1] and let v be
an even integrable function on [−1, 1] such that

∫ 1

−1

log |λ− λ′|v(λ′) dλ′ = Q(λ) if λ ∈ [−1, 1].

Then the following hold.
(a) If

√
1− λ2v(λ) is decreasing on [0, 1], then SQ = [−r, r] for some r ∈ (0, 1].

(b) If
√

1− λ2v(λ) is increasing on [0, 1], then SQ = [−1, r] ∪ [r, 1] for some
r ∈ [0, 1).

Proof. Let Q̃(λ) := Q(
√
λ) for λ ∈ [0, 1]. Then it is easy to see that

∫ 1

0

log |λ− λ′|ṽ(λ′) dλ′ = Q̃(λ) if λ ∈ [0, 1],

where

ṽ(λ) =
v(
√
λ)

2
√
λ

for λ ∈ [0, 1].

Then

√
λ(1− λ)ṽ(λ) =

1

2

√
1− λv(

√
λ) for λ ∈ [0, 1].

If we are in part (a), then we see that
√
λ(1− λ)ṽ(λ) decreases on [0, 1]. From part

(a) of Lemma 5.2 it follows that SQ̃ = [0, r2] for some r ∈ (0, 1]. Then it readily
follows that SQ = [−r, r].

Similarly, if we are in part (b), then
√
λ(1− λ)ṽ(λ) increases on [0, 1], and from

part (b) of Lemma 5.2 it then follows that SQ̃ = [r2, 1] for some r ∈ [0, 1). Then
SQ = [−1,−r] ∪ [r, 1].

Now we are ready for the proof of Theorem 5.1.
Proof. Let

Qt(λ) = − 1

1− tU
σ(λ) =

1

1− t
∫ 1

−1

log |λ− λ′|w(λ′) dλ′

be the external field as in (5.5). Then we are clearly in the situation of Lemma 5.3
with v(λ) = (1/(1 − t))w(λ). The assumption on w gives that we are in part (a) of
Lemma 5.3, and it follows that supp(νt) = SQt

= [−r0(t), r0(t)] for some r0(t) ∈ (0, 1].
Then r0(t) is a decreasing function of t. In view of (5.6) we then get

Λ(t;σ) = R \ [−r(t), r(t)]
with

r(t) := r0(t−) = lim
ε→0+

r0(t− ε).(5.7)

This completes the proof of Theorem 5.1.

WHICH EIGENVALUES ARE FOUND BY THE LANCZOS METHOD? 319

6. A sufficient condition for interior eigenvalues. Using ideas similar to
those in the previous section, we can give a condition that guarantees that the Lanc-
zos method does not find the extreme eigenvalues, but rather the eigenvalues in the
interior of the spectrum.

Theorem 6.1. Let σ be supported on [−1, 1] with an even density w(λ) on [−1, 1].
Assume

√
1− λ2w(λ) increases for λ ∈ [0, 1]. Then for every t ∈ (0, 1), we have either

Λ(t;σ) = (−∞,−1) ∪ (1,∞)(6.1)

or

Λ(t;σ) = (−∞,−1) ∪ (−r(t), r(t)) ∪ (1,∞)(6.2)

for some r(t) ∈ (0, 1).
Proof. The proof is the same as the proof of Theorem 5.1. The only difference is

that we use part (b) of Lemma 5.3 instead of part (a).
If we are in case (6.1), then no eigenvalues in [−1, 1] are well approximated by the

Lanczos method. If we are in case (6.2), then we see that eigenvalues in an interval
around 0 are found, but not the extreme eigenvalues in [−1, 1] close to ±1.

The function r(t) in Theorem 6.1 increases with t.

7. More examples: Ultraspherical distributions. We illustrate Theorems
5.1 and 6.1 using ultraspherical distributions

dσ

dλ
= Cα(1− λ2)α if λ ∈ [−1, 1],(7.1)

with α > −1, and Cα := Γ(α + 3/2)/(
√
πΓ(α + 1)) is such that σ is a probability

measure on [−1, 1]. The distributions considered in section 4 belong to this class.
We have

√
1− λ2

dσ

dλ
= Cα(1− λ2)α+1/2

and this decreases on [0, 1] if α > −1/2, and increases on [0, 1] if −1 < α < −1/2.
Thus if α > −1/2, we have

Λ(t;σ) = R \ [−r(t), r(t)](7.2)

with r(t) ∈ (0, 1] by Theorem 5.1. Hence in this case the extreme eigenvalues are com-
puted by the Lanczos method. On the other hand, if −1 < α < −1/2, then Theorem
6.1 applies, and it follows that either no eigenvalues in [−1, 1] or only eigenvalues in
an interval around 0 are found.

It is possible to compute the numbers r(t) from (7.2) explicitly. We assume
α > −1/2. Recall the connection with the extremal measure νt in the presence of the
external field

Qt(λ) = − 1

1− tU
σ(λ)

as discussed in section 5. By Lemma 5.3, the support of νt is an interval [−r0(t), r0(t)]
and (5.7) gives the relation of r0(t) with r(t). By Theorem IV.1.5 of [22], the number
r = r0(t) maximizes the Mhaskar–Saff functional

F (r) := log(r/2)−
∫ r

−r
Qt(λ)

dλ

π
√
r2 − λ2

.

320 A. B. J. KUIJLAARS

A little calculation shows that

F (r) = log(r/2)− 1

1− t
∫ r

−r

∫ 1

−1

log |λ− λ′| dσ(λ′) dλ

π
√
r2 − λ2

= log(r/2)− 2

1− t
∫ 1

0

(∫ r

−r
log |λ− λ′| dλ

π
√
r2 − λ2

)
dσ(λ′).

The inner integral is minus the potential of the equilibrium measure of [−r, r] and its
value is equal to log(r/2) for λ′ ∈ [0, r] and to

log(r/2) + log

∣∣∣∣∣∣
λ′

r
+

√(
λ′

r

)2

− 1

∣∣∣∣∣∣
for λ′ ∈ [r, 1]. Thus

F (r) =

(
1− 1

1− t
)

log(r/2)− 2

1− t
∫ 1

r

log

∣∣∣∣∣∣
λ′

r
+

√(
λ′

r

)2

− 1

∣∣∣∣∣∣ dσ(λ
′).

Taking the derivative with respect to r and equating this to 0, we find that r = r0(t)
and t satisfy (we write λ instead of λ′)

t = 2

∫ 1

r

λ√
λ2 − r2 dσ(λ).(7.3)

After substituting the formula (7.1) for σ, and introducing a change of variables
y = (λ2 − r2)/(1− r2), we find

t = Cα(1− r2)α+1/2

∫ 1

0

(1− y)α√
y

dy = (1− r2)α+1/2,

since the value of the beta integral is exactly C−1
α . Rewriting this, we see

r = r0(t) =
√

1− t2/(2α+1).

Since r0(t) is continuous in t, we finally find using (5.7)

r(t) = lim
ε→0+

r0(t− ε) =
√

1− t2/(2α+1).(7.4)

Note that (7.4) is in complete agreement with the formula (4.4) we found for the case
of equally spaced eigenvalues, i.e., α = 0.

Remark 7.1. The formula (7.3) is generally valid for measures σ that satisfy the
conditions of Theorem 5.1. To find r(t) one has to invert (7.3), which in general will
not be possible explicitly. For the special case of an eigenvalue distribution arising
from discretization of the Poisson equation in two dimensions, an explicit formula was
obtained recently in [3].

Acknowledgments. I thank Walter Van Assche, Marc Van Barel, and Bernhard
Beckermann for reading an earlier version of the manuscript and for making valuable
comments. I am also grateful to the anonymous referees for their remarks, which
helped to improve the manuscript.

WHICH EIGENVALUES ARE FOUND BY THE LANCZOS METHOD? 321

REFERENCES

[1] W. Arveson, C∗-algebras and numerical linear algebra, J. Funct. Anal., 122 (1994), pp. 333–
360.

[2] B. Beckermann, On a conjecture of E.A. Rakhmanov, Constr. Approx., 16 (2000), pp. 427–
448.

[3] B. Beckermann and A. B. J. Kuijlaars, Superlinear Convergence of Conjugate Gradients,
manuscript, 1999.

[4] B. Beckermann and E. B. Saff, The sensitivity of least squares polynomial approximation,
Internat. Ser. Numer. Math. 131, Birkhäuser, Basel, 1999, pp. 1–19.

[5] V. S. Buyarov and E. A. Rakhkmanov, Families of equilibrium measures with external field
on the real axis, Sb. Math., 190 (1999), pp. 791–802.

[6] J. K. Cullum and R. A. Willoughby, Lanczos algorithms for large symmetric eigenvalue
computations, Birkhäuser, Boston, 1985.

[7] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach,
Courant Lect. Notes Math. 3, Courant Institute, New York, 1999.

[8] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.
[9] P. D. Dragnev and E. B. Saff, Constrained energy problems with applications to orthogonal

polynomials of a discrete variable, J. Anal. Math., 72 (1997), pp. 223–259.
[10] T. A. Driscoll, K.-C. Toh, and L. N. Trefethen, From potential theory to matrix iterations

in six steps, SIAM Rev., 40 (1998), pp. 547–578.
[11] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,

Baltimore, MD, 1996.
[12] M. Hanke, Superlinear convergence rates for the Lanczos method applied to elliptic operators,

Numer. Math., 77 (1997), pp. 487–499.
[13] S. Kaniel, Estimates for some computational techniques in linear algebra, Math. Comp., 20

(1966), pp. 369–378.
[14] A. B. J. Kuijlaars and P. D. Dragnev, Equilibrium problems associated with fast decreasing

polynomials, Proc. Amer. Math. Soc., 127 (1999), pp. 1065–1074.
[15] A. B. J. Kuijlaars and E. A. Rakhmanov, Zero distributions for discrete orthogonal poly-

nomials, J. Comput. Appl. Math., 99 (1998), pp. 255–274.
[16] A. B. J. Kuijlaars and W. Van Assche, Extremal polynomials on discrete sets, Proc. London

Math. Soc. (3), 79 (1999), pp. 191–221.
[17] B. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[18] E. A. Rakhmanov, Equilibrium measure and the distribution of zeros of the extremal polyno-

mials of a discrete variable, Mat. Sb., 187 (1996), pp. 109–124 (in Russian); Sb. Math.,
187 (1996), pp. 1213–1228 (in English).

[19] T. Ransford, Potential theory in the complex plane, Cambridge University Press, Cambridge,
UK, 1995.

[20] Y. Saad, On the rates of convergence of the Lanczos and the block-Lanczos methods, SIAM J.
Numer. Anal., 17 (1980), pp. 687–706.

[21] Y. Saad, Numerical methods for large eigenvalue problems, Manchester University Press,
Manchester, UK, 1992.

[22] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Berlin,
1997.

[23] G. L. G. Sleijpen and A. van der Sluis, Further results on the convergence behavior of
conjugate-gradients and Ritz values, Linear Algebra Appl., 246 (1996), pp. 233–278.

[24] A. van der Sluis and H. A. van der Vorst, The convergence behavior of Ritz values in the
presence of close eigenvalues, Linear Algebra Appl., 88/89 (1987), pp. 651–694.

[25] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

CONDITION NUMBER AND BACKWARD ERROR FOR THE
GENERALIZED SINGULAR VALUE DECOMPOSITION∗

JI-GUANG SUN†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 323–341

Abstract. Let A,B be two matrices having the same number of columns, and let (AT , BT)T

have full column rank. Certain normwise condition numbers for a finite generalized singular value
(GSV) of the matrix pair {A,B} are defined, and explicit expressions of the condition numbers for a
simple, nonzero GSV are derived. Moreover, a normwise backward error of {A,B} with respect to an
approximate GSV and an associated approximate generalized singular vector group is also defined,
and a computable formula of the backward error is obtained. The results are illustrated by numerical
examples.

Key words. generalized singular value and singular vector, condition number, backward error

AMS subject classifications. 65F15, 65F99

PII. S0895479898348854

1. Preliminaries. The generalized singular value decomposition (GSVD) of two
matrices having the same number of columns is a very useful tool in many matrix
computation problems. Applications, numerical methods, perturbation analysis, and
variational formulations of the GSVD have been developed during the last twenty
years [1, 2, 4, 7, 9, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25]. The GSVD was first
proposed by Van Loan [24].

This paper, as a continuation of [19, 20, 21], discusses normwise condition num-
bers for a finite generalized singular value (GSV), and a normwise backward error
for an approximate GSV and an associated approximate generalized singular vector
group. It is known that the study of condition numbers and backward errors is an
important part of the subject of perturbation theory for matrix computation problems
[11, sections 1.5 and 1.6], [22, sections 1.8 and 1.9].

Throughout this paper we use the following notation. Cm×n denotes the set of
m×n complex matrices, and Cm = Cm×1. AH and A† denote the conjugate transpose
and the Moore–Penrose inverse of a matrix A, respectively. In stands for the identity

matrix of order n, and Om×n for the m×n null matrix. P (n)
j,k denotes the permutation

matrix which is obtained by permuting the jth and the kth rows and columns of In.
‖ · ‖2 denotes the Euclidean vector norm and the spectral norm. The norm ‖ · ‖∞
denotes the ∞-norm for vectors.

We begin with some definitions and basic results relating the GSVD.

1.1. GSV and GSVD. Let A,B ∈ Cn×n. (A,B) is called a regular matrix
pair if det(A − zB) �≡ 0 for z ∈ C. A complex number pair (µ, ν) �= (0, 0) is called a
generalized eigenvalue of the regular matrix pair (A,B) if det(νA−µB) = 0. If ν �= 0,
then λ = µ/ν is a finite generalized eigenvalue; otherwise, (A,B) has the generalized
eigenvalue λ =∞ [18]. The set of the generalized eigenvalues of a regular matrix pair
(A,B) is denoted by λ(A,B).

∗Received by the editors December 10, 1998; accepted for publication (in revised form) by I.
Ipsen on October 12, 1999; published electronically July 11, 2000. This work was supported by the
Swedish Natural Science Research Council under Contract M-AA/MA 06952-307 and the Department
of Computing Science, Ume̊a University.

http://www.siam.org/journals/simax/22-2/34885.html
†Department of Computing Science, Ume̊a University, S-901 87 Ume̊a, Sweden (jisun@cs.umu.se).

323

324 JI-GUANG SUN

Let A ∈ Cm×n and B ∈ Cp×n. The matrix pair {A,B} is an (m, p, n)-Grassmann
matrix pair (GMP) if rank(AT , BT) = n [13, 19, 20, 21].

Let {A,B} be an (m, p, n)-GMP. A nonnegative number pair (α, β) �= (0, 0) is a
generalized singular value (GSV) of the GMP {A,B} if

(α, β) = (
√
µ,
√
ν), where (µ, ν) ∈ λ(AHA,BHB).(1.1)

If β �= 0, then σ = α/β is a finite GSV of {A,B}; otherwise, {A,B} has the GSV
σ = ∞ [19, 20, 24]. The set of the GSVs of an (m, p, n)-GMP {A,B} is denoted by
σ{A,B}.

Let (α, β) ∈ σ{A,B}. Then by (1.1) there is a nonzero x ∈ Cn such that
β2AHAx = α2BHBx.(1.2)

The vector x of 1.2 is called a right generalized singular vector of {A,B} associated
with the GSV (α, β). By (1.2) we may express (α, β) by

(α, β) = τ (‖Ax‖2, ‖Bx‖2) ,(1.3)

where τ is any positive scalar.
The following form of the GSVD is one of several formulations.
Theorem 1.1 ((GSVD)[15]). Let {A,B} be an (m, p, n)-GMP. Then there exist

unitary matrices Z ∈ Cm×m,W ∈ Cp×p, and a nonsingular matrix X ∈ Cn×n such
that

ZHAX = ΣA, WHBX = ΣB ,(1.4)

ΣA =

(
DA 0
0 O(m−r−s)×(n−r−s)

)
, ΣB =

(
O(p+r−n)×r 0

0 DB

)
,(1.5)

where

DA = diag(α1, . . . , αr+s), DB = diag(βr+1, . . . , βn)(1.6)

with

1 = α1 = · · · = αr > αr+1 ≥ · · · ≥ αr+s > αr+s+1 = · · · = αn = 0,

0 = β1 = · · · = βr < βr+1 ≤ · · · ≤ βr+s < βr+s+1 = · · · = βn = 1,
(1.7)

and

α2
j + β2

j = 1 ∀j.(1.8)

Remark 1.1. Theorem 1.1 implies that the GSVD of the GMP {A,B} can also
be expressed by

ZHAQ = ΣAR, WHBQ = ΣBR,(1.9)

where the matrices Z,W,ΣA,ΣB are as in Theorem 1.1, Q ∈ Cn×n is unitary, and
R ∈ Cn×n is upper triangular and nonsingular.

By the definition of the GSV and its associated right generalized singular vector,
we have σ{A,B} = {(αj , βj)}nj=1 for the (m, p, n)-GMP {A,B} in Theorem 1.1, and

CONDITION NUMBER AND BACKWARD ERROR 325

every column xj of the matrix X of (1.4) is a right generalized singular vector of
{A,B} associated with (αj , βj).

Observe that a GSV of {A,B} can be regarded as a point on the real projective
straight line, that is, for any (α, β) ∈ σ{A,B} and any τ > 0, the pairs (τα, τβ) and
(α, β) express the same GSV of {A,B}. Hence, the distance between two GSVs (α, β)
and (α̃, β̃) can be measured in the chordal metric (see, e.g., [6, 18, 19, 20, 21, 22, 23]).
But in practice, if we are interested only in finite GSVs, then to use the Euclidean
distance |α̃/β̃ − α/β| is, probably, more natural and appropriate [8, 10]. In this note
we use the Euclidean distance for finite GSVs.

1.2. Generalized singular vector groups. We first recall the singular value
decomposition (SVD) of a matrix A ∈ Cm×n:

A = UΣV H ,(1.10)

where U = (u1, . . . , um) ∈ Cm×m and V = (v1, . . . , vn) ∈ Cn×n are unitary, and
Σ = diag(σ1, σ2, . . .). For any integer k ∈ [1, min{m,n}], let

σ = σk, v = vk, u = uk.

Then the SVD (1.10) of A implies that

Av = σu, AHu = σv, ‖u‖2 = ‖v‖2 = 1.(1.11)

The vector pair {v, u} of (1.11) can be called a singular vector pair of A associated
with the singular value σ.

We now extend the singular vector pair concept to the case of the GSVD.
Let {A,B} be an (m, p, n)-GMP with the GSVD expressed by (1.4)–(1.8). Write

Z = (z1, . . . , zm), W = (w1, . . . , wp), X = (x1, . . . , xn),

and

Y = X−H = (y1, . . . , yn).

For any integer k ∈ [max{1, n− p+ 1}, min{m,n}], let
(α, β) = (αk, βk), x = xk, y = yk, z = zk, w = wp−n+k.

Then the GSVD 1.4 of {A,B} implies that
Ax = αz, Bx = βw, AHz = αy, BHw = βy,

yHx = 1, ‖z‖2 = ‖w‖2 = 1.
(1.12)

The vector group {x, y, z, w} of (1.12) is called a generalized singular vector group of
{A,B} associated with the GSV (α, β).

The paper is organized as follows. In section 2 we define certain normwise condi-
tion numbers for a finite GSV and derive explicit expressions of the condition numbers
for a simple, nonzero GSV. In section 3 we define a normwise backward error for an
(m, p, n)-GMP with respect to an approximate GSV and an associated approximate
generalized singular vector group, and obtain a computable formula of the backward
error. The results of sections 2 and 3 are illustrated by numerical examples in section
4.

Note that certain connections between the results of this paper and the existing
results in the special case of the ordinary SVD have been made by Remarks 2.3 and
3.2, respectively.

326 JI-GUANG SUN

2. Condition number. Let {A,B} be an (m, p, n)-GMP, and (α, β) be a finite
GSV of {A,B}, that is, (α, β) ∈ σ{A,B} with β �= 0. Suppose that the GMP {A,B}
is slightly perturbed to {Ã, B̃} with Ã = A + E and B̃ = B + F , and (α, β) is
correspondingly perturbed to (α̃, β̃). Let

σ = α/β, σ̃ = α̃/β̃.

Then referring to [8, 10] and [16] we may define the condition number c(σ) for σ by

c(σ) = lim
δ→0

sup∥∥∥(‖E‖2
γ
A
,
‖F‖2
γ
B

)T∥∥∥
∞

≤δ

|σ̃ − σ|
ξδ

,(2.1)

where γ
A
, γ

B
, and ξ are positive parameters. If one is interested in the sensitivity of

σ to small perturbations in each individual member of A and B, then by [22, section
4.2.1] we may define the partial condition numbers cA(σ) and cB(σ) for σ as

cA(σ) = lim
δ→0

sup
‖E‖2
γ
A

≤δ, F=0

|σ̃ − σ|
ξδ

, cB(σ) = lim
δ→0

sup
E=0,

‖F‖2
γ
B

≤δ

|σ̃ − σ|
ξδ

.(2.2)

Taking γ
A
= γ

B
= ξ = 1 in (2.1) and (2.2), we get the absolute condition numbers

cabs(σ), c
(abs)
A (σ), c

(abs)
B (σ); and taking γ

A
= ‖A‖2, γB

= ‖B‖2, and ξ = σ (if σ > 0),

we get the relative condition numbers crel(σ), c
(rel)
A (σ), c

(rel)
B (σ), respectively.

From the definitions (2.1) and (2.2) we see that c(σ) is a measure of the sensitivity
of σ to small perturbations in {A,B}, and cA(σ) and cB(σ) are measures of the
sensitivity of σ to small perturbations in A and B, separately. Moreover, in first
order approximation the inequalities

|σ̃ − σ|
ξ

≤ c(σ)

∥∥∥∥∥
(‖E‖2

γ
A

,
‖F‖2
γ

B

)T∥∥∥∥∥
∞

(2.3)

and

|σ̃ − σ|
ξ

≤ cA(σ)
‖E‖2
γ

A

,
|σ̃ − σ|

ξ
≤ cB(σ)

‖F‖2
γ

B

hold.
The following result gives explicit expressions of the condition numbers c(σ),

cA(σ), and cB(σ) for any simple, finite, nonzero GSV (α, β).
Theorem 2.1. Let (α, β) be a simple, finite, nonzero GSV of an (m, p, n)-GMP

{A,B}, and let x ∈ Cn be an associated right generalized singular vector. Let σ = α/β.
Then the condition numbers c(σ), cA(σ), and cB(σ) can be expressed by

c(σ) =
‖x‖2

(
γ

B
‖Ax‖2 + γ

A
‖Bx‖2

)
ξ‖Bx‖22

(2.4)

and

cA(σ) =
γ

A
‖x‖2

ξ‖Bx‖2 , cB(σ) =
γ

B
‖Ax‖2‖x‖2
ξ‖Bx‖22

.(2.5)

We first make two remarks before we give a proof of Theorem 2.1.

CONDITION NUMBER AND BACKWARD ERROR 327

1. Observe that if {A,B} is an (m, p, n)-GMP with p < n, then {A,B′} with

B′ =
(

O(n−p)×n
B

)
(2.6)

is an (m,n, n)-GMP, and

σ{A,B′} = σ{A,B}, ‖B′x‖2 = ‖Bx‖2.

Hence, without loss of generality we may assume p ≥ n in Theorem 2.1. It is worth
pointing out that by the definitions (2.1) and (2.2) we consider only the perturbations
{E,F ′} with

F ′ =
(

O(n−p)×n
F

)
(2.7)

in {A,B′} when {A,B} is an (m, p, n)-GMP with p < n, and we use the (m,n, n)-
GMP {A,B′} to replace {A,B}, where B′ is the matrix of (2.6), and {E,F} denotes
any perturbation in {A,B}.

2. Let {A,B} be an (m, p, n)-GMP with p ≥ n, and let (α, β) be a simple, finite,
nonzero GSV of {A,B}. The GSVD of {A,B} expressed by (1.4)–(1.8) implies that
(α, β) = (αk, βk) for a certain integer k ∈ [1, n]. If the matrices Z,W , and X of (1.4)

are replaced by ZP
(m)
1,k ,WP

(p)
p−n+1,k, and XP

(n)
1,k , respectively, then the matrices ΣA

and ΣB become

(
α 0
0 A2

)
and

 O(p−n)×1 0

β 0
0 B2

 ,

where A2 and B2 are (m− 1)× (n− 1) and (n− 1)× (n− 1) matrices, respectively.
Consequently, without loss of generality we may assume that the GSVD of the GMP
{A,B} of Theorem 2.1 is in the following form:

ZHAX =

(
α 0
0 A2

)
, WHBX =

 O(p−n)×1 0

β 0
0 B2

 ,(2.8)

where X = (x,X2).

Proof of Theorem 2.1. Let (α̃, β̃) be the corresponding perturbation of (α, β)
when {A,B} is slightly perturbed to {Ã, B̃} with Ã = A + E and B̃ = B + F . Let
σ̃ = α̃/β̃. We now prove the theorem by the following three steps.

1. Apply [21, Theorem 4.1] to prove the conclusion: There is a vector s∗ ∈ Cn−1

satisfying

‖s∗‖2 = O

(∥∥∥∥
(

E
F

)∥∥∥∥
2

)
as

∥∥∥∥
(

E
F

)∥∥∥∥
2

→ 0(2.9)

such that the vector

x̃ = X

(
1
s∗

)
= x+X2s∗(2.10)

328 JI-GUANG SUN

is a right generalized singular vector of {Ã, B̃} associated with σ̃. The proof is as
follows. Since the GSV (α, β) is simple, the matrix T of [21, (1.30)] with

Σa1 = α and Σb1 =

(
O(p−n)×1

β

)

is nonsingular, and so we have the positive constants lj (j = 1, . . . , 4) and l which are
defined by using the spectral norms of the submatrices Lj (j = 1, . . . , 4) of T

−1 (see
[21, (1.34) and (4.2)]). By the proof of [21, Theorem 4.1], under the condition [21,
(4.6)]

l(2γ + ε) < 1,(2.11)

there is a vector s∗ ∈ Cn−1 satisfying [21, (4.19)]

‖s∗‖2 ≤ ρ3(2.12)

such that the vector x̃ expressed by (2.10) is a right generalized singular vector of
{Ã, B̃} associated with σ̃, where γ, ε, and ρ3 are positive scalars and satisfy

γ ≤ ∥∥(ET , FT)∥∥
F

(by [21, (4.3)]),

ε ≤
√
2
∥∥(ET , FT)∥∥

F
(by [21, (4.4)]),

(2.13)

and

ρ3 ≤ 2l3γ

1− lε
(by [21, (4.5)]).(2.14)

From (2.13) we see that if
∥∥(ET , FT)∥∥

F
is sufficiently small, then the condition (2.11)

holds, and from (2.12)–(2.14) we get

‖s∗‖2 ≤ 2l3
∥∥(ET , FT)∥∥

F

1−√2l ‖(ET , FT)‖F

= O

(∥∥∥∥
(

E
F

)∥∥∥∥
2

)
as

∥∥∥∥
(

E
F

)∥∥∥∥
2

→ 0.

Thus, our conclusion is proved.
It is easy to see that the relations (2.9) and (2.10) can be written as

x̃ = x+ h with ‖h‖2 = O

(∥∥∥∥∥
(‖E‖2

γ
A

,
‖F‖2
γ

B

)T∥∥∥∥∥
∞

)

as

∥∥∥∥∥
(‖E‖2

γ
A

,
‖F‖2
γ

B

)T∥∥∥∥∥
∞
→ 0.

(2.15)

2. Prove (2.4). From (2.15) it follows that for any {Ã, B̃} = {A + E,B + F}
satisfying ∥∥∥∥∥

(‖E‖2
γ

A

,
‖F‖2
γ

B

)T∥∥∥∥∥
∞
≤ δ,

CONDITION NUMBER AND BACKWARD ERROR 329

we have

‖Ãx̃‖2 = ‖(A+ E)(x+ h)‖2

=
[
(Ax+ Ex+Ah+ Eh)H(Ax+ Ex+Ah+ Eh)

]1/2

=
[‖Ax‖22 + xHAHEx+ xHAHAh+ xHEHAx+ hHAHAx+O(δ2)

]1/2

= ‖Ax‖2
(
1 +

xHAHEx+ xHAHAh+ xHEHAx+ hHAHAx

‖Ax‖22
+O(δ2)

)1/2

= ‖Ax‖2 + xHAHEx+ xHAHAh+ xHEHAx+ hHAHAx

2‖Ax‖2
+O(δ2) as δ → 0,

and similarly,

‖B̃x̃‖2 = ‖Bx‖2 + xHBHFx+ xHBHBh+ xHFHBx+ hHBHBx

2‖Bx‖2
+O(δ2) as δ → 0.

Substituting the above expressions of ‖Ãx̃‖2 and ‖B̃x̃‖2 into

|σ̃ − σ| =
∣∣∣∣∣
‖Ãx̃‖2
‖B̃x̃‖2

− ‖Ax‖2‖Bx‖2

∣∣∣∣∣ ,

gives

|σ̃ − σ|
ξδ

=
1

2ξδ‖Bx‖22

∣∣∣∣∣
(
γ

A

‖Bx‖2
‖Ax‖2 x

HAH , −γ
B

‖Ax‖2
‖Bx‖2x

HBH

)(E
γ
A
F
γ
B

)
x

+xH
(
EH

γ
A

,
FH

γ
B

)(
γ

A

‖Bx‖2

‖Ax‖2
Ax

−γ
B

‖Ax‖2

‖Bx‖2
Bx

)∣∣∣∣∣+O(δ)

≤ ‖x‖2
(
γ

B
‖Ax‖2 + γ

A
‖Bx‖2

)
ξ‖Bx‖22

+O(δ),

(2.16)

which implies

c(σ) ≤ ‖x‖2
(
γ

B
‖Ax‖2 + γ

A
‖Bx‖2

)
ξ‖Bx‖22

.(2.17)

On the other hand, take the special perturbation {Ê, F̂} with

Ê =
δγ

A
AxxH

‖Ax‖2‖x‖2 , F̂ = − δγ
B
BxxH

‖Bx‖2‖x‖2 ,(2.18)

330 JI-GUANG SUN

and let (α̂, β̂) be the corresponding perturbation of (α, β). Then∥∥∥∥∥∥
(
‖Ê‖2
γ

A

,
‖F̂‖2
γ

B

)T∥∥∥∥∥∥
∞

= δ,

and for σ̂ = α̂/β̂ we have

|σ̂ − σ|
ξδ

=
‖x‖2

(
γ

B
‖Ax‖2 + γ

A
‖Bx‖2

)
ξ‖Bx‖22

+O(δ).

Combining it with the relation (2.17) and the definition (2.1) shows (2.4).
3. Prove (2.5). By the first relation of (2.16) we have

|σ̃ − σ|
ξδ

≤ γ
A
‖x‖2

ξ‖Bx‖2 +O(δ) as
‖E‖2
γ

A

≤ δ → 0 and F = 0,(2.19)

and the equalities in (2.19) are achieved for the specific perturbation {Ê, F̂} with

Ê =
δγ

A
AxxH

‖Ax‖2‖x‖2 , F̂ = 0.

Moreover, we have

|σ̃ − σ|
ξδ

≤ γ
B
‖Ax‖2‖x‖2
ξ‖Bx‖22

+O(δ) as E = 0 and
‖F‖2
γ

B

≤ δ → 0,(2.20)

and the equalities in (2.20) are achieved for the specific perturbation {Ê, F̂} with

Ê = 0, F̂ = − δγ
B
BxxH

‖Bx‖2‖x‖2 .(2.21)

Combining these facts with the definition (2.2) shows (2.5).
Note that in the case of p < n, we use {A,B′} with the matrix B′ of (2.6) to

replace {A,B}. In such a case, the matrix F̂ of (2.18) and (2.21) will be replaced by

F̂ ′ = − δγ
B
B′xxH

‖B′x‖2‖x‖2 =
(

O(n−p)×n
F̂

)
,

which is just in the form of (2.7). Consequently, the above-mentioned proof of Theo-
rem 2.1 is still valid.

Remark 2.1. From (1.3), (2.4), (2.5), and σ = α/β we get the following expres-
sions:

cabs(σ) =
‖x‖2 (‖Ax‖2 + ‖Bx‖2)

‖Bx‖22
=
‖x‖2(1 + σ)

‖Bx‖2 ,

c
(abs)
A (σ) =

‖x‖2
‖Bx‖2 , c

(abs)
B (σ) =

σ‖x‖2
‖Bx‖2 ,

(2.22)

and

crel(σ) =
‖x‖2 (‖B‖2‖Ax‖2 + ‖A‖2‖Bx‖2)

σ‖Bx‖22
=
‖x‖2(‖A‖2 + σ‖B‖2)

σ‖Bx‖2 ,

c
(rel)
A (σ) =

‖A‖2‖x‖2
σ‖Bx‖2 , c

(rel)
B (σ) =

‖B‖2‖x‖2
‖Bx‖2 ,

(2.23)

CONDITION NUMBER AND BACKWARD ERROR 331

respectively.
Remark 2.2. It is known [9, 18] that an n× n matrix pair (A,B) is said to be a

definite pair if the matrices A and B are Hermitian, and

min
{(
(xHAx)2 + (xHBx)2

)1/2
: x ∈ Cn, ‖x‖2 = 1

}

is positive. From the definition we see that if {A,B} is a GMP, then (AHA,BHB) is
a definite pair, and by the definition (1.1) we have

(α, β) ∈ σ{A,B} ⇐⇒ (α2, β2) ∈ λ(AHA,BHB).

We are now going to make a comparison between the condition numbers expressed
by (2.22) and (2.23) for a simple, finite, nonzero GSV σ and the condition numbers
for a simple, finite, nonzero eigenvalue λ of a definite pair (A,B).

Let (A,B) be a definite pair, and λ be a finite eigenvalue of (A,B). Suppose that
the definite pair (A,B) is slightly perturbed to a definite pair (Ã, B̃) with Ã = A+E
and B̃ = B+F , and λ is correspondingly perturbed to λ̃. Then by [8, section 3], [10,
section 2.2], and [22, section 4.2.1], we may define the condition number K(λ) for λ
by

K(λ) = lim
δ→0

sup∥∥∥(‖E‖2
γ
A
,
‖F‖2
γ
B

)T∥∥∥
∞

≤δ

|λ̃− λ|
ξδ

,

where γ
A
, γ

B
, and ξ are positive parameters. Moreover, we may define the partial

condition numbers KA(λ) and KB(λ) by

KA(λ) = lim
δ→0

sup
‖E‖2
γ
A

≤δ, F=0

|λ̃− λ|
ξδ

, KB(λ) = lim
δ→0

sup
E=0,

‖F‖2
γ
B

≤δ

|λ̃− λ|
ξδ

.

Taking γ
A
= γ

B
= ξ = 1, we get the absolute condition numbers Kabs(λ), K

(abs)
A (λ),

K
(abs)
B (λ); and taking γ

A
= ‖A‖2, γB

= ‖B‖2, and ξ = |λ| (if λ �= 0), we get the

relative condition numbers Krel(λ), K
(rel)
A (λ), K

(rel)
B (λ).

By [10, Theorem 2.5, Lemma 2.6, and their proofs] or using the technique de-
scribed in the proof of Theorem 2.1, we can prove that if λ is a simple, nonzero
eigenvalue, and x is an associated eigenvector, then we have the following expres-
sions:

Kabs(λ) =
‖x‖22(1 + |λ|)
|xHBx| , K

(abs)
A (λ) =

‖x‖22
|xHBx| , K

(abs)
B (λ) =

|λ|‖x‖22
|xHBx| ,

and

Krel(λ) =
‖x‖22(‖A‖2 + |λ|‖B‖2)

|λ||xHBx| , K
(rel)
A (λ) =

‖A‖2‖x‖22
|λ||xHBx| , K

(rel)
B (λ) =

‖B‖2‖x‖22
|xHBx| .

Obviously, these expressions appear similar to those of (2.22) and (2.23), respectively.
Remark 2.3. It may be asked, Does there exist some connection of our results

(2.22) and (2.23) with the existing results of the singular value decomposition? The
answer is positive. Let σ > 0 be a singular value of A ∈ Cm×n. Let Ã = A + E be

332 JI-GUANG SUN

a perturbation of A, and σ̃ be the corresponding perturbation of σ. Then we may
define the condition number κ(σ) for σ as

κ(σ) = lim
δ→0

sup
‖E‖2
γ
A

≤δ

|σ̃ − σ|
ξδ

,

where γ
A
and ξ are positive parameters. Taking γ

A
= ξ = 1 gives the absolute

condition number κabs(σ), and taking γ
A
= ‖A‖2 and ξ = σ (if σ > 0) gives the

relative condition number κrel(σ). It is well known that

κabs(σ) = 1, κrel(σ) =
‖A‖2
σ

.(2.24)

We now regard the matrix A as an (m,n, n)-GMP {A, In}. If σ is a simple, nonzero
singular value of A, then it is also a simple, finite, nonzero GSV of the GMP {A, In}.
Observe that in this case only small perturbations in the matrix A of the GMP {A, In}
should be considered. Hence, it is natural to compare the condition numbers κabs(σ)

and κrel(σ) of (2.24) with the partial condition numbers c
(abs)
A (σ) and c

(rel)
A (σ). By

(2.22) and (2.23) we have

c
(abs)
A (σ) = 1, c

(rel)
A (σ) =

‖A‖2
σ

,

which just coincide with κabs(σ) and κrel(σ), respectively.
Remark 2.4. Let (α, β) be a simple, finite, nonzero GSV of {A,B}, and x ∈ Cn

be an associated right generalized singular vector. Let σ = α/β. Then (1.3) implies
that if

α2 + β2 = 1 and ‖Ax‖22 + ‖Bx‖22 = 1,(2.25)

then (α, β) = (‖Ax‖2, ‖Bx‖2), and from (2.22) and (2.23) we see that the condition
numbers can be expressed in the simpler forms:

cabs(σ) =
‖x‖2
β
(1 + σ),

c
(abs)
A (σ) =

‖x‖2
β

, c
(abs)
B (σ) =

σ‖x‖2
β

,

crel(σ) = ‖x‖2
(‖A‖2

α
+
‖B‖2
β

)
,

c
(rel)
A (σ) =

‖A‖2‖x‖2
α

, c
(rel)
B (σ) =

‖B‖2‖x‖2
β

.

(2.26)

Note that if {A,B} has the GSVD expressed by (1.4)–(1.8), then every GSV (αj , βj)
and the corresponding column xj of X in the GSVD satisfy (2.25).

Remark 2.5. By a comment from the referees, we now take example by the
formulas of cabs(σ) and crel(σ) in (2.26) to give a short discussion and interpretation.
Obviously, the absolute condition number cabs(σ) may be large if β is small and/or σ
is large or if ‖x‖2 is large. The former may happen when B is nearly singular. (See
cabs(σ2) of Example 4.1 in section 4, where B is nearly singular.) The latter may

CONDITION NUMBER AND BACKWARD ERROR 333

happen when the unit vector x/‖x‖2 closes to a null-vector of both A and B; to see
this, note that α = ‖Ax‖2 and β = ‖Bx‖2 cannot both be small at the same time
because α2 + β2 = 1, so the fact that both ‖A x

‖x‖2
‖2 and ‖B x

‖x‖2
‖2 are small implies

that ‖x‖2 is large. Rewrite the formula of crel(σ) as

crel(σ) =
‖A‖2∥∥∥A x
‖x‖2

∥∥∥
2

+
‖B‖2∥∥∥B x
‖x‖2

∥∥∥
2

,

which shows that the relative condition number may be large if the unit vector x/‖x‖2
closes to a null-vector of A and/or B. (See crel(σ2) of Example 4.1 in section 4, where

‖B x2

‖x2‖2
|2 = (‖x2‖2

β2
)−1 = 10−6; that is, the unit vector x2/‖x2‖2 closes to a null-vector

of B.)
The following fact is pointed out by a referee. With the definition of the GSVD

in (1.4)–(1.8), the GSVs do not scale with (A
B
), that is, the GSVs of {A,B} and

{τA, τB} with any nonzero scalar τ are the same. The only place the scaling can go
is in the matrix X, and therefore, by the formulas of cabs(σ), c

(abs)
A (σ), and c

(abs)
B (σ)

in (2.26), a scaling of A and B changes the absolute condition numbers; however, by

the formulas of crel(σ), c
(rel)
A (σ), and c

(rel)
B (σ) in (2.26), the relative condition numbers

are insensitive to the scaling, because X is scaled by τ−1 when (A
B
) is scaled by τ .

Remark 2.6. Let (α, β) be a GSV of a GMP {A,B}. Since the definition of any
normwise condition number for the GSV (α, β) is dependent on the metrics which
are used to measure perturbations in {A,B} and perturbations in (α, β), there are
different condition numbers from different geometrical points of view: Euclidean,
non-Euclidean, or mixed. In the paper [23], several condition numbers for (α, β)
in different metrics are defined, computable formulas of the condition numbers are
obtained, and comparisons between the different condition numbers are made. Note
that the different condition numbers have different implications.

3. Backward error. Let (α̃, β̃) �= (0, 0) with α̃, β̃ ≥ 0 be an approximate GSV
of an (m, p, n)-GMP {A,B}, and {x̃, ỹ, z̃, w̃} be an associated approximate generalized
singular vector group, that is, the vectors x̃, ỹ ∈ Cn, z̃ ∈ Cm, and w̃ ∈ Cp satisfy

Ax̃ ≈ α̃z̃, Bx̃ ≈ β̃w̃, AH z̃ ≈ α̃ỹ, BHw̃ ≈ β̃ỹ,

ỹH x̃ = 1, ‖z̃‖2 = ‖w̃‖2 = 1.
(3.1)

Moreover, define the set G by

G =
{(

E
F

)
: E ∈ Cm×n, F ∈ Cp×n, (A+ E)x̃ = α̃z̃, (B + F)x̃ = β̃w̃,

(A+ E)H z̃ = α̃ỹ, (B + F)Hw̃ = β̃ỹ

}
,

(3.2)
and define the backward error η((α̃, β̃); x̃, ỹ, z̃, w̃) of {A,B} with respect to the ap-
proximate solution {(α̃, β̃); x̃, ỹ, z̃, w̃} by

η((α̃, β̃); x̃, ỹ, z̃, w̃) = min(
E
F

)
∈G

∥∥∥∥∥
(‖E‖2

γ
A

,
‖F‖2
γ

B

)T∥∥∥∥∥
∞
,(3.3)

where γ
A
and γ

B
are positive parameters. Taking γ

A
= γ

B
= 1, we get the absolute

backward error ηabs((α̃, β̃); x̃, ỹ, z̃, w̃); and taking γA
= ‖A‖2 and γ

B
= ‖B‖2, we get

the relative backward error ηrel((α̃, β̃); x̃, ỹ, z̃, w̃).

334 JI-GUANG SUN

The definition (3.3) is obviously consistent with the definition (2.1).
From the definition of η((α̃, β̃); x̃, ỹ, z̃, w̃) we see that a small η((α̃, β̃); x̃, ỹ, z̃, w̃)

means that the approximate GSV (α̃, β̃) and associated approximate generalized sin-
gular vector group {x̃, ỹ, z̃, w̃} are the exact GSV and associated generalized singular
vector group of a slightly perturbed {Ã, B̃} of {A,B}. Consequently, a computable
formula of η(·; ·) may be useful for assessing the numerical quality of a computed
GSVD, and for testing the backward stability of algorithms for the computation of
the GSVD.

The following result gives a computable formula of the backward error η(·; ·).
Theorem 3.1. Let

r1 = α̃z̃ −Ax̃, r2 = β̃w̃ −Bx̃,

r3 = α̃ỹ −AH z̃, r4 = β̃ỹ −BHw̃

(3.4)

be the residuals of {A,B} with respect to (α̃, β̃) and {x̃, ỹ, z̃, w̃}, where (α̃, β̃) �= (0, 0)
with α̃, β̃ ≥ 0, and x̃, ỹ, z̃, w̃ satisfy (3.1). Then the backward error η(·; ·) can be
expressed by

η((α̃, β̃); x̃, ỹ, z̃, w̃)

= max

{
1

γ
A

max

{‖r1‖2
‖x̃‖2 , ‖r3‖2

}
,
1

γ
B

max

{‖r2‖2
‖x̃‖2 , ‖r4‖2

}}
.

(3.5)

The proof of Theorem 3.1 requires some preliminary theorems (Theorems 3.2 and
3.3).

Theorem 3.2. Let A ∈ Ck×m, B ∈ Cn×l, and C ∈ Ck×l be given. Define the set
E by

E = {E ∈ Cm×n : AEB = C}.
Then E �= ∅ (the empty set) if and only if A,B, and C satisfy

PACPBH = C,(3.6)

and in the case of E �= ∅, any E ∈ E can be expressed by

E = A†CB† + Z − PAHZPB , Z ∈ Cm×n,

where PA = AA† is the orthogonal projection onto the column subspace of A.
Proof. The relation (3.6) is obviously a necessary condition for E �= ∅. We now

define the set F by
F = {A†CB† + Z − PAHZPB : Z ∈ Cm×n},

and prove that E = F under the condition (3.6).
Assume E ∈ E . Then we may represent the matrix E as

E = A†CB† + E − PAHEPB .

This means that there exists a matrix Z (= E) ∈ Cm×n such that the matrix E ∈ E
can be expressed by

E = A†CB† + Z − PAHZPB ∈ F .(3.7)

CONDITION NUMBER AND BACKWARD ERROR 335

Thus, E ⊂ F .
Conversely, assume E ∈ F , and let E be expressed by (3.7) with some Z ∈ Cm×n.

Then the expression (3.7) and the condition (3.6) imply AEB = C, that is, E ∈ E .
Thus, F ⊂ E . Consequently, we have E = F .

Theorem 3.2 and its proof are cited from [22, section 1.5].
Theorem 3.3 (Davis, Kahan, and Weinberger [5]). Let

f(X) =

(
A11 A12

A21 X

)

with A11 ∈ Ck×k and A21, A
T
12 ∈ Cl×k. Then

min
X∈Cl×l

‖f(X)‖2 = max
{∥∥∥∥
(

A11

A21

)∥∥∥∥
2

, ‖(A11, A12)‖2
}
.

Proof of Theorem 3.1. From (3.2) and (3.4) it follows that (E
F
) ∈ G if and only

if (E
F
) is a solution to the equations

Ex̃ = r1, F x̃ = r2, EH z̃ = r3, FHw̃ = r4.(3.8)

Applying Theorem 3.2 to the first equation of (3.8) we see that the equation is
solvable, and any solution of the equation can be expressed by

E = r1x̃
† +K(I − x̃x̃†), K ∈ Cm×n.(3.9)

Let

ũ = x̃/‖x̃‖2,(3.10)

and choose Ũ2 ∈ Cn×(n−1) so that the matrix Ũ = (ũ, Ũ2) is unitary. Then (3.9) can
be written

E =
r1ũ

H

‖x̃‖2 +KŨ2Ũ
H
2 .(3.11)

Combining it with the third equation of (3.8) shows that the matrix K of (3.11)
satisfies

ũrH1 z̃

‖x̃‖2 + Ũ2Ũ
H
2 KH z̃ = r3.

Multiplying the last equation by ŨH2 from the left yields

z̃HKŨ2 = rH3 Ũ2.(3.12)

By Theorem 3.2, (3.12) is solvable, and any solution K can be expressed by

K = z̃rH3 Ũ2Ũ
H
2 + L− z̃z̃HLŨ2Ũ

H
2 , L ∈ Cm×n.(3.13)

Choose Z̃2 ∈ Cm×(m−1) so that the matrix Z̃ = (z̃, Z̃2) is unitary. Then from (3.13)

KŨ2 = z̃rH3 Ũ2 + Z̃2Z̃
H
2 LŨ2.

336 JI-GUANG SUN

Substituting it into (3.11) gives

E =
r1ũ

H

‖x̃‖2 + z̃rH3 Ũ2Ũ
H
2 + Z̃2Z̃

H
2 LŨ2Ũ

H
2

= Z̃

(
z̃Hr1/‖x̃‖2 rH3 Ũ2

Z̃H2 r1/‖x̃‖2 Z̃H2 LŨ2

)
ŨH ≡ E(L), L ∈ Cm×n.

(3.14)

Similarly, choose W̃2 ∈ Cp×(p−1) so that the matrix W̃ = (w̃, W̃2) is unitary. Then
any solution F of the second and fourth equations of (3.8) can be expressed by

F = W̃

(
w̃Hr2/‖x̃‖2 rH4 Ũ2

W̃H
2 r2/‖x̃‖2 W̃H

2 NŨ2

)
ŨH ≡ F (N), N ∈ Cp×n.(3.15)

Consequently, from (3.3), (3.14), and (3.15) we get

η((α̃, β̃); x̃, ỹ, z̃, w̃) = min
L∈Cm×n, N∈Cp×n

∥∥∥∥∥
(‖E(L)‖2

γ
A

,
‖F (N)‖2

γ
B

)T∥∥∥∥∥
∞
.(3.16)

Observe the following facts: (i) Applying Theorem 3.3 to (3.14) and (3.15) gives

min
L∈Cm×n

‖E(L)‖2 = max
{∥∥∥∥
(

z̃Hr1/‖x̃‖2
Z̃H2 r1/‖x̃‖2

)∥∥∥∥
2

,
∥∥∥(z̃Hr1/‖x̃‖2, rH3 Ũ2

)∥∥∥
2

}

and

min
N∈Cp×n

‖F (N)‖2 = max
{∥∥∥∥
(

w̃Hr2/‖x̃‖2
W̃H

2 r2/‖x̃‖2

)∥∥∥∥
2

,
∥∥∥(w̃Hr2/‖x̃‖2, rH4 Ũ2

)∥∥∥
2

}
.

(ii) The relations (3.4), (3.10), and the last two relations of (3.1) imply

z̃Hr1
‖x̃‖2 =

α̃− z̃HAx̃

‖x̃‖2 = rH3 ũ,
w̃Hr2
‖x̃‖2 =

β̃ − w̃HBx̃

‖x̃‖2 = rH4 ũ.

(iii) The matrices (z̃, Z̃2), (w̃, W̃2), and (ũ, Ũ2) are unitary. Hence, we have

min
L∈Cm×n

‖E(L)‖2 = max
{‖r1‖2
‖x̃‖2 , ‖r3‖2

}
,

min
N∈Cp×n

‖F (N)‖2 = max
{‖r2‖2
‖x̃‖2 , ‖r4‖2

}
.

(3.17)

Combining (3.16) with (3.17) shows the formula (3.5).
Remark 3.1. Let (α, β) be a simple, finite, nonzero GSV of an (m, p, n)-GMP

{A,B}, and let x ∈ Cn be an associated right generalized singular vector. Suppose
that (α̃, β̃) �= (0, 0) with α̃, β̃ ≥ 0 is an approximation of (α, β), and {x̃, ỹ, z̃, w̃} is an
associated approximate generalized singular vector group. Let σ = α/β and σ̃ = α̃/β̃.
Then by the relation (2.3) and the definition (3.3) we have

|σ̃ − σ| <∼ c(σ)η((α̃, β̃); x̃, ỹ, z̃, w̃),(3.18)

where c(σ) and η((α̃, β̃); x̃, ỹ, z̃, w̃) have the formulas (2.4) and (3.5), respectively.
One way to interpret the relation (3.18) is to say that the approximation σ̃ of σ may

CONDITION NUMBER AND BACKWARD ERROR 337

not be close to σ if the condition number c(σ) is very large, even if the approximate
solution {(α̃, β̃); x̃, ỹ, z̃, w̃} has a small backward error η((α̃, β̃); x̃, ỹ, z̃, w̃). (See [11,
section 1.6] for a clarification of a more general rule of thumb similar to (3.18).)

Remark 3.2. Let σ̃ be an approximate singular value of A ∈ Cm×n, and let {ṽ, ũ}
be an associated approximate singular vector pair. Then we may define the backward
error η(σ̃; ṽ, ũ) of A with respect to the approximate solution {σ̃; ṽ, ũ} by

η(σ̃; ṽ, ũ) = min
E∈E
‖E‖2
γ

A

,(3.19)

where the set E is defined by

E = {E ∈ Cm×n : (A+ E)ṽ = σ̃ũ, (A+ E)H ũ = σ̃ṽ
}
,

and γ
A
is a positive parameter. Taking γ

A
= 1 gives the absolute backward error

ηabs(σ̃; ṽ, ũ), and taking γA
= ‖A‖2 gives the relative backward error ηrel(σ̃; ṽ, ũ). It

is known (see, e.g., [22, Remark 3.4.3]) that we have the formula

η(σ̃; ṽ, ũ) =
1

γ
A

max{‖r‖2, ‖s‖2},(3.20)

where

r = σ̃ũ−Aṽ, s = σ̃ṽ −AH ũ.

The definition (3.3) is obviously a natural generalization of (3.19). It is worth pointing
out that the formula (3.20) can be deduced from (3.5). In fact, if we consider the
matrix A as the (m,n, n)-GMP {A, In}, then the relations of (3.1) are reduced to

Aṽ ≈ σ̃ũ, AH ũ ≈ σ̃ṽ, ‖ũ‖2 = ‖ṽ‖2 = 1,

because in such a case we have

α̃ = σ̃, β̃ = 1, x̃ = ỹ = w̃ = ṽ, z̃ = ũ.

Consequently, the vectors r1, r2, r3, r4 of (3.4) are reduced to

r1 = r, r3 = s, r2 = r4 = 0,

and the formula (3.5) is reduced to (3.20).

4. Numerical examples. In this section we use two simple examples to illus-
trate the results of previous two sections. All computations were performed using
MATLAB, 4.2c. The relative machine precision is 2.22× 10−16.

Example 4.1. Consider the (2, 2, 2)-GMP {A,B} with

A =

(
1√
2

0

− 1√
1+10−12

1√
1+10−12

)
, B =

(1√
2

0

− 10−6√
1+10−12

10−6√
1+10−12

)
.

The GSVs of the GMP are

(α1, β1) =
1√
2
(1, 1), (α2, β2) =

1√
1 + 10−12

(1, 10−6), i.e., σ1 = 1, σ2 = 10
6,

338 JI-GUANG SUN

and the associated right generalized singular vectors are

x1 = (1, 1)
T , x2 = (0, 1)

T ,

where every (αj , βj) and xj satisfy (2.25). Computation gives

‖A‖2

α1
= 2.1358, ‖B‖2

β1
= 1.0000, ‖A‖2

α2
= 1.5102, ‖B‖2

β2
= 7.0711× 105,

‖x1‖2 = 1.4142, ‖x2‖2 = 1.0000, ‖x1‖2

β1
= 2.0000, ‖x2‖2

β2
= 1.0000× 106.

By using the formulas of (2.26) we get

cabs(σ1) = 4.0000, cabs(σ2) = 1.0000× 1012,

crel(σ1) = 4.4347, crel(σ2) = 7.0711× 105,
(4.1)

and

c
(abs)
A (σ1) = c

(abs)
B (σ1) = 2.0000, c

(abs)
A (σ2) = c

(abs)
B (σ2) = 1.0000× 106,

c
(rel)
A (σ1) = 3.0204, c

(rel)
B (σ1) = 1.4142,

c
(rel)
A (σ2) = 1.5102, c

(rel)
B (σ2) = 7.0711× 105.

The results of (4.1) show that the GSV σ1 is well conditioned but the GSV σ2 is ill
conditioned, in both the absolute sense and relative sense.

Moreover, by using Algorithm GSVD22 presented by Bai and Demmel [1] (for
computing the GSVD (1.9)), we get the computed GSVD [3]

Z̃TAQ̃ =

(
4.999999999999999× 10−1 −5.000000000000003× 10−1

5.551115123125783× 10−16 1.414213562372388× 100
)
= Σ̃AR̃,

W̃TAQ̃ =

(
4.999999999999999× 10−1 −5.000000000000003× 10−1

5.293955920339377× 10−22 1.414213562372389× 10−6

)
= Σ̃BR̃,

(4.2)
where

Z̃ =

(
1 0
0 1

)
= (z̃1, z̃2) , W̃ =

(
1 0
0 1

)
= (w̃1, w̃2) ,

Q̃ =

(
7.071067811865475× 10−1 −7.071067811865480× 10−1

7.071067811865480× 10−1 7.071067811865475× 10−1

)
.

(4.3)

From (4.2) and (4.3) we get

(α̃1, β̃1) = (7.071067811865476× 10−1, 7.071067811865476× 10−1),

(α̃2, β̃2) = (9.999999999995000× 10−1, 9.999999999995000× 10−7),

and

X̃ =

(
1 0
1 1

)
= (x̃1, x̃2) , Ỹ = X̃−T =

(
1 −1
0 1

)
= (ỹ1, ỹ2) .

CONDITION NUMBER AND BACKWARD ERROR 339

For the computed {(α̃1, β̃1); x̃1, ỹ1, z̃1, w̃1}, we have

‖r1‖2 = 6.6613× 10−16, ‖r2‖2 = 6.3527× 10−22,

‖r3‖2 = 4.4409× 10−16, ‖r4‖2 = 4.4409× 10−16,
(4.4)

where r1, r2, r3, r4 are the residuals defined by (3.4). Substituting (4.4) and

‖A‖2 = 1.5102, ‖B‖2 = 7.0711(4.5)

into the formula (3.5) gives

ηabs((α̃1, β̃1); x̃1, ỹ1, z̃1, w̃1) = 4.7103× 10−16,

ηrel((α̃1, β̃1); x̃1, ỹ1, z̃1, w̃1) = 6.2804× 10−16.

(4.6)

Similarly, for the computed {(α̃2, β̃2); x̃2, ỹ2, z̃2, w̃2}, we have

‖r1‖2 = 2.2204× 10−16, ‖r2‖2 = 2.1176× 10−22,

‖r3‖2 = 1.1322× 10−15, ‖r4‖2 = 1.0798× 10−21.
(4.7)

Substituting (4.5) and (4.7) into the formula (3.5) gives

ηabs((α̃2, β̃2); x̃2, ỹ2, z̃2, w̃2) = 1.1322× 10−15,

ηrel((α̃2, β̃2); x̃2, ỹ2, z̃2, w̃2) = 7.4970× 10−16.

(4.8)

The results (4.6) and (4.8) show that the computation of the GSVD (4.2) by using
Algorithm GSVD22 has proceeded stably.

Example 4.2 (see [1, section 5.2]). Consider the (2, 2, 2)-GMP {A,B} with

A =

(
2 0
1 10−8

)
, B =

(
1 0
3 1

)
.

By using Algorithm GSVD22, we get the computed GSVD [3]

Z̃TAQ̃ =

(
7.071067773681713× 10−1 2.121320344832436
−2.504923900926630× 10−16 2.828427064871980× 10−8

)
= Σ̃AR̃,

W̃TBQ̃ =

(
3.162277662065746× 10−1 9.486833043118236× 10−1

−1.110223024625157× 10−16 3.162277658271013

)
= Σ̃BR̃,

(4.9)
where

Z̃ =

(
8.944271963664790× 10−1 −4.472135847668320× 10−1

4.472135847668320× 10−1 8.944271963664790× 10−1

)
= (z̃1, z̃2) ,

W̃ =

(
1.000000000000000 −1.999999963999999× 10−9

1.999999963999999× 10−9 1.000000000000000

)
= (w̃1, w̃2) ,

(4.10)

340 JI-GUANG SUN

and

Q̃ =

(
3.162277662065746× 10−1 9.486832979872684× 10−1

−9.486832979872684× 10−1 3.162277662065746× 10−1

)
.(4.11)

From (4.9)–(4.11) we get

(α̃1, β̃1) = (9.128709282624060× 10−1, 4.082482925051043× 10−1),

(α̃2, β̃2) = (8.944271726026845× 10−9, 1.000000000000000),

and

X̃ =

(
4.082482925051043× 10−1 −1.999999998947288× 10−9

−1.224744876698816 1.000000006000000

)
= (x̃1, x̃2) ,

Ỹ = X̃−T =
(
2.449489745232669 2.999999998000000
4.898979444334373× 10−9 1.000000000000000

)
= (ỹ1, ỹ2) .

For the computed {(α̃1, β̃1); x̃1, ỹ1, z̃1, w̃1}, we have

‖r1‖2 = 7.5503× 10−16, ‖r2‖2 = 1.4429× 10−16,

‖r3‖2 = 8.9057× 10−16, ‖r4‖2 = 2.2395× 10−16.
(4.12)

Substituting (4.12) and

‖A‖2 = 2.2361, ‖B‖2 = 3.3028(4.13)

into the formula (3.5) gives

ηabs((α̃1, β̃1); x̃1, ỹ1, z̃1, w̃1) = 8.9057× 10−16,

ηrel((α̃1, β̃1); x̃1, ỹ1, z̃1, w̃1) = 3.9827× 10−16.

(4.14)

Similarly, for the computed {(α̃2, β̃2); x̃2, ỹ2, z̃2, w̃2}, we have

‖r1‖2 = 2.5016× 10−16, ‖r2‖2 = 2.2478× 10−16,

‖r3‖2 = 2.5049× 10−16, ‖r4‖2 = 4.4409× 10−16.
(4.15)

Substituting (4.13) and (4.15) into the formula (3.5) gives

ηabs((α̃2, β̃2); x̃2, ỹ2, z̃2, w̃2) = 4.4409× 10−16,

ηrel((α̃2, β̃2); x̃2, ỹ2, z̃2, w̃2) = 1.3446× 10−16.

(4.16)

The results (4.14) and (4.16) show that the computation of the GSVD (4.9) by
using Algorithm GSVD22 has proceeded stably.

CONDITION NUMBER AND BACKWARD ERROR 341

5. Acknowledgments. I would like to thank Ilse Ipsen and the referees for
their helpful comments and valuable suggestions. I also thank Zhaojun Bai who gave
me the computed GSVDs of the (2, 2, 2)-GMPs of Examples 4.1 and 4.2 by using
Algorithm GSVD22 presented by [1].

REFERENCES

[1] Z. Bai and J. W. Demmel, Computing the generalized singular value decomposition, SIAM
J. Sci. Comput., 14 (1993), pp. 1464–1486.

[2] Z. Bai and H. Zha, A new preprocessing algorithm for the computation of the generalized
singular value decomposition, SIAM J. Sci. Comput., 14 (1993), pp. 1007–1012.

[3] Z. Bai, private communication, May 1999.
[4] M. T. Chu, R. E. Funderlic, and G. H. Golub, On a variational formulation of the

generalized singular value decomposition, SIAM J. Matrix Anal. Appl., 18 (1997), pp.
1082–1092.

[5] C. Davis, W. M. Kahan, and H. F. Weinberger, Norm-preserving dilations and their
applications to optimal error bounds, SIAM J. Numer. Anal., 19 (1982), pp. 445–469.

[6] J. P. Dedieu, Condition operators, condition numbers and condition number theorem for the
generalized eigenvalue problem, Linear Algebra Appl., 263 (1997), pp. 1–24.

[7] L. Eldén, A weighted pseudoinverse, generalized singular values, and constrained least
squares problems, BIT, 22 (1982), pp. 487–502.

[8] V. Frayssé and V. Toumazou, A note on the normwise perturbation theory for the regular
generalized eigenproblem Ax = λBx, Numer. Linear Algebra Appl., 5 (1998), pp. 1–10.

[9] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[10] D. J. Higham and N. J. Higham, Structured backward error and condition of generalized
eigenvalue problems, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 493–512.

[11] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[12] B. Kågström, The generalized singular value decomposition and the general (A − λB)-

problem, BIT, 24 (1984), pp. 568–583.
[13] R.-C. Li, Bounds on perturbations of generalized singular values and of associated subspaces,

SIAM J. Matrix Anal. Appl., 14 (1993), pp. 195–234.
[14] C. C. Paige, Computing the generalized singular value decomposition, SIAM J. Sci. Statist.

Comput., 7 (1986), pp. 1126–1146.
[15] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM

J. Numer. Anal., 18 (1981), pp. 398–405.
[16] J. R. Rice, A theory of condition, SIAM J. Numer. Anal., 3 (1966), pp. 287–310.
[17] G. W. Stewart, Computing the CS-decomposition of a partitioned orthonormal matrix, Nu-

mer. Math., 40 (1982), pp. 297–306.
[18] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York,

1990.
[19] J.-G. Sun, On the perturbation of generalized singular values, Math. Numer. Sinica, 4 (1982),

pp. 229–233 (in Chinese).
[20] J.-G. Sun, Perturbation analysis for the generalized singular value problem, SIAM J. Numer.

Anal., 20 (1983), pp. 611–625.
[21] J.-G. Sun, Perturbation analysis of generalized singular subspaces, Numer. Math., 79 (1998),

pp. 615–641.
[22] J.-G. Sun, Stability and Accuracy: Perturbation Analysis of Algebraic Eigenproblems, Report

UMINF 98.07, ISSN-0348-0542, Department of Computing Science, Ume̊a University,
Ume̊a, Sweden, 1998.

[23] J.-G. Sun, On Condition Numbers for Generalized Singular Values, Report UMINF 99.14,
ISSN-0348-0542, Department of Computing Science, Ume̊a University, 1999.

[24] C. F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal., 13
(1976), pp. 76–83.

[25] C. F. Van Loan, Computing the CS and the generalized singular value decomposition, Numer.
Math., 46 (1985), pp. 479–491.

MULTILEVEL SOLUTIONS FOR STRUCTURED MARKOV CHAINS∗

PETER BUCHHOLZ†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 342–357

Abstract. In this paper, a new analysis approach for continuous time Markov chains (CTMCs)
with a multidimensional structure is introduced. The presented solution technique employs the
multidimensional structure to define aggregated CTMCs that can be analyzed more efficiently. Gen-
erator matrices of aggregated CTMCs are described in a compact form by exploiting the Kronecker
structure of the generator matrix of a structured CTMC. The solution of aggregated systems is used
to improve the solution of the original system. This idea of a multilevel solution is motivated by
multigrid methods, which are efficient solvers for partial differential equations. The technique can be
combined with different iterative solution techniques. It usually improves the convergence of these
techniques significantly. Numerical results are given to illustrate that the new solution technique
allows the fast and accurate analysis of very large CTMCs.

Key words. continuous time Markov chains, stationary analysis, iterative solution techniques,
aggregation-disaggregation

AMS subject classifications. 60J20, 65C20, 65F10

PII. S0895479898342419

1. Introduction. Markovian modeling is used in many areas in evaluating the
performance or reliability of existing or planned systems. Often the stationary dis-
tribution of a continuous time Markov chain (CTMC) is computed to determine the
long-run behavior of the system. Stationary analysis requires the solution of

pQ = 0 subject to ‖p‖1 = 1,(1)

whereQ is the generator matrix of the CTMC and p is the unknown stationary proba-
bility vector. From the stationary vector p, system-related measures like throughputs,
response times, and availability can be computed. The dimensions of Q and p equal
the number of states of the CTMC, which often grows exponentially with the size
of the model measured in the number of model components, such as queues and
customers in queueing networks (QNs) or places and tokens in stochastic Petri nets
(SPNs). We consider here finite CTMCs, which, nevertheless, may have a huge state
space including several millions of states. In summary, determination of p requires
the solution of a system of equations with a large, sparse and, in almost all cases, non-
symmetric coefficient matrix. This is a cumbersome task, even with contemporary
computer equipment.

For the solution of (1) a large number of solution techniques exist (see [25] for
an excellent overview), but even sophisticated iterative solution techniques combined
with sparse storage schemes, as commonly used, reach their limits for most realis-
tic examples. Problems may arise due to huge memory requirements or due to long
solution times caused by a slow convergence of the iterative method. One way to over-
come at least the problem of exceeding available memory is to represent matrix Q in
a compact form as the Kronecker product of small component matrices. The compact
representation of Q has been derived for specific finite QNs with overflow in [19, 10].

∗Received by the editors July 27, 1998; accepted for publication (in revised form) by D. O’Leary
February 4, 2000; published electronically July 11, 2000.

http://www.siam.org/journals/simax/22-2/34241.html
†Department of Computer Science, Dresden University of Technology, D-01062 Dresden, Germany

(p.buchholz@inf.tu-dresden.de).

342

MULTILEVEL SOLUTIONS FOR MARKOV CHAINS 343

A more general class of models with a Kronecker structure of the generator matrix
has been presented by Plateau [22]. Models are described as stochastic automata
networks (SANs), which specify a CTMC under Markovian timing and transitions.
SANs are a very general paradigm such that the underlying concepts can also be used
to describe SPNs [15] or QNs in a structured way.

The compact representation of Q can be directly used in vector-matrix multipli-
cations involving the generator matrix. In this way iterative techniques are realized
without generating Q as a whole. Possible iterative techniques include the Power
method and projection methods such as GMRES or Arnoldi [25, 26]. Additionally, Ja-
cobi overrelaxation (JOR) and, with some additional effort, successive overrelaxation
(SOR) [8, 27] can be implemented in conjunction with the compact representation of
Q. The compact representation of Q solves to some extent the problem of limited
available space, but it generally does not solve the problem of long solution times.
The major problem is that large CTMCs can be analyzed with the available memory,
but due to slow convergence or even divergence, sufficiently exact solutions cannot be
obtained. Thus there is a need for more efficient solution techniques exploiting the
compact matrix representation.

For elliptic differential equations with a symmetric coefficient matrix, which some-
times also allow a compact matrix representation via Kronecker products of small
matrices, efficient preconditioning techniques exist to accelerate the convergence of
iterative solution methods [1]. Similar preconditioners have been used for overflow
QNs [10, 11, 12]. However, the approach cannot be extended to more general models
because it relies on the specific matrix structure of this kind of models. New analysis
techniques for SANs have been proposed recently. In [25, 26, 6] preconditioning is
used to accelerate convergence of iterative methods, and [4, 5] propose aggregation-
disaggregation to speed up the solution.

In this paper, we present a new approach for the analysis of CTMCs with a mul-
tidimensional state space that extends the idea of aggregation-disaggregation steps to
accelerate convergence of iterative techniques. The multilevel solution technique that
is introduced here exploits the multidimensional structure of the CTMC by defin-
ing aggregated CTMCs. An aggregated CTMC results from the original CTMC by
keeping the distribution in some dimensions constant. Since the state space of ag-
gregated CTMCs is smaller than the state space of the original CTMC, iterations of
iterative solution techniques are performed more efficiently for aggregated CTMCs
and the resulting aggregated solution vector is used to improve the solution of the
complete CTMC. This approach can be combined with any iterative solution tech-
nique exploiting the compact representation of Q. The basic step follows ideas from
algebraic multigrid techniques [2] and the multilevel approach for CTMCs [18]. The
multidimensional structure of the CTMC and the Kronecker structure of the gener-
ator matrix allow a very convenient definition of probability vectors and generator
matrices for reduced CTMCs.

In what follows, boldface capital and lowercase letters are used for matrices and
vectors, respectively. All vectors are row vectors. Column vectors are represented as
transposed row vectors, i.e., pT is the column vector resulting from transposing row
vector p. In is used for the identity matrix of dimension n and en for a row vector
of length n, where all elements are 1. If the dimension follows from the context,
the subscript is suppressed. For an n-dimensional column vector pT , diag(pT) is an
n × n diagonal matrix with p(s) in position (s, s). We use ‖.‖ for vector norms and
matrix norms. Sets are represented by calligraphic letters. We assume that all sets

344 PETER BUCHHOLZ

are ordered such that the order of multiplication or summation over the elements of a
set is well defined. |.| stands for the number of elements in a set. Indices s and t are
used for states, index e describes a synchronization event, and indices i and j denote
components of a structured model. Subscripts and superscripts identify quantities

belonging to components and synchronization events. Q
(i)
e is the matrix describing

synchronized transition e in component i; si is a state belonging to component i.
The structure of the paper is as follows. In the next section we present structured

CTMCs resulting from SANs or related modeling formalisms. Afterward, in section 3,
aggregation-disaggregation with respect to components (i.e., dimensions) or sets of
components is introduced. In section 4 the multilevel solution algorithm is presented.
Then examples are used to show the benefits of the proposed algorithm compared to
other solution techniques. The paper ends with a summary of the presented results
and an outline of open research topics.

2. Structured CTMCs. Structured models consist of a set J = {1, . . . , J} of
components. Each component j has a finite state space S(j) including nj states. We
assume that states are numbered consecutively from 0 through nj − 1. The potential
state space of the complete model composed of the components equals

S = S(1) × S(2) × · · · × S(J)

and includes n =
∏
j∈J nj states. A state of the complete model can be described by

a vector (s1, . . . , sJ) (sj ∈ S(j)) or equivalently by an integer

s =
∑
j∈J

sj
∏

i∈J , i>j
ni(2)

resulting from a mixed radix number representation [13]. In what follows we use the
vector representation and integer representation interchangeably.

Transitions in the model result from local transitions in one of the components
and synchronized transitions among subsets of components. We assume that the
future behavior of the model depends only on the state of the components and that
no simultaneous transitions occur. Consequently, the model describes a CTMC. Let

Q
(j)
l be an nj × nj matrix including in position (s, t) the transition rate of local

transitions starting in state s ∈ S(j) and ending in state t ∈ S(j). Local transitions
occur independently in the components. Apart from local transitions, synchronized
transitions involving sets of components exist. Let E be the set of synchronized

transitions and Q
(j)
e be an nj × nj matrix that describes the effect of synchronized

transition e ∈ E on component j ∈ J . Usually one component j includes the rate
of transition e and the others include probabilities describing the choice of successor
states when e occurs. Observe that if one component disables transition e (i.e., the

corresponding row in matrix Q
(j)
e is zero), then e cannot occur. We define Q

(j)
e =

Inj if component j does not participate in the synchronization due to synchronized
transition e. It is well known that the generator matrix of the structured model can
be represented as [22, 26, 25]

Q =
∑
j∈J

Ilj
⊗

Q
(j)
l

⊗
Iuj +

∑
e∈E

⊗
j∈J

Q(j)
e

−
∑
j∈J

Ilj
⊗

D
(j)
l

⊗
Iuj −

∑
e∈E

⊗
j∈J

D(j)
e ,

(3)

MULTILEVEL SOLUTIONS FOR MARKOV CHAINS 345

where lj =
∏
i∈J , i<j ni, uj =

∏
i∈J , i>j ni,D

(j)
l = diag(Q

(j)
l eT),D

(j)
e = diag(Q

(j)
e eT),

and
⊗

is the Kronecker (tensor) product of matrices [13, 25]. Observe that (3) is a
representation using only matrices of size nj × nj rather than n× n.

In what follows we assume that S includes a single irreducible subset of states
such that the stationary solution vector p exists uniquely. If this is not the case, one
can still solve the system with an iterative technique by assigning nonzero probabil-
ities to states in only one ergodic subset of states [8, 26]. The matrix representa-
tion (3) can be exploited by all iterative solution techniques that are based on the
computation of vector-matrix products using the generator matrix or the generator
matrix without diagonal elements. These techniques include the Power method, JOR,
GMRES, Arnoldi, and several others. The basic step is the computation of the prod-
uct of a vector with a tensor product of matrices; efficient algorithms for this purpose
can be found in [8, 9, 16]. For details about numerical analysis techniques exploiting
the matrix structure we refer to the literature [8, 4, 5, 26, 25, 27]. The advantage
of using the representation (3), instead of the matrix Q stored in sparse format, is
usually a drastic reduction of storage requirements such that the state space of theo-
retically solvable CTMCs on a given hardware can be increased by about one order
of magnitude. However, the structured approach usually does not reduce the solution
time significantly [6, 27]. Thus, the solution of large structured CTMCs is often a
very time-consuming task and there is a need for more efficient solution techniques.
Example. As an example we consider a simple overflow QN with three queues.

Customers arrive to queue i according to a Poisson process with rate λi, and they
have exponentially distributed service requirements with rate µi. We assume that
queue i has capacity ki. We will consider two versions of this model.

In the first version (V 1) customers arriving when queue 1 is full try to enter queue
2. If queue 2 is also full, they try to enter queue 3. If queue 3 is also full, the arriving
customer gets lost. Customers arriving to queue 2, which is full, try to enter queue
3 and get lost if queue 3 is also full. Customers arriving to queue 3 immediately get
lost if the queue is full.

This model can be described using three components. Each component models
one queue and the corresponding arrival process. Three synchronized events are re-
quired, one involving all three components and two involving two components. We
denote the events by 12, 13, and 23 to describe the arrival of a customer from the
queue given by the first number to the queue given by the second number. The
following matrices describe the components:

Q
(j)
l =

0 λj 0

µj
. . .

. . .

. . .
. . .

. . .

. . .
. . . λj

0 µj 0

,

Q
(1)
12 = Q

(1)
13 =

0 0 0

0
. . .

. . .

. . .
. . .

. . .

. . . 0 0
0 0 λ1

, Q

(2)
23 =

0 0 0

0
. . .

. . .

. . .
. . .

. . .

. . . 0 0
0 0 λ2

,

346 PETER BUCHHOLZ

Q
(2)
12 = Q

(3)
13 = Q

(3)
23 =

0 1 0 0
. . .

. . .
. . .

. . .
. . . 0
. . . 1

0 0

, Q

(2)
13 =

0 0 0

0
. . .

. . .

. . .
. . .

. . .

. . . 0 0
0 0 1

.

Observe that even for this simple model, the advantage of the structured approach
is obvious. The size of the component state space equals ki+1, whereas the complete
CTMC has (k1 +1)(k2 +1)(k3 +1) states. Similarly, the number of nonzero elements
in the component matrices including diagonal elements equals 5k1 + 5k2 + 5k3 + 8,
whereas matrix Q contains k1k2k3 + k1k2 + k1k3 + k3 nonzeros.

The second version (V 2) of the model allows the overflow of customers from each
queue to each other queue. Thus, six additional synchronized transitions have to be
added. The corresponding matrices are similar to the matrices shown for V 1.

3. Aggregation and disaggregation. The idea of the multilevel solution ap-
proach proposed in this paper is to exploit the multidimensional structure to make
iterative solution techniques more efficient. We define CTMCs of a lower dimension
by keeping the distribution in some dimensions constant and building an aggregated
CTMC with respect to this constant distribution. In what follows, some basic opera-
tions are introduced first.

Let D ⊆ J be a subset of components that are considered in detail. The remaining
components J \ D are aggregated. We use superscript D for quantities belonging to
the aggregated model with aggregated components J \ D and detailed components
D. Usually the superscript is suppressed if D = J . The state space of the aggregated
system is defined as SD = ×j∈DS(j) and includes nD =

∏
j∈D nj states. States in SD

are represented by a |D|-dimensional description including the states of components
in D. sDj ∈ S(j) is the state of component j ∈ D belonging to state sD ∈ SD. Using
(2) we obtain an integer representation

sD =
∑
j∈D

sDj
∏

i∈D,i>j
ni .

Now assume that xD is a vector on state space SD and let C ⊂ D be a subset of
the components in D. Let sD ∈ SD be a state of the aggregated CTMC described
by components D. Each state sD belongs to a state sC ∈ SC , where the state of
components j ∈ C is given by sDj and the state of the remaining components j ∈ D\C
is neglected. The index of state sC is computed as

sC =
∑
j∈C

sDj
∏

i∈C,i>j
ni .(4)

Let proj(sD,D, C) be a function computing sC from sD via (4). A vector xC , which
results from mapping xD onto SC , can be computed elementwise as

xC(sC) =
∑

sD∈SD,proj(sD,D,C)=sC
xD(sD)(5)

for all sC ∈ SC . The mapping will be used for iteration and residual vectors. Let x be
an approximation for the stationary solution that has been computed by performing

MULTILEVEL SOLUTIONS FOR MARKOV CHAINS 347

some iteration steps with an iterative solution technique, and let r = xQ be the
corresponding residual vector. Via (5) residuals are mapped on the state space of
a single component, i.e., r(i) is computed. By comparing ‖r(i)‖ it is possible to find
dimensions in the state space with large residuals and dimensions with small residuals.

The opposite operation of a mapping from a more detailed to a less detailed state
space is the redirection of a more detailed solution using a less detailed one. Let xD

be a solution vector on SD, and let yC be an improved solution on SC . An improved
solution vector yD on SD is computed using the following equation, where xC is the
projection of xD on SC via (5):

yD(sD) = xD(sD)
yC(proj(sD,D, C))
xC(proj(sD,D, C)) .(6)

This is the usual interpolation operation that is used in multigrid or aggregation-
disaggregation techniques [2, 18, 25]. Observe that the mapping of yD onto SC equals
yC .

The next step introduces the computation of an aggregated generator matrix QC

from a generator matrix QD and a vector xD for C ⊂ D. The idea of generating QC

from QD is to aggregate components j ∈ D\C. This aggregation is done with respect

to vector xD. Matrices Q
(j)
l for j ∈ D \ C are not required to represent QC because

these matrices describe only transitions in dimensions which are aggregated. For
synchronized events, the contribution of components j ∈ D \ C has to be represented
in an aggregated form and depends on the vector xD. Define an nC × nC diagonal
matrix as follows:

AC
e (s

C , sC)

=

 ∑
sD∈SD,proj(sD,D,C)=sC

xD(sD)AD
e (s

D, sD)
∏

j∈D\C
D(j)
e (sDj , s

D
j)

 / xC(sC),

(7)

where xC is the mapping of xD onto SC via (5) andAJ
e = In. Values of the aggregated

matrix are computed according to the conditional probability distribution over states
sDj , j ∈ D \ C, with respect to a fixed state sC . This corresponds to the common
computation of aggregated transition rates in CTMC aggregation algorithms [18, 25].
The aggregated generator matrix is given by

QC =
∑
j∈C

IlC
j

⊗
Q

(j)
l

⊗
IuC

j
+
∑
e∈E

AC
e

⊗
j∈C

Q(j)
e

−
∑
j∈C

IlC
j

⊗
D

(j)
l

⊗
IuC

j
−
∑
e∈E

AC
e

⊗
j∈C

D(j)
e ,

(8)

where lCj =
∏
i∈C, i<j ni and uCj =

∏
i∈C, i>j ni. The first sum describes local tran-

sitions and the second sum synchronized transitions; the remaining parts determine
the diagonal elements. In the second and fourth sums only those synchronized events

from E have to be considered, for which at least one matrix Q
(j)
e �= Inj

for some j ∈ C.
QC is an nC × nC matrix that can be represented by the component matrices plus up
to |E| diagonal matrices of order nC . This representation is compact as long as the
number of synchronized events is moderate. Since n = nC ·nJ\C , the number of states
for the aggregated system nC is usually much smaller than n.

348 PETER BUCHHOLZ

Theorem 3.1. If S̄ ⊆ S is an irreducible subset of states for matrix Q and
x(s) > 0 for s ∈ S̄, and x(s) = 0 for s /∈ S̄, then for each D ⊆ J , S̄D ⊆ SD, defined
as the mapping of states from S̄ onto SD, is an irreducible subset of states for matrix
QD.
Proof. Let sD = proj(s,J ,D) and tD = proj(t,J ,D). We first show that

Q(s, t) > 0 implies Q(sD, tD) > 0 for sD �= tD. If Q(s, t) results from a local

transition, then Q
(j)
l (sj , tj) for some j ∈ D implies that the same local transition

is possible in the aggregated system and QD(sD, tD) > 0. If Q(s, t) results from

a synchronized transition, then Q
(j)
e (sj , tj) > 0 for all j ∈ J . Since additionally

x(s) > 0, AD(sD, sD) > 0, which implies QD(sD, tD) > 0. Thus, the existence of
a path from s to t in the original CTMC implies the existence of a path from sD

(= proj(s,J ,D)) to tD (= proj(t,J ,D)) in the aggregated CTMC.

It remains to show that a path from sD to tD in the aggregated CTMC implies
the existence of a path from some s (with sD = proj(s,J ,D)) to some t (with tD =
proj(t,J ,D)) such that s, t ∈ S̄. This can be done by showing that QD(sD, tD) > 0
(sD �= tD) implies Q(s, t) > 0 for (s, t ∈ S̄). If QD(sD, tD) results from a local
transition, then this transition occurs in a component j ∈ D ⊆ J and can also
occur in the original CTMC. If the transition results from a synchronized transition,

then Q
(j)
e (sDj , t

D
j) > 0 for j ∈ D. AD

e (s
D, sD) > 0 implies the existence of a state

s ∈ S̄ with sD = proj(s,J ,D) since x(s) > 0 has to hold to assure QD(sD, tD) > 0.

Additionally, Q
(j)
e (sj , tj) > 0 for j ∈ D, which implies Q(s, t) > 0 for some t ∈ S̄ with

tD = proj(t,J ,D).
The theorem indicates that matrix QD can be used to compute the stationary

solution of the aggregated CTMC. The following corollary shows the correspondence
between the stationary solution at different levels.

Corollary 3.2. If QD has been generated using a probability vector p with
pQ = 0, then pDQD = 0.

Example (continued). Aggregation of one component in the example reduces the
state space by a factor kj + 1. If the first component is aggregated according to

probability vector x, then the elements of the matrices A
(2,3)
12 and A

(2,3)
13 are defined

as

A
(2,3)
12 ((s2, s3), (s2, s3)) = A

(2,3)
13 ((s2, s3), (s2, s3)) = λ1

x(k1, s2, s3)
k1∑
s1=0

x(s1, s2, s3)

,

where x(k1, s2, s3) is the conditional probability that the first queue contains k1 cus-
tomers when the queues 2 and 3 contain s2 and s3 customers, respectively.

4. A multilevel solution algorithm. With the steps presented in the previ-
ous section, it is straightforward to formulate a multilevel solution algorithm following
the lines given by other multilevel solution techniques [2, 3, 18, 24, 25]. However, in
contrast to other approaches applicable for CTMC analysis, aggregation along the
multidimensional structure and exploitation of the Kronecker structure for building
aggregated generator matrices introduce some convenient features, especially when
applied to CTMCs with a large state space. Aggregated generator matrices are built
by removing some component matrices from the Kronecker products and adding di-
agonal matrices AD

e to describe the effect of synchronized transitions with respect to
aggregated dimensions in the state space.

MULTILEVEL SOLUTIONS FOR MARKOV CHAINS 349

The multilevel solution combines iterative analysis with aggregation-disaggregation
steps to build aggregated CTMCs. Denote by iter(Q,x, ν) the computation of ν it-
eration steps, using the compact representation of matrix Q as given in (3) or (8),
starting with vector x. The result of this operation is a vector y. We do not fix the
iteration technique; in principle, all iterative techniques can be applied that exploit
the Kronecker structure of Q. Some remarks on choosing an appropriate technique
are given below. We use solve(Q,x) for the computation of the solution xQ = 0
subject to ‖x‖1 = 1. Usually this solution is computed with a direct method, such as
the GTH algorithm [25], which implies that Q is generated as a whole. If Q contains
several irreducible subsets of states, we assume that the solution is computed with
respect to one irreducible subset, denoted as S̄ and S̄D, respectively.

The following function performs the basic steps of the multilevel solution approach
which will be denoted as a multilevel cycle.

function multi level algo(QD,xD,D)
if |D| = 1 then

yD = solve(QD,xD) ; (step 1)
else

xD = iter(QD,xD, ν1) ; (step 2)
find i = mini∈D(‖r(i)‖,

where r(i) results from rD = xDQD via (5)) ; (step 3)
C = D \ (i) ;
compute xC from xD using (5) ; (step 4)
compute QC from QD and xD using (7) and (8) ; (step 5)
yC = multi level algo(QC ,xC , C) ; (step 6)
compute yD from xD, xC and yC via (6) ; (step 7)
yD = iter(QD,yD, ν2) ; (step 8)

fi
return(yD) ;

end

A complete solution requires the following steps:

initialize x such that x(s) > 0 for s ∈ S̄ and x(s) = 0 otherwise ;
repeat

x = multi level algo(Q,x,J) ;
until ‖xQ‖ ≤ ε.
The solution stops if the norm of the residual vector is smaller than some prede-

fined constant ε. Other stopping criteria can be applied as well [25].

In step 1 the aggregated system for a single component is solved; the size of this
system is at most maxj∈J nj . Usually, this system is small enough to be solved with a
direct solver. If this is not the case, then an iterative technique can be used. In step 2
and step 8 iteration steps are performed to improve the approximation of the solution.
We denote this as preiteration and postiteration. Every iteration method that can
be used in conjunction with the compact matrix representation is applicable in these
steps. Methods with a relatively smooth convergence should be chosen because ν1
and ν2 are usually relatively small. It is, of course, possible to use different iterative
techniques at different levels. Values for ν1 and ν2 can be fixed or can be chosen
adaptively during the iteration depending on the observed convergence behavior. It is
not necessary to solve aggregated CTMCs with a high accuracy, unless the residuals
rJ are relatively small. In step 3 the component or dimension to be aggregated
is chosen. In the proposed realization, this choice is adaptive by aggregating the

350 PETER BUCHHOLZ

component with the smallest local residuals. The underlying assumption is that small
residuals in one dimension indicate a good approximation in this dimension. It is
also possible to aggregate more than one component in a step, e.g., by aggregating
all components where the local residual norm is less than some predefined threshold.
Step 6 describes the recursive call of the procedure to compute the approximation for
the aggregated system. As presented here, the multilevel solution approach realizes
a V-cycle. In multigrid techniques W-cycles are also used by making two consecutive
recursive calls [3].

The method is related to aggregation-disaggregation methods for the solution of
CTMCs, and it is also related to block Jacobi and block Gauss–Seidel, which have
in [14] shown to be very efficient solvers for large CTMCs. Global convergence of
aggregation-disaggregation techniques applied to CTMCs has been recently proved
[20]. By adopting a simple modification proposed in [24], convergence of the multilevel
method can also be ensured whenever the iterative method used for the complete
CTMC converges. To realize the modification, the number of iterations ν1 is chosen
adaptively for D = J such that the residuals of the result vector are smaller than the
residuals of the initial vectors. Then the following steps have to be introduced:

if D = J then zJ = xJ ; (step 2.1)
if D = J and ‖yJQJ ‖ > ‖zJQJ ‖ then (step 8.1)

yJ = zJ . (step 8.2)
The result of the multilevel step is used only if the residual norm is not increased

by the multilevel step. Thus, the residual norm of the iteration vector of the complete
CTMC is decreased by the iteration steps and it is not increased by a multilevel step,
which implies convergence of the method whenever the iteration method converges. If,
for example, the Power method is used for the complete system and the modification
is introduced, then the complete method will converge.

5. Some examples. We begin with relatively small versions of the overflow QN
examples with three queues and 20 queueing places in each of the queues. State
spaces of the components contain 21 states; the state spaces of the complete CTMCs
include 9,261 states, and generator matrices have 62,181 nonzero entries. To represent
these matrices in compact form, 18 matrices with 304 nonzero entries overall are
necessary for version V 1. For version V 2, the compact representation requires 36
matrices with 418 nonzero entries. The complete generator matrix contains 63,501
nonzero entries for this example. In both cases, the Kronecker representation needs
significantly less space. The examples are small enough to be analyzed with different
analysis techniques, including LU factorization, although the direct solution with LU
factorization requires much more time than the solution with an iterative technique.
For the first series of experiments we choose µi = 1.0, λ1 = 0.5, λ2 = 0.7, and
λ3 = 0.9.

All experiments have been performed on a PC with a 450 MHz CPU and 128
MB main memory. Programs are written in C, and CPU times are measured with
the available C library functions. We compare three different classes of solution tech-
niques. For details about the basic analysis methods we refer to [25], which describes
all used methods except BiCGSTAB and TFQMR, which can be found in [17, 28].
The first class includes conventional techniques that are based on the sparse matrix
representation of Q. In this class we use the well-known LU factorization (LU), the
Power method (Power), successive overrelaxation (SOR), and the generalized minimal
residual method with a restart after 20 iterations (GMRES), as well as BiCGSTAB
and TFQMR. For the latter three methods ILU0 preconditioning is used to acceler-

MULTILEVEL SOLUTIONS FOR MARKOV CHAINS 351

Table 1
Results for example V 1.

Method Iter. ‖xQ‖1 ‖xQ‖∞ CPU-time in sec.
LU – 3.296e− 17 1.617e− 15 550
Power 3163 9.999e− 11 5.756e− 9 43
SOR(ω = 1.8) 133 9.653e− 11 8.841e− 10 1
BiCGStab + ILU0 58 2.040e− 11 1.407e− 9 4
TFQMR +ILU0 60 4.996e− 11 5.034e− 9 4
GMRES+ILU0 60 3.824e− 11 1.730e− 8 5
StPower 3163 9.999e− 11 5.756e− 9 52
StJOR (ω = 1.0) 2507 9.943e− 11 9.027e− 9 40
StGS 1309 9.926e− 11 5.425e− 9 34
StSOR (ω = 1.8) 133 9.653e− 11 8.841e− 10 3
StBiCGStab 172 5.140e− 11 5.277e− 9 4
StTFQMR 464 1.635e− 11 1.926e− 9 12
GMRES (m = 20) 300 3.383e− 11 1.115e− 8 12
MlPower 81 8.842e− 11 7.028e− 9 3
MlJOR (ω = 0.95) 189 9.989e− 11 1.730e− 8 6
MlGS 46 9.630e− 11 1.754e− 8 2
MlSOR (ω = 1.65) 40 9.291e− 11 8.602e− 9 2

ate convergence [25]. In the second class we consider iterative methods exploiting
the compact matrix representation. We use the Power method, JOR, Gauss–Seidel,
SOR, GMRES, BiCGStab, and TFQMR, denoted as StPower, StJOR, StGS, StSOR,
StGMRES, StBiCGStab, and StTFQMR, respectively. The third class contains the
multilevel methods based on the Power methods, JOR, Gauss–Seidel, and SOR. These
methods are denoted asMlPower, MlJOR, MlGS, andMlSOR. For all multilevel tech-
niques at the outermost level, i.e., for the complete system, one postiteration step and
no preiteration steps are performed. For aggregated systems 10 preiteration and 10
postiteration steps are performed. Experiments indicate that a small number of outer
iterations usually improves solution times. For JOR and SOR, optimal relaxation pa-
rameters are determined by a search algorithm such that the results for these methods
are best cases that can hardly be achieved in practice.

Results for example V 1 are shown in Table 1. Iterations are stopped when the
maximum absolute value of the residual vector becomes smaller than 10−10. The
first column of the table contains the solution method including the value of the re-
laxation parameter if necessary followed by the number of vector matrix products
in the second column. Vector matrix products using aggregated matrices are not
counted since they are relatively cheap, which can be seen by comparing the time
per iteration for the structured methods and the multilevel methods. A single vec-
tor matrix product for the structured Power method requires about 0.016 seconds,
whereas a single iteration of the multilevel Power method requires 0.033 seconds,
which is twice the time. However, the latter iteration time contains the time to
perform 20 iterations at the first aggregated level with 2 components and the time
for the direct solution of the aggregated system with one component. Columns 3
and 4 include the norms for the residual vectors after termination of the solution
method. The last column includes CPU-times in seconds required for the solution.
These values describe the complete solution times including times for preconditioning
or aggregation-disaggregation. Comparison of CPU-times is sometimes inconclusive
since CPU-times are implementation dependent. However, one should be aware that
the implementations for the methods from class 1 and also partially from class 2 are
optimized realizations that are used for a long time. Implementation of the multilevel

352 PETER BUCHHOLZ

Table 2
Results for example V 2.

Method Iter. ‖xQ‖1 ‖xQ‖∞ CPU-time in sec.
LU – 6.614e− 18 1.103e− 15 547
Power 4373 9.982e− 11 5.973e− 9 61
SOR (ω = 1.85) 197 9.714e− 11 5.209e− 8 2
BiCGStab + ILU0 68 1.641e− 11 1.788e− 8 4
TFQMR + ILU0 80 2.054e− 11 1.946e− 9 4
GMRES + ILU0 80 3.859e− 12 9.904e− 10 6
StPower 4373 9.982e− 11 5.973e− 9 114
StJOR (ω = 1.0) 4203 9.977e− 11 9.409e− 9 113
StGS 2048 9.978e− 11 1.846e− 8 85
StSOR (ω = 1.85) 197 9.714e− 11 5.209e− 8 8
StBiCGStab 226 8.365e− 12 5.696e− 9 7
StTFQMR 256 5.713e− 11 5.519e− 8 9
GMRES (m = 20) 298 9.697e− 11 9.847e− 9 14
MlPower 854 9.885e− 11 2.898e− 7 45
MlJOR (ω = 0.95) 1239 9.864e− 11 8.964e− 8 71
MlGS 310 9.588e− 11 1.235e− 7 26
MlSOR (ω = 1.7) 82 9.175e− 11 1.960e− 8 7

techniques exploits for the iteration steps the same iteration procedures as the struc-
tured methods. The aggregation-disaggregation parts are prototype implementations
that probably can be optimized. Consequently, CPU-times present in some sense the
worst case results for the multilevel solutions.

By comparing CPU-times of Power with StPower and of SOR with StSOR, the
overhead introduced by exploiting the compact matrix representation can be seen.
The overhead is moderate for the Power method and for all other iterative methods
based on simple computations of the product of the original matrix Q with the iter-
ation vector. The overhead is much larger for SOR based on the iteration procedure
presented in [27]. Convergence of the Power method, JOR, and GS is slow. SOR
behaves much better. The three projection methods with ILU0 preconditioning be-
have even better than SOR, at least in counting the number of iterations. Without
ILU0 preconditioning, which cannot be applied without destroying the compact ma-
trix representation [6, 7], projection methods require additional effort but are still
more efficient than all of the other methods except SOR.

The multilevel methods behave very well for this example. The number of itera-
tions and also the solution times are reduced significantly in all cases by introducing
multilevel steps. With the exception of MlJOR, multilevel methods are faster than
the other solution methods, excluding SOR. With multilevel steps, even the Power
method and GS become efficient solvers for this model.

Table 2 contains the results for model V 2 with arrival rates 1.0, 0.95, and 0.9,
respectively. This example contains nine instead of three synchronized events. Con-
sequently, one can expect a larger overhead for the structured methods because the
handling of synchronized transitions with sparse matrices belonging to the events is
costly. This effect can be observed by comparing the time per iteration for the struc-
tured and the conventional methods. For this example, a structured iteration using
matrix Q requires roughly twice the time of a conventional iteration. For the SOR
iteration step this difference is increased to a factor of nearly 5. Due to increased
arrival rates, the components are more tightly coupled than in the first version. Thus,
we can also expect less gain from the use of multilevel steps. In fact, this behavior
can be observed. Multilevel steps decrease the number of iterations, and they also

MULTILEVEL SOLUTIONS FOR MARKOV CHAINS 353

Table 3
Results for the large version of example V 2.

Method Iter. ‖xQ‖1 ‖xQ‖∞ CPU-time in sec. Memory in MB
StPower 1000 2.666e− 7 2.377e− 4 19054 39
StJOR (ω = 1.0) 1000 2.008e− 8 3.180e− 4 18260 39
StGS 586 9.917e− 9 8.733e− 6 25321 39
StSOR (ω = 1.75) 90 9.965e− 9 6.245e− 6 3901 39
StBiCGStab 128 4.204e− 9 1.080e− 5 2484 76
StTFQMR 492 4.608e− 9 1.389e− 5 9665 84
MlPower 15 7.674e− 9 6.330e− 5 890 63
MlJOR (ω = 0.8) 11 5.883e− 9 8.669e− 5 663 63
MlGS 9 9.652e− 9 1.271e− 4 726 63
MlSOR (ω = 1.25) 9 7.761e− 9 9.973e− 5 724 63

decrease the solution times of the same method without multilevel steps; however they
still require more time than conventional methods and, with the exception of MlSOR,
which is the fastest solver using the compact matrix representation, they require more
iterations than the projection methods.

The major advantage of the compact representation of Q is that it allows us to
solve larger models. We present now two examples that are too large to be analyzed
with methods using a sparse matrix representation. The first large example is an
extension of V 2. We consider a configuration with 6 queues and 10 queueing places
per queue for the queues 1 through 5. The last queue has 5 buffer places. The resulting
CTMC contains 966,306 states and matrix Q has 10,995,385 nonzero entries. With
8 bytes per double precision value and 4 bytes per integer, the sparse representation
of the matrix requires about 132 MB memory, too much for the available PC. The
compact representation requires 252 matrices with 960 nonzero entries. Although
this representation is compact, it is relatively complex because a large number of
matrices are necessary due to 30 synchronized transitions in the model. Complexity
can be reduced by collecting all diagonal elements in a vector of length 966,306. In
this way storage requirements are slightly increased, but only 126 matrices with 510
nonzero entries are now necessary to describe the nondiagonal elements of Q. The
mean service time in all queues equals 1.0. The arrival rate of the queues 1 through
5 equals 0.5, 0.6, 0.7, 0.8, and 0.9. The last queue is overloaded with an arrival rate
of 1.5.

Table 3 contains the results for this example. The last column of the table shows
the memory required by the different solution methods when diagonal elements are
stored in a vector. Memory requirements include the whole memory the solution
program occupies. For this example the iterations stops when the largest value of
the residual vector becomes smaller than 10−8 or when 1,000 iterations have been
performed. The Power method and JOR do not reach the required accuracy within
1,000 iterations. The other methods reach the required accuracy, but with signifi-
cant differences in the number of iterations. SOR and BiCGStab are the best struc-
tured methods in term of iterations and CPU-time, respectively. Projection methods
BiCGStab and TFQMR require additional vectors for the solution and therefore also
additional memory that is roughly twice the memory needed by the stationary itera-
tive methods. GMRES cannot be applied for this example because it needs too much
memory, even with the compact matrix representation. The large state space and the
large number of synchronization events causes very long solution times. BiCGStab
is the only method without multilevel steps which solves the system in less than an
hour. We did not analyze the example with block SOR, which probably is more ef-

354 PETER BUCHHOLZ

ficient than SOR as indicated in [14, 27]. However, since the multilevel versions of
GS and SOR are extremely efficient for this example, it is very unlikely that block
SOR will outperform these methods for this example. The use of multilevel steps also
increases memory requirements due to the storage of additional vectors, but the mul-
tilevel methods require less memory than the projection methods. Multilevel steps
drastically reduce the number of iterations and also the solution time for this example.
Thus, all multilevel techniques solve the system with at most 15 iterations needing
less than a quarter of an hour for the solution. GS and SOR require only 9 outer
iterations, which is an extremely good result for this large model.

The last example describes a simplified version of a manufacturing system with
kanban control [21]. We consider a model where each component describes a cell in-
cluding a single queue and an input and output buffer. The capacity of cell j equals
kj . The first cell always contains k1 parts that are either processed in the queue or
are waiting to enter the second cell. Parts which have been processed in cell j are
allowed to enter cell j + 1 if less than kj+1 parts are currently in cell j + 1. Parts
leave the system immediately after leaving the queue in the last cell; parts that leave
the first cell are immediately substituted with new parts arriving to the queue in the
first cell. Processing and traveling times between cells are exponentially distributed
with rates µ and ω, respectively. In our example we consider a system with 4 queues,
kj = 10, µ = 1.0, and ω = 10.0. The first and last components have 11 states,
the remaining two components 66 states. The complete CTMC has 527,076 states
and 3,528,481 nonzero entries in Q. The compact representation requires 20 matrices
with 740 nonzero entries. By representing diagonal entries in a vector, the nondiago-
nal part of Q can be described with 10 matrices and 370 nonzero entries. Although
this model has only 4 synchronized transitions, components are strongly connected
because the model is a tandem system where parts start in the first component and
travel consecutively through all components before leaving the system. Results for
this example are shown in Table 4. For this example the iteration stops when the
maximum value of the residual vector becomes smaller than 10−8 or 2,000 iterations
have been performed. Without multilevel steps only the three projection methods and
SOR reach the required accuracy. Iterations are performed much faster than in the
previous example, which is caused by the smaller number of states and, in particular,
by the much smaller number of synchronized transitions. As in the previous exam-
ple, the introduction of multilevel steps reduces the number of iterations and also the
solution time of all methods. Only the Power method with multilevel steps requires
a similar amount of time for the solution as the projection methods BiCGStab and
TFQMR need. The remaining multilevel methods, including GS, are significantly
faster. As in the previous example we did not apply block SOR, which usually has a
faster convergence than SOR. Additionally, preconditioning may be used to improve
the convergence of projection methods. Unfortunately, generation of efficient pre-
conditioners preserving the compact matrix representation is still an open research
problem [25].

To summarize the results of the presented examples and also of some other ex-
amples not shown here, multilevel steps reduce the solution effort in terms of itera-
tions and CPU-time of the corresponding iteration technique in all cases we tested
so far. However, several aspects still require additional experiments. The number
of iterations, which was chosen as a fixed value in the experiments presented here,
might be set adaptively by observing the convergence behavior. Additionally, other
types of aggregation-disaggregation cycles likeW instead of V cycles should be tested.
Since projection methods like BiCGStab and TFQMR are efficient solvers for many

MULTILEVEL SOLUTIONS FOR MARKOV CHAINS 355

Table 4
Results for the kanban system.

Method Iter. ‖xQ‖1 ‖xQ‖∞ CPU-time in sec. Memory in MB
StPower 2000 1.854e− 5 3.313e− 3 2752 22
StJOR (ω = 1.0) 2000 9.183e− 8 7.787e− 5 2759 22
StGS 2000 2.207e− 6 1.665e− 3 8655 22
StSOR (ω = 0.95) 1823 9.086e− 9 6.492e− 6 7886 22
StBiCGStab 1006 5.131e− 10 1.160e− 6 1681 42
StTFQMR 958 7.097e− 9 4.387e− 6 1795 46
StGMRES 1040 1.157e− 8 3.583e− 6 3203 100
MlPower 522 8.931e− 9 1.814e− 6 1668 24
MlJOR (ω = 0.75) 81 9.908e− 9 2.031e− 5 232 24
MlGS 75 8.316e− 9 6.672e− 6 348 24
MlSOR (ω = 0.8) 57 9.577e− 9 1.111e− 5 269 24

Markov models, multilevel steps may be combined with these techniques. However,
our first experience with this combination, where after some iterations with BiCGStab
or TFQMR a multilevel cycle was introduced, were not as encouraging as the combi-
nation of multilevel steps with stationary iterative methods. The reason seems to be
that the convergence of projection methods is usually not as regular as the conver-
gence of stationary iterative methods and a smooth convergence seems to be necessary
for the efficient use of multilevel steps.

6. Conclusion. This paper presents a new solution approach for the analysis
of continuous time Markov chains with a multidimensional structure. Many Markov
chains can be described in a multidimensional form by considering the model as a set
of interacting components. The solution exploits the multidimensional structure and
defines aggregated chains by keeping the distribution in some dimensions constant
and aggregating these dimensions. Solution vectors for aggregated chains are used
to redirect the solution vector for the complete chain. In this way, it is possible to
reduce the number of time-consuming iterations with the complete system and speed
up iterative solution techniques. The idea of multilevel solutions can also be found in
multigrid techniques for differential equations and a multilevel solution algorithm for
Markov chains. However, the concrete realization differs since the proposed approach
exploits the Kronecker structure of a structured Markov chain that provides a very
compact and easy-to-generate representation of aggregated generator matrices. Fur-
thermore the multidimensional structure, which usually corresponds to the structure
of the modeled system, defines a natural way to build aggregated CTMCs.

Different examples show that the multilevel solution speeds up the convergence
of iterative techniques without increasing the required memory too much. In partic-
ular, models with loosely coupled components can be analyzed much more efficiently
because the aggregated solutions are good approximations of the mapping of the sta-
tionary solution on the aggregated state space. However, even for strongly interacting
components, solution time is usually reduced by the multilevel solution.

The proposed approach can be extended in different directions. Other iterative
techniques can be enhanced by multilevel steps. It is possible to adopt other aggrega-
tion strategies as in multigrid techniques. Iteration techniques can be combined with
preconditioning, although efficient preconditioners respecting the Kronecker structure
are still an open research problem (see [7, 25, 26]).

Additionally, the technique can be applied to slightly more general models. Dis-
crete time Markov chains with a multidimensional structure are handled similarly. In

356 PETER BUCHHOLZ

[23] stochastic automata networks in discrete time are introduced. The corresponding
transition matrix has a Kronecker structure similar to the one proposed for gener-
ator matrices here. Thus, the multilevel solution approach can be applied to this
model class as well. Another extension, which has been proposed in the context of
stochastic automata, are state dependent transition rates. In this case, the rate of a
transition in a component may depend on the state of other components. Since state
dependent transitions rates in SANs can be transformed into synchronized transitions
without state dependency as shown in [22], they can be handled with the proposed
solution algorithms, although an efficient handling requires a more sophisticated re-
alization without explicit transformation of state dependent rates into synchronized
transitions. An efficient algorithm for the computation of vector matrix products in
stochastic automata networks with state dependent transitions is introduced in [16]
and can be used in iterative methods combined with multilevel steps.

Acknowledgments. I thank the anonymous referees for their very detailed com-
ments on the previous version of the paper.

REFERENCES

[1] G. Birkhoff and R. E. Lynch, Numerical Solution of Elliptic Problems, SIAM Stud. Appl.
Math. 6, SIAM, Philadelphia, 1984.

[2] A. Brandt,Multi-level adaptive solutions to boundary value problems, Math. Comp., 31 (1977),
pp. 333–390.

[3] W. L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987.
[4] P. Buchholz, An aggregation/disaggregation algorithm for stochastic automata networks,

Probab. Engrg. Inform. Sci., 11 (1997), pp. 229–253.
[5] P. Buchholz, An adaptive aggregation/disaggregation algorithm for hierarchical Markovian

models, European J. Oper. Res., 116 (1999), pp. 85–104.
[6] P. Buchholz, Structured analysis approaches for large Markov chains, Appl. Numer. Math.,

31 (1999), pp. 375–404.
[7] P. Buchholz, Projection methods for the analysis of stochastic automata networks, in Numer-

ical Solution of Markov Chains, B. Plateau, W. J. Stewart, and M. Silva, eds., Prensas
Universitarias de Zaragoza, 1999, pp. 149–168.

[8] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper, Complexity of Kronecker operations
and sparse matrices with applications to the solution of Markov models, INFORMS J.
Comput., to appear.

[9] P. E. Buis and W. R. Dyksen, Efficient vector and parallel manipulation of tensor products,
ACM Trans. Math. Software, 22 (1996), pp. 18–23.

[10] R. Chan, Iterative methods for overflow queueing networks I, Numer. Math., 51 (1987), pp.
143–180.

[11] R. Chan, Iterative methods for overflow queueing networks II, Numer. Math., 54 (1988), pp.
57–78.

[12] R. Chan and W. Ching, Circulant preconditioners for stochastic automata networks, Numer.
Math., to appear.

[13] M. Davio, Kronecker products and shuffle algebra, IEEE Trans. Comput., 30 (1981) pp. 116–
125.

[14] T. Dayar and W. J. Stewart, Comparison of partitioning techniques for two-level iterative
solvers on large, sparse Markov chains, SIAM J. Sci. Comput., 21 (2000), pp. 1691–1705.

[15] S. Donatelli, Superposed generalized stochastic Petri nets: Definition and efficient solution,
in Application and Theory of Petri Nets, Zaragoza, 1994, R. Valette, ed., Lecture Notes in
Comput. Sci. 815, Springer-Verlag, Berlin, 1994, pp. 258–277.

[16] P. Fernandes, B. Plateau, and W. J. Stewart, Efficient descriptor-vector multiplication
in stochastic automata networks, J. ACM, 45 (1998), pp. 381–414.

[17] R. W. Freund and M. Hochbruck, On the use of two QMR for solving singular systems
and applications in Markov chain modelling, Numer. Linear Algebra Appl., 1 (1994), pp.
403–420.

[18] G. Horton and S. Leutenegger, A multi-level solution algorithm for steady state Markov-
chains, ACM Perform. Eval. Rev., 22 (1994), pp. 191–200.

MULTILEVEL SOLUTIONS FOR MARKOV CHAINS 357

[19] L. Kaufman, Matrix methods for queuing problems, SIAM J. Sci. Statist. Comput., 4 (1983),
pp. 525–552.

[20] I. Marek and P. Mayer, Convergence analysis of an iterative aggregation/disaggregation
method for computing the probability vector of stochastic matrices, Numer. Linear Algebra
Appl., 5 (1998), pp. 253–274.

[21] D. Mitra and I. Mitrani, Analysis of a kanban discipline for cell coordination in production
lines II: Stochastic demands, Oper. Res., 39 (1991), pp. 807–823.

[22] B. Plateau, On the stochastic structure of parallelism and synchronisation models for dis-
tributed algorithms, ACM Perform. Eval. Rev., 13 (1985), pp. 142–154.

[23] B. Plateau and K. Atif, Stochastic automata networks for modeling parallel systems, IEEE
Trans. Software Engrg., 17 (1991), pp. 1093–1108.

[24] P. Schweitzer and K. W. Kindle, An iterative aggregation-disaggregation algorithm for solv-
ing linear equations, Appl. Math. Comput., 18 (1986), pp. 313–353.

[25] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton Univer-
sity Press, Princeton, NJ, 1994.

[26] W.J. Stewart, K. Atif, and B. Plateau, The numerical solution of stochastic automata
networks, European J. Oper. Res., 86 (1995), pp. 503–525.

[27] E. Uysal and T. Dayar, Iterative methods based on splittings for stochastic automata net-
works, European J. Oper. Res., 110 (1998), pp. 166–186.

[28] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp.
631–644.

ON THE ALMOST STRONG STABILITY OF THE CIRCULAR
DECONVOLUTION ALGORITHM∗

PLAMEN Y. YALAMOV†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 358–363

Abstract. The stability of the circular deconvolution algorithm for the solution of a circulant
linear system is studied. This algorithm is known to be not strongly stable. The notion of almost
strong stability is introduced, and it is shown that it leads to results similar to those for strongly
stable algorithms. Then it is proved that the circular deconvolution algorithm based on fast Fourier
transforms is almost strongly stable with respect to the 2-norm. A numerical example illustrates the
theoretical conclusions.

Key words. circulant deconvolution, circulant matrix, stability, fast Fourier transform

AMS subject classifications. 65G05, 65T20

PII. S0895479899351052

1. Introduction. We are interested in the solution of a linear system

Hcx = b,(1.1)

where

Hc =

c0 cn−1 . . . c1
c1 . . . c2
...

...
. . .

...
cn−1 cn−2 . . . c0

is a circulant matrix. Such problems arise in various applications, e.g., geophysical
inversion problems [7, 8], and solution of banded [5] and dense [9] Toeplitz systems.

It is well known (e.g., [10, section 4.2.2], [11]) that circulant matrices can be
decomposed as

Hc = F−1
n ΛFn, Λ = diag (Fnc) ,

where Fn is the Fourier matrix of order n, i.e.,

Fn =
1√
n

{
e−

i2πjk
n

}n−1

j,k=0
, i =

√−1.

Thus the solution of (1.1) is done in O (n log2 n) steps by using the fast Fourier
transform (FFT) according to the following algorithm:

Step 1. d = Fc,
Step 2. e = Fb,
Step 3. f = e./d (i.e., fi = ei/di, i = 0, . . . , n− 1),
Step 4. x = F−1f.

∗Received by the editors February 4, 1999; accepted for publication (in revised form) by L. Reichel
January 13, 2000; published electronically July 11, 2000. This research was supported by grants MM-
707 and I-702 from the National Scientific Research Fund of the Bulgarian Ministry of Education
and Science.

http://www.siam.org/journals/simax/22-2/35105.html
†Center of Applied Mathematics and Informatics, University of Rousse, 7017 Rousse, Bulgaria

(yalamov@ami.ru.acad.bg).

358

STABILITY OF THE CIRCULAR DECONVOLUTION ALGORITHM 359

We assume that the FFT is implemented by the Cooley–Tukey algorithm (see
[10] for more details).

One of the important questions in applications is the numerical stability of the
proposed algorithm with respect to roundoff errors. This problem is studied in [4,
section 23.2] and [6]. In [6] it is shown that the algorithm is forward stable (see [4,
section 1.5] for definitions of forward and backward stability) with respect to the 2-
norm and a special condition number. This is the weakest type of stability for any
numerical algorithm. Then in [4, section 23.2] a stronger result is proved. Namely,
the algorithm is normwise backward stable. Matrix Hc has a special structure, and
its entries are defined by n parameters. This is not taken into account in the roundoff
error analysis of [4, section 23.2], and the equivalent perturbations from the backward
analysis in matrixH are not structured. According to the classification proposed in [1]
this algorithm is not strongly stable, i.e., determining small equivalent perturbations
in vector c = (c0, c1, . . . , cn−1)

T
(and perhaps in the right-hand side b) is not possible.

There is a numerical example in [6] which shows this fact.
In the present paper we define a new type of stability, i.e., almost strong stability.

We show that strong and almost strong stability are close in some sense. Then
we prove that the algorithm presented in this paper is almost strongly stable. The
theoretical result is illustrated by the numerical example taken from [6].

2. Types of stability. Let us review in brief the types of stability discussed in
[1]. Throughout the paper we adopt the standard model of floating-point arithmetic
with a guard digit:

f (x ∗ y) = (x ∗ y) (1 + σ) , |σ| ≤ ρ0,

where ρ0 is the machine roundoff unit. By a tilde we denote computed results in the
following definition.

Definition 2.1. An algorithm is weakly stable for the class of circulant matrices
Ω if for every well-conditioned Hc ∈ Ω, the computed solution x̃ is close to x, i.e.,

‖x̃− x‖
‖x‖ ≤ Cρ0,

where C � 1/ρ0.
Definition 2.2. An algorithm for solving circulant systems is strongly stable if

the quantity

η = min {ε : Hc+∆cx̃ = b+∆b, ‖∆c‖ ≤ ε ‖c‖ , ‖∆b‖ ≤ ε ‖b‖}(2.1)

exists, and η � 1.
It is clear that if an algorithm is strongly stable on the class of circulant matrices,

then it is also weakly stable on the class of circulant matrices. This can be shown
after some standard manipulation.

There is no general formula for η, but it can be computed numerically as a solu-
tion to a constrained optimization problem. Let us consider the following numerical
example (taken from [6]):

c = (1.5 + µ 0.5− µ µ− 0.5 0.5− µ)T ,

b = (2 1 2 1)
T
,(2.2)

360 PLAMEN Y. YALAMOV

where µ is chosen to be small. In [6] it is shown that the circular deconvolution
algorithm is not strongly stable. The author shows that the structured backward
error grows very fast when µ decreases. We also tried to solve the minimization
problem (2.1) in Matlab for small µ. The algorithm failed. The reason is that for µ
small we are close to a problem having no solution.

Now let us introduce a new type of stability.
Definition 2.3. An algorithm is almost strongly stable if the quantity

ω = min {ε : Hc+∆c (x̃+∆x) = b+∆b,(2.3)

‖∆c‖ ≤ ε ‖c‖ , ‖∆b‖ ≤ ε ‖b‖ , ‖∆x‖ ≤ ε ‖x‖}
exists and ω � 1.

This new definition allows more degrees of freedom in the optimization problem.
So, there are larger chances that we find a solution to (2.3). As we will see in the
next section the perturbations ∆c, ∆b, and ∆x exist and can be bounded by not large
constants for the algorithm considered in this paper.

Let us note that now we allow perturbations in the computed solution x̃ as well.
The next theorem shows that the bound on the forward error is not changed essentially
in this case.

Theorem 2.4. If Hc+∆c (x̃+∆x) = b + ∆b, and ‖∆c‖2 ≤ δ ‖c‖2 , ‖∆b‖2 ≤
δ ‖b‖2 , ‖∆x‖2 ≤ δ ‖x‖2 , then

‖x̃− x‖2
‖x‖2

≤ 2κ2 (H) δ

1− κ2 (H) δ
+ δ, κ2 (H) = ‖H−1‖2‖H‖2.(2.4)

The proof is similar to the proofs in [2, section 2.7.4] and we omit it here. Let us
note that the corresponding result without perturbation in x̃ looks as follows:

‖x̃− x‖2
‖x‖2

≤ 2κ2 (H) δ

1− κ2 (H) δ
.(2.5)

Thus allowing perturbation in x̃ leads to a negligible change in the bound (2.5), which
can be obtained for a strongly stable algorithm. Therefore, we have introduced the
notion of almost strong stability that will lead to bounds of the type (2.4). In this
sense strong and almost strong stability are close.

3. Stability analysis of the circular deconvolution algorithm. Now let us
obtain a mixed stability analysis for the algorithm presented in the introduction. This
means that we allow perturbations in the inputs and outputs. The inputs are taken
with their structure, i.e., the vectors c and b are inputs.

The stability of the FFT depends on the stability of computing the so-called
weights (or twiddle factors) (for more details see [10, section 1.3]). We assume that a
twiddle factor w is computed as

ŵ = w + τ, |τ | ≤ cnρ0,(3.1)

where τ is the absolute error from the computation. The constant cn depends on the
algorithm for the computation of the twiddle factors. Among the different methods
we can choose for the compuation of the weights are those for which we can take
cn = c, cn = c log2 n, cn = cn, where c is a small constant not depending on n (see
[10, section 1.4]).

STABILITY OF THE CIRCULAR DECONVOLUTION ALGORITHM 361

We will need the following result which is proved in [12].
Theorem 3.1. For the FFT computed with roundoff errors we have

ỹ = Fn (x+∆x) ,

where

‖∆x‖2 /‖x‖2 ≤ gnρ0 +O
(
ρ2
0

)
, gn =

√
2(2 +

√
2 + cn) log2 n

and the tilde denotes computed results.
Let us note that the same bound for the inverse FFT can be proved similarly,

and we will use it here. Now we have

d̃ = F (c+ δc) , ‖δc‖2 ≤ gn ‖c‖2 ρ0 +O(ρ2
0),(3.2)

ẽ = F (b+∆b) , ‖∆b‖2 ≤ gn ‖b‖2 ρ0 +O(ρ2
0),(3.3)

f̃i =
ẽi

d̃i
(1 + σi) , |σi| ≤ ρ0, i = 0, . . . , n− 1,(3.4)

x̃ = F−1
(
f̃ +∆f

)
, ‖∆f‖2 ≤ gn ‖f‖2 ρ0 +O(ρ2

0).(3.5)

Let us note that (3.4) can be presented in the following way:

f̃ = Λ̃−1 (I +D) ẽ, Λ̃ = diag
(
d̃
)
, D = diag (σ) .(3.6)

Here and in the following, diag(s) denotes a diagonal matrix whose principal
diagonal is stored in a vector s. Also, (3.5) can be transformed to

x̃+∆x = F−1f̃ , ‖∆x‖2 ≤ gn ‖x‖2 ρ0 +O(ρ2
0)(3.7)

because F−1 is orthogonal. Combining (3.2)–(3.3), (3.6), and (3.7) we get

x̃+∆x = F−1f̃ = F−1Λ̃−1 (I +D) ẽ

= F−1Λ̃−1 (I +D)F (b+∆b) ,

from which we obtain

F−1 (I +D1) Λ̃F (x̃+∆x) = b+∆b,(3.8)

where

(I +D1) = (I +D)
−1

and |(D1)ii| ≤ ρ0 +O(ρ2
0).(3.9)

We also have

(I +D1) Λ̃ = diag
(
(I +D1) d̃

)
= diag ((I +D1)F (c+ δc)) .(3.10)

362 PLAMEN Y. YALAMOV

Let us represent the vector inside (3.10) as follows:

(I +D1)F (c+ δc) = F (c+∆c) .(3.11)

Then from (3.11) we obtain that

∆c = δc+ F−1D1F (c+ δc) ,

from which it follows that

‖∆c‖2 ≤ g′n ‖c‖2 ρ0 +O(ρ2
0), g′n = (1 + ρ0)gn + 1,(3.12)

by using the orthogonality of F , (3.2), and (3.9).

Finally, from (3.8), (3.10), and (3.11) with (3.12) we obtain

F−1 (I +D1) Λ̃F = F−1diag (F (c+∆c))F = Hc+∆c,

where the perturbation in matrix Hc is now structured. Thus, we have proved the
following theorem.

Theorem 3.2. The computed solution x̃ of the circular deconvolution problem
satisfies

Hc+∆c (x̃+∆x) = b+∆b,

where

‖∆c‖2 / ‖c‖2 ≤ g′nρ0 +O(ρ2
0), ‖∆b‖2 / ‖b‖2 ≤ gnρ0 +O(ρ2

0),

‖∆x‖2 / ‖x‖2 ≤ gnρ0 +O(ρ2
0),

and g′n = (1 + ρ0)gn + 1, gn =
√
2(2 +

√
2 + cn) log2 n.

This result shows that the algorithm is almost strongly stable according to our
definition in the previous section. Then the forward error in x can be bounded by
Theorem 1:

‖x̃− x‖2
‖x‖2

≤
[

2κ2 (H)

1− κ2 (H) g′nρ0
+ 1

]
g′nρ0.

This bound is not essentially different from the corresponding bound for the case when
the algorithm would be strongly stable.

At the end of this section we come back to example (2.2). We compute the
quantity ω from (2.3) for different choices of µ in (2.2). Now it is possible, i.e., ω
exists. The number µ is chosen in the range 10−30 ÷ 1, i.e., we choose very small
numbers less than the machine precision and relatively large numbers close to 1. For
small values of µ, matrix Hc is almost singular. For all values of µ the quantity ω
is approximately equal to 10−15 (in Matlab, where ρ0 ≈ 2.22 × 10−16). Thus, this
example illustrates our theoretical result that the algorithm under consideration is
almost strongly stable.

STABILITY OF THE CIRCULAR DECONVOLUTION ALGORITHM 363

Acknowledgment. The author thanks the referee for the useful suggestions.

REFERENCES

[1] J. R. Bunch, The weak and strong stability of algorithms in numerical linear algebra, Linear
Algebra Appl., 88 (1987), pp. 49–66.

[2] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The John Hopkins Univer-
sity Press, Baltimore, MD, 1996.

[3] D. J. Higham and N. J. Higham, Backward error and condition of structured linear systems,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 162–175.

[4] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[5] A. K. Jain, Fast inversion of banded Toeplitz matrices by circular decomposition, IEEE Trans.

Acoust. Speech Signal Process., 26 (1978), pp. 121–126.
[6] E. Linzer, On the stability of transform-based circular deconvolution, SIAM J. Numer. Anal.,

29 (1992), pp. 1482–1492.
[7] W. Menke, Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, New York,

1984.
[8] M. T. Silva and E. A. Robinson, Deconvolution of Geophysical Time Series in the Exploration

for Oil and Natural Gas, Elsevier, New York, 1979.
[9] G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74 (1986), pp. 171–

176.
[10] C. F. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadel-

phia, PA, 1992.
[11] V. V. Voevodin and E. E. Tyrtyshnikov, Computational Processes with Toeplitz Matrices,

Nauka, Moscow, 1987 (in Russian).
[12] P. Y. Yalamov, Normwise and componentwise stability of the fast Fourier transform, Preprint

N41, University of Rousse, 1998.

PERFORMANCE OF THE QZ ALGORITHM IN THE PRESENCE OF
INFINITE EIGENVALUES∗

DAVID S. WATKINS†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 364–375

Abstract. The implicitly shifted (bulge-chasing) QZ algorithm is the most popular method for
solving the generalized eigenvalue problem Av = λBv. This paper explains why the QZ algorithm
functions well even in the presence of infinite eigenvalues. The key to rapid convergence of QZ
(and QR) algorithms is the effective transmission of shifts during the bulge chase. In this paper the
mechanism of transmission of shifts is identified, and it is shown that this mechanism is not disrupted
by the presence of infinite eigenvalues. Both the QZ algorithm and the preliminary reduction to
Hessenberg-triangular form tend to push the infinite eigenvalues toward the top of the pencil. Thus
they should be deflated at the top.

Key words. matrix pencil, eigenvalue computation, QZ algorithm

AMS subject classifications. 65F15, 15A18

PII. S0895479899360376

1. Introduction. The standard matrix eigenvalue problem for the n×n matrix
A has the form

(A− λI)v = 0.

Many matrix eigenvalue problems are more naturally presented not in this form but
as generalized eigenvalue problems

(A− λB)v = 0.

Generalized eigenvalue problems have some interesting special features; for example,
they can have infinite eigenvalues.

The most popular algorithm for solving generalized eigenvalue problems is the
QZ algorithm of Moler and Stewart [2]. This is a generalization of the QR algorithm,
which solves standard eigenvalue problems. An important feature of theQZ algorithm
that was rightly emphasized by its inventors is that it functions perfectly well in the
presence of infinite eigenvalues. However, when one looks at explanations of the QZ
algorithm, e.g., [1], [2], [7], they always assume from the outset that B is nonsingular,
which rules out infinite eigenvalues. As far as this author knows, all explanations of
the QZ algorithm that have been published so far have shared this weakness. Thus
there are good explanations of the QZ algorithm in the literature, but none of them
holds for the case when infinite eigenvalues are present.

This paper discusses the processing of infinite eigenvalues by the QZ algorithm
and also by the algorithm that carries out the preliminary reduction to Hessenberg-
triangular form. The latter (if implemented in the usual way) tends to push the
infinite eigenvalues to the top of the pencil. The QZ iterations also push the infinite
eigenvalues steadily upward, so that they can be deflated from the top of the pencil
after finitely many iterations.

∗Received by the editors August 26, 1999; accepted for publication (in revised form) by J. Varah
March 6, 2000; published electronically July 11, 2000.

http://www.siam.org/journals/simax/22-2/36037.html
†Department of Pure and Applied Mathematics, Washington State University, Pullman, WA

99164-3113 (watkins@wsu.edu).

364

INFINITE EIGENVALUES AND THE QZ ALGORITHM 365

Each QZ iteration makes use of shifts to introduce a bulge in the Hessenberg form
at the top of the pencil. Then the bulge is chased to the bottom and off of the edge of
the pencil, restoring the Hessenberg-triangular form. In the course of the iterations,
eigenvalues are deflated one or more at a time. While infinite eigenvalues emerge at the
top of the pencil, the finite eigenvalues are normally deflated at the bottom. The key
to rapid convergence of the finite eigenvalues is the effective transmission of the shifts
from top to bottom of the pencil during the bulge chase. (Of course the shifts must
also be good approximations to eigenvalues, but this is not hard to arrange.) In this
paper we identify the mechanism by which shifts are transmitted through the pencil
during the bulge chase, and we demonstrate that the shift-transmission mechanism
is not disrupted by the presence of infinite eigenvalues. The demonstration consists
of two parts. First we present a theorem that shows that (ignoring roundoff errors)
the shifts are transmitted effectively. Then we present numerical evidence that the
results hold up in the presence of roundoff errors. Thus finite eigenvalues converge
rapidly at the bottom of the pencil, regardless of whether or not infinite eigenvalues
are present. In either case, every few iterations produces one or more new finite
eigenvalues for deflation.

Deflation of infinite eigenvalues must not be neglected. If it is, the shift-transmis-
sion process breaks down, and progress toward convergence comes to a halt.

The implicitly shifted QZ algorithms that we study in this paper are members
of the larger family of implicitly shifted GZ algorithms [7]. The ideas presented here
are applicable to the larger family. We will restrict our attention to the QZ case in
order to keep the presentation as simple as possible.

In the interest of brevity we have refrained from describing the algorithms in
detail. More details and motivation are given in an earlier version of this paper [5],
which is available electronically.

2. Basic facts and terminology. Given a pair of real or complex n×nmatrices
A and B, the matrix polynomial A−λB with indeterminate λ is called a matrix pencil.
A finite complex number λ is called an eigenvalue of the pencil A − λB if there is a
nonzero vector v (called an eigenvector) such that (A − λB)v = 0. The problem of
finding the eigenvalues of a matrix pencil is called the generalized eigenvalue problem.
One easily sees that if the matrix B is nonsingular, the eigenvalues of the matrix
pencil A− λB are exactly the eigenvalues of the matrix B−1A. There are n of them,
and they are (finite) complex numbers.

Regardless of whether or not B is singular, the (finite) eigenvalues of the matrix
pencil are exactly the solutions of the characteristic equation

det(A− λB) = 0.

This is analogous to the standard eigenvalue problem. The difference is that if B is
singular, the characteristic polynomial det(A−λB) has degree less than n. In fact, it
can even happen that det(A−λB) is identically zero. For example, this happens when
A and B have a common null vector. Then every λ is an eigenvalue. If det(A− λB)
is identically zero, we call A− λB a singular pencil. Otherwise it is a regular pencil.
We will focus on regular pencils.

Two matrix pencils A− λB and Ã− λB̃ are called strictly unitarily equivalent if
there are unitary matrices U and V such that Ã − λB̃ = U(A − λB)V . Obviously
strictly unitarily equivalent pencils have the same eigenvalues. The generalized Schur
theorem [1, Theorem 7.7.1] states that every pencil is strictly unitarily equivalent to
a pencil Ã − λB̃ for which Ã and B̃ are upper triangular. Letting α1, . . . , αn and

366 DAVID S. WATKINS

β1, . . . , βn denote the main diagonal entries of Ã and B̃, respectively, we see that the
characteristic equation of Ã− λB̃ is

n∏
i=1

(αi − λβi) = 0.

If αi = βi = 0 for some i, the pencil is singular. Otherwise it is regular, and each
pair (αi, βi) for which βi �= 0 gives rise to an eigenvalue αi/βi. If the pencil is
regular but the matrix B (and B̃) is singular, there will be at least one pair for which
βi = 0 (and αi �= 0). It is reasonable to say that each of these gives rise to an infinite
eigenvalue. (Each corresponds to a zero eigenvalue of the reciprocal pencil µA−B.) If
we make this convention, then each regular pencil has exactly n eigenvalues, counting
the infinite ones.

Since the generalized Schur form tells everything about the eigenvalues of a pencil,
one would naturally like to have an algorithm that transforms a pencil to generalized
Schur form by a sequence of unitary equivalence transformations. A big step in this
direction is to transform the pencil to Hessenberg-triangular form. Every pencil is
strictly unitarily equivalent to a pencil Â − λB̂ for which Â is upper Hessenberg
(âij = 0 if i > j + 1) and B̂ is upper triangular. The reduction can be carried out by
a direct procedure in O(n3) flops.

3. Movement of zeros during the reduction to Hessenberg-triangular
form. The standard algorithm for transforming a pencil to Hessenberg-triangular
form [1, section 7.7.4] begins by using either a QR or an RQ decomposition to trans-
form B to upper triangular form. Whatever tranformations we apply to B, we must
also apply to A. Once B is upper triangular, if there are infinite eigenvalues, there
must be zeros on the main diagonal of B. Let us study the fate of these zeros as the
algorithm proceeds.

The rest of the algorithm consists of a sequence of pairs of Givens rotators, the
first of which annihilates an entry of A and creates a nonzero entry in the lower
triangle of B. The second rotator then restores B to upper triangular form. It is a
general principle of the algorithm that whenever the triangular form of B is disturbed,
we restore it immediately. For example, the first transformation is a Givens rotator
(or Householder reflector or other unitary transformation) that is applied on the left,
acts on rows n and n − 1, and annihilates an1. This same transformation must also
be applied to B, and when it is, it recombines rows n and n − 1, creating a new
nonzero entry in position (n, n− 1). The next rotator is then applied on the right to
columns n and n − 1 and returns bn,n−1 to zero. When the same rotator is applied
to columns n and n − 1 of A, the zero in position (n, 1) is not disturbed. The next
pair of rotators acts on rows and columns n − 1 and n − 2 to transform an−1,1 to
zero. The first rotator in the pair creates a new nonzero in position bn−1,n−2, which
is immediately eliminated by the second rotator. Continuing up the first column, we
create zeros in A up through position (3, 1). Thus an upward wave of rotators has
cleared out the first column. Then a second upward wave is used to clear out the
second column in the same way, up through position (4, 2), and so on. After n − 2
upward waves, consisting of (n − 1)(n − 2)/2 pairs of rotators in all, the pencil has
reached Hessenberg-triangular form.

Now suppose B has zeros on its main diagonal. How are the zeros affected by
these transformations? Suppose bkk = 0, k > 2. Then it will remain zero until one
of the rotators touches the kth row or column. The first one to do so acts on rows

INFINITE EIGENVALUES AND THE QZ ALGORITHM 367

k and k + 1. This one leaves bkk at zero, since it recombines the zeros in positions
bkk and bk+1,k to create new zeros in those positions. The next transformation is a
rotator in columns k and k+1 that creates a zero in position bk+1,k. Since that entry
was already zero to begin with, the rotator is trivial (i.e., it has angle zero) and leaves
bkk = 0. The next rotator acts on rows k− 1 and k, and this one normally does make
bkk nonzero. Let us focus on the 2×2 submatrix of B consisting of rows and columns
k − 1 and k. Before the rotator, it has the form[

bk−1,k−1 bk−1,k

0 0

]
.(3.1)

Its rank is obviously one. When the rotator is applied, it disturbs both of the zeros.
The submatrix now looks like [

b̃k−1,k−1 b̃k−1,k

b̃k,k−1 b̃k,k

]
,(3.2)

but its rank is still one. The next step in the QZ iteration is to apply a rotator to
columns k − 1 and k to annihilate b̃k,k−1. Application of this rotator transforms the
submatrix to [

0 b̂k−1,k

0 b̂k,k

]
(3.3)

since the rank is still one. The zero has been moved from position bkk to position
bk−1,k−1.

The next pair of rotators acts on columns k − 2 and k − 1 and pushes the zero
up to position (k − 2, k − 2) by the same process. The zero thus normally continues
upward until it either arrives at position (2, 2) or bumps into another zero. The only
way the upward drift can be stopped is if a trivial rotator is applied on the left at some
point. This happens when and only when the entry of A that is to be annihilated
is already zero. In this event the zero in B stops and remains where it is until the
next upward wave of rotators (corresponding to elimination of the next column of A)
passes through.

Collision of two zeros. Suppose B has two or more zeros on the main diagonal.
Note that the number of zeros on the main diagonal of B is not necessarily equal to
the number of infinite eigenvalues of the pencil. For example, bulge pencils Cj −λFj ,
which we will discuss below (see (5.1), (5.2)), have only one infinite eigenvalue, even
though all of the entries on the main diagonal of Fj are zero. During the reduction
to Hessenberg-triangular form, the number of zeros on the main diagonal of B need
not remain constant. Consider what happens when a zero that is moving upward on
the main diagonal of B runs into another zero. Then we have the configuration[

0 bk−1,k

0 0

]
.(3.4)

The left transformation of rows k − 1 and k then gives
[
0 b̃k−1,k

0 b̃kk

]
,(3.5)

in which b̃kk is normally nonzero. Once it becomes nonzero, it stays nonzero. Thus
the lower zero is destroyed. This can be prevented by two things: (i) bk−1,k could also

368 DAVID S. WATKINS

be zero, and (ii) the left rotator on rows k− 1 and k could be trivial. The conclusion
is that when two zeros collide, the upper one survives, but the lower one may (or may
not) be destroyed.

The number of zeros on the main diagonal of B can decrease, but it cannot
increase. If the matrix

[
bk−1,k−1 bk−1,k

0 bkk

]

has rank two before the tranformations on rows and columns k− 1 and k, then it will
still have rank two afterwards. Thus zeros cannot spontaneously appear. The same
is true during the QZ iterations, as we shall see. It follows that the number of zeros
on the main diagonal of B can never be less than the number of infinite eigenvalues,
since the generalized Schur form at which we arrive in the end must have one zero on
the main diagonal of B for each infinite eigenvalue.

An interesting conclusion. Now consider the overall reduction algorithm. We
restrict our attention to the generic case, in which all of the left rotators are nontrivial.
Once B is in triangular form, the entry b11 is never touched again by the reduction
algorithm. If it is zero, it stays zero. If there are other zeros on the main diagonal,
they will be moved upward during the first upward wave of rotations (corresponding
to elimination of the first column of A). Some of them may be destroyed, but the
uppermost one will end up in position (2, 2). If there are any other zeros left over, then
they will be moved upward during the next upward wave of rotators (corresponding
to elimination of the second column of A). The uppermost will arrive in position (3, 3)
since the last rotator in this wave acts on columns 3 and 4. If there are any zeros left
over after this, the upper one will be moved into position (4, 4) by the next wave of
rotators, and so on.

Once the pencil is in Hessenberg-triangular form, one has the option of deflating
the infinite eigenvalues using an algorithm such as the one described in [1, section 7.7.5]
(and implemented in standard, public domain software). However, that algorithm
is inefficient when used in conjunction with the standard reduction algorithm [1,
section 7.7.4] because the latter moves the zeros to the top of B, then the former
chases them downward for deflation of infinite eigenvalues at the bottom. It would
be much more efficient to use the upward-chasing analogue of [1, section 7.7.5], which
deflates infinite eigenvalues at the top. Better yet, one can let the QZ algorithm deal
with the zeros, as we shall explain.

4. Movement of zeros during QZ iterations. We now consider iterations
of the QZ algorithm on a pencil that is in Hessenberg-triangular form. If any one of
the subdiagonal entries aj+1,j is zero, we can split the eigenvalue problem into two
(or more) subproblems involving subpencils. Therefore, we can assume without loss
of generality that our A is a proper upper Hessenberg matrix, i.e., aj+1,j �= 0 for all j.

If there are zeros on the main diagonal of B, we normally expect them to be
near the top, due to the action of the reduction algorithm. However, it could be
that the pencil was already in or near Hessenberg-triangular form to begin with and
the reduction algorithm was either not applied or only partially applied. Then the
zeros could lie anywhere on the main diagonal of B. Thus we will make no special
assumption about where the zeros lie.

A QZ iteration begins with an equivalence transformation that disturbs the Hes-
senberg form of A by introducing a bulge near the upper left-hand corner. The rest

INFINITE EIGENVALUES AND THE QZ ALGORITHM 369

of the iteration consists of returning A to Hessenberg form by chasing the bulge from
one end of the matrix to the other and, finally, off the edge. The bulge-chasing part
of the algorithm is in fact an instance of the reduction to Hessenberg-triangular form
that we have just discussed. However, it is a highly nongeneric instance. Due to the
large number of zeros in the array, the vast majority of the rotators are trivial.

A QZ iteration of degree 1 consists of a sequence of n−1 pairs of rotators, acting
on rows and columns 1–2, 2–3, . . . , (n− 1)–n, in that order. (The 1–2 pair of rotators
creates the bulge.) All of the rotators are nontrivial.

With no more information than this, we can see what happens to the zeros on
the main diagonal of B during a QZ iteration. If bkk = 0, then it stays zero until
the rotations that act on rows and columns k − 1 and k are performed. This pair
of rotators then moves the zero to position (k − 1, k − 1), as shown in (3.1), (3.2),
and (3.3). The subsequent pairs of rotators do not act on that entry, so we have
bk−1,k−1 = 0 at the end of the iteration. In conclusion, each zero gets moved upward
by one position during a QZ iteration of degree 1. Once a zero reaches the top of B,
an infinite eigenvalue can be deflated from the top of the pencil. Zeros are neither
created nor destroyed during the QZ iteration, but they can be destroyed during the
deflation process.

The finite emergence of infinite eigenvalues at the top of the pencil is consistent
with the convergence theory of the QZ algorithm [7]. The largest (in magnitude)
eigenvalues should emerge at the top. Nothing is bigger than infinity. The analysis of
[7] applies only to finite eigenvalues, but if one considers what happens in the limit
as several of the eigenvalues are pushed out toward infinity, one expects the infinite
eigenvalues to converge superlinearly. Finite emergence is certainly superlinear.

A QZ iteration of degree m is equivalent to m QZ iterations of degree 1. Thus
each QZ iteration of degree m moves each zero upward by m positions.

5. Transmission of shifts in the QZ algorithm. We have seen that in the
course of QZ iterations the infinite eigenvalues move steadily to the top of the pencil
and can be deflated when they arrive there. Thus it appears that there is no need to
deflate them beforehand. However, before we can be certain that this is so, we must
demonstrate that the presence of zeros on the main diagonal of B does not interfere
with the normal functioning of the QZ iterations. In order to do this, we must identify
the mechanism by which the QZ algorithm functions. Here we offer a brief sketch;
more details are given in [5].

Typical implementations of the QZ algorithm have degree m = 1 or m = 2.
There is no theoretical reason why m cannot be higher, say 4 or 6. However, shift
blurring [3] due to roundoff errors limits the effectiveness of the QZ algorithm when
m is large (e.g., m = 20). Thus we shall think of m as a small number.

A QZ iteration of degree m begins with the choice of m shifts µ1, . . . , µm. A
common strategy is to take them to be the eigenvalues of the lower right-hand m×m
subpencil. That is, if

A− λB =

[
A11 A12

A21 A22

]
− λ

[
B11 B12

0 B22

]
,

where A22−λB22 is m×m, then we take the shifts to be the eigenvalues of the small
subpencil A22 − λB22. The hope is that these shifts will be good approximations to
eigenvalues of the pencil. Notice that A21 has only one nonzero entry, an−m+1,n−m.
If this entry is small, all of the shifts will be excellent approximations to eigenvalues
of the pencil, except in ill-conditioned situations.

370 DAVID S. WATKINS

Once the shifts have been chosen, they are used in the computation of a unitary
transformation that when applied on the left (with accompanying right transforma-
tions to maintain the triangular form of B) results in the formation of a bulge in A
that protrudes m diagonals beyond the subdiagonal. For example, in the case m = 2,
the transformed pencil looks like

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a54 a55 a56

a65 a66

− λ

b11 b12 b13 b14 b15 b16
b22 b23 b24 b25 b26

b33 b34 b35 b36
b44 b45 b46

b55 b56
b66

.

The rest of the iteration consists of returning the pencil to Hessenberg-triangular form
by chasing the bulge from top to bottom. This is a rather long trip if the matrices
are, say, 1000× 1000.

The objective of the QZ iteration is to drive an−m+1,n−m to zero. First, sup-
pose B is nonsingular. Then, if the shifts are good approximations to eigenvalues,
then |an−m+1,n−m | will be decreased substantially from one iteration to the next.
Asymptotically an−m+1,n−m → 0 quadratically in most cases. This claim is based
on a connection between the QZ algorithm and the power method that can be made
when B is nonsingular [7]. Once |an−m+1,n−m | is small enough, it can be set to zero,
and m (finite) eigenvalues can be deflated from the bottom.

We would like to determine whether this good performance is maintained when
B is singular. To answer this question we consider the role of the shifts. These are
taken from the bottom of the pencil and used to determine a transformation that
creates a bulge at the top. Once we have a bulge, we forget about the shifts and
mechanically chase the bulge to the bottom of the pencil. We hope for a deflation at
or around an−m+1,n−m, i.e., near the bottom of the pencil. Good shifts are crucial to
rapid convergence. However, the information about the shifts is loaded into the top
of the pencil, and convergence takes place at the bottom. Somehow the information
about the shifts is transferred from the top to the bottom during the bulge chase.
Our task is to identify the mechanism and determine whether or not it is disrupted
by the presence of zeros on the main diagonal of B.

For the standard eigenvalue problem the shift-transmission mechanism was iden-
tified in [3], [4]. For the generalized problem, the mechanism turns out to be about
the same. Consider a pencil that has a bulge somewhere in the middle. Say the initial
bulge has been created, and it has been chased j− 1 positions down and to the right.
The current pencil Aj−λBj has a bulge (in Aj) starting in column j. If the degree of
the QZ iteration is m, the tip of the bulge is at aj+m+1,j . We define the bulge pencil
Cj − λFj to be the (m+ 1)× (m+ 1), nonprincipal subpencil of Aj − λBj consisting
of rows j + 1 through j +m+ 1 and columns j through j +m. Thus

Cj =

aj+1,j aj+1,j+1 aj+1,j+2 · · · aj+1,j+m

aj+2,j aj+2,j+1 aj+2,j+2 · · · aj+2,j+m

...
...

...
aj+m,j aj+m,j+1 aj+m,j+2 · · · aj+m,j+m

aj+m+1,j aj+m+1,j+1 aj+m+1,j+2 · · · aj+m+1,j+m

(5.1)

INFINITE EIGENVALUES AND THE QZ ALGORITHM 371

and

Fj =

0 bj+1,j+1 bj+1,j+2 · · · bj+1,j+m

0 0 bj+2,j+2 · · · bj+2,j+m

...
...

...
0 0 0 · · · bj+m,j+m
0 0 0 · · · 0

.(5.2)

The bulge pencil is centered on the subdiagonal of the big pencil, and it is just big
enough to accommodate the bulge. One can show by induction on j that the entry
aj+m+1,j cannot be zero. (The original A is properly upper Hessenberg.) Fj is strictly
upper triangular. If all of the superdiagonal entries of Fj are nonzero, then the degree
of the characteristic polynomial det(Cj − λFj) is exactly m. In this case the bulge
pencil has m finite eigenvalues and one infinite eigenvalue.

The main theorem is that the m finite eigenvalues of the bulge pencil are the
shifts µ1, . . . , µm. Thus the shifts are transmitted from top to bottom of the matrix
as eigenvalues of the bulge pencil. In order to prove this, we need to introduce a
“zeroth” bulge pencil.

The zeroth bulge. Given m shifts, we calculate a vector

x = α(A− µ1B)B−1 · · · (A− µmB)B−1e1,(5.3)

where α is any convenient nonzero scale factor. Because A is upper Hessenberg and
B is upper triangular, only the first m + 1 components of x are nonzero. Although
the symbol B−1 appears in (5.3), it is possible to compute x even if B is singular.
Only the upper m×m block of B−1 is used in the computation, so x is well defined
so long as bkk �= 0 for k = 1, . . . ,m.

Define the zeroth bulge pencil C0 − λF0 by

C0 =

x1 a1,1 · · · a1,m−1 a1,m

x2 a2,1 · · · a2,m−1 a2,m

...
...

...
...

xm 0 · · · am,m−1 am,m
xm+1 0 · · · 0 am+1,m

and

F0 =

0 b1,1 · · · b1,m−1 b1,m
0 0 · · · b2,m−1 b2,m
...

...
...

...
0 0 · · · 0 bm,m
0 0 · · · 0 0

.

The entries x1, x2, . . . , xm+1 are the nonzero entries of the vector x defined by (5.3),
and the entries aij and bij are from the pencil A − λB before the beginning of the
iteration. The “bulge” in this pencil is caused by x. We can view C0 − λF0 as a
subpencil of the augmented pencil obtained by adjoining a “zeroth” column x − λ0
to the pencil A− λB. If we take this view, then C0− λF0 is not so different from the
other bulge pencils Cj − λFj .

372 DAVID S. WATKINS

Because A is Hessenberg and B is triangular, the computation of x (cf. (5.3)) uses
only the upper left-hand corner entries of A and B. One easily checks that the entries
that participate in the computation are exactly those that are contained in C0−λF0.
This is the only part of the computation that uses the shifts. We therefore expect
that it should be possible to recover the shifts from C0 − λF0.

Theorem 5.1. Suppose bkk �= 0 for k = 1, . . . ,m. Then the eigenvalues of the
zeroth bulge pencil C0 − λF0 are ∞ and the shifts µ1, . . . , µm.

Proof. Since A is properly upper Hessenberg, we deduce easily that xm+1 �= 0.
This condition and the conditions bkk �= 0, k = 1, . . . ,m, together imply that the
characteristic polynomial det(C0−λF0) has degree exactly m. Thus C0−λF0 has one
infinite eigenvalue andm finite eigenvalues. To see that each shift µi is an eigenvalue of
C0−λF0, write p(AB−1) = (A−µ1B)B−1 · · · (A−µmB)B−1 in partially factored form:
p(AB−1) = (A−µiB)B−1q(AB−1), where q has degree m−1. Then x = (A−µiB)y,
where y = B−1q(AB−1)e1. Let ŷ be the subvector of y consisting of the first m
entries, and note that the rest of y is zero. Then the equation x = (A−µiB)y can be
recast as

(C0 − µiF0)

[
1
−ŷ
]
= 0.

Thus µi is an eigenvalue of C0 − λF0.
This argument holds even if B−1 does not exist; all that is needed is that the

upper left-hand corner of B is invertible.
If µ1, . . . , µm are distinct, then there can be no other finite eigenvalues. If µ1, . . . ,

µm are not distinct, we draw the same conclusion by a continuity argument: Perturb
the shifts slightly so that they are distinct. This implies a small perturbation of x.
The m perturbed shifts are the m finite eigenvalues of the slightly perturbed bulge
pencil. Now move the shifts continuously back to their original values and invoke
continuity of eigenvalues of a pencil.

Now we can present our main result.
Theorem 5.2. Suppose bkk �= 0 for k = 1, . . . ,m. Then all of the bulge pencils

Cj − λFj, j = 1, 2, . . . have ∞ and µ1, . . . , µm as their eigenvalues.
Proof. The proof is by induction. We just need to show that Cj+1 − λFj+1 has

the same eigenvalues as Cj − λFj . Suppose we have pushed the bulge forward to the
point where we have reached the pencil Aj − λBj . The bulge begins in column j. In
preparation for pushing the bulge further, consider the (m + 2) × (m + 2) subpencil
of Aj − λBj that consists of Cj − λFj plus one additional column on the right and
one additional row on the bottom. This augmented bulge pencil, which we will call
Ĉj − λF̂j has the same eigenvalues as Cj − λFj , except for one additional infinite
eigenvalue. The transformation that moves the bulge one row down and one column
to the right transforms Ĉj − λF̂j to a new pencil Čj − λF̌j , which has the same
eigenvalues, because the transformation is a strict equivalence. If we now delete the
first row and column from Čj − λF̌j , we obtain the new bulge pencil Cj+1 − λFj+1.
The effect of the deletion is just to remove an infinite eigenvalue. Thus Cj+1−λFj+1

has exactly the same eigenvalues as Cj − λFj .
This argument is applicable even in the case j = 0. The transformation that is

used to set up the initial bulge is exactly the transformation one would use to chase
the “bulge” x from C0 − λF0. Thus C1 − λF1 is produced from C0 − λF0 in exactly
the same way as each subsequent bulge pencil is produced from its predecessor. This
completes the proof.

INFINITE EIGENVALUES AND THE QZ ALGORITHM 373

The hypothesis bkk �= 0 for k = 1, . . . ,m is crucial. Thus, before we start a QZ
iteration, any zeros that are near the top of B need to be pushed to the top by the
upward-chasing variant of [1, section 7.7.5] and deflated. The cost of this is negligible
because m is small.

The important point is that Theorem 5.2 does not require that B be nonsingular;
main diagonal zeros occurring below bmm pose no problem. What happens to the
bulge pencil when it meets up with such a zero? Suppose there is a zero immediately
below the bulge pencil Cj − λFj . In the next step an upward wave of m pairs of
rotators pushes the zero m positions upward while pushing the bulge one position
downward. Now the zero lies immediately above the bulge pencil Cj+1 − λFj+1. The
zero has hopped over the bulge pencil.

Consider an iteration with shifts µ1, . . . , µm. Suppose we have pushed the bulge
down to the point where it has passed through all of the zeros on the main diagonal
of B. Say we have reached a point

[
Ã11 Ã12

Ã21 Ã22

]
− λ

[
B̃11 B̃12

0 B̃22

]
,

where the bulge is about to enter the subpencil Ã22 − λB̃22. By Theorem 5.2, the
finite eigenvalues of the bulge pencil are µ1, . . . , µm, so the rest of the bulge chase
is essentially a QZ iteration on Ã22 − λB̃22 with shifts µ1, . . . , µm. The shifts were
determined by information in the lower right-hand corner of A − λB, which is the
same as the lower right-hand corner of Ã22 − λB̃22. If the shifts are good estimates
of eigenvalues of A − λB, they will also normally be good estimates of eigenvalues
of Ã22 − λB̃22. Since B̃22 is nonsingular, the standard convergence theory applies to
the subpencil, and we expect good progress toward convergence, as measured by the
reduction in |an−m+1,n−m |.

This heuristic argument proves nothing; it is only meant to be suggestive of
success. If it is really true, then as the zeros gradually float upward through B,
accurate shifts are transmitted in the bulge, through these zeros, to the bottom of
the pencil, resulting in rapid convergence and deflation of finite eigenvalues at the
bottom, just as if there were no zeros on the main diagonal of B.

6. Numerical tests. Since our argument is only suggestive of success, it is cru-
cial to put it to some numerical tests. Another reason for caution is that Theorem 5.2
is true only in the absence of roundoff errors. In [3] it was shown that if m is large
(e.g., m = 20), Theorem 5.2 often fails to hold in practice; roundoff errors prevent
the effective transmission of shifts. This gives us yet another reason to perform some
numerical experiments.

Here we are not concerned with large m. We want to ascertain whether the shift
mechanism works well for small values of m in the presence of infinite eigenvalues. We
conducted numerous experiments with pencils of various sizes and types and found
that it does.

We will report on just a couple of examples. The experiments were performed
using MATLAB and IEEE standard double precision arithmetic. First, consider a
random, complex 20×20 Hessenberg-triangular pencil with no infinite eigenvalues, to
which we apply the QZ algorithm with m = 1. Although we are discussing a single
pencil, the results reported here are typical of many examples that we looked at. We
find that at each point in the bulge chase, the single finite eigenvalue of the bulge
pencil agrees with the intended shift to 15 or more decimal places. Thus the shift is

374 DAVID S. WATKINS

transmitted effectively. Checking the convergence pattern, we observe that the first
four eigenvalues are deflated after 9, 12, 16, and 23 iterations, respectively. Each
eigenvalue converges quadratically, as evidenced by the rate at which the bottom
subdiagonal entry tends to zero.

Now suppose we alter the pencil by setting b5,5 and b15,15 to zero. Since the zeros
are pushed up by one position per iteration, we expect to deflate infinite eigenvalues
at the top after 4 and 13 iterations, and we do. At the same time we hope to have
normal convergence behavior at the bottom of the pencil. Checking the single finite
eigenvalue of the bulge pencil, we find that at each stage of the bulge chase it agrees
with the shift to 15 or more decimal places. Thus the shift is transmitted effectively.
We have no reason to believe that the altered pencil will have the same convergence
pattern as the original pencil, but we hope that the trend will be comparable. Indeed
it is; the first four eigenvalues are deflated after iterations 8, 11, 15, and 18, respec-
tively. Quadratic convergence is observed. For example, Table 6.1 shows the values

Table 6.1
Quadratic convergence of an eigenvalue.

Iteration |a20,19 | Shift-transmission error
3 2.1× 10−2 1.2× 10−15

4 4.3× 10−3 1.1× 10−15

5 1.8× 10−4 3.3× 10−16

6 1.1× 10−6 1.0× 10−15

7 3.9× 10−11 4.4× 10−16

8 5.2× 10−20 7.0× 10−16

of |a20,19 | in iterations 3 through 8. The approximate doubling of the exponent of
a20,19 from one iteration to the next indicates quadratic convergence to zero. Thus
a20,20 converges quadratically to a finite eigenvalue of the pencil. The presence of
infinite eigenvalues does not in any way impede convergence. The shift-transmission
error given in Table 6.1 is the difference between the intended shift and the finite
eigenvalue of the bulge pencil when the bulge pencil has reached the bottom of the
matrix. We see that these errors are a small multiple of the unit roundoff for IEEE
double precision arithmetic.

It is interesting to see how the algorithm behaves if we neglect to deflate infinite
eigenvalues as they emerge. Table 6.2 shows the same information as Table 6.1, except

Table 6.2
Breakdown caused by failure to deflate an infinite eigenvalue.

Iteration |a20,19 | Shift-transmission error
3 2.1× 10−2 1.2× 10−15

4 4.3× 10−3 1.1× 10−15

5 2.2× 10−3 1.7× 10−1

6 2.2× 10−3 7.1× 100

7 2.2× 10−3 9.7× 100

that in this run we do not deflate out the infinite eigenvalue that emerges after the
fourth iteration. In principle the algorithm should crash because of a division by zero
(b11). In practice it does not, because roundoff errors prevent b11 from being exactly
zero. Instead we have a breakdown of the shift-transmission process, as evidenced by

INFINITE EIGENVALUES AND THE QZ ALGORITHM 375

the large shift-transmission errors. As a consequence, the convergence process stalls.
Our second example is also a random Hessenberg-triangular pencil, but this one

is 30 × 30 and has real entries. We apply the double-shift QZ algorithm (m = 2).
The first four pairs of eigenvalues are deflated after 9, 12, 17, and 19 iterations,
respectively. Quadratic convergence of an−1,n−2 to zero is observed.

Calculating the two finite eigenvalues of the bulge pencil near the end of the
bulge chase, we observe that they never differ from the intended shifts by more than
2 × 10−14. Thus the shift-transmission error is a bit larger than in the case m = 1
but is still tiny.

If we modify the pencil by setting b13,13 and b17,17 to zero, we get comparable
results. Since the zeros float up by two positions per iteration, we deflate an infinite
eigenvalue at the top after six iterations, and again after seven. While this is hap-
pening, finite eigenvalues are emerging at the bottom. The first four pairs of finite
eigenvalues are deflated from the bottom after 7, 14, 20, and 26 iterations, respec-
tively.1 Quadratic convergence is observed.

Comparing the intended shifts with the eigenvalues of the bulge pencil near the
end of the bulge chase, we find that the shift-transmission error never exceeds 1.3 ×
10−13. Thus the shifts are transmitted effectively.

These good results depend upon deflation of the infinite eigenvalues as they
emerge. If we fail to do this, the shift-transmission mechanism breaks down and
progress toward convergence comes to a halt.

7. Conclusions. We have shown that the reduction to Hessenberg-triangular
form and the QZ algorithm both move the infinite eigenvalues toward the top of the
pencil. Thus infinite eigenvalues should be deflated at the top. We have identified
the mechanism by which shifts are transmitted through the pencil by a bulge chase
and have shown that the presence of infinite eigenvalues does not interfere with this
mechanism. Finite eigenvalues converge quadratically at the bottom of the pencil,
regardless of whether or not infinite eigenvalues are present.

REFERENCES

[1] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, 1996.

[2] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems,
SIAM J. Numer. Anal., 10 (1973), pp. 241–256.

[3] D. S. Watkins, The transmission of shifts and shift blurring in the QR algorithm, Linear Algebra
Appl., 241–243 (1996), pp. 877–896.

[4] D. S. Watkins, Bulge exchanges in algorithms of QR type, SIAM J. Matrix Anal. Appl., 19
(1998), pp. 1074–1096.

[5] D. S. Watkins, Infinite eigenvalues and the QZ algorithm, Preprint SFB393/99-23, Technische
Universität Chemnitz, Chemnitz, Germany, 1999; also available online from http://www.tu-
chemnitz.de/sfb393/.

[6] D. S. Watkins and L. Elsner, Convergence of algorithms of decomposition type for the eigen-
value problem, Linear Algebra Appl., 143 (1991), pp. 19–47.

[7] D. S. Watkins and L. Elsner, Theory of decomposition and bulge-chasing algorithms for the
generalized eigenvalue problem, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 943–967.

1Some of the eigenvalues are real, and they don’t always emerge in pairs. For example, the “pair”
of eigenvalues that emerged after 14 iterations was really two real eigenvalues that were deflated after
12 and 14 iterations, respectively.

ON THE ITERATIVE SOLUTION OF A CLASS OF
NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS∗

CHUN-HUA GUO† AND ALAN J. LAUB‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 376–391

Abstract. We consider the iterative solution of a class of nonsymmetric algebraic Riccati
equations, which includes a class of algebraic Riccati equations arising in transport theory. For any
equation in this class, Newton’s method and a class of basic fixed-point iterations can be used to find
its minimal positive solution whenever it has a positive solution. The properties of these iterative
methods are studied and some practical issues are addressed. An algorithm is then proposed to find
the minimal positive solution efficiently. Numerical results are also given.

Key words. nonsymmetric algebraic Riccati equations, M -matrices, Newton’s method, fixed-
point iterations, minimal positive solution, convergence rate

AMS subject classifications. 15A24, 65F10, 82C70

PII. S089547989834980X

1. Introduction. In transport theory, we encounter nonsymmetric algebraic
Riccati equations of the form

XCX −XD −AX + B = 0(1.1)

(see [10]), where A,B,C,D ∈ R
n×n have the following structures:

A = diag(δ1, δ2, . . . , δn)− eqT ,(1.2)

B = eeT ,(1.3)

C = qqT ,(1.4)

and

D = diag(d1, d2, . . . , dn)− qeT .(1.5)

In the above,

δi =
1

cwi(1 + α)
, di =

1

cwi(1− α)
,(1.6)

and

e = (1, 1, . . . , 1)T , q = (q1, q2, . . . , qn)T with qi =
ci

2wi
,(1.7)

∗Received by the editors December 23, 1998; accepted for publication (in revised form) by V.
Mehrmann February 21, 2000; published electronically July 11, 2000. This research was supported
in part by National Science Foundation grant ECS-9633326.

http://www.siam.org/journals/simax/22-2/34980.html
†Department of Computer Science, University of California, Davis, One Shields Avenue, Davis, CA

95616-8562 (chguo@math.uregina.ca). Current address: Department of Mathematics and Statistics,
University of Regina, Regina, SK S4S 0A2, Canada. This author was partially supported by an
NSERC postdoctoral fellowship.

‡College of Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616-
5294 (laub@ucdavis.edu).

376

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 377

where 0 < c ≤ 1, 0 ≤ α < 1, and

0 < wn < · · · < w2 < w1 < 1,
n∑
i=1

ci = 1, ci > 0, i = 1, 2, . . . , n.

For descriptions on how these equations arise in transport theory, see [10] and ref-
erences cited therein. Here we only note that the constants c and α have physical
meanings and the constants ci and wi appear in a numerical quadrature formula of

the form
∫ 1

0
f(w)dw ≈∑n

i=1 cif(wi).
For any matrices A,B ∈ R

m×n, we write A ≥ B(A > B) if aij ≥ bij(aij > bij)
for all i, j. We can then define positive matrices, nonnegative matrices, etc. The
existence of positive solutions of (1.1) has been shown in [9] and [10]. However, only
the minimal positive solution is physically meaningful.

The minimal positive solution of (1.1) can be found by basic fixed-point iterations
(see [9], for example). It is mentioned in [10] that the convergence of these fixed-point
iterations can be very slow when c ≈ 1 and α ≈ 0. In [10], the minimal positive
solution of (1.1) is constructed explicitly. The solution formula needs all the zeros
of a certain secular equation. To get a good approximation of the minimal positive
solution, the secular equation must be solved very accurately. We note that Newton’s
method is not always valid as a correction method when c ≈ 1 and α ≈ 0. This point
will be made clear in later discussions.

General nonsymmetric algebraic Riccati equations of the form

R(X) = XCX −XD −AX + B = 0,(1.8)

where A,B,C,D are real matrices of sizes m×m,m× n, n×m,n× n, respectively,
have also been studied in the literature. See [18], for example. All the solutions of
(1.8) can be found, in theory, by finding all the Jordan chains of the matrix

H =

(
D −C
B −A

)
(1.9)

(see Theorem 7.1.2 of [14]). Iterative methods have also been studied for the solution
of (1.8). For example, a convergence result for Newton’s method is given in [4] under
a certain condition on the matrices A,B,C, and D.

Iterative methods with good convergence properties are not available for (1.8)
in its full generality. However, for a certain class of these equations, a fairly com-
plete theory can be established for Newton’s method and a class of basic fixed-point
iterations. Our paper is devoted to the study of these iterative methods.

We start with some definitions. A real square matrix A is called a Z-matrix if
all its off-diagonal elements are nonpositive. It is clear that any Z-matrix A can be
written as sI − B with B ≥ 0. A Z-matrix A is called an M -matrix if s > ρ(B),
where ρ(·) is the spectral radius. It is called a singular M -matrix if s = ρ(B). Note
that A is an M -matrix if and only if AT is so. Note also that a singular M -matrix
is indeed singular (ρ(B) is an eigenvalue of B by the theory of nonnegative matrices;
see [21], for example).

The following result is well known (see [2] and [5], for example).
Theorem 1.1. For a Z-matrix A, the following are equivalent:
(1) A is an M -matrix.
(2) A−1 ≥ 0.

378 CHUN-HUA GUO AND ALAN J. LAUB

(3) Av > 0 for some vector v > 0.
(4) All eigenvalues of A have positive real parts.
The next result is also standard (see [17], for example).
Theorem 1.2. Let A ∈ R

n×n be an M -matrix. If the elements of B ∈ R
n×n

satisfy the relations

bii ≥ aii, aij ≤ bij ≤ 0, i 	= j, 1 ≤ i, j ≤ n,

then B is also an M -matrix.
In this paper we consider nonsymmetric algebraic Riccati equations (1.8) with

the following conditions:

B > 0, C > 0, I ⊗A + DT ⊗ I is an M -matrix,(1.10)

where ⊗ is the Kronecker product (for basic properties of the Kronecker product, see
[15], for example).

Remark 1.1. It is clear that I ⊗ A + DT ⊗ I is a Z-matrix if and only if both
A and D are Z-matrices. Since any eigenvalue of I ⊗ A + DT ⊗ I is the sum of an
eigenvalue of A and an eigenvalue of D (see [15], for example), it follows from the
equivalence of (1) and (4) in Theorem 1.1 in this paper that I ⊗ A + DT ⊗ I is an
M -matrix when A,D are both M -matrices. That the converse is not true is shown
by A = I and D = 0.

The matrices A and D in (1.1) are both M -matrices by Theorem 1.1 since Aw > 0
and DTw > 0 for w = (w1, w2, . . . , wn)T . Therefore, (1.1) with A,B,C,D defined by
(1.2)–(1.7) is a special case of (1.8) with the conditions in (1.10).

From now on, when we speak of (1.8), we always assume that the conditions in
(1.10) are satisfied.

2. Newton’s method. We now consider the application of Newton’s method
to the Riccati equation (1.8). For any matrix norm R

m×n is a Banach space, and the
Riccati function R is a mapping from R

m×n into itself. The first Fréchet derivative
of R at a matrix X is a linear map R′

X : R
m×n → R

m×n given by

R′
X(Z) = −((A−XC)Z + Z(D − CX)

)
.(2.1)

Also, the second derivative at X, R′′
X : R

m×n × R
m×n → R

m×n, is given by

R′′
X(Z1, Z2) = Z1CZ2 + Z2CZ1.(2.2)

The Newton method for the solution of (1.8) is

Xi+1 = Xi − (R′
Xi

)−1R(Xi), i = 0, 1, . . . ,(2.3)

given that the maps R′
Xi

are all invertible. In view of (2.1), the iteration (2.3) is
equivalent to

(A−XiC)Xi+1 + Xi+1(D − CXi) = B −XiCXi, i = 0, 1,(2.4)

Theorem 2.1. If there is a positive matrix X such that R(X) ≤ 0, then (1.8)
has a positive solution S such that S ≤ X for every positive matrix X for which
R(X) ≤ 0. In particular, S is the minimal positive solution of (1.8). For the Newton

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 379

iteration (2.3) with X0 = 0, the sequence {Xi} is well defined, X0 < X1 < · · ·, and
limXi = S. Furthermore, the matrix S is such that

MS = I ⊗ (A− SC) + (D − CS)T ⊗ I

is either an M -matrix or a singular M -matrix.
Proof. Let X be any positive matrix such that

XCX −XD −AX + B ≤ 0.(2.5)

For the Newton iteration (2.4) with X0 = 0, we have

AX1 + X1D = B.

This equation is equivalent to

(I ⊗A + DT ⊗ I)vecX1 = vecB,(2.6)

where the vec operator stacks the columns of a matrix into one long vector (see [14,
p. 99], for example). Since I ⊗ A + DT ⊗ I is an M -matrix by assumption, we get
from (2.6) that vecX1 > 0, i.e., X1 > 0. Therefore, the statement

Xk < Xk+1, Xk < X, I ⊗ (A−XkC) + (D − CXk)T ⊗ I is an M -matrix(2.7)

is true for k = 0.
We now assume that (2.7) is true for k = i ≥ 0. By (2.4) and (2.5) we have

(A−XiC)(Xi+1 −X) + (Xi+1 −X)(D − CXi)

= B −XiCXi −AX + XiCX −XD + XCXi(2.8)

≤ −(X −Xi)C(X −Xi).

Since Xi < X and I ⊗ (A−XiC) + (D − CXi)
T ⊗ I is an M -matrix, it follows from

(2.8) that Xi+1 < X. By (2.4)

(A−Xi+1C)Xi+1 + Xi+1(D − CXi+1)

=
(
A−XiC − (Xi+1 −Xi)C

)
Xi+1 + Xi+1

(
D − CXi − C(Xi+1 −Xi)

)
(2.9)

= B − (Xi+1 −Xi)C(Xi+1 −Xi)−Xi+1CXi+1.

It follows from (2.9) and (2.5) that

(A−Xi+1C)(Xi+1 −X) + (Xi+1 −X)(D − CXi+1)

≤ −(Xi+1 −Xi)C(Xi+1 −Xi)− (Xi+1 −X)C(Xi+1 −X) < 0.

Therefore,

(
I ⊗ (A−Xi+1C) + (D − CXi+1)T ⊗ I

)
vec(X −Xi+1) > 0.

Thus I⊗ (A−Xi+1C) + (D−CXi+1)T ⊗ I is an M -matrix by Theorem 1.1. By (2.9)
and (2.4)

(A−Xi+1C)(Xi+1 −Xi+2) + (Xi+1 −Xi+2)(D − CXi+1)

= −(Xi+1 −Xi)C(Xi+1 −Xi) < 0.

380 CHUN-HUA GUO AND ALAN J. LAUB

Therefore, Xi+1 < Xi+2. We have thus proved that (2.7) is true for k = i + 1.
Hence, by the principle of mathematical induction, (2.7) is true for all k ≥ 0. The
Newton sequence is now well defined, monotonically increasing, and bounded above.
Let limk→∞Xk = S. Then S is a solution of (1.8) by (2.4). Since S ≤ X for any X
such that R(X) ≤ 0, S is the minimal positive solution of (1.8). For all i ≥ 0, we
can write I ⊗ (A − XiC) + (D − CXi)

T ⊗ I = rI − Ti with Ti ≥ 0 and ρ(Ti) < r.
Now, MS = rI − T with T = limi→∞ Ti. Since ρ(T) ≤ r, the matrix MS is either an
M -matrix or a singular M -matrix.

Remark 2.1. The above result is similar in nature to Theorem 9.1.1 of [14]. The
result is also somewhat related to a monotone convergence result on Newton’s method
for convex operators in partially ordered spaces, as described in Theorem 5.1 of [20].
In order to apply that theorem, we need to know that there is a positive matrix X
such that R(X) ≤ 0 and I ⊗ (A − XC) + (D − CX)T ⊗ I is an M -matrix. When
this is true, that theorem implies that the Newton sequence with X0 = 0 is well
defined, X0 ≤ X1 ≤ · · · , and limXk = X∗ ≤ X is a solution of R(X) = 0. With the
hindsight from Theorem 2.1 in this paper, such a positive matrix X does not exist
if I ⊗ (A − SC) + (D − CS)T ⊗ I is a singular M -matrix for the minimal positive
solution S. In fact, the existence of such an X would imply S ≤ X by Theorem 2.1,
which would in turn imply that I ⊗ (A − SC) + (D − CS)T ⊗ I is an M -matrix by
Theorem 1.2.

Remark 2.2. Even if A and D are both M -matrices, it is not necessarily true that
A− SC and D−CS are both M -matrices or singular M -matrices. This is shown by
the scalar case with B = C = 1, D = 1/2, and A = 3/2. For this example, S = 1,
A − SC = 1/2, and D − CS = −1/2. This example also shows that the matrix MS

in Theorem 2.1 can indeed be a singular M -matrix.
The following comparison result is an immediate consequence of Theorem 2.1.
Corollary 2.2. Let S be the minimal solution of (1.8). If any element of B

or C decreases but remains positive, or if any diagonal element of I ⊗ A + DT ⊗ I
increases, or if any off-diagonal element of I ⊗ A + DT ⊗ I increases but remains
nonpositive, then the equation so obtained also has a minimal positive solution S̃.
Moreover, S̃ ≤ S.

Proof. Let the new equation be

R̃(X) = XC̃X −XD̃ − ÃX + B̃ = 0.

It is clear that R̃(S) ≤ 0. Since I ⊗ Ã+ D̃T ⊗ I is still an M -matrix by Theorem 1.2,
the conclusions follow from Theorem 2.1.

Remark 2.3. As an easy consequence of the above corollary, we can conclude that
the minimal positive solution of (1.1) increases in c. In [10], it is also concluded that
the minimal solution decreases in α. This conclusion is not a consequence of the above
corollary and is, in fact, not valid.

Example 2.1. Consider the Riccati equation (1.1) with n = 2 and

c1 = c2 = 1/2, w1 = 3/4, w2 = 1/4, c = 1/2.

If α = 0.1, then the minimal solution (to four digits without rounding) is(
0.2758 0.1196
0.1344 0.0766

)
.

If α = 0.2, then the minimal solution (to four digits without rounding) is(
0.2639 0.1087
0.1372 0.0746

)
.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 381

This example shows that the minimal solution does not necessarily decrease in α.
As to the convergence rate of Newton’s method, the following result is immediate.
Theorem 2.3. If the matrix MS in Theorem 2.1 is an M -matrix, then for X0 = 0

the Newton sequence {Xk} converges to S quadratically.
Proof. If MS is an M -matrix, then the Fréchet derivative R′

S is an invertible
map. Since R is a smooth function, the convergence of the Newton sequence must be
quadratic (see [11] and [19], for example).

If the matrix MS is a singular M -matrix, the map R′
S is not invertible and the

convergence of Newton’s method is more complicated. The convergence behavior of
Newton’s method in this case will be clarified by following the strategy used in [8] for
symmetric algebraic Riccati equations and by using a theorem on Newton’s method
at singular points (see [3, Theorem 1.2] and [12, Theorem 1.1], for example).

Lemma 2.4. If MS is a singular M -matrix, then 0 is a simple eigenvalue of MS.
Let N = Ker(R′

S) andM = Im(R′
S). Then N is one-dimensional, R

m×n = N ⊕M,
and the map B : N → N given by

B(N) = PNR′′
S(N0, N)

is invertible for nonzero N0 ∈ N , where PN is the projection on the null space N
parallel to the rangeM.

Proof. We write MS = rI − T with T ≥ 0 and ρ(T) = r > 0. Since T is clearly
irreducible, we know by the Perron–Frobenius theorem (see [21]) that ρ(T) is a simple
eigenvalue of T with a positive eigenvector. Thus, we can find mn orthonormal vectors
u1, u2, . . . , umn such that u1 > 0 and

U−1MSU =

(
0 0
0 M22

)
,(2.10)

where U = (u1 u2 · · ·umn) and M22 is an (mn − 1) × (mn − 1) nonsingular matrix.
Now, R′

S(N) = −(A− SC)N −N(D −CS) = 0 if and only if MSvecN = 0. In view
of (2.10), MSvecN = 0 if and only if vecN = U(a, 0, . . . , 0)T = a u1 for some a ∈ R,
in which case we write N = aunvecu1 (i.e., the unvec operator is the inverse of the
vec operator). Thus N = {aunvecu1 | a ∈ R}. Similarly, M = {b2unvecu2 + · · · +
bmnunvecumn | b2, . . . , bmn ∈ R}. Therefore, N is one-dimensional and R

m×n = N ⊕
M. To prove the map B is invertible, we only need to show PN (unvecu1Cunvecu1) 	= 0
(see (2.2)). Since u1 > 0 and vec(unvecu1Cunvecu1) = k1u1 + k2u2 + · · · + kmnumn
for some real numbers k1, k2, . . . , kmn, we have

k1 = uT1 vec(unvecu1Cunvecu1) > 0.

Thus, PN (unvecu1Cunvecu1) = k1unvecu1 	= 0, as required.
Lemma 2.5. For any fixed θ > 0, let

Q = {i : ‖PM(Xi − S)‖ > θ‖PN (Xi − S)‖}.
Then there exist an integer i0 and a constant η > 0 such that ‖Xi+1−S‖ ≤ η‖Xi−S‖2
for all i in Q for which i ≥ i0.

Proof. The proof is analogous to that of [8, Theorem 2.2], although the algebraic
Riccati equations considered in that paper are different from the Riccati equations
being considered here.

Corollary 2.6. Assume that, for given θ > 0, ‖PM(Xi−S)‖ > θ‖PN (Xi−S)‖
for all i large enough. Then Xi → S quadratically.

382 CHUN-HUA GUO AND ALAN J. LAUB

We are now ready to clarify the convergence behavior of Newton’s method when
the matrix MS is a singular M -matrix.

Theorem 2.7. If MS is a singular M -matrix and the convergence of the Newton
sequence {Xi} in Theorem 2.1 is not quadratic, then ‖(R′

Xi
)−1‖ ≤ β‖Xi − S‖−1 for

all i ≥ 1 and some constant β > 0. Moreover,

lim
i→∞

‖Xi+1 − S‖
‖Xi − S‖ =

1

2
, lim

i→∞
‖PM(Xi − S)‖
‖PN (Xi − S)‖2 = 0.

Proof. The result follows from Theorem 2.1, Lemma 2.4, Corollary 2.6, and [12,
Theorem 1.1].

3. A class of fixed-point iterations. If we write

A = A1 −A2, D = D1 −D2,

(1.8) becomes

A1X + XD1 = XCX + XD2 + A2X + B.

We use only those splittings of A and D such that A2, D2 ≥ 0, and A1 and D1 are Z-
matrices. In these situations, the matrix I⊗A1 +DT

1 ⊗I is an M -matrix by Theorem
1.2. We then have a class of fixed-point iterations

Xk+1 = L−1(XkCXk + XkD2 + A2Xk + B),(3.1)

where the linear operator L is given by

L(X) = A1X + XD1.

Since I ⊗A1 + DT
1 ⊗ I is an M -matrix, the operator L is invertible and L−1(X) > 0

for X > 0.
Theorem 3.1. If R(X) ≤ 0 for some positive matrix X, then for the fixed-point

iterations (3.1) and X0 = 0, we have for any k ≥ 1,

X0 < X1 < · · · < Xk < X.(3.2)

Moreover, limk→∞Xk = S.
Proof. The order relation (3.2) can easily be proved by induction. The limit X∗

is then a solution of R(X) = 0 and must be the minimal positive solution S, since
X∗ ≤ X for any positive matrix X such that R(X) ≤ 0.

Remark 3.1. The comparison result on the minimal positive solution (Corollary
2.2) also follows from the above simple result.

The following result is concerned with the convergence rates of these fixed-point
iterations.

Theorem 3.2. For the fixed-point iterations (3.1) with X0 = 0, we have

lim sup
k→∞

k
√
‖Xk − S‖ = ρ

(
(I ⊗A1 + DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)
.

Proof. By a theorem on general fixed-point iterations (see [13, p. 21], for exam-
ple), we have

lim sup
k→∞

k
√
‖Xk − S‖ ≤ ρ(G′

S),(3.3)

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 383

where G′
S is the Fréchet derivative at S of the map G given by

G(X) = L−1(XCX + XD2 + A2X + B).

It is easily found that G′
S is given by

G′
S(H) = L−1

(
(A2 + SC)H + H(D2 + CS)

)
.

We now show that, in fact, equality holds in (3.3). We may assume the norm in
(3.3) is the Frobenius norm.

Let Ek = S −Xk. We have Ek+1 = Pk(Ek), where the operator Pk is given by

Pk(H) = L−1
(
(A2 + SC)H + H(D2 + CXk)

)
.(3.4)

Note that limk→∞ Pk = G′
S . Thus, for any ε > 0, we can find an integer l such that

ρ(Pl) ≥ ρ(G′
S)− ε.

Now, since 0 = X0 < X1 < · · ·, we have

lim sup
k→∞

k
√
‖Xk − S‖ = lim sup

k→∞
k
√
‖Pk−1 · · ·PlPl−1 · · ·P0(S)‖

≥ lim sup
k→∞

k

√
‖(Pl)k−l(P0)l(S)‖.

Since (P0)l(S) > 0, we have (P0)l(S) > clE, where cl > 0 is a constant and E is the
matrix with all its elements equal to one. Also, ‖(Pl)k−l‖ = ‖(Pl)k−l(Sl,k)‖, where
Sl,k ∈ R

m×n is such that ‖Sl,k‖ = 1 and Sl,k ≥ 0. Now,

lim sup
k→∞

k
√
‖Xk − S‖ ≥ lim sup

k→∞
k

√
‖cl(Pl)k−l(E)‖

≥ lim sup
k→∞

k

√
cl‖(Pl)k−l(Sl,k)‖

= lim sup
k→∞

k

√
‖(Pl)k−l‖

= ρ(Pl) ≥ ρ(G′
S)− ε.

Since ε > 0 is arbitrary, we have

lim sup
k→∞

k
√
‖Xk − S‖ = ρ(G′

S).

A number λ is an eigenvalue of G′
S if and only if for some H 	= 0,

L−1
(
(A2 + SC)H + H(D2 + CS)

)
= λH,

which is the same as

(A2 + SC)H + H(D2 + CS) = λ(A1H + HD1)

or

(I ⊗A1 + DT
1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)vecH = λvecH.

384 CHUN-HUA GUO AND ALAN J. LAUB

Thus,

ρ(G′
S) = ρ

(
(I ⊗A1 + DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)
.

This completes the proof.
We can say something more about the spectral radius in Theorem 3.2.
Theorem 3.3. If MS is a singular M -matrix, then

ρ
(
(I ⊗A1 + DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)

= 1.

If MS is an M -matrix, and A = Ã1 − Ã2, D = D̃1 − D̃2 are such that 0 ≤ Ã2 ≤ A2

and 0 ≤ D̃2 ≤ D2, then

ρ
(
(I ⊗ Ã1 + D̃T

1 ⊗ I)−1(I ⊗ (Ã2 + SC) + (D̃2 + CS)T ⊗ I)
)

≤ ρ
(
(I ⊗A1 + DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)
< 1.

Proof. Since

MS = (I ⊗A1 + DT
1 ⊗ I)− (I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)

and

MS = (I ⊗ Ã1 + D̃T
1 ⊗ I)− (I ⊗ (Ã2 + SC) + (D̃2 + CS)T ⊗ I)

are regular splittings [21] of MS , the second conclusion follows from the standard
results in [21]. If MS is a singular M -matrix, then MSv = 0 for some v 	= 0. Thus,

(I ⊗A1 + DT
1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)v = v,

and the first conclusion follows.
Therefore, the convergence of these iterations is linear if MS is an M -matrix.

When MS is a singular M -matrix, the convergence is sublinear. Within this class
of iterative methods, three iterations are worthy of special mention. The first one is
obtained when we take A1 and D1 to be the diagonal part of A and D, respectively.
This is the simplest iteration in the class and will be called FP1. The second one is
obtained when we take A1 to be the lower triangular part of A and take D1 to be
the upper triangular part of D. This iteration will be called FP2. The last one is
obtained when we take A1 = A and D1 = D. This is the fastest iteration in this class
(see the second part of Theorem 3.3) and will be called FP3.

4. Some practical issues and an overall algorithm. If (1.8) has a positive
solution, the minimal positive solution can thus be found by the Newton iteration
or some basic fixed-point iterations. Starting with the zero matrix, each of these
iterations produces a monotonically increasing sequence, the limit of which is the
minimal positive solution S. The matrix MS associated with S is either an M -matrix
or a singular M -matrix. When MS is an M -matrix, the convergence of Newton’s
method is quadratic and the convergence of the basic fixed-point iterations is linear.
When MS is a singular M -matrix, the convergence of Newton’s method is at least
linear and the convergence of the basic fixed-point iterations is sublinear. Therefore,
Newton’s method is always much faster than the other methods in terms of iteration
counts. It must be noted, however, that the computational work involved in one step
of Newton’s method is much higher than that involved in one step of a basic fixed-
point iteration. For the Newton iteration (2.3), the equation −R′

Xk
(H) = R(Xk), i.e.,

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 385

(A−XkC)H +H(D−CXk) = R(Xk), can be solved by the algorithms described in
[1] and [6]. If we use the Bartels–Stewart algorithm [1] to solve the Sylvester equation,
the computational work for each Newton iteration is about 62n3 flops when m = n
(see [7] for the definition of a “flop”). By comparison, FP1 and FP2 need about 8n3

flops for each iteration. For FP3 we can use the Bartels–Stewart algorithm for the
first iteration. It needs about 54n3 flops. For each subsequent iteration, it needs
about 14n3 flops.

For the basic fixed-point iteration (3.1), the error reduction at the (k + 1)th step
is determined by the operator Pk in (3.4). Since 0 = X0 < X1 < · · · , we can see that
the error reduction is more significant initially. For Newton’s method, of course, the
error reduction is much more significant at a late stage of iteration unless the matrix
MS is nearly singular. It is therefore advisable to start with some basic fixed-point
iteration and switch to Newton’s method after the residual error has been reduced
to a certain level. From Theorem 2.1 we know that Newton’s method, starting with
the zero matrix, produces a monotonically increasing sequence. Now, with the initial
guess produced by some basic fixed-point iteration, will the Newton sequence still be
monotonic?

Proposition 4.1. Assume that R(X) ≤ 0 for some positive matrix X. If
{Xk}k0k=1 is produced by basic fixed-point iteration (3.1) with X0 = 0 and {Xk}∞k=k0+1

is produced by Newton’s method with Xk0 as an initial guess, then

0 < X1 < X2 < · · · < Xk0 < Xk0+1 < · · · ,

and limk→∞Xk = S, the minimal positive solution.

Proof. We already know from Theorem 3.1 that 0 < X1 < X2 < · · · < Xk0 < S.
Now, for 1 ≤ k ≤ k0, we have

R(Xk) = XkCXk + XkD2 + A2Xk + B −A1Xk −XkD1

= XkCXk −Xk−1CXk−1 + (Xk −Xk−1)D2 + A2(Xk −Xk−1) > 0.

Since Xk0+1 is obtained from Xk0 by Newton’s method, −R′
Xk0

(Xk0+1 − Xk0) =

R(Xk0). Thus, (A−Xk0C)(Xk0+1−Xk0)+(Xk0+1−Xk0)(D−CXk0) > 0. Since Xk0 <
S and I⊗ (A−SC)+(D−CS)T ⊗I is either an M -matrix or a singular M -matrix, it
follows from the Perron–Frobenius theorem that I ⊗ (A−Xk0C) + (D−CXk0)T ⊗ I
is an M -matrix. Therefore, Xk0+1 > Xk0 . Once this is proved, it follows as in the
proof of Theorem 2.1 that Xk0 < Xk0+1 < · · ·, and limk→∞Xk = S.

Remark 4.1. We may apply the above strategy without knowing whether (1.8)
has a positive solution. If we find that Xk < Xk+1 is not true for some k ≥ k0, then
we can conclude that (1.8) does not have a positive solution. Note, however, that
Xk < Xk+1 is true for all 0 ≤ k < k0, even if (1.8) has no positive solutions. This is
another difference between Newton’s method and the basic fixed-point iterations.

Remark 4.2. The results in section 2 are still valid when the Newton iteration is
started with a matrix produced by a basic fixed-point iteration as in Proposition 4.1.

The convergence behavior of the iterative methods we have discussed depends on
the matrix MS = I ⊗ (A− SC) + (D−CS)T ⊗ I, in which S is the minimal positive
solution to be found. The matrix MS is a singular M -matrix if and only if λi+µj = 0
for some eigenvalue λi of A− SC and some eigenvalue µj of D − CS. There is some
connection between the eigenvalues of A − SC (or D − CS) and the eigenvalues of
the matrix H in (1.9). In fact, the following result is true.

386 CHUN-HUA GUO AND ALAN J. LAUB

Proposition 4.2. If X is any solution of (1.8), then any eigenvalue of D−CX
is an eigenvalue of H and any eigenvalue of A−XC is the negative of some eigenvalue
of H.

Proof. It is easy to verify that

(
I 0
X I

)−1(
D −C
B −A

)(
I 0
X I

)
=

(
D − CX −C

0 −(A−XC)

)
.

The conclusions follow immediately.
However, when we are going to use iterative methods to find the minimal positive

solution, we would not bother to find all the eigenvalues of the matrix H. Even if
we know all the eigenvalues of H, Proposition 4.2 is not adequate to determine all
the eigenvalues of A − SC and D − CS. For (1.1), we know from the results in [10]
that MS is a singular M -matrix if and only if c = 1 and α = 0. This explains why
Newton’s method may not be valid as a correction method when c ≈ 1 and α ≈ 0. For
(1.8), whether the matrix MS is a singular M -matrix (or nearly so) can be inferred
from the speed of convergence of the iterative method we are using. For example,
very slow convergence of a basic fixed-point iteration indicates that the matrix MS is
a singular M -matrix or nearly so. By Proposition 4.1 we can always use the Newton
iteration when the convergence of the fixed-point iteration is unsatisfactory.

When the matrix MS is singular and the convergence of Newton’s method is not
quadratic, we know from Theorem 2.7 that the convergence must be linear with rate
1/2 and the error will rapidly be dominated by the null space component. As is
the case for symmetric algebraic Riccati equations (see Theorems 3.1 and 3.2 of [8]),
very accurate approximation for the minimal positive solution can be obtained by
computing Yk+1 = Xk − 2(R′

Xk
)−1R(Xk) when ‖PM(Xk − S)‖ ≤ ε‖PN (Xk − S)‖

and ε is very small. Note that ‖Xk − S‖ need not be very small when ε is very
small. In this case, the Sylvester equation −R′

Xk
(H) = R(Xk) is not nearly singular

and can be solved by the Bartels–Stewart algorithm very accurately. Without this
double Newton step, Newton’s method will take many more iterations. Even linear
convergence with rate 1/2 can fail to be realized due to a nearly singular Jacobian
at a late stage. Therefore, when we apply Newton’s method, we can try a double
Newton step first. If the approximation obtained fails to satisfy a given stopping
criterion, then we use the original Newton iteration instead and try a double Newton
step with the new iterate, i.e., we have an algorithm similar to Algorithm 3.3 of [8] for
symmetric algebraic Riccati equations. Although the added cost of trying the double
Newton step is minor, the strategy can be used in a wiser way. That is, we can try
the double Newton step only when there are indications that we are solving a problem
with R′

S singular (or nearly singular) and that the error is already essentially in the
null space (or approximate null space). The next result shows how we can get such
indications.

Proposition 4.3. Assume that R′
S is singular and {Xk}∞k=k0 is the Newton

sequence in Proposition 4.1. If Xk − S ∈ N (k ≥ k0), then

Xk+1 − S =
1

2
(Xk − S), R(Xk+1) =

1

4
R(Xk).

Furthermore,

lim
rk→0

‖Xk+1 − S‖
‖Xk − S‖ =

1

2
, lim

rk→0

R(Xk)

‖Xk − S‖2 = C0,(4.1)

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 387

where

rk =
‖PM(Xk − S)‖
‖PN (Xk − S)‖2

and C0 is a constant positive matrix. In particular,

lim
rk→0

‖R(Xk+1)‖
‖R(Xk)‖ =

1

4
.

Proof. As in Theorem 3.1 of [8], we have Xk+1 − S = 1
2 (Xk − S) ∈ N when

Xk − S ∈ N . Thus, in view of (2.2),

R(Xk+1) = R(S) +R′
S(Xk+1 − S) +

1

2
R′′
S(Xk+1 − S,Xk+1 − S)

= (Xk+1 − S)C(Xk+1 − S) =
1

4
(Xk − S)C(Xk − S) =

1

4
R(Xk).

If rk is sufficiently small, we have as in Theorem 3.2 of [8]

‖Xk − 2(R′
Xk

)−1R(Xk)− S‖ ≤ γ
‖PM(Xk − S)‖
‖PN (Xk − S)‖(4.2)

for some constant γ. Since the left-hand side of (4.2) can be written as ‖2(Xk+1 −
S) − (Xk − S)‖, the first limit in (4.1) follows easily. Now, let N = span{N0} with
N0 > 0 and ‖N0‖ = 1. Since

R(Xk) = R(S) +R′
S(Xk − S) +

1

2
R′′
S(Xk − S,Xk − S)

= R′
S(PM(Xk − S)) + (Xk − S)C(Xk − S),

we get easily that

lim
rk→0

R(Xk)

‖Xk − S‖2 = N0CN0 > 0.

The proof is thus complete.
When R′

S is singular, we know from Theorem 2.7 that limk→∞ rk = 0 unless the
convergence of Newton’s method is quadratic. The above proposition tells us that we
may choose to try the double Newton step with a current Newton iterate Xk only
when ‖R(Xk)‖/‖R(Xk−1)‖ ≈ 1/4.

We now propose the following algorithm for finding the minimal positive solution
S of (1.8) whenever it has a positive solution. The algorithm may also detect that
the equation actually does not have a positive solution. The choices of the splittings
and parameters in step 1 of the algorithm can be made according to the guidelines
provided immediately after the algorithm.

Algorithm 4.4.
(1) Choose splittings A = A1 −A2 and D = D1 −D2;

choose parameters k0, ε, η1, η2, η3 > 0.
(2) Set X0 = 0, T (X0) = B, r0 = ‖B‖∞.
(3) For k = 1, 2, . . ., do:

solve A1Xk + XkD1 = T (Xk−1);
compute R(Xk), rk = ‖R(Xk)‖∞;
if rk/r0 < η1 or k ≥ k0, goto 4;
compute T (Xk) = T (Xk−1) +R(Xk).

388 CHUN-HUA GUO AND ALAN J. LAUB

(4) For p = k, k + 1, . . . , do:
solve −R′

Xk
(H) = R(Xk) for H = (hij);

if hij < −η2‖H‖∞ for some (i, j), then stop (no solution);
compute Xp+1 = Xp + H, R(Xp+1), rp+1 = ‖R(Xp+1)‖∞;
if rp+1/r0 < ε, then stop and S ≈ Xp+1;
if | rp+1

rp
− 1

4 | < η3, then

compute Z = Xp + 2H, r = ‖R(Z)‖∞;
if r/r0 < ε, then stop and S ≈ Z.

In the above algorithm, we can select a particular basic fixed-point iteration by
choosing proper splittings of A and D. Normally we can use FP1 or FP2. Although
FP2 is faster in general, FP1 may take advantage of the structures in a specific
equation more easily. In the algorithm, ε is the required precision and is usually
much smaller than η1. The small number η2 is introduced to numerically check if
H > 0 has been violated. This number should be related to the unit roundoff. The
small number η3 is used to determine if the double Newton step should be tried. A
smaller η3 should be used for a smaller ε. If (1.8) does not have a positive solution,
the criterion rk/r0 < η1 in step 3 of the algorithm may never be satisfied. In the
algorithm, we have let k0 be the maximal number of fixed-point iterations allowed.
The nonexistence of a positive solution can often be detected by Newton’s method
in step 4. When (1.8) has a positive solution, the algorithm will produce a finite
sequence approaching the minimal positive solution. The sequence is obtained by a
fixed-point iteration followed by ordinary Newton’s method, with the exception that
the last term in the sequence is possibly obtained by the double Newton step. It
should be noted that the matrix Z produced by the double Newton step is not used
in subsequent Newton iterations.

5. Numerical results. First we give a simple example to illustrate the perfor-
mance of the iterative methods we have studied.

Example 5.1. Consider (1.8) with m = n = 2 and

A =

(
α −2
−1 6

)
, B =

(
1 1
2 1

)
, C =

(
3 4
2 1

)
, D =

(
5 −1
−1 4

)
.

For α = 4.26, we apply Newton’s method with X0 = 0 and find

X6 =

(
0.3865 0.4048
0.3583 0.2943

)
, X7 =

(
0.3713 0.3872
0.3490 0.2836

)
.

Since X6 < X7 is not true, the equation has no positive solutions in this case. Ex-
periments show that the equation has a positive solution for α = 4.267191. Thus,
it has positive solutions for all α ≥ 4.267191 by Corollary 2.2. In Tables 5.1–5.3,
we have recorded, for three values of α, the number of iterations needed to have
‖R(Xk)‖∞ < ε for Newton’s method (NM) and the three basic fixed-point iterations.
For all four methods, we use X0 = 0. From the tables, we can see that the three
basic fixed-point iterations have similar efficiency. For α = 6.0, the basic fixed-point
iterations are still adequate. For α = 4.27 and α = 4.267191, however, the advantage
of Newton’s method is very clear. In all three cases, the basic fixed-point iterations
are useful for initial error reduction. We may consider using Newton’s method after
a certain number of fixed-point iterations. However, other features of Algorithm 4.4
have no role to play, since the existence of a positive solution is known for each α and
quadratic convergence of Newton’s method is visible even for α = 4.267191.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 389

Table 5.1
Iteration counts for Example 5.1, α = 6.0.

ε 10−2 10−4 10−6 10−8 10−10 10−12

NM 3 4 4 5 5 5
FP1 11 22 33 44 54 65
FP2 10 19 29 38 48 57
FP3 7 15 23 31 38 46

Table 5.2
Iteration counts for Example 5.1, α = 4.27.

ε 10−2 10−4 10−6 10−8 10−10 10−12

NM 5 7 8 9 9 10
FP1 40 245 533 822 1112 1402
FP2 36 222 480 739 998 1257
FP3 29 182 396 611 827 1042

Table 5.3
Iteration counts for Example 5.1, α = 4.267191.

ε 10−2 10−4 10−6 10−8 10−10 10−12

NM 5 8 11 14 15 15
FP1 40 450 4477 25328 54350 83603
FP2 37 414 4119 23000 49020 75239
FP3 29 335 3339 18899 40559 62395

Example 5.2. We now consider (1.1) for n = 64 and n = 128. The constants ci and
wi are given by a numerical quadrature formula on the interval [0, 1], which is obtained
by dividing [0, 1] into n/4 subintervals of equal length and applying Gauss–Legendre
quadrature with four nodes to each subinterval.

We apply Algorithm 4.4 with the splittings of A and D being those corresponding
to FP1, and we take k0 = 200, ε = 10−12, η1 = 10−3, η2 = 10−6, and η3 = 10−6.
For this example it is actually unnecessary to introduce the parameter η2, since the
existence of positive solutions has been guaranteed by the theoretical results in [9]
and [10]. We carry out the computation for n = 64 and n = 128. The parameter
pair (α, c) is taken to be (0.5, 0.5), (10−8, 0.999999), (10−14, 1), and (0, 1). The results
are recorded in Tables 5.4–5.5. For example, when n = 64 and (α, c) = (0, 1), the
residual is reduced to 0.9916D-03r0 after 170 FP1 iterations (r0 is the initial residual).
The residual is then reduced to 0.4937D-05r0 after four Newton iterations. The fifth
Newton iteration fails to achieve the required accuracy, but the double Newton step
(DN) works (it reduces the residual to 0.1763D-13r0). The double Newton step is also
tried with the fourth Newton iteration, but without success. For this example, R′

S is
singular when (α, c) = (0, 1).

Table 5.4
Convergence history for Example 5.2, n = 64.

(0.5, 0.5) (10−8, 0.999999) (10−14, 1) (0, 1)
5 FP1 170 FP1 170 FP1 170 FP1

0.6844D-03 0.9889D-03 0.9916D-03 0.9916D-03
2 NM 7 NM 4 NM 4 NM

0.5464D-15 0.5832D-14 0.4937D-05 0.4937D-05
no DN tries no DN tries DN (second try) DN (second try)

0.1671D-13 0.1763D-13

390 CHUN-HUA GUO AND ALAN J. LAUB

Table 5.5
Convergence history for Example 5.2, n = 128.

(0.5, 0.5) (10−8, 0.999999) (10−14, 1) (0, 1)
5 FP1 170 FP1 170 FP1 170 FP1

0.6847D-03 0.9915D-03 0.9942D-03 0.9942D-03
2 NM 7 NM 4 NM 4 NM

0.1117D-14 0.5677D-14 0.4953D-05 0.4953D-05
no DN tries no DN tries DN (second try) DN (second try)

0.1606D-13 0.1650D-13

6. Conclusions. We have discussed the iterative solution of a class of nonsym-
metric algebraic Riccati equations, which includes a class of algebraic Riccati equa-
tions arising in transport theory. The coefficient matrices of any equation in this larger
class have a special sign structure. Using this structure and the theory of M -matrices,
we have shown that Newton’s method and a class of basic fixed-point iterations can
be used to find its minimal positive solution whenever it has a positive solution. We
have also proposed an overall algorithm for the solution of the nonsymmetric alge-
braic Riccati equation. The algorithm is basically a combination of Newton’s method
and a basic fixed-point iteration, but it has two additional features: (1) the algorithm
can detect that an equation actually does not have a positive solution, and (2) it can
also detect and solve a singular or nearly singular problem efficiently. There are still,
however, some unsolved problems about the nonsymmetric algebraic Riccati equation.
For example, it is of interest to know what reasonable conditions on the coefficient
matrices of the equation will ensure the existence of a positive solution. It is also of
interest to determine if quadratic convergence is really possible for Newton’s method
in the singular case. For symmetric algebraic Riccati equations, subspace methods are
frequently used (see [16], for example). It would be worthwhile to consider whether
the minimal positive solution of the equation can also be found efficiently by subspace
methods.

Acknowledgments. Chun-Hua Guo would like to thank Peter Lancaster for
introducing him to the study of algebraic Riccati equations several years ago. He
also gratefully acknowledges the support of an NSERC postdoctoral fellowship. Both
authors thank the referees for their very helpful comments.

REFERENCES

[1] R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX +XB = C, Comm.
ACM, 15 (1972), pp. 820–826.

[2] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Aca-
demic Press, New York, 1979.

[3] D. W. Decker and C. T. Kelley, Newton’s method at singular points. I, SIAM J. Numer.
Anal., 17 (1980), pp. 66–70.

[4] J. W. Demmel, Three methods for refining estimates of invariant subspaces, Computing, 38
(1987), pp. 43–57.

[5] M. Fiedler and V. Ptak, On matrices with non-positive off-diagonal elements and positive
principal minors, Czechoslovak Math. J., 12 (1962), pp. 382–400.

[6] G. H. Golub, S. Nash, and C. Van Loan, A Hessenberg-Schur method for the problem
AX +XB = C, IEEE Trans. Automat. Control, 24 (1979), pp. 909–913.

[7] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[8] C.-H. Guo and P. Lancaster, Analysis and modification of Newton’s method for algebraic
Riccati equations, Math. Comp., 67 (1998), pp. 1089–1105.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 391

[9] J. Juang, Existence of algebraic matrix Riccati equations arising in transport theory, Linear
Algebra Appl., 230 (1995), pp. 89–100.

[10] J. Juang and W.-W. Lin, Nonsymmetric algebraic Riccati equations and Hamiltonian-like
matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 228–243.

[11] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon,
New York, 1964.

[12] C. T. Kelley, A Shamanskii-like acceleration scheme for nonlinear equations at singular roots,
Math. Comp., 47 (1986), pp. 609–623.

[13] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and V. Ya.
Stetsenko, Approximate Solution of Operator Equations, Wolters-Noordhoff Publishing,
Groningen, The Netherlands, 1972.

[14] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford University Press, London,
1995.

[15] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic Press, Or-
lando, FL, 1985.

[16] A. J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat.
Control, 24 (1979), pp. 913–921.

[17] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp.
148–162.

[18] H.-B. Meyer, The matrix equation AZ+B−ZCZ−ZD = 0, SIAM J. Appl. Math., 30 (1976),
pp. 136–142.

[19] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.

[20] J. S. Vandergraft, Newton’s method for convex operators in partially ordered spaces, SIAM
J. Numer. Anal., 4 (1967), pp. 406–432.

[21] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.

THE RECURSIVE INVERSE EIGENVALUE PROBLEM∗

MARINA ARAV† , DANIEL HERSHKOWITZ† , VOLKER MEHRMANN‡ , AND

HANS SCHNEIDER§

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 392–412

Abstract. The recursive inverse eigenvalue problem for matrices is studied, where for each lead-
ing principal submatrix an eigenvalue and associated left and right eigenvectors are assigned. Exis-
tence and uniqueness results as well as explicit formulas are proven, and applications to nonnegative
matrices, Z-matrices, M -matrices, symmetric matrices, Stieltjes matrices, and inverse M -matrices
are considered.

Key words. inverse eigenvalue problem, recursive solution, nonnegative matrices, Z-matrices,
M -matrices, Hermitian matrices, Stieltjes matrices, inverse M -matrices

AMS subject classifications. 15A29, 15A18, 15A48, 15A57

PII. S0895479899354044

1. Introduction. Inverse eigenvalue problems are a very important subclass of
inverse problems that arise in the context of mathematical modeling and parameter
identification. They have been studied extensively in the last 20 years; see, e.g., [3, 5, 6,
8, 12, 13, 14] and the references therein. In particular, the inverse eigenvalue problem
for nonnegative matrices is still a topic of very active research, since a necessary
and sufficient condition for the existence of a nonnegative matrix with a prescribed
spectrum is still an open problem; see [4, 12].

In this paper we study inverse eigenvalue problems in a recursive matter, which
allows us to extend existing solutions.

We investigate the following recursive inverse eigenvalue problem of order n:
Let F be a field, let s1, . . . , sn ∈ F , and let

l1 =
[
l1,1

]
, l2 =

[
l2,1
l2,2

]
, . . . , ln =

ln,1
...

ln,n

 ,

r1 =
[
r1,1

]
, r2 =

[
r1,2
r2,2

]
, . . . , rn =

r1,n
...

rn,n

be vectors with elements in F . Construct a matrix A ∈ Fn,n such that

l Ti A〈i〉 = sil
T
i ,

A〈i〉ri = siri,
i = 1, . . . , n,

∗Received by the editors April 12, 1999; accepted for publication (in revised form) by M. Chu
January 11, 2000; published electronically July 11, 2000. The work of the second, third, and fourth
authors was partially supported by Sonderforschungsbereich 393 Numerische Simulation auf massive
parallelen Rechnern at TU Chemnitz.

http://www.siam.org/journals/simax/22-2/35404.html
†Department of Mathematics, Technion, Haifa 32000, Israel (hershkow@tx.technion.ac.il).
‡Fakultät für Mathematik, TU Chemnitz, D-09107 Chemnitz, Germany (mehrmann@

mathematik.tu-chemnitz.de).
§Mathematics Department, University of Wisconsin, Madison, WI 53706 (hans@math.wisc.edu).

392

THE RECURSIVE INVERSE EIGENVALUE PROBLEM 393

where A〈i〉 denotes the ith leading principal submatrix of A.
In what follows we shall use the notation RIEP(n) for “the recursive inverse

eigenvalue problem of order n.”
It should be noted that most of the results that we present below are recursive

solutions (hence the name recursive inverse eigenvalue problem) in the sense that the
existence and uniqueness conditions are of a recursive nature, i.e., once the existence
and/or uniqueness of RIEP(n − 1) have been established, the presented conditions
describe when the solution of RIEP(n) exists and is unique. Such results are very
useful, in particular when a solution has been computed and new data later become
available.

To consider a simple example, let us consider a closed Leontief model in economics
which is typically described by the action of a nonnegative matrix T with spectral
radius 1 on a vector; see, e.g., [2]. A nonnegative eigenvector associated with the
eigenvalue 1 of the matrix T then is an equilibrium point of the model [2]; a model
that has such a vector is called feasible.

Suppose now that a feasible model with n− 1 inputs and n− 1 outputs, i.e., an
(n− 1)× (n− 1) nonnegative matrix that describes the model and has an equilibrium
point, has been constructed.

An immediate question then is whether adding an input and output to the system
can again lead to a feasible model with prescribed equilibrium point. This immediately
leads to the recursive inverse eigenvalue problem. Our results give necessary and
sufficient conditions for several classes of matrices including nonnegative matrices
and M -matrices which are the classes of interest in Leontief models and the analysis
of Markov chains; see [2].

Existence and uniqueness of nonnegative solutions is therefore one of the major
topics of this paper.

In section 2 we study the existence and uniqueness of solutions for RIEP(n) in
the general case. Our main result gives a recursive characterization of the solution for
RIEP(n). We also obtain a nonrecursive necessary and sufficient condition for unique
solvability as well as an explicit formula for the solution in case of uniqueness.

The results of section 2 are applied in the subsequent sections to special cases.
In section 3 we discuss nonnegative solutions for RIEP(n) over the field R of real
numbers. We also introduce a nonrecursive sufficient condition for the existence of a
nonnegative solution for RIEP(n). Uniqueness of nonnegative solutions for RIEP(n)
is discussed in section 4. In section 5 we study Z-matrix and M -matrix solutions for
RIEP(n) over R. In section 6 we consider real symmetric solutions for RIEP(n) over
R. In section 7 we consider positive semidefinite real symmetric solutions for RIEP(n)
over R. In section 8 we combine the results of the previous two sections to obtain
analogous results for Stieltjes matrices. Finally, in section 9 we investigate inverse
M -matrix solutions for RIEP(n). A summary is given in section 10.

2. Existence and uniqueness results. In this section we study the existence
and uniqueness of solutions for RIEP(n) in the general case. For this purpose we
introduce some further notation. For the vectors li, ri we set

l̃i =

li,1
...

li,i−1

 , r̃i =

r1,i
...

ri−1,i

 .

The case n = 1 is easy to verify.

394 ARAV, HERSHKOWITZ, MEHRMANN, AND SCHNEIDER

Proposition 1. If l1,1 = r1,1 = 0, then every 1× 1 matrix A solves RIEP(1). If
either l1,1 �= 0 or r1,1 �= 0, then A = [s1] is the unique solution for RIEP(1).

For n ≥ 2 we have the following recursive characterization of the solution for
RIEP(n).

Theorem 2. Let n ≥ 2. There exists a solution for RIEP(n) if and only if there
exists a solution B for RIEP(n-1) such that

ln,n = 0 =⇒ l̃TnB = sn l̃
T
n(1)

and

rn,n = 0 =⇒ Br̃n = snr̃n.(2)

There exists a unique solution for RIEP(n) if and only if there exists a unique solution
for RIEP(n-1) and ln,nrn,n �= 0.

Proof. Let A be an n× n matrix. Partition A as

A =

[
B y
xT z

]
,(3)

where B is an (n-1)× (n-1) matrix. Clearly, A solves RIEP(n) if and only if B solves
RIEP(n-1) and

(snIn−1 −B)r̃n = rn,ny,(4)

l̃Tn (snIn−1 −B) = ln,nx
T ,(5)

xT r̃n + zrn,n = snrn,n,(6)

l̃Tn y + zln,n = snln,n.(7)

It thus follows that there exists a solution for RIEP(n) if and only if there exists a so-
lution B for RIEP(n-1) such that (4)–(7) (with unknown x, y, and z) are solvable. We
now show that these equations are solvable if and only if (1) and (2) hold. Distinguish
between four cases:

1. rn,n = 0, ln,n �= 0. Here (4) is equivalent to (2), (5) is equivalent to

xT =
l̃Tn (snIn−1 −B)

ln,n
,(8)

and (6) then follows from (4). For every y ∈ Fn−1 we can find z ∈ F such
that (7) holds.

2. ln,n = 0, rn,n �= 0. Here (5) is equivalent to (1), (4) is equivalent to

y =
(snIn−1 −B)r̃n

rn,n
,(9)

and (7) then follows from (5). For every x ∈ Fn−1 we can find z ∈ F such
that (6) holds.

3. ln,n = rn,n = 0. Here (4) is equivalent to (2) and (5) is equivalent to (1).
For any x ∈ Fn−1 with xT r̃n = 0 we have (6), and for any y ∈ Fn−1 with
l̃Tn y = 0 we have (7), where z can be chosen arbitrarily.

4. ln,n �= 0, rn,n �= 0. Here (4)–(7) have a unique solution, given by (8), (9),
and

z = sn − l̃Tn (snIn−1 −B)r̃n
ln,nrn,n

.(10)

It follows that (4)–(7) are solvable if and only if (1) and (2) hold.

THE RECURSIVE INVERSE EIGENVALUE PROBLEM 395

To prove the uniqueness assertion, note that it follows from our proof that if
either ln,n = 0 or rn,n = 0, then a solution is not unique, since at least one of the
vectors x, y, and z can be chosen arbitrarily. If both ln,n �= 0 and rn,n �= 0, then every
solution B for RIEP(n-1) defines a unique solution A for RIEP(n). The uniqueness
claim follows.

This result is recursive and allows us to derive a recursive algorithm to compute
the solution, but we do not get explicit nonrecursive conditions that characterize the
existence of solutions. In order to get a necessary and sufficient condition for unique
solvability as well as an explicit formula for the solution in case of uniqueness, we
define the n× n matrix Rn to be the matrix whose columns are r1, . . . , rn with zeros
appended at the bottom to obtain n-vectors. Similarly, we define the n×n matrix Ln
to be the matrix whose rows are l1, . . . , ln with zeros appended at the right to obtain
n-vectors. That is, we have

Ln =

l1,1
l2,1 l2,2
...

. . .

ln,1 · · · ln,n−1 ln,n

 , Rn =

r1,1 r1,2 · · · r1,n

r2,2
...

. . . rn−1,n

rn,n

 .(11)

We denote

Sn =

s1 s2 s3 · · · sn
s2 s2 s3 · · · sn
s3 s3 s3 · · · sn
...

...
sn sn · · · · · · sn

.(12)

Also, we denote by ◦ the Hadamard (or elementwise) product of matrices.
Proposition 3. A solution A for RIEP(n) satisfies

LnARn = Sn ◦ (LnRn).(13)

Proof. We prove our claim by induction on n. For n = 1 the claim follows easily.
Assume that the assertion holds for n < k and let n = k. Partition A as in (3). We
have

LnARn =

[
Ln−1 0

l̃Tn ln,n

] [
B y
xT z

] [
Rn−1 r̃n
0 rn,n

]

=

 Ln−1BRn−1 Ln−1(Br̃n + rn,ny)

(l̃TnB + ln,nx
T)Rn−1 (l̃TnB + ln,nx

T)r̃n + (l̃Tn y + ln,nz)rn,n

 .

By the inductive assumption we have Ln−1BRn−1 = Sn−1 ◦ (Ln−1Rn−1). Also, by
(4) we have Br̃n + rn,ny = snr̃n, by (5) we have l̃TnB + ln,nx

T = sn l̃
T
n , and by (7) we

have l̃Tn y + ln,nz = snln,n. It thus follows that

LnARn =

 Sn−1 ◦ (Ln−1Rn−1) snLn−1r̃n

sn l̃
T
nRn−1 sn(l̃

T
n r̃n + ln,nrn,n)

 = Sn ◦ (LnRn).

396 ARAV, HERSHKOWITZ, MEHRMANN, AND SCHNEIDER

In general, the converse of Proposition 3 does not hold, that is, a matrix A
satisfying (13) does not necessarily form a solution for RIEP(n), as is demonstrated
by Example 5 below.

Theorem 4. There is a unique solution for RIEP(n) if and only if

l1,1 �= 0 or r1,1 �= 0

and

li,iri,i �= 0, i = 1, . . . , n.

Furthermore, the unique solution is given by

A = L−1
n [Sn ◦ (LnRn)]R−1

n .(14)

Proof. The uniqueness claim follows from Proposition 1 and Theorem 2. The
fact that the unique solution for RIEP(n) is given by (14) follows immediately from
Proposition 3.

In the case that the solution is not unique, that is, whenever l1,1 = r1,1 = 0 or
whenever li,i or ri,i vanish for some i > 1, the matrices Ln and Rn defined in (11) are
not invertible. Therefore, in this case (14) is invalid. We conclude this section with
an example showing that, in general, a revised form of (14), with inverses replaced by
generalized inverses, does not provide a solution for RIEP(n).

Example 5. Let

s1 = 1, s2 = 2, s3 = 3,

and let

l1 = r1 =
[
1
]
, l2 = r2 =

[
0
0

]
, l3 = r3 =

 0

1
1

 .

We have

L =

 1 0 0

0 0 0
0 1 1

 , R = LT , S =

 1 2 3

2 2 3
3 3 3

 .

Let L+ and R+ be the Moore–Penrose inverses of L and R, respectively; see [1]. We
have

A = L+[S ◦ (LR)]R+ =

 1 0 0

0 1.5 1.5
0 1.5 1.5

 .

Since A〈2〉 does not have an eigenvalue 2, A is not a solution for RIEP(3). Note that
we still have LnARn = Sn ◦ (LnRn).

In this section we have characterized solvability of RIEP(n) over a general field
F in terms of recursive conditions. We have also given a necessary and sufficient
condition for unique solvability and an explicit formula for the unique solution. In
the following sections we shall discuss the special cases of nonnegative matrices, Z-
matrices, M -matrices, real symmetric matrices, positive semidefinite matrices, Stielt-
jes matrices, and inverse M -matrices.

THE RECURSIVE INVERSE EIGENVALUE PROBLEM 397

3. Existence of nonnegative solutions. In this section we apply the results
of section 2 to nonnegative solutions for RIEP(n) over the field R of real numbers. A
matrix A ∈ R

n,n is said to be nonnegative [positive] if all elements of A are nonnegative
[positive]. In this case we write A ≥ 0 [A > 0]. For matrices A,B ∈ R

n,n we write
A ≥ B if A−B ≥ 0 and A > B if A−B > 0.

In order to state our results we define a vector over R to be unisign if its nonzero
components have the same sign.

Theorem 6. Let n ≥ 2. There exists a nonnegative solution for RIEP(n) if and
only if

li or ri is a unisign nonzero vector =⇒ si ≥ 0, i = 1, . . . , n,(15)

and there exists a nonnegative solution B for RIEP(n-1) satisfying

snr̃n
rn,n

≥ Br̃n
rn,n

, rn,n �= 0,

snr̃n = Br̃n, rn,n = 0,

(16)

l̃Tn sn
ln,n
≥ l̃TnB

ln,n
, ln,n �= 0,

l̃Tn sn = l̃TnB, ln,n = 0,

(17)

and

ln,nrn,n �= 0 =⇒ sn

(
l̃Tn r̃n

ln,nrn,n
− 1

)
≤ l̃TnBr̃n

ln,nrn,n
.(18)

There exists a positive solution for RIEP(n) if and only if there exists a positive
solution B for RIEP(n-1) such that (15)–(18) hold with strict inequalities and every
nonzero unisign vector li or ri has no zero components.

Proof. Let A ∈ R
n,n. As in the proof of Theorem 2, partition A as in (3), and so

A solves RIEP(n) if and only if B solves RIEP(n-1) and (4)–(7) hold. Therefore, if A
is a nonnegative solution for RIEP(n), then we have (16)–(18). Also, it follows from
the nonnegativity of A that (15) holds. Conversely, assume that (15) holds and that
B forms a nonnegative solution for RIEP(n-1) satisfying (16)–(18). We show that
in this case we can find nonnegative solutions x, y, and z for (4)–(7). Distinguish
between four cases:

1. rn,n = 0, ln,n �= 0. Here x is given by (8), y can be chosen arbitrarily,
and z should be chosen such that (7) holds. It follows from (17) that x is
nonnegative. If sn ≥ 0, then we choose y = 0, we have z = sn, and so we
have a nonnegative solution for (4)–(7). If sn < 0, then, by (15), ln is not

unisign and hence
l̃Tn
ln,n

has at least one negative component. It follows that

we can find a positive vector y such that
l̃Tny
ln,n

< sn. Since by (7) we have

z = sn − l̃Tny
ln,n

, it follows that z > 0, and so again we have a nonnegative

solution for (4)–(7).
2. ln,n = 0, rn,n �= 0. Here y is given by (9), x can be chosen arbitrarily, and

z should be chosen such that (6) holds. The proof follows as in the previous
case.

398 ARAV, HERSHKOWITZ, MEHRMANN, AND SCHNEIDER

3. ln,n = rn,n = 0. Here x and y should be chosen such that xT r̃n = l̃Tn y = 0
and z can be chosen arbitrarily. In order to obtain a nonnegative solution we
can choose x, y, and z to be zero.

4. ln,n �= 0, rn,n �= 0. Here x is given by (8), y is given by (9), and z is given by
(10). It follows from (17), (16), and (18) that x, y, and z are nonnegative.

Assume now that A is a positive solution for RIEP(n). It is easy to verify that in this
case (15)–(18) should hold with strict inequalities. Also, for every nonzero unisign
vector li [ri], the vector l

T
i A〈i〉 [A〈i〉ri] has no zero components, implying that li, [ri]

has no zero components. Conversely, assume that (15) holds with a strict inequality,
that every nonzero unisign vector li or ri has no zero components, and that B forms a
positive solution for RIEP(n-1) satisfying (16)–(18) with strict inequalities. We show
that in this case we can find positive solutions x, y, and z for (4)–(7). Note that in
case 1 above, the vector x now becomes positive. Also, since the inequality in (15) is
now strict, we have either sn > 0, in which case we can choose positive y sufficiently
small such that z is positive, or sn ≤ 0, in which case y can be chosen positive as
before and the resulting z is positive. The same arguments hold for case 2. In case 4,
it follows from the strict inequalities (16)–(18) that x, y, and z are positive. Finally,
in case 3, since ln and rn both have at least one zero component, it follows that both
vectors are not unisign. Hence, we can find positive x and y such that xT r̃n = l̃Tn y = 0.
We assign any positive number to z to find a positive solution A for RIEP(n).

By the Perron–Frobenius theory (see, e.g., [9, 2]) the largest absolute value ρ(A) of
an eigenvalue of a nonnegative n×n matrix A is itself an eigenvalue of A, the so-called
Perron root of A, and it has an associated nonnegative eigenvector. Furthermore, if
A is irreducible, that is, if either n = 1 or n ≥ 2 and there exists no permutation
matrix P such that PTAP = [B0

C
D], where B and D are square, then ρ(A) is a

simple eigenvalue of A with an associated positive eigenvector. If A is not necessarily
irreducible, then we have the following; see, e.g., [2].

Theorem 7. If B is a principal submatrix of a nonnegative square matrix A, then
ρ(B) ≤ ρ(A). Furthermore, ρ(A) is an eigenvalue of some proper principal submatrix
of A if and only if A is reducible.

Note that if we require that the si are the Perron roots of the principal submatrices
A〈i〉, i = 1, . . . , n, then, by Theorem 7, we have

0 ≤ s1 ≤ s2 ≤ · · · ≤ sn.(19)

If, furthermore, all the leading principal submatrices of A are required to be irre-
ducible, then

0 ≤ s1 < s2 < · · · < sn.(20)

Condition (19) is not sufficient to guarantee that a nonnegative solution A for RIEP(n)
necessarily has s1, . . . , sn as Perron roots of A〈i〉, i = 1, . . . , n, as is demonstrated by
the following example.

Example 8. Let

s1 = s2 = 1, s3 = 2,

and let

l1 = r1 =
[
1
]
, l2 = r2 =

[
1
0

]
, l3 = r3 =

 1

0
1

 .

THE RECURSIVE INVERSE EIGENVALUE PROBLEM 399

The nonnegative matrix

 1 0 1

0 3 0
1 0 1

solves RIEP(3). Note that ρ(A) = 3 > s3.

In order to see cases in which s1, . . . , sn are the Perron roots of A〈i〉, i = 1, . . . , n,
respectively, we prove the following.

Proposition 9. If the vector ln or rn is positive, then for a nonnegative solution
A for RIEP(n) we have ρ(A) = sn.

Proof. The claim follows immediately from the known fact that a positive eigen-
vector of a nonnegative matrix corresponds to the spectral radius; see, e.g., Theorem
2.1.11 in [2, p. 28].

Corollary 10. If for every i ∈ {1, . . . , n} we have either li > 0 or ri > 0, then
for every nonnegative solution A for RIEP(n) we have ρ(A〈i〉) = si, i = 1, . . . , n.

Lemma 11. Assume that there exists a nonnegative solution A for RIEP(n) such
that ρ(A〈n-1〉) < sn. If rn �= 0 or ln �= 0, then ρ(A) = sn.

Proof. Since rn �= 0 or ln �= 0 it follows that sn is an eigenvalue of A. Assume
that sn �= ρ(A). It follows that the nonnegative matrix A has at least two eigenvalues
larger than or equal to sn. By [7, p. 473] (see also [11, Corollary 1]) it follows that
ρ(A〈n-1〉) ≥ sn, which is a contradiction. Therefore, we have sn = ρ(A).

Corollary 12. If for every i ∈ {1, . . . , n}, we have either ri �= 0 or li �= 0, and
if (20) holds, then for every nonnegative solution A for RIEP(n) we have ρ(A〈i〉) = si,
i = 1, . . . , n.

Proof. Note that A〈1〉 = [s1] and so ρ(A〈1〉) = s1. Our result follows using
Lemma 11 repeatedly.

Lemma 13. Assume that rn ≥ 0 and rn,n �= 0 or that ln ≥ 0 and ln,n �= 0. Then
for every nonnegative solution A for RIEP(n) we have ρ(A) = max {ρ(A〈n-1〉), sn}.

Proof. Without loss of generality, we consider the case where rn ≥ 0 and rn,n �=
0. If rn is positive, then, by Proposition 9, we have ρ(A) = sn and, since by the
Perron–Frobenius theory we have ρ(A〈n-1〉) ≤ ρ(A), the result follows. Otherwise,
rn has some zero components. Let α be the set of indices i such that ri,n > 0 and
let αc be the complement of α in {1, . . . , n}. Note that since rn is a nonnegative
eigenvector of the nonnegative matrix A it follows that the submatrix A[αc|α] of A,
with rows indexed by αc and columns indexed by α, is a zero matrix. It follows
that A is a reducible matrix and ρ(A) = max {ρ(A[αc|αc]), ρ(A[α|α])}. Note that the
subvector rn[α] of rn indexed by α is a positive eigenvector of A[α|α] associated with
the eigenvalue sn. It thus follows that ρ(A[α|α]) = sn. Since n ∈ α it follows that
A[αc|αc] is a submatrix of A〈n-1〉. Thus, by the Perron–Frobenius theory we have
ρ(A[αc|αc]) ≤ ρ(A〈n-1〉) ≤ ρ(A). Hence, it follows that ρ(A) = max {sn−1, sn}.

Corollary 14. Assume that for every i ∈ {1, . . . , n} we have either ri ≥ 0 and
ri,i �= 0 or li ≥ 0 and li,i �= 0. Then for every nonnegative solution A for RIEP(n) we
have ρ(A〈i〉) = maxj=1,...,i{sj}.

Proof. Note that A〈1〉 = [s1] and so ρ(A〈1〉) = s1. Our result follows using
Lemma 13 repeatedly.

Corollary 15. Assume that for every i ∈ {1, . . . , n}, we have either ri ≥ 0 and
ri,i �= 0 or li ≥ 0 and li,i �= 0. If (19) holds, then for every nonnegative solution A we
have ρ(A〈i〉) = si, i = 1, . . . , n.

400 ARAV, HERSHKOWITZ, MEHRMANN, AND SCHNEIDER

Another interesting consequence of Theorem 4 is the following relationship be-
tween the matrix elements and the eigenvectors associated with the Perron roots of
the leading principal submatrices of a nonnegative matrix.

Corollary 16. Let n ≥ 2. Let A ∈ R
n,n be a nonnegative matrix, let si, li, and

ri be the Perron roots and associated left and right eigenvectors of A〈i〉, i = 1, . . . , n,
respectively, and assume that (20) holds. Let Sn, Ln, Rn be defined as in (11) and
(12). Then

A〈i〉 = L−1
i [Si ◦ (LiRi)]R−1

i , i = 1, . . . , n.(21)

Proof. Since (20) holds, it follows that si is not an eigenvalue of A〈i-1〉, i =
2, . . . , n. Therefore, it follows from (1) and (2) that li,iri,i �= 0. Also, since l1 and r1
are eigenvectors of A〈1〉, we have l1,1r1,1 �= 0. It now follows from Theorem 4 that
A〈i〉 is the unique solution for RIEP(i), and is given by (21).

While Theorem 6 provides a recursive characterization for nonnegative solvability
of RIEP(n), in general nonrecursive necessary and sufficient conditions for the exis-
tence of nonnegative solution are not known. We now present a nonrecursive sufficient
condition.

Corollary 17. Assume that the vectors li, ri, i = 1, . . . , n, are all positive and
that the numbers s1, . . . , sn are all positive. Let

Mr
i = max

j=1,...,i−1

rj,i
rj,i−1

, mr
i = min

j=1,...,i−1

rj,i
rj,i−1

,

M l
i = max

j=1,...,i−1

li,j
li−1,j

, ml
i = min

j=1,...,i−1

li,j
li−1,j

.

If we have

sim
r
i ≥ si−1M

r
i , i = 2, . . . , n,(22)

sim
l
i ≥ si−1M

l
i , i = 2, . . . , n,(23)

and

si(l̃
T
i r̃i − li,iri,i) ≤ si−1 max

{
mr
i l̃
T
i ri−1,m

l
il
T
i−1r̃i

}
, i = 2, . . . , n,(24)

then there exists a (unique) nonnegative solution A for RIEP(n).
Furthermore, if all the inequalities (22)–(24) hold with strict inequality, then there

exists a (unique) positive solution A for RIEP(n).
Proof. We prove our assertion by induction on n. The case n = 1 is trivial. By

the inductive assumption we can find a nonnegative solution B for RIEP(n-1). Note
that

Mr
nrn−1 ≥ r̃n ≥ mr

nrn−1.(25)

Therefore, it follows from (22) that

snr̃n ≥ snm
r
nrn−1 ≥ sn−1M

r
nrn−1 = Mr

nBrn−1 ≥ Br̃n,

and so (16) holds. Similarly, we prove that (17) holds. To prove that (18) holds
note that by (25) we have Br̃n ≥ Bmr

nrn−1 = sn−1m
r
nrn−1. Similarly, we have

THE RECURSIVE INVERSE EIGENVALUE PROBLEM 401

l̃TnB ≥ sn−1m
l
nl
T
n−1. Hence, it follows that l̃TnBr̃n ≥ sn−1 max{mr

n l̃
T
n rn−1,m

l
nl
T
n−1r̃n}.

By applying (24) to i = n we obtain (18). By Theorem 6, there exists a nonnegative
solution for RIEP(n). The proof of the positive case is similar.

The conditions in Corollary 17 are not necessary as is demonstrated by the fol-
lowing example.

Example 18. Let s1 = 1, s2 = 2, s3 = 3 and let

r1 = l1 =
[
1
]
, r2 = l2 =

[
1
1

]
, r3 =

 3

5
1

 , l3 =

 2

1
3

 .

We have mr
3 = 3, Mr

3 = 5, ml
3 = 1, and M l

3 = 2. Note that both (22) and (23) do
not hold for i = 3. Nevertheless, the unique solution for RIEP(3) is the nonnegative
matrix

 1 1 1
1 1 7
1 0 0

 .

4. Uniqueness of nonnegative solutions. When considering uniqueness of
nonnegative solutions for RIEP(n), observe that it is possible that RIEP(n) does not
have a unique solution but does have a unique nonnegative solution, as is demonstrated
by the following example.

Example 19. Let

s1 = s2 = 0,

and let

l1 = r1 =
[
1
]
, l2 =

[
1
0

]
, r2 =

[
1
1

]
.

By Theorem 2, there is no unique solution for RIEP(2). Indeed, the solutions for
RIEP(2) are all matrices of the form[

0 0
a −a

]
.

Clearly, the zero matrix is the only nonnegative solution for RIEP(2).
Observe that, unlike in Theorem 2, the existence of a unique nonnegative solution

for RIEP(n) does not necessarily imply the existence of a unique nonnegative solution
for RIEP(n-1), as is demonstrated by the following example.

Example 20. Let

s1 = s2 = 0, s3 = 2,

and let

l1 = r1 =
[
1
]
, l2 =

[
1
0

]
, r2 =

[
1
−1

]
, l3 = r3 =

 1

1
1

 .

Observe that all matrices of the form [
0 0
a a

]

402 ARAV, HERSHKOWITZ, MEHRMANN, AND SCHNEIDER

solve RIEP(2), and hence there is no unique nonnegative solution for RIEP(2). How-
ever, the only nonnegative solution for RIEP(3) is the matrix

 0 0 2

1 1 0
1 1 0

 .

We remark that one can easily produce a similar example with nonnegative vectors
ri and li, i = 1, . . . , n.

In order to introduce necessary conditions and sufficient conditions for uniqueness
of nonnegative solutions for RIEP(n), we prove the following.

Lemma 21. Let n ≥ 2, and assume that B forms a nonnegative solution for
RIEP(n-1) satisfying (15)–(18). Then there exist unique nonnegative vectors x, y,
and z such that the matrix [BxT

y
z] solves RIEP(n) if and only if either ln,nrn,n �= 0,

or sn = 0 and ln is a unisign vector with no zero components, or sn = 0 and rn is a
unisign vector with no zero components.

Proof. We follow the proof of Theorem 6. Consider the four cases in that proof.
In case 1, the vector x is uniquely determined and any nonnegative assignment for

y is valid as long as z = sn − l̃Tny
ln,n
≥ 0. If sn > 0, then every nonnegative vector y

sufficiently small will do. If sn < 0, then, as is shown in the proof of Theorem 6, we
can find a positive y such that z > 0, and by continuity arguments there exist infinitely
many such vectors y. If sn = 0, then a unique such y exists if and only if there exists

a unique nonnegative vector y such that
l̃Tny
ln,n
≤ 0. Clearly, if l̃n has a nonpositive

component, then every vector y whose corresponding component is positive and all
other components are zero solves the problem. On the other hand, if l̃n > 0, which
is equivalent to saying that ln is a unisign vector with no zero components, then the
only nonnegative vector y that solves the problem is y = 0. Similarly, we prove that,
in case 2, a unique nonnegative solution exists if and only if sn = 0 and rn is a unisign
vector with no zero components. We do not have uniqueness in case 3 since then z
can be chosen arbitrarily. Finally, there is always uniqueness in case 4.

Lemma 21 yields sufficient conditions and necessary conditions for uniqueness of
nonnegative solutions for RIEP(n). First, observe that if sn = 0 and ln is a unisign
vector with no zero components, or if sn = 0 and rn is a unisign vector with no zero
components, then the zero matrix is the only nonnegative solution of the problem. A
less trivial sufficient condition is the following.

Corollary 22. Let n ≥ 2, and let A be a nonnegative solution for RIEP(n). If
A〈n-1〉 forms a unique nonnegative solution for RIEP(n-1) and if ln,nrn,n �= 0, then
A is the unique nonnegative solution for RIEP(n).

Necessary conditions are given by the following corollary.

Corollary 23. Let n ≥ 2. If there exists a unique nonnegative solution for
RIEP(n), then either ln,nrn,n �= 0, or sn = 0 and ln is a unisign vector with no zero
components, or sn = 0 and rn is a unisign vector with no zero components.

The condition ln,nrn,n �= 0 is not sufficient for the uniqueness of a nonnegative
solution for RIEP(n), as is shown in the following example.

Example 24. Let

s1 = s2 = s3 = 0,

THE RECURSIVE INVERSE EIGENVALUE PROBLEM 403

and let

l1 = r1 =
[
1
]
, l2 =

[
1
0

]
, r2 =

[
1
−1

]
, l3 = r3 =

 1
−1
1

 .

Although we have ln,nrn,n �= 0, all matrices of the form

 0 0 0

a a 0
a a 0

solve RIEP(3), and hence there is no unique nonnegative solution for RIEP(3).

5. The Z-matrix and M-matrix case. A real square matrix A is said to be
a Z-matrix if it has nonpositive off-diagonal elements. Note that A can be written as
A = αI − B, where α is a real number and B is a nonnegative matrix. If we further
have that α ≥ ρ(B), then we say that A is an M -matrix.

In this section we discuss Z-matrix and M -matrix solutions for RIEP(n) over the
field R of real numbers. The proofs of the results are very similar to the proofs of the
corresponding results in sections 3 and 4 and, thus, are omitted in most cases.

Theorem 25. Let n ≥ 2. There exists a Z-matrix solution for RIEP(n) if and
only if there exists a Z-matrix solution B for RIEP(n-1) satisfying

snr̃n
rn,n

≤ Br̃n
rn,n

, rn,n �= 0,

snr̃n = Br̃n, rn,n = 0,

and

l̃Tn sn
ln,n
≤ l̃TnB

ln,n
, ln,n �= 0,

l̃Tn sn = l̃TnB, ln,n = 0.

Furthermore, if ln or rn is positive, then a Z-matrix solution for RIEP(n) is an M -
matrix if and only if sn ≥ 0.

Proof. The proof of the first part of the theorem is similar to the proof of Theorem
6, observing that here the vectors x and y are required to be nonnegative and that
the sign of z is immaterial. The proof of the second part of the theorem follows,
similarly to Proposition 9, from the known fact that a positive eigenvector of a Z-
matrix corresponds to the least real eigenvalue.

Theorem 26. Let n ≥ 2. Let A ∈ R
n,n be a Z-matrix, let si, li, and ri be

the least real eigenvalues and the corresponding left and right eigenvectors of A〈i〉,
i = 1, . . . , n, respectively, and assume that

s1 > s2 > · · · > sn.

Let Sn, Ln, Rn be defined as in (11) and (12). Then

A〈i〉 = L−1
i [Si ◦ (LiRi)]R−1

i , i = 1, . . . , n.

For the numbers Mr
i , m

r
i , M

l
i , and ml

i, defined in Corollary 17, we have the
following.

404 ARAV, HERSHKOWITZ, MEHRMANN, AND SCHNEIDER

Theorem 27. Assume that the vectors li, ri, i = 1, . . . , n, are all positive and
that the numbers s1, . . . , sn are all positive. If we have

siM
r
i ≤ si−1m

r
i , i = 2, . . . , n,

and

siM
l
i ≤ si−1m

l
i, i = 2, . . . , n,

then there exists a (unique) M -matrix solution A for RIEP(n).
Theorem 28. Let n ≥ 2, let A be a Z-matrix solution for RIEP(n), and assume

that A〈n-1〉 forms a unique Z-matrix solution for RIEP(n-1). Then A is the unique
Z-matrix solution for RIEP(n) if and only if ln,nrn,n �= 0.

Here too, unlike in Theorem 2, the existence of a unique Z-matrix solution for
RIEP(n) does not necessarily imply the existence of a unique Z-matrix solution for
RIEP(n-1), as is demonstrated by the following example.

Example 29. Let s1 = s2 = s3 = 0, and let

l1 = r1 =
[
1
]
, l2 =

[
1
0

]
, r2 =

[
1
1

]
, l3 = r3 =

 1

1
1

 .

Observe that all matrices of the form[
0 0
a −a

]

solve RIEP(2), and hence there is no unique Z-matrix solution for RIEP(2). However,
it is easy to verify that the zero matrix is the only Z-matrix solution for RIEP(3).

6. The real symmetric case. The inverse eigenvalue problem for real sym-
metric matrices is well studied; see, e.g., [3]. In this section we consider symmetric
solutions for RIEP(n) over the field R of real numbers. We obtain the following
consequence of Theorem 2, characterizing the real symmetric case.

Theorem 30. Let n ≥ 2. There exists a symmetric solution for RIEP(n) if and
only if there exists a symmetric solution B for RIEP(n-1) such that the implications
(1) and (2) hold, and

ln,nrn,n �= 0 =⇒ (snIn−1 −B)

(
l̃n
ln,n
− r̃n
rn,n

)
= 0.(26)

Furthermore, if there exists a unique symmetric solution for RIEP(n), then ln,n �= 0
or rn,n �= 0.

Proof. Let A ∈ R
n,n. Partition A as in (3), and so A solves RIEP(n) if and only

if B solves RIEP(n-1) and (4)–(7) hold. It was shown in the proof of Theorem 2 that
(4)–(7) are solvable if and only if (1) and (2) hold. Therefore, all we have to show is
that if B is symmetric, then we can find solutions x, y, and z for (4)–(7) such that
y = x if and only if (26) holds. We go along the four cases discussed in Theorem 2. In
case 1, the vector x is uniquely determined and the vector y can be chosen arbitrarily.
Therefore, in this case we set y = x, and z is then uniquely determined. In case 2, the
vector y is uniquely determined and the vector x can be chosen arbitrarily. Thus, in
this case we set x = y, and z is then uniquely determined. In case 3, we can choose

THE RECURSIVE INVERSE EIGENVALUE PROBLEM 405

any x and y as long as xT r̃n = 0 and l̃Tn y = 0. In particular, we can choose x = y = 0.
Furthermore, z can be chosen arbitrarily. Finally, in case 4, we have x = y if and only
if (26) holds. Note that this is the only case in which, under the requirement that
y = x, the vectors x, y, and z are uniquely determined.

We remark that, unlike in Theorem 2, the existence of a unique symmetric solution
for RIEP(n) does not necessarily imply the existence of a unique symmetric solution
for RIEP(n-1), as is demonstrated by the following example.

Example 31. Let

s1 = 1, s2 = 2, s3 = 0,

and let

l1 = r1 =
[
1
]
, l2 = r2 =

[
1
1

]
, l3 = r3 =

 1
−1
0

 ,

l4 =

1
0
0
−1

 , r4 =

1
1
−1
−1

 .

It is easy to verify that all symmetric matrices of the form

 1 1 a

1 1 a
a a b

 , a, b ∈ R,

solve RIEP(3), while the unique solution for RIEP(4) is

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

This example also shows that there may exist a unique solution for RIEP(n) even if
li,i = ri,i = 0 for some i ∈ 1, . . . , n.

Naturally, although not necessarily, one may expect in the symmetric case to have
the condition

ri = li, i = 1, . . . , n.(27)

Indeed, in this case we have the following corollary of Theorems 2 and 30.
Corollary 32. Let n ≥ 2 and assume that (27) holds. The following are

equivalent:
(i) There exists a symmetric solution for RIEP(n).
(ii) There exists a solution for RIEP(n).
(iii) There exists a symmetric solution B for RIEP(n-1) such that (1) holds.
(iv) There exists a solution B for RIEP(n-1) such that (1) holds.
Proof. Note that since (27) holds, we always have (26). We now prove the

equivalence between the four statements of the theorem.

406 ARAV, HERSHKOWITZ, MEHRMANN, AND SCHNEIDER

(i)=⇒ (ii) is trivial.
(ii)=⇒ (iv) by Theorem 2.

(iv)=⇒ (iii). Since (27) holds, it follows that B+BT

2 also solves RIEP(n-1).
(iii)=⇒ (i). Since B is symmetric and since we have (27), the implications (1)

and (2) are identical. Our claim now follows by Theorem 30.
For uniqueness we have the following.
Theorem 33. Let n ≥ 2 and assume that (27) holds. The following are equiva-

lent:
(i) There exists a unique symmetric solution for RIEP(n).
(ii) There exists a unique solution for RIEP(n).
(iii) We have li,i �= 0, i = 1, . . . , n.
Proof. In view of (27), the equivalence of (ii) and (iii) follows from Theorem 4.

To see that (i) and (iii) are equivalent note that, by the construction in Theorem 30,
for every symmetric solution B for RIEP(n-1) there exists a solution A for RIEP(n)
such that A〈n-1〉 = B. Furthermore, A is uniquely determined if and only if ln,n �= 0.
Therefore, it follows that there exists a unique symmetric solution for RIEP(n) if and
only if there exists a unique symmetric solution for RIEP(n-1) and ln,n �= 0. Our
assertion now follows by induction on n.

We conclude this section remarking that a similar discussion can be carried over
for complex Hermitian matrices.

7. The positive semidefinite case. In view of the discussion of the previ-
ous section, it would be interesting to find conditions for the existence of a positive
(semi)definite real symmetric solution for RIEP(n). Clearly, a necessary condition
is nonnegativity of the numbers si whenever ri �= 0 or li �= 0, i = 1, . . . , n. Never-
theless, this condition is not sufficient even if a real symmetric solution exists, as is
demonstrated by the following example.

Example 34. Let

s1 = 1, s2 = 3, s3 = 5,

and let

l1 = r1 =
[
1
]
, l2 = r2 =

[
1
1

]
, l3 = r3 =

 1

1
1

 .

The unique solution for RIEP(3) is the symmetric matrix

 1 2 2

2 1 2
2 2 1

 ,

which is not positive semidefinite.
The following necessary and sufficient condition follows immediately from Theo-

rem 4.
Theorem 35. Let n ≥ 2 and assume that (27) holds. Assume, further, that

ri,i �= 0, i = 1, . . . , n. Then the unique solution for RIEP(n) is positive semidefinite
[positive definite] if and only if Sn◦(RTnRn) is positive semidefinite [positive definite].

Remark 36. By Theorem 33, in the case that ri,i = 0 for some i we do not have
uniqueness of symmetric solutions for RIEP(n). Hence, if there exists a symmetric
solution for RIEP(n), then there exist at least two different such solutions A and B.

THE RECURSIVE INVERSE EIGENVALUE PROBLEM 407

Note that A + c(B − A) also forms a symmetric solution for RIEP(n) for every real
number c. It thus follows that in this case it is impossible to have all solutions for
RIEP(n) positive semidefinite. Therefore, in this case we are looking for conditions
for the existence of some positive semidefinite solution for RIEP(n).

The following necessary condition follows immediately from Proposition 3.
Theorem 37. Let n ≥ 2 and assume that (27) holds. If there exists a posi-

tive semidefinite real symmetric solution for RIEP(n), then Sn ◦ (RTnRn) is positive
semidefinite.

In order to find sufficient conditions for the existence of a positive semidefinite
solution for RIEP(n), we denote by σ(A) the least eigenvalue of a real symmetric
matrix A.

Lemma 38. Let n ≥ 2 and assume that (27) holds. Assume that there exists
a symmetric solution A for RIEP(n) such that σ(A〈n-1〉) > sn. If rn �= 0, then
σ(A) = sn.

Proof. Since rn �= 0 it follows that sn is an eigenvalue of A. Assume that
σ(A) �= sn. It follows that A has at least two eigenvalues smaller than or equal to
sn. By the Cauchy interlacing theorem for Hermitian matrices (see, e.g., [9, Theorem
4.3.8, p. 185]), it follows that σ(A〈n-1〉) ≤ sn, which is a contradiction. Therefore, we
have σ(A) = sn.

Corollary 39. Let n ≥ 2 and assume that (27) holds. If ri �= 0 for all i,
i = 1, . . . , n, and if s1 > s2 > · · · > sn ≥ 0, then every real symmetric solution A for
RIEP(n) is positive semidefinite. If sn > 0, then every real symmetric solution for
RIEP(n) is positive definite.

Proof. Note that A〈1〉 = [s1] and so σ(A〈1〉) = s1. Using Lemma 38 repeatedly
we finally obtain σ(A) = sn, implying our claim.

Remark 40. In view of Remark 36, it follows from Corollary 39 that if ri �= 0 for
all i and if s1 > s2 > · · · > sn ≥ 0, then ri,i �= 0, i = 1, . . . , n, and so RIEP(n) has a
unique (positive semidefinite) solution.

The converse of Corollary 39 is, in general, not true. That is, even if every real
symmetric solution for RIEP(n) is positive semidefinite, we do not necessarily have
s1 > s2 > · · · > sn ≥ 0, as is demonstrated by the following example.

Example 41. Let

s1 = 2, s2 = 3,

and let

l1 = r1 =
[
1
]
, l2 = r2 =

[
1
1

]
.

The unique solution for RIEP(2) is the positive definite matrix

A =

[
2 1
1 2

]
.

Nevertheless, we do not have s1 ≥ s2.
We conclude this section with a conjecture motivated by Theorems 35 and 37.

One direction of the conjecture is proven by Theorem 37.
Conjecture 42. Let n ≥ 2, let (27) hold, and assume that a solution for

RIEP(n) exists. Then there exists a positive semidefinite [positive definite] real sym-
metric solution for RIEP(n) if and only if Sn◦(RTnRn) is positive semidefinite [positive
definite].

408 ARAV, HERSHKOWITZ, MEHRMANN, AND SCHNEIDER

In Conjecture 42, the requirement that a solution for RIEP(n) exists is necessary,
as is demonstrated by the following example.

Example 43. Let

s1 = 2, s2 = 1,

and let

l1 = r1 =
[
1
]
, l2 = r2 =

[
1
0

]
.

The unique solution for RIEP(1) is the matrix B =
[
2
]
, and so by Theorem 2 there

exists no solution for RIEP(2). Nevertheless, the matrix S2 ◦ (RT2 R2) is the positive
semidefinite matrix [

2 1
1 1

]
.

8. The Stieltjes matrix case. In this section we combine the results of the pre-
vious two sections to obtain analogous results for Stieltjes matrices, that is, symmetric
M -matrices.

The following theorem follows immediately from Theorems 30 and 25.
Theorem 44. Let n ≥ 2. There exists a symmetric Z-matrix solution for

RIEP(n) if and only if there exists a symmetric Z-matrix solution B for RIEP(n-1)
satisfying

snr̃n
rn,n

≤ Br̃n
rn,n

, rn,n �= 0,

snr̃n = Br̃n, rn,n = 0,

l̃Tn sn
ln,n
≤ l̃TnB

ln,n
, ln,n �= 0,

l̃Tn sn = l̃TnB, ln,n = 0,

and

ln,nrn,n �= 0 =⇒ (snIn−1 −B)

(
l̃n
ln,n
− r̃n
rn,n

)
= 0.

Furthermore, if ln or rn is positive, then a symmetric Z-matrix solution for RIEP(n)
is a Stieltjes matrix if and only if sn ≥ 0.

Corollary 45. Let n ≥ 2, and assume that the vectors li, i = 1, . . . , n, are
all positive and that (27) holds. There exists a symmetric Z-matrix solution A for
RIEP(n) if and only if there exists a symmetric Z-matrix solution B for RIEP(n-1)
satisfying snr̃n ≤ Br̃n. The solution A is a Stieltjes matrix if and only if sn ≥ 0.

The following nonrecursive sufficient condition follows from Theorem 27.
Theorem 46. Let n ≥ 2, and assume that the vectors li, i = 1, . . . , n, are all

positive, that (27) holds, and that the numbers s1, . . . , sn are all positive. If we have

siM
r
i ≤ si−1m

r
i , i = 2, . . . , n,

then there exists a (unique) Stieltjes matrix solution A for RIEP(n).

THE RECURSIVE INVERSE EIGENVALUE PROBLEM 409

Proof. By Theorem 27 there exists a unique M -matrix solution A for RIEP(n).
Since AT also solves the problem, it follows that A = AT and the result follows.

9. The inverse M-matrix case. It is well known that for a nonsingular M -
matrix A we have A−1 ≥ 0. Accordingly, a nonnegative matrix A is called an inverse
M -matrix if it is invertible and A−1 is an M -matrix. An overview of characterizations
of nonnegative matrices that are inverse M -matrices can be found in [10]. In this
section we discuss, as a final special case, inverse M -matrix solutions for RIEP(n).

The following theorem follows immediately from two results of [10].
Theorem 47. Let A ∈ R

n,n be partitioned as in (3). Then A is an inverse
M -matrix if and only if B is an inverse M -matrix and

v = B−1y ≥ 0,(28)

uT = xTB−1 ≥ 0,(29)

s = z − uTBv > 0,(30)

and

vuT ≤ −sB−1, except for the diagonal entries.(31)

Proof. By Corollary 3 in [10], if A is an inverse M -matrix, then B is an inverse
M -matrix. By Theorem 8 in [10], if B is an inverse M -matrix, then A is an inverse
M -matrix if and only if (28)–(31) hold. Our claim follows.

The next result gives necessary and sufficient recursive conditions for the existence
of an inverse M -matrix solution for RIEP(n).

Theorem 48. Let n ≥ 2. There exists an inverseM -matrix solution for RIEP(n)
if and only if sn > 0 and there exists an inverse M -matrix solution B for RIEP(n-1)
satisfying

Nr̃n
rn,n
≥ 0, rn,n �= 0,

Nr̃n = 0, rn,n = 0,

(32)

l̃TnN
ln,n
≥ 0, ln,n �= 0,

l̃TnN = 0, ln,n = 0,

(33)

ln,nrn,n �= 0 =⇒ l̃TnNr̃n
ln,nrn,n

< 1,(34)

and, except for the diagonal entries,

ln,nrn,n �= 0 =⇒ sn

(
l̃TnNr̃n
ln,nrn,n

− 1

)
B−1 ≥ Nr̃n l̃

T
nN

ln,nrn,n
,(35)

where N = snB
−1 − In−1.

410 ARAV, HERSHKOWITZ, MEHRMANN, AND SCHNEIDER

Proof . As in the proof of Theorem 2, partition A as in (3). If A is an inverse
M -matrix solution for RIEP(n), then, as is well known, its eigenvalues lie in the open
right half plane, and so the real eigenvalue sn must be positive. Furthermore, by
Theorem 47, B is an inverse M -matrix and (28)–(31) hold. Finally, we have (4)–(7).
Distinguish between four cases:

1. rn,n = 0, ln,n �= 0. Here x is given by (8), and so it follows from (29) that
l̃TnN
ln,n
≥ 0. By Theorem 2 we have Br̃n = snr̃n, implying that Nr̃n = 0.

2. ln,n = 0, rn,n �= 0. Here y is given by (9), and so it follows from (28) that
Nr̃n
rn,n
≥ 0. By Theorem 2 we have l̃TnN = 0.

3. ln,n = rn,n = 0. Similarly to the previous cases, prove that Nr̃n = 0 and

l̃TnN = 0.
4. ln,n �= 0, rn,n �= 0. Here x is given by (8), y is given by (9), and z is given

by (10). It follows from (28) that Nr̃n
rn,n
≥ 0, and from (29) that

l̃TnN
ln,n
≥ 0. It

follows from (30) that

s = z − uTBv

= sn − l̃Tn (snIn−1 −B)r̃n
ln,nrn,n

− l̃Tn (snIn−1 −B)

ln,n
B−1BB−1 (snIn−1 −B)r̃n

rn,n

= sn

(
1− l̃TnNr̃n

ln,nrn,n

)
> 0.

Since sn > 0, it now follows that
l̃TnNr̃n
ln,nrn,n

< 1. Finally, it follows from (31)

that, except for the diagonal entries,

Nr̃n l̃
T
nN

ln,nrn,n
= B−1 (snIn−1 −B)r̃n

rn,n

l̃Tn (snIn−1 −B)

ln,n
B−1 = vuT

≤ −sB−1 = sn

(
l̃TnNr̃n
ln,nrn,n

− 1

)
B−1.

We have thus proven that if A is an inverse M -matrix solution for RIEP(n), then
sn > 0 and B is an inverse M -matrix solution B for RIEP(n-1) satisfying (32)–(35).

Conversely, assume that sn > 0 and B is an inverse M -matrix solution B for
RIEP(n-1) satisfying (32)–(35). We show that x, y, and z can be chosen such that
(28)–(31) hold, and so by Theorem 47, A is an inverse M -matrix. Here too we
distinguish between four cases:

1. rn,n = 0, ln,n �= 0. Here x is given by (8), and by (33) we obtain (29).
Note that y can be chosen arbitrarily, and z should be chosen such that (7)
holds. If we choose y = 0, then we obtain (28) and z = sn. It follows that
z − uTBv = sn > 0, and so we also have (30). Finally, since v = 0, since
s > 0, and since B−1 is an M -matrix, it follows that (31) holds (except for
the diagonal entries).

THE RECURSIVE INVERSE EIGENVALUE PROBLEM 411

2. ln,n = 0, rn,n �= 0. Here y is given by (9), and by (32) we obtain (28). The
vector x can be chosen arbitrarily, so we choose x = 0. The proof follows as
in the previous case.

3. ln,n = rn,n = 0. Here x and y should be chosen such that xT r̃n = l̃Tn y = 0
and z can be chosen arbitrarily. We choose x = y = 0 and the proof follows.

4. ln,n �= 0, rn,n �= 0. Here x is given by (8), y is given by (9), and z is given
by (10). By (32) and (33) we obtain (28) and (29), respectively. Finally,
similarly to the corresponding case in the proof of the other direction, (34)
implies (30) and (35) implies (31).

Note that Conditions (32)–(33) immediately imply Conditions (16)–(17) by mul-
tiplying the inequality by the nonnegative matrix B. This is not surprising, since an
inverse M -matrix is a nonnegative matrix. The converse, however, does not hold in
general. The following example shows that although (16)–(17) is satisfied, (32)–(33)
do not hold.

Example 49. Let

s1 = 2, s2 = 5.2361, s3 = 21.2552,

and let

l1 = r1 =
[
1
]
, l2 = r2 =

[
0.5257
0.8507

]
, l3 = r3 =

 0.1349

0.3859
0.9126

 .

The unique solution for RIEP(3) is the nonnegative matrix

A =

 2 2 2

2 4 7
2 7 18

 ,

which is not an inverse M -matrix since

A−1 =

 1.6429 −1.5714 0.4286
−1.5714 2.2857 −0.7143
0.4286 −0.7143 0.2857

 .

Indeed, the unique nonnegative solution B = [22
2
4] for RIEP(2) satisfies (16), as

s3r̃3 =

[
2.8673
8.2024

]
≥
[

1.0416
1.8134

]
= Br̃3.

However, B does not satisfy (32), since the vector

Nr̃3 = (s3B
−1 − I2)r̃3 =

[−1.3688
2.2816

]

is not nonnegative.

10. Summary. We have given a detailed analysis of the recursive inverse eigen-
value problem, providing recursive and nonrecursive existence and uniqueness results
for general matrices as well as specific classes of matrices. We summarize the results
in Table 1.

412 ARAV, HERSHKOWITZ, MEHRMANN, AND SCHNEIDER

Table 1
Table of results.

Result Class of matrices Existence Uniqueness Recurs./nonrec.

Theorem 2 Fn,n √ √
recursive

Theorem 4 Fn,n √ √
nonrecursive

Theorem 6 nonneg. matrices
√

recursive
Theorem 6 pos. matrices

√
recursive

Corollary 17 nonneg. matrices
√ √

recursive
Corollary 17 pos. matrices

√ √
recursive

Corollary 22 nonneg. matrices
√

recursive
Corollary 23 nonneg. matrices

√
recursive

Theorem 25 Z-matrices
√

recursive
Theorem 25 M -matrices

√
recursive

Theorem 26 Z-matrices
√

nonrecursive
Theorem 27 M -matrices

√ √
recursive

Theorem 28 M -matrices
√

recursive
Theorem 30 real symm. matrices

√
recursive

Corollary 32 real symm. matrices
√

recursive and nonrecursive
Theorem 33 real symm. matrices

√ √
nonrecursive

Theorem 35 pos. semidef. matrices
√ √

nonrecursive
Corollary 39 pos. semidef. matrices

√
nonrecursive

Theorem 43 Stieltjes matrices
√ √

recursive
Corollary 44 Stieltjes matrices

√
recursive

Theorem 45 Stieltjes matrices
√ √

recursive
Theorem 47 inverse M -matrices

√
recursive

REFERENCES

[1] A. Ben-Israel and T.N.E. Greville, Generalized Matrix Inverses: Theory and Applications,
John Wiley, New York, 1974.

[2] A. Berman and R.J. Plemmons, Nonnegative Matrices in Mathematical Sciences, Classics in
Applied Mathematics 9, SIAM, Philadelphia, PA, 1994.

[3] D. Boley and G.H. Golub, A survey of matrix inverse eigenvalue problems, Inverse Problems,
3 (1987), pp. 595–622.

[4] M. Boyle and D. Handelman, The spectra of non-negative matrices via symbolic dynamics,
Ann. of Math. (2), 133 (1991), pp. 249–316.

[5] M.T. Chu, Inverse eigenvalue problems, SIAM Rev., 40 (1998), pp. 1–39.
[6] S. Friedland, On an inverse problem for nonnegative and eventually nonnegative matrices,

Israel J. Math., 29 (1978), pp. 43–60.
[7] G. Frobenius, Über Matrizen aus positiven Elementen, S.–B. Preuss. Akad. Wiss., 1909,

pp. 471–476.
[8] H. Hochstadt, On some inverse problems in matrix theory, Arch. Math. (Basel), 18 (1967),

pp. 201–207.
[9] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,

UK, 1985.
[10] C.R. Johnson, Inverse M-matrices, Linear Algebra Appl., 47 (1982), pp. 195–216.
[11] D.M. Koteljanskĭi, On some properties of matrices with positive elements, Trans. Amer.

Math. Soc. Ser. 2, 27 (1963), pp. 9–18.
[12] T.J. Laffey, Inverse eigenvalue problems for matrices, Proc. Roy. Irish Acad. Sect. A, 95

(1995), pp. 81–88.
[13] R. Loewy and D. London, A note on an inverse problem for nonnegative matrices, Linear

and Multilinear Algebra, 6 (1978), pp. 83–90.
[14] G.N. de Oliveira, Note on an inverse characteristic value problem, Numer. Math., 15 (1970),

pp. 345–347.

METHODS FOR LARGE SCALE TOTAL LEAST SQUARES
PROBLEMS∗

ÅKE BJÖRCK† , P. HEGGERNES‡ , AND P. MATSTOMS†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 413–429

Abstract. The solution of the total least squares (TLS) problems, minE,f ‖(E, f)‖F subject to
(A + E)x = b + f , can in the generic case be obtained from the right singular vector corresponding
to the smallest singular value σn+1 of (A, b). When A is large and sparse (or structured) a method
based on Rayleigh quotient iteration (RQI) has been suggested by Björck. In this method the problem
is reduced to the solution of a sequence of symmetric, positive definite linear systems of the form
(ATA− σ̄2I)z = g, where σ̄ is an approximation to σn+1. These linear systems are then solved by a
preconditioned conjugate gradient method (PCGTLS). For TLS problems where A is large and sparse
a (possibly incomplete) Cholesky factor of ATA can usually be computed, and this provides a very
efficient preconditioner. The resulting method can be used to solve a much wider range of problems
than it is possible to solve by using Lanczos-type algorithms directly for the singular value problem.
In this paper the RQI-PCGTLS method is further developed, and the choice of initial approximation
and termination criteria are discussed. Numerical results confirm that the given algorithm achieves
rapid convergence and good accuracy.

Key words. total least squares, Rayleigh quotient iteration, conjugate gradient method, singular
values

AMS subject classification. 65F20

PII. S0895479899355414

1. Introduction. The estimation of parameters in linear models is a fundamen-
tal problem in many scientific and engineering applications. A statistical model that
is often realistic is to assume that the parameters x to be determined satisfy a linear
relation

(A+ E)x = b+ f,(1.1)

where A ∈ Rm×n and b ∈ Rm are known and (E, f) is an error matrix with rows
which are independently and identically distributed with zero mean and the same
variance. (To satisfy this assumption the data (A, b) may need to be premultiplied
by appropriate scaling matrices; see Golub and Van Loan [10].) In statistics this
model is known as the “errors-in-variables model.”

The estimate of the true but unknown parameter vector x in the model (1.1) is
obtained from the solution of the total least squares (TLS) problem

min
E,f
‖(E, f)‖F subject to (A+ E)x = b+ f,(1.2)

where ‖·‖F denotes the Frobenius matrix norm. If a minimizing pair (E, f) has been
found for the problem (1.2), then any x satisfying (A + E)x = b + f is said to solve
the TLS problem.

∗Received by the editors April 28, 1999; accepted for publication (in revised form) by E. Ng March
21, 2000; published electronically July 11, 2000.

http://www.siam.org/journals/simax/22-2/35541.html
†Department of Mathematics, Linköping University, S-581 83, Linköping, Sweden (akbjo@math.

liu.se, pomat@math.liu.se). The work of P. Matstoms was supported by the Swedish Research
Council for Engineering Sciences, TFR.

‡Department of Informatics, University of Bergen, NO-5020 Bergen, Norway (pinar@ii.uib.no).

413

414 ÅKE BJÖRCK, P. HEGGERNES, AND P. MATSTOMS

Due to recent advances in data collection techniques least squares (LS) or TLS
problems where A is large and sparse (or structured) frequently arise, e.g., in signal
and image processing applications. For the solution of the LS problem both direct
methods based on sparse matrix factorizations and iterative methods are well devel-
oped; see [3].

An excellent treatment of theoretical and computational aspects of the TLS prob-
lem is given in Van Huffel and Vandewalle [24]. Solving the TLS problem requires the
computation of the smallest singular value and the corresponding right singular vector
of (A, b). When A is large and sparse this is a much more difficult problem than that
of computing the LS solution. For example, it is usually not feasible to compute the
SVD or any other two-sided orthogonal factorization of A since the factors typically
are not sparse.

Iterative algorithms for computing the singular subspace of a matrix associated
with its smallest singular values, with applications to TLS problems with slowly vary-
ing data, have previously been studied by Van Huffel [23]. Three iterative methods,
namely inverse iteration, Chebyshev, and inverse Chebyshev iterations are analyzed
and compared. In [26, 4] a new class of methods based on a Rayleigh quotient it-
eration (RQI) was developed for the efficient solution of large scale TLS problems.
Related methods for Toeplitz systems were studied by Kamm and Nagy [13].

In this paper we further develop the methods first presented in [4] and give numer-
ical results. Similar algorithms for solving large scale multidimensional TLS problems
will be considered in a forthcoming paper [5].

In section 2 we recall how the solution to the TLS problem in the so-called generic
case can be expressed in terms of the smallest singular value and corresponding right
singular vector of the compound matrix (A, b). We discuss the conditioning of the
LS and TLS problems and illustrate how the TLS problem can rapidly become in-
tractable. Section 3 first reviews a Newton iteration for solving a secular equation.
For this method to converge to the TLS solution, strict conditions on the initial ap-
proximation have to be satisfied. We then derive the RQI method, which ultimately
achieves cubic convergence. The choice of initial estimates and termination criteria
are discussed. A preconditioned conjugate gradient method (PCGTLS) is developed
in section 4 for the efficient solution of the resulting sequence of sparse symmetric
linear systems. Finally, in section 5, numerical results are given which confirm the
rapid convergence and numerical stability of this class of methods.

We remark that the methods discussed here all compute a perturbation E, which
in general is dense, even when A is sparse. Sometimes it is desired to find a per-
turbation E that preserves the sparsity structure of A. A Newton method for this
more difficult problem has been developed by Rosen, Park, and Glick [20]. However,
the complexity of this algorithm limits its applications to fairly small-sized problems.
Recently a method that has the potential to be applied to large sparse problems has
been given by Yalamov and Yuan [25]. Although their algorithm only converges with
linear rate, this may suffice to obtain a low accuracy solution.

2. Preliminaries.

2.1. The TLS problem. The TLS problem (1.2) is equivalent to finding a per-
turbation matrix (E, f) having minimal Frobenius norm, which lowers the rank of the
matrix (A, b). Hence it can be analyzed in terms of the singular value decomposition

(A, b) = UΣV T , Σ = diag(σ1, . . . , σn+1),

LARGE SCALE TOTAL LEAST SQUARES PROBLEMS 415

where σ1 ≥ σ2 ≥ · · · ≥ σn+1 ≥ 0 are the singular values of (A, b). Note that by the
minmax characterization of singular values it follows that the singular values σ′

i of A
interlace those of (A, b), i.e.,

σ1 ≥ σ′
1 ≥ σ2 > · · · ≥ σn ≥ σ′

n ≥ σn+1.(2.1)

We assume in the following that A has full rank, that is, σ′
n > 0, and that σn > σn+1.

Then the minimum is attained for the rank one perturbation

(E, f) = −(A, b)vn+1v
T
n+1 = −σn+1un+1v

T
n+1,

for which ‖(E, f)‖F = σn+1. A TLS solution is then obtained from the right singular
vector

vn+1 =

(
z
ζ

)
= −ζ

(
xTLS
−1

)
,(2.2)

provided that ζ �= 0. If ζ = 0 the TLS problem is called nongeneric, and there is
no solution. This case cannot occur if σ′

n > σn+1, and in the following we always
assume that this condition holds.

From the characterization (2.2) it follows that λ = σ2
n+1 and x = xTLS satisfy

the system of nonlinear equations
(
ATA AT b
bTA bT b

)(
x
−1
)
= λ

(
x
−1
)
.(2.3)

Putting λ = σ2
n+1 the first block row of this system of equations can be written

(ATA− σ2
n+1I)x = AT b,(2.4)

which can be viewed as “the normal equations” for the TLS problem. Note that from
our assumption that σ′

n > σn+1 it follows that ATA− σ2
n+1I is positive definite.

2.2. Conditioning of the TLS problem. For the evaluation of accuracy and
stability of the algorithms to be presented we need to know the sensitivity of the
TLS problem to perturbations in data. We first recall that if xLS �= 0 the condition
number for the LS problem is (see [3, Sec. 1.4])

κLS(A, b) = κ(A)

(
1 +

‖rLS‖2
σ′
n‖xLS‖2

)
,(2.5)

where κ(A) = σ′
1/σ

′
n. Note that the condition number depends on both A and b

and that for large residual problems the second term may dominate.
Equation (2.4) shows that the TLS problem is always worse conditioned than the

LS problem. Golub and Van Loan [10] showed that an approximate condition number
for the TLS problem is

κTLS(A, b) =
σ′

1

σ′
n − σn+1

= κ(A)
σ′
n

σ′
n − σn+1

.(2.6)

When 1− σn+1/σ
′
n � 1 the TLS condition number can be much greater than κ(A).

The relation between the two condition numbers (2.5) and (2.6) depends on the re-
lation between the ‖rLS‖2 and σn+1, which is quite intricate. (For a study of this
relation in another context, see Paige and Strakos̆ [16].)

416 ÅKE BJÖRCK, P. HEGGERNES, AND P. MATSTOMS

10
-8

10
-7

10
-6

10
-5

10
-4

10
6

10
7

10
8

10
9

10
10

10
11

β

κ

κ
LS

κ
TLS

Fig. 2.1. Condition numbers κLS and κTLS as a function of β = ‖rLS‖2.

From (2.3), multiplying from the left with (xT − 1) we get

‖rTLS‖22 = σ2
n+1(‖xTLS‖22 + 1), rTLS = b−AxTLS .

Since ‖rLS‖2 ≤ ‖rTLS‖2 and σn+1 ≤ σ′
n it follows that

‖xTLS‖22 ≥ (‖rLS‖2/σ′
n)

2 − 1.(2.7)

This inequality is weak, but it shows that ‖xTLS‖2 will be large when ‖rLS‖2
 σ′
n.

As an illustration we consider the following small overdetermined system

σ′

1 0
0 σ′

2

0 0

(
x1

x2

)
=

 c1
c2
β

 .(2.8)

Trivially, the LS solution is

xLS = (c1/σ
′
1, c2/σ

′
2)
T , ‖rLS‖2 = |β|.

If we take in (2.8) σ′
1 = c1 = 1, σ′

2 = c2 = 10−6, then xLS = (1, 1)T independent of
β, and hence does not reflect the ill-conditioning of A. The TLS solution is of similar
size as the LS solution as long as |β| ≤ σ′

2. However, when |β|
 σ′
2 then from (2.7)

it follows that ‖xTLS‖2 is large.
In Figure 2.1 the two condition numbers are plotted as a function of β ∈ [10−8, 10−4].

We note that κLS increases proportionally to β because of the second term in (2.5).
For β > σ′

2 the condition number κTLS grows proportionally to β2. It can be verified
that ‖xTLS‖2 also grows proportionally to β2.

3. Newton and Rayleigh quotient methods.

3.1. A Newton method. Equation (2.3) constitutes a system of (n + 1) non-
linear equations in x and λ. One way to proceed (see [13]) is to eliminate x to obtain
the rational secular equation for λ = σ2

n+1:

g(λ) = −bT (b−Ax(λ)) + λ = 0,(3.1)

LARGE SCALE TOTAL LEAST SQUARES PROBLEMS 417

where x(λ) = (ATA − λI)−1AT b. Newton’s method applied to (3.1) leads to the
iteration

λ(k+1) = λ(k) +
bT (b−Ax(k))− λ(k)

1 + ‖x(k)‖22
,(3.2)

x(k) = (ATA− λ(k)I)−1AT b.(3.3)

This iteration will converge monotonically at a rate that is asymptotically quadratic.
The convergence can be improved by using a rational interpolation similar to that in
[7] to solve the secular equation. However, in any case, λ will converge to σ2

n+1 and

x(k) to the TLS solution only if the initial approximation satisfies

λ(0) ∈ (σ2
n+1, σ

′2
n).(3.4)

In general it is hard to verify this assumption. For the special case of a Toeplitz TLS
problem Kamm and Nagy [13] use a bisection algorithm based on a fast algorithm for
factorizing Toeplitz matrices to find an initial starting value satisfying (3.4).

3.2. The RQI method. The main drawback of the Newton method above is
that unless (3.4) is satisfied it will converge to the wrong solution. A different Newton
method is obtained as follows. Note that equation (2.3) can be rewritten as(

AT

bT

)
(A b)

(
x
−1
)
=

(
AT

bT

)
(−r) = λ

(
x
−1
)
,

where r = b− Ax. Hence we can apply Newton’s method to the nonlinear system in
x and λ: (

f(x, λ)
g(x, λ)

)
=

(−AT r − λx
−bT r + λ

)
=

(
0
0

)
.(3.5)

As remarked in [19] this is closely related to inverse iteration, which is one of the
most widely used methods for refining eigenvalues and eigenvectors. Rayleigh quotient
iteration (RQI) is inverse iteration with a shift equal to the Rayleigh quotient. RQI
has cubic convergence for the symmetric eigenvalue problem (see [17, Sections 4–7])
and is superior to the standard Newton method applied to (3.5).

For the eigenvalue problem (2.3) the Rayleigh quotient equals

ρ(x) =
(xTAT − bT)(Ax− b)

xTx+ 1
=

rT r

xTx+ 1
.(3.6)

Let x(k) be the current approximation and let ρk be the corresponding Rayleigh
quotient. Then the next approximation x(k+1) in RQI and the scaling factor βk are
obtained from the symmetric linear system(

J (k) AT b
bTA ηk

)(
x(k+1)

−1
)
= βk

(
x(k)

−1
)
,(3.7)

where

J (k) = ATA− ρkI, ηk = bT b− ρk.

If J (k) is positive definite the solution can be obtained by block Gaussian elimination,(
J (k) AT b
0 τk

)(
x(k+1)

−1
)
= βk

(
x(k)

−(z(k))Tx(k) − 1

)
,(3.8)

418 ÅKE BJÖRCK, P. HEGGERNES, AND P. MATSTOMS

where

J (k)z(k) = AT b, τk = bT (b−Az(k))− ρk.(3.9)

It follows that x(k+1) = z(k) + u(k), where

J (k)u(k) = βkx
(k), βk = τk/((z

(k))Tx(k) + 1).(3.10)

In [3] a reformulation was made to express the solution in terms of the residual vectors
of (3.5):

(
f (k)

g(k)

)
=

(−AT r(k) − ρkx
(k)

−bT r(k) + ρk

)
,(3.11)

where r(k) = b−Ax(k). This uses the following formulas to compute τk:

J (k)w(k) = −f (k), z(k) = x(k) + w(k),(3.12)

τk = (z(k))T f (k) − g(k).(3.13)

The RQI is defined by equations (3.10)–(3.13).

3.3. Initial estimate and global convergence. Parlett and Kahan [18] have
shown that for almost all initial vectors the RQI converges to some singular value
and vector pair. However, in general we cannot say to which singular vector RQI will
converge.

If the LS solution is known, a suitable starting approximation for λ may be

ρ(xLS) =
‖rLS‖2
‖xLS‖2 + 1

.(3.14)

Conditions to ensure that RQI will converge to the TLS solution from the starting
approximation (ρ(xLS), xLS) are in general difficult to verify and often not satis-
fied in practice. However, in contrast to the simple Newton iteration in section 3.1,
the method may converge to the TLS solution even when the initial approximation
ρ(xLS) �∈ (σ2

n+1, σ
′2
n).

The Rayleigh quotient ρ(xLS) will be a large overestimate of σ2
n+1 when the

residual norm ‖rLS‖2 is large and ‖xLS‖2 does not reflect the ill-conditioning of A.
Note that it is typical for ill-conditioned LS problems that the right-hand side is such
that ‖xLS‖2 is not large! For example, LS problems arising from ill-posed problems
usually satisfy a so-called Picard condition, which guarantees that the right-hand side
has this property; see [11, Section 1.2.3].

Szyld [22] suggested that p ≥ 1 steps of inverse iteration are applied initially
before switching to RQI, in order to ensure convergence to the smallest eigenvalue.
Inverse iteration for σ2

n+1 corresponds to taking σ
2 = 0 in the RQI algorithm. Starting

from x = xLS the first step of inverse iteration simplifies as follows. Using (3.9) and
(3.10) with ρk = 0 and x(k) = xLS we get

z(k) = xLS , τk = ‖rLS‖22,

and the new approximation becomes

xINV = xLS + β(ATA)−1xLS , β = ρ(xLS).

LARGE SCALE TOTAL LEAST SQUARES PROBLEMS 419

10
-8

10
-7

10
-6

10
-5

10
-4

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

β

σ
3

ρ
LS
1/2

Fig. 3.1. Rayleigh quotient approximation and σ3 for |β| = ‖rLS‖2 = 10−k.

Several steps of inverse iteration may be needed to ensure convergence of RQI to
the smallest singular value. However, since inverse iteration only converges linearly,
taking more than one step will often just hold up the rapid convergence of RQI. In
general we therefore recommend as default taking just one step.

To illustrate the situation consider again the small 3× 2 system (2.8) with σ′
1 =

c1 = 1, σ′
2 = c2 = 10−6. This has the LS solution x1 = x2 = 1, which does not reflect

the ill-conditioning of A (κ = 106). With ‖rLS‖2 = β the initial Rayleigh quotient
approximation equals

ρ(xLS) = β2/(1 + 2) = β2/3.

By the interlacing property we have that σ3 ≤ σ′
2. Since |β|
 σ′

2 it is clear that
the Rayleigh quotient fails to approximate σ2

3 . This is illustrated in Figure 3.1, where
ρ(xLS)

1/2 and σ3 are plotted as a function of |β|. It is easily verified, however, that

after one step of inverse iteration ρ(xINV) will be close to σ′2
2.

3.4. Termination criteria for RQI. The RQI algorithm for the TLS problem
is defined by (3.10)–(3.13). When should the RQI be terminated? We suggest two
different criteria.

The first is based on the key fact in the proof of global convergence that the
normalized residual norm

γk =

(‖fk‖22 + g2
k

‖x(k)‖22 + 1

)1/2

,

(
fk
gk

)
=

(−AT r(k) − ρkx
(k)

−bT r(k) + ρk

)
(3.15)

always decreases, γk+1 ≤ γk, for all k. Thus, if an increase in the norm occurs this
must be caused by roundoff, and then it makes no sense to continue the iterations.
This suggests that we terminate the iterations with xk+1 when

γk+1 > γk.(3.16)

A second criterion is based on the observation that since the condition number
for computing σn+1 equals 1, we can expect to obtain σn+1 to full machine precision.
Since convergence of RQI is cubic, a criterion could be to stop when the change in

420 ÅKE BJÖRCK, P. HEGGERNES, AND P. MATSTOMS

the approximation to σn+1 is of the order of σ1u
1/p, where p = 3. (A similar criterion

with p = 2 is used by Kamm and Nagy [13] for terminating the Newton iteration.)
However, as will be evident from the numerical results in section 5, full accuracy in
xTLS in general requires one more iteration after σn+1 has converged. Therefore we
recommend to stop when either (3.16) or

|ρ(xk+1)− ρ(xk)| ≤ Cu(3.17)

is satisfied, where u is the machine unit and C a suitable constant.
We summarize below the RQI algorithm with one step of inverse iteration (cf.

[4]):

Algorithm 3.1 (RQI).

x = xLS ;

r = b−Ax;

σ2 = rT r/(1 + xTx);

solve ATAu = x;

x = x+ σ2u;

for k = 1, 2, . . .

r = b−Ax;

σ2 = rT r/(1 + xTx);

f = −AT r − σ2x;

g = −bT r + σ2;

solve (ATA− σ2I)w = −f ;
z = x+ w;

β = (zT f − g)/(zTx+ 1);

solve (ATA− σ2I)u = x;

x = z + βu;

end

3.5. Rounding errors and stability. If the RQI converges, then f (k), g(k),
and βk will tend to zero. Consider the rounding errors that occur in the evaluation of
the residuals (3.11). Let ũ = 1.06u, where u is the unit roundoff; see [12, Chapter 3].
Then the computed residual vector satisfies r̄ = r + δr, where

‖δr‖2 ≤ nũ(‖b‖2 + ‖A‖2‖x‖2).
Obviously convergence will cease when the residuals (3.11) are dominated by roundoff.
Assume that we perform one iteration from the exact solution, xTLS , rTLS , and
λ = σ2

n+1. Then the first correction to the current approximation is obtained by
solving the linear system in (3.12), which now becomes

(ATA− σ2
n+1I)w

(k) = −AT δr(k).(3.18)

For the correction this gives the estimate

‖w(k)‖2 = nũσ′
n

σ′2
n − σ2

n+1

(‖b‖2 + ‖A‖2‖xTLS‖2).(3.19)

This estimate is consistent with the condition estimate for the TLS problem.

LARGE SCALE TOTAL LEAST SQUARES PROBLEMS 421

We note that the equations (3.18) are of similar form to those that appear in
the corrected seminormal equations for the LS problem; see [2], [3, Section 6.6.5]. A
detailed roundoff error analysis similar to that done for the LS problem would become
very complex and is not attempted here. It seems reasonable to conjecture that if
σ′2
n − σ2

n+1 < u1/2, it will suffice to solve the linear equations for the correction w(k)

using the Cholesky factorization of (ATA − σ2
n+1I). Methods for the solution of the

linear systems are considered in more detail in section 4.

4. Solving the linear systems. In the RQI method formulated in the previous
section the main work consists of solving in each step two linear systems of the form

(ATA− σ2I)w = f, σ ≈ σn+1.(4.1)

Here σ is an approximation to σn+1 and varies from step to step. Provided that
σ < σ′

n, the system (4.1) is symmetric and positive definite.

4.1. Direct linear solvers. If σ < σ′
n, then the system (4.1) can be solved

by computing the (sparse) Cholesky factorization of the matrix ATA − σ2I. Note
that ATA only has to be formed once and the symbolic phase of the factorization
does not have to be repeated. However, it is a big disadvantage that a new numerical
factorization has to be computed at each step of the RQI algorithm.

For greater accuracy and stability in solving LS problems it is often preferred to
use a QR factorization instead of a Cholesky factorization. However, since in the TLS
normal equations the term σ2I is subtracted from ATA, this is not straightforward.
The Cholesky factor of the matrix ATA−σ2I can be obtained from the QR factoriza-
tion of the matrix (AT iσI)

T
, where i is the imaginary unit. This is a downdating

problem for the QR factorization and can be performed using stabilized hyperbolic
rotations (see [3, pp. 143–144]) or hyperbolic Householder transformations (see [21]).
However, in the sparse case this is not an attractive alternative, since it would require
nontrivial modifications of existing software (see, e.g., Matstoms [15] and Adlers [1])
for sparse QR factorization.

4.2. Iterated deregularization. One way to solve the TLS normal equations
using only a single factorization of ATA would be to adapt an iterated regularization
scheme due to Riley and analyzed by Golub [9]. In this scheme, we solve the TLS
normal equations by the iteration x(0) = 0, and for k = 0, 1, . . .

r(k) = b−Ax(k),

ATAδ(k) = AT r(k) + σ2x(k),

x(k+1) = x(k) + δ(k).

If limk→∞ x(k) = x, then (ATA− σ2I)x = AT b. This iteration will converge with the

linear rate equal to ρ = σ2/σ′2
n provided that ρ < 1, and it may be implemented very

efficiently if the QR decomposition of A is available. We do not pursue this method
further, since it has no advantage over the preconditioned conjugate gradient method
developed in [4].

4.3. A preconditioned conjugate gradient algorithm (PCGTLS). Per-
forming the change of variables y = Sw, where S is a given nonsingular matrix, and
multiplying from the left with S−T the system (4.1) becomes

(S−TATAS−1 − σ2S−TS−1)y = S−T f.(4.2)

422 ÅKE BJÖRCK, P. HEGGERNES, AND P. MATSTOMS

This system is symmetric positive definite provided that σ < σ′
n, and hence the conju-

gate gradient (CG) method can be applied. We can use for S the same preconditioners
as have been developed for the LS problem; for a survey, see [3, chapter 7].

In the following we consider a special choice of preconditioner, the complete
Cholesky factor R of ATA (or R from a QR decomposition of A). Unless A is huge this
is often a feasible choice, since efficient software for sparse Cholesky and sparse QR
factorization are readily available [3, chapter 7]. Using AR−1 = Q1, where Q

T
1 Q1 = I,

the preconditioned system (4.2) simplifies to

(I − σ2R−TR−1)y = R−T f, w = R−1y.(4.3)

(Note that although A and AT have disappeared from this system of equations,
matrix-vector multiplications with these matrices are used to compute the right-hand
side f !) In the inverse iteration step used in the initialization, σ = 0, and the solution
w = R−1R−T f is obtained by two triangular solves.

The standard CG method applied to the system (4.2) can be formulated in terms
of the original variables w. The resulting algorithm is a slightly simplified version of
the algorithm PCGTLS given in [4] and can be written as follows.

Algorithm 4.1 (PCGTLS). Preconditioned gradient method for solving (ATA−
σ2I)w = f , using the Cholesky factor R of ATA as preconditioner.

Initialize: w(0) = 0, p(0) = s(0) = R−T f, η0 = ‖s(0)‖22.
For j = 0, 1, . . . , l, while δj �= 0 compute

q(j) = R−1p(j)

δj = ‖p(j)‖22 − σ2‖q(j)‖22
αj = ηj/δj

w(j+1) = w(j) + αjq
(j)

q(j) = R−T q(j)

s(j+1) = s(j) − αj(p
(j) − σ2q(j))

ηj+1 = ‖s(j+1)‖22
βj = ηj+1/ηj

p(j+1) = s(j+1) + βjp
(j)

Denote the original and the preconditioned matrix by C = ATA− σ2I and C̃ =
I − σ2R−TR−1, respectively. Then a simple calculation shows that for σ = σn+1 the
condition number of the transformed system is reduced by a factor of κ(A),

κ(C̃) =

(
(σ′

1)
2 − σ2

n+1

(σ′
n)2 − σ2

n+1

)(
(σ′

n)
2

(σ′
1)2

)
=

κ(C)

κ2(A)
.

The spectrum of C̃ will be clustered close to 1. In particular in the limit when
σ → σn+1, the eigenvalues of C̃ will lie in the interval

[
1− σ2

n+1/(σ
′
n)

2, 1
]
.(4.4)

(Note the relation to the condition number κTLS !) Hence, unless σ′
n ≈ σn+1, we can

expect this choice of preconditioner to work very well for solving the shifted system
(4.1).

LARGE SCALE TOTAL LEAST SQUARES PROBLEMS 423

The matrix RTR − σ2I is positive definite if σ < σ′
n. In this case δk > 0 in

PCGTLS, and the division in computing αk can always be carried out. If σ ≥ σ′
n,

then the system (4.2) is not positive definite and a division by zero can occur. This
can be avoided by including a test to ensure that δk > 0. If δk < 0, or equivalently
‖p(k)‖2 < σ‖q(k)‖2, the CG iterations are considered to have failed. The RQI step is
then repeated with a new smaller value of σ2

n+1, e.g.,

σ2 =
1

2
‖p(k)‖22/‖q(k)‖22.(4.5)

The accuracy of TLS solutions computed by RQI will basically depend on the
accuracy residuals and the stability of the method used to solve the linear systems
(4.1). We note that the CG method CGLS1 for the LS problem, which is related to
PCGTLS, has been shown to have very good numerical stability properties; see [6].

4.4. Termination criteria in PCGTLS. The RQI, using PCGTLS as an inner
iteration for solving the linear systems, is an inexact Newton method for solving a
system of nonlinear equations. Such methods have been studied by Dembo, Eisenstat,
and Steihaug [8], who consider the problem of how to terminate the iterative solver
so that the rate of convergence of the outer Newton method is preserved.

Consider the iteration

F ′(xk)sk = −F (xk) + rk, k = 0, 1, . . . ,

where rk is the residual error. In [8] it is shown that maintaining a convergence order
of 1 + p requires that when k →∞, the residuals satisfy inequalities

‖rk‖ ≤ ηk‖F (xk)‖, ηk = O(‖F (xk)‖p),(4.6)

where ηk is a forcing sequence.
In practice the above asymptotic result turns out to be of little practical use in

our context. Once the asymptotic cubic convergence is realized, the ultimate accuracy
possible in double precision already has been achieved. A more practical, ad hoc
termination criterion for the PCGTLS iterations will be described together with the
numerical results reported below.

Remark. In the second linear system to be solved in RQI, (ATA−σ2I)u = x, the
right-hand side converges to xTLS . Hence it is tempting to use the value of u obtained
from the last RQI to initialize PCGTLS in the next step. However, our experience is
that this slows down the convergence compared to initializing u to zero.

5. Numerical results.

5.1. Accuracy and termination criteria. Numerical tests were performed in
Matlab on a SUN SPARCstation 10 using double precision with unit roundoff u =
2.2 · 10−16. For the initial testing we used contrived test problems [A, b] = P (m,n, ε),
similar to those in [6]. These test problems are neither large nor sparse, but they will
be used to test the convergence properties of the algorithm. They are generated in
the following way: Let

Ã = Y

(
D
0

)
ZT ∈ Rm×n,

where Y,Z are random orthogonal matrices and D = diag(1, 2−1, . . . , 2−n+1). Fur-
ther, let

x = (1, 1/2, . . . , 1/n), b̃ = Ãx.

424 ÅKE BJÖRCK, P. HEGGERNES, AND P. MATSTOMS

This ensures that the norm of the solution does not reflect the ill-conditioning of A.
We then add random perturbations

A = Ã+ E, b = b̃+ r,

E = ε ∗ rand(m,n), r = ε ∗ rand(m, 1).

Note that since σ′
n = 2−n+1 there is a perturbation E to A with ‖E‖2 = 2n−1, which

makes A rank deficient. It is therefore not realistic to consider perturbations such
that mε ≥ 2−n+1.

To test the termination criteria for the inner iterations we used problem P (30, 15),
σ′
n = 2−14 = 6.1 · 10−5, with error level ε = 10−6. The linear systems arising in RQI

were solved using PCGTLS with the Cholesky factor of ATA as preconditioner. Ac-
cording to the criterion (4.6) the linear systems should be solved more and more
accurately as the RQI method converges. The rate of convergence of PCGTLS de-
pends on the ratio σn+1/σ

′
n (see (4.4)) and is usually very rapid. We have used a

very simple strategy where in the kth step of RQI (k + ν) PCGTLS iterations are
performed. Here ν ≥ 0 is a parameter to be chosen. Note that since no refactoriza-
tions are performed the object should be to minimize the total number of PCGTLS
iterations.

Figure 5.1 shows a plot of the errors ‖x(k) − x‖2 and |σ(k)
n+1 − σn+1| (logarithmic

scale) after k RQI iterations, for ν = 0, 1, 2. The plots for ν = 1 and ν = 2 are almost
indistinguishable, whereas ν = 0 gives a slight delay in convergence. Indeed, for this
problem taking k + 1 iterations in PCGTLS suffices to give the same result as using
a direct solver for the linear systems. Note that the final accuracy in x (σn+1) is on
the order of 10−11 and (10−17). This confirms the excellent stability of the method.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

RQI iterations

Fig. 5.1. Errors log ‖x(k) − x‖2 (−−) and log |σ(k)n+1 − σn+1| (− · −) for problem PS(30, 15),

with ε = 10−6 (σ̂n = 2−14). Linear systems solved by PCGTLS with k + ν iterations, ν = 0, 1, 2.

Based on these considerations and the test results we recommend taking ν = 1,
although ν = 0 should work well for problems where the ratio σn+1/σ

′
n is smaller.

In all the following tests we have used ν = 1. In Figure 5.2 we show results for
problem P(30,15), and different error levels ε = 10−8, 10−7, 10−6. Here 1, 2, and 3–4

LARGE SCALE TOTAL LEAST SQUARES PROBLEMS 425

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

-15

-10

-5

0

5

RQI iterations

Fig. 5.2. Errors log ‖x(k) − x‖2 (−−) and log |σ(k)n+1 − σn+1| (− · −) for problem PS(30, 15),

ε = 10−8, 10−7, 10−6, σ̂n = 2−14. Linear systems solved by PCGTLS with k + 1 iterations.

RQIs, respectively, were needed to achieve an accuracy of about 10−11 in xTLS . Since
σ′
n = 2−15 = 3.05 · 10−5, this is equal to the best limiting accuracy that can be

expected. Note also that the error in σn+1 converges to machine precision, usually in
one less iteration, which supports the use of the criterion (3.17) to terminate RQI.

5.2. Improvement from inverse iteration. We now show the improvement
resulting from including an initial step of inverse iteration. In Figure 5.3 we show
results for the same problems as considered in Figure 5.2. For the first two error
levels only one RQI now suffices to obtain limiting accuracy. For the highest error
level σn+1 converges in two iterations and xTLS in three.

We now consider the second test problem in [13], which is defined as

2 -1 0 0 · · · 0 0 0
-1 2 -1 0 · · · 0 0 0
·
·
·
0 0 0 0 · · · 0 -1 2
0 0 0 0 · · · 0 0 -1

x1

x2

·
·
·

xn−1

=

0
1
·
·
·

n− 1

+ e = g̃ + e,

where A ∈ Rn×n−1. Here e is a vector with entries generated randomly from a
normal distribution with mean 0.0 and variance 1.0, and scaled so that ||e||2 = η||g̃||2.
For n = 100 we have κ(A) = 2.62 · 103 and for η = 0.01 the condition numbers in
(2.5)–(2.6) are

κLS = 3.98 · 105, κTLS = 1.25 · 108,

respectively. This problem has features similar to those of the small ill-conditioned
example discussed previously in section 2.2, although here the norm of the solution
xLS is large.

426 ÅKE BJÖRCK, P. HEGGERNES, AND P. MATSTOMS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

-15

-10

-5

0

5

RQI iterations

Fig. 5.3. Errors log ‖x(k) − x‖2 (−−) and log |σ(k)n+1 − σn+1| (− · −) for problem PS(30, 15),

ε = 10−8, 10−7, 10−6, σ̂n = 2−14. One step of inverse iteration and RQI. Linear systems solved by
PCGTLS with k + 1 iteration.

Applying the RQI algorithm we obtained the results shown in Figure 5.4. The
initial approximation ρ(xLS) is here far outside the interval [σn+1, σ

′
n). Thus the ma-

trix ATA−σ2I is initially not positive definite and we cannot guarantee the existence
of the Cholesky factor. However, the algorithm PCGTLS still does not break down,
and, as shown in Figure 5.4, the limiting accuracy is obtained after five RQIs. This
surprisingly good performance of RQI can be explained by the fact that even though
xLS does not approximate xTLS well, the angle between them is small; the cosine

0 1 2 3 4 5 6
-16

-14

-12

-10

-8

-6

-4

-2

0

2

RQI iterations

Fig. 5.4. Errors log ‖x(k) − x‖2 (−−) and log |σ(k)n+1 − σn+1| (− · −) for second test problem

with η = 0.001. Results for RQI without/with one step of inverse iteration.

LARGE SCALE TOTAL LEAST SQUARES PROBLEMS 427

equals 0.98453. Performing one initial step of inverse iteration, the limiting accuracy
is obtained after only three RQI steps.

Performing one step of inverse iteration before applying the RQI algorithm gives
much improved convergence. The one initial step of inverse iteration here suffices to
give an initial approximation in the interval [σn+1, σ

′
n). This can be compared with

12–23 steps of bisection needed to achieve such a starting approximation; see [13]!
Three RQIs now give the solution xTLS with an error close to the limiting accuracy;
see Figure 5.4. In both cases we obtained σn+1 to full machine precision. Also, the
relative error norm of in the TLS solution was consistent with the condition number.

5.3. A problem in signal restoration. The Toeplitz matrix used in this exam-
ple comes from an application in signal restoration; see [13, Example 3]. Specifically,

an n×(n−2ω) convolution matrix T̃ is constructed to have entries in the first column
given by

ti,1 =
1√
2πα2

exp

[−(ω − i+ 1)2

2α2

]
, i = 1, 2, . . . , 2ω + 1,

and zero otherwise. Entries in the first row given by t1,j = t1,1 if j = 1, and zero
otherwise, where α = 1.25 and ω = 8. A Toeplitz matrix T and right-hand side vector
g is then constructed as T = T̃ + E and g = g̃ + e, where E is a random Toeplitz
matrix with the same structure as T and e is a random vector. The entries in E and
e are generated randomly from a normal distribution with mean 0.0 and variance 1.0,
and they are scaled so that

‖e‖2 = η‖g̃‖2, ‖E‖2 = η‖T̃‖2.

In [13] difficulties with convergence were reported. However, these are due to
the choice of right-hand side g̃1, which was taken to be a vector of all ones. For
the unperturbed problem (γ = 0) this vector is orthogonal to the space spanned by
the left singular vector corresponding to the smallest singular value. Therefore the
magnitude of the component in this direction of the initial vector xLS will be very
small, of the order γ. Also, although T is quite well conditioned the LS residual is
large. The TLS problem is therefore close to a nongeneric problem and thus very
ill-conditoned.

Because of the extreme ill-conditioning for this right-hand side, the behavior of
any solution method becomes very sensitive to the particular random perturbation
added. We have therefore instead chosen a right-hand side g̃2 given by g̃(i) = (m −
2i)/m, i = 1, . . . ,m. For this the TLS problem is much better conditioned; see
Table 5.1. Convergence is now obtained in just two iterations; see Figure 5.5.

Table 5.1
Condition numbers for test problem 3 for right-hand sides g̃i, n = 100.

γ i κ(A) κLS κTLS

0 1 1.094484e+03 1.968723e+04 > 1.0e+16
2 1.094484e+03 2.101815e+04 3.069664e+07

0.001 1 1.220696e+03 2.538016e+04 1.692483e+10
2 1.220696e+03 2.687055e+04 1.202459e+07

428 ÅKE BJÖRCK, P. HEGGERNES, AND P. MATSTOMS

0 1 2 3 4 5 6
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

iterations

Fig. 5.5. Errors log ‖x(k) − x‖2 (−−) and log |σ(k)n+1 − σn+1| (− · −) for third test problem;
RQI with one step of inverse iteration, n = 100, η = 0.0001, 0.001, 0.01.

6. Conclusions. In this paper we have developed and analyzed an algorithm for
solving large scale TLS problems based on a RQI for the smallest singular value σn+1

and corresponding right singular vector of (A, b). In this algorithm we need to solve a
sequence of linear systems with symmetric, positive definite matrix ATA− σ̄2I, where
σ̄ is the current approximation to σn+1. This approach has the advantage that the
linear systems can be solved by a preconditioned CG method. Further, for large and
sparse TLS problems a (possibly incomplete) Cholesky factor of ATA can usually be
computed, which provides a very efficient preconditioner. Therefore our method can
solve a much wider range of problems than it is possible to solve by using Lanczos-
type algorithms directly for the singular value problem, which does not allow for the
use of preconditioning.

Methods for solving the TLS problem are by necessity more complex than those
for the (linear) LS problem. On the test problems we have tried so far our algorithm
has only failed for almost singular problems. For such problems the TLS model is in
any case not relevant and should not be used. Otherwise we conjecture that with the
given ad hoc termination criteria for the inner (RQI) and outer (CG) iterations the
algorithm computes the TLS solution with an accuracy compatible with a backward
stable method. Although a detailed error analysis is not carried out, this conjecture
is supported by numerical results.

As illustrated by the given examples, provided the Cholesky factor is available
as preconditioner, rarely more than two RQI iterations will be needed. With the
recommended strategy this requires 2(2 + 3) = 10 steps of PCGTLS, each using
one matrix-vector multiplication with A and AT and one solve with R and RT . (In
addition the initial inverse iteration step requires one solve with R and RT .) In many
cases the total cost is dominated by the cost of computing the sparse Cholesky factor,
and then the cost of computing xTLS is of the same order as computing xLS .

LARGE SCALE TOTAL LEAST SQUARES PROBLEMS 429

REFERENCES

[1] M. Adlers, Computing Sparse QR Factorizations in MATLAB, Tech. Report, LiTH-MAT-R-
98-19, Linköping University, Sweden, 1999.

[2] Å. Björck, Stability analysis of the method of semi-normal equations for least squares prob-
lems, Linear Algebra Appl., 88/89 (1987), pp. 31–48.

[3] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[4] Å. Björck, Newton and Rayleigh quotient methods for total least squares problems, in Recent

Advances in Total Least Squares Techniques and Errors–in–Variables Modeling: Proceed-
ings of the Second International Workshop on Total Least Squares and Errors–in–Variables
Modeling, S. Van Huffel, ed., SIAM, Philadelphia, 1997, pp. 149–160.

[5] Å. Björck, Solving Large Scale Multidimensional Total Least Squares Problems, in prepara-
tion.

[6] Å. Björck, T. Elfving, and Z. Strakos, Stability of conjugate gradient and Lanczos methods
for linear least squares problems, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 720–736.

[7] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, Rank-one modification of the symmetric
eigenproblem, Numer. Math., 31 (1978), pp. 31–48.

[8] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400–408.

[9] G. H. Golub, Numerical methods for solving least squares problems, Numer. Math., 7 (1965),
pp. 206–216.

[10] G. H. Golub and C. F. Van Loan, An analysis of the total least squares problem, SIAM J.
Numer. Anal., 17 (1980), pp. 883–893.

[11] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear
Conversion, SIAM, Philadelphia, 1998.

[12] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[13] J. Kamm and J. G. Nagy, A total least squares method for Toeplitz systems of equations, BIT,

38 (1998), pp. 560–582.
[14] W. Mackens and H. Voss, The minimum eigenvalue of a symmetric positive-definite Toeplitz

matrix and rational Hermitian interpolation, SIAM J. Matrix Anal. Appl., 18 (1997),
pp. 521–534.

[15] P. Matstoms, Sparse QR factorization in MATLAB, ACM Trans. Math. Software, 20 (1994),
pp. 136–159.

[16] C. C. Paige and Z. Strakos̆, Weighted total least squares problems and bounds for the least
squares distance, Numer. Math., submitted.

[17] B. N. Parlett, The Symmetric Eigenvalue Problem, 2nd ed., SIAM, Philadelphia, 1998.
[18] B. N. Parlett and W. Kahan, On the convergence of a practical QR algorithm, in Information

Processing 68, the Proceedings of the IFIP Congress, Edinburgh, Scotland, 1968, North-
Holland, Amsterdam, The Netherlands, 1969, pp. 114–118.

[19] G. Peters and J. H. Wilkinson, Inverse iteration, ill-conditioned equations and Newton’s
method, SIAM Rev., 21 (1979), pp. 339–360.

[20] J. B. Rosen, H. Park, and J. Glick, Total least norm formulation and solution for structured
problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 110–126.

[21] M. Stewart and G. W. Stewart, On hyperbolic triangularization: Stability and pivoting,
SIAM J. Matrix Anal. Appl., 19 (1998), pp. 847–860.

[22] D. B. Szyld, Criteria for combining inverse and Rayleigh quotient iteration, SIAM J. Numer.
Anal., 25 (1988), pp. 1369–1375.

[23] S. Van Huffel, Iterative algorithms for computing the singular subspace of a matrix associated
with its smallest singular values, Linear Algebra Appl., 154/156 (1991), pp. 675–709.

[24] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Computational Aspects
and Analysis, Frontiers Appl. Math. 9, SIAM, Philadelphia, 1991.

[25] P. Y. Yalamov and J. Y. Yuan, A Successive Least Squares Method for Structured Total
Least Squares, preprint.

[26] T. Yang, Iterative Methods for Least Squares and Total Least Squares Problems, Lic. the-
sis LiU-TEK-LIC-1996-25, Department of Mathematics, University of Linköping, Sweden,
1996.

ON THE CONVERGENCE OF RESTARTED KRYLOV
SUBSPACE METHODS∗

V. SIMONCINI†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 430–452

Abstract. We are interested in the convergence analysis of restarted Krylov subspace iterative
methods for the solution of large nonsymmetric linear systems. Several contributions in the literature
have associated the convergence to some spectral properties of the coefficient matrix, while little work
has been devoted to investigating how the singular values of A may influence the convergence. In this
paper we present new relations that can be used to monitor the behavior of the restarted methods,
especially GMRES, when the coefficient matrix has small (but not tiny) singular values and the
right-hand side has a dominant component onto the corresponding left singular space.

We also present some simple but insightful relations that highlight the dependence of the restarted
schemes on new matrices; moreover, closed forms of the restarted solutions are used to relate the
approximations of the unrestarted and restarted approaches.

Key words. linear systems, restarting, iterative methods, GMRES, full orthogonalization
method

AMS subject classification. 65F10

PII. S0895479898348507

1. Introduction. We are interested in the convergence analysis of restarted
Krylov subspace iterative solvers for the solution of the large linear system of equations

Ax = b, with A ∈ R
n×n, b ∈ R

n.(1.1)

Classical results associate the asymptotic convergence of the unrestarted schemes
to some spectral properties of the coefficient matrix; see, e.g., [23]. More recently,
pseudospectrum has been shown to be useful in characterizing asymptotic convergence
[27], while harmonic Ritz values [21] have been employed to improve the convergence
of the algorithm in a restarted context [18].

Little work has been devoted to investigating if the singular values of A play a
role in the convergence of Krylov subspace methods. The main reason is that Krylov
subspaces do not contain significant information on the singular triplets of A, and
therefore asymptotic results cannot be clearly stated in terms of singular triplets.
Nevertheless, certain singular value distributions provide an interesting setting for
analyzing restarted Krylov subspace methods.

Restarted methods terminate the process after a fixed number of iterations and
then repeat the procedure using the residual of the current approximate solution as
new initial vector. In practice, however, we will see that a restarted Krylov subspace
solver behaves as if the method were not interrupted but continued with a different
approximation criterion. Therefore, as long as the generated global subspace retains
maximum dimension, the behavior of the restarted scheme will not substantially differ
from that of the full (unrestarted) method. The aim of this paper is to analyze the
computation of the restarted quantities in order (i) to identify the quantities that
influence the performance degradation of the restarted methods, and (ii) to compare

∗Received by the editors December 4, 1998; accepted for publication (in revised form) by R.
Freund March 17, 2000; published electronically July 11, 2000. This paper is a revised version of
IAN-CNR Technical Report N. 1093, Istituto di Analisi Numerica, Pavia, Italy, November 1998.

http://www.siam.org/journals/simax/22-2/34850.html
†Istituto di Analisi Numerica - CNR, Via Ferrata, 1 - 27100 Pavia, Italy (val@ian.pv.cnr.it).

430

ON THE CONVERGENCE OF RESTARTED KRYLOV METHODS 431

the performance of different restarted methods in the given setting. To this end, we
first evaluate the dependence of the new starting vector from the last built Krylov
subspace: crucial information is the distance between the starting vectors of two
subsequent restarts. We show that the presence of possibly small (but not tiny)
singular values of A together with a dominant component of b onto the corresponding
left singular space may strongly influence the selection of the new starting vector at
restart time, possibly leading to lack of convergence of the restarted process.

We will theoretically and experimentally show that restarted GMRES [25] is prone
to be influenced by these components and we will see that in certain cases other
methods such as restarted full orthogonalization method (FOM) [22] and restarted
minimum perturbation method (Minpert) [14] are less sensitive.

Then we show how the restarting vector influences the procedures after restarting.
We present some simple but insightful relations that highlight the dependence of the
restarted schemes on the condition number of the generated nonorthogonal basis.
Moreover, new closed forms are given for the restarted solutions of GMRES and FOM
which allow us to explicitly relate the approximations of the restarted and unrestarted
schemes.

The main conclusions from our theoretical and experimental results are summa-
rized below, although a thorough computationally oriented analysis still needs to be
done:

• In order to prevent stagnation in the restarting phase, the quantity that is
minimized by the method (in GMRES, the residual norm) should be appre-
ciably lower than its starting value;
• A new restarting provides improvement in the approximation when the gen-
erated basis is linear independent with respect to the previous basis, unless
ill-conditioning of the generated matrices deteriorates the performance;
• For GMRES and FOM, restarting effects can be monitored at run time so
that dynamic restarting could be implemented.

Krylov subspace methods built on singular value information have been proposed
in the past [16, 17]. However, in these articles, as well as in the analysis of full
GMRES in [4], the coefficient matrix was taken to be almost singular. Under this
assumption, different considerations such as the existence of the approximate solution
need be taken into account. In our analysis crucial singular values have a gap of just
a few orders of magnitude from the rest of the singular value set and the matrix is
far from singular. This setting was found to be particularly interesting in our earlier
experience [14, 26]; however, the results of this paper remain valid in general and
without further assumptions.

The paper is organized as follows. In section 2 we introduce the notion of Krylov
subspace method and we set the notation that will be used throughout the paper. In
section 3 we describe the quantities we use to monitor the behavior of the methods
that will be presented in the subsequent sections: GMRES, FOM, and Minpert. As
a particular case, explicit bounds are given in the appendix for the case in which
the right-hand side b is the left singular vector corresponding to the smallest singular
value of the coefficient matrix. In section 6 and its subsections, results concerning
the restarted methods are given, and considerations on the behavior of the restarted
schemes follow from the results of the previous sections. Numerical experiments val-
idating the theoretical results are summarized in section 7, while further comments
and conclusions are given in section 8.

We would like to mention that whereas the asymptotic behavior of Krylov sub-
space methods has been deeply investigated, the analysis of their restarted counter-

432 V. SIMONCINI

part has only been recently addressed; see, for instance, [13, 12, 7, 23]. The fact that
restarted approaches may lose significant information is a well-known fact [23]; much
recent effort has been devoted to the analysis of ways to restore the lost information
[7, 18, 20, 5]. In section 8 we shall indicate how our analysis fits in this framework. It is
also important to remark that in our work we assume that the convergence difficulties
are primarily due to the effect of restarting and that the full method would converge in
a reasonable (much smaller than n) number of iterations. This assumption is crucial,
since it is well known [11] that full GMRES, for instance, may show extremely slow
convergence irrespectively of the eigenvalue distribution of the coefficient matrix.

2. Preliminaries.

2.1. Restarted Krylov subspace methods. Krylov subspace solvers for lin-
ear systems are iterative techniques based on the construction of the Krylov sub-
space Km(A, r0) = span{r0, Ar0, . . . , Am−1r0}, where r0 = b − Ax0 is the resid-
ual associated with a starting approximate solution x0. An approximate solution
xm ∈ x0 +Km(A, r0) is determined by imposing additional conditions on the residual
rm = b − Axm. From now on and without loss of generality we assume ‖b‖ = 1 and
x0 = 0 so that r0 = b. The method stops when a convergence criterion is satisfied,
usually an inequality involving the residual norm.

In this paper we shall focus on methods that construct an orthogonal basis Vm of
Km(A, r0). Using the Arnoldi process [1], Vm satisfies

AVm = Vm+1Hm, Vm = [v1, . . . , vm] ∈ R
n×m, V �

m Vm = I,(2.1)

and Hm = (hi,j)i=1,m+1;j=1,m upper Hessenberg;‘�’ indicates real transposition. We
also use the square matrix

Hm = [I, 0]Hm ∈ R
m×m

so that we can write AVm = VmHm + hm+1,mvm+1e
�
m. Another important matrix in

our analysis is the matrix Ĥm = [0, I]Hm equivalently defined by

Hm =

[
h�

Ĥm

]
, h ∈ R

m,(2.2)

where h� is the first row of Hm. We will omit the dimension subscript on h since it
is usually clear from the context. We shall always assume that the triangular matrix
Ĥm is nonsingular.

Using the computed basis, the approximate solution is written as xm = Vmym,
where ym is determined by the solution of a smaller problem of sizem; more details on
the specific methods will be given in the next sections. Due to the high cost required
for the orthogonalization process, the scheme might not be continued for an m large
enough that would meet the requested stopping criterion. Therefore, the method is
usually stopped for a reasonably small m and then restarted by constructing the sub-
space Km(A, rm), rm = b − Axm, while the current approximation xm becomes the
starting approximation for the next phase. As a side effect, however, the restarted
process is not always ensured to converge. We are interested in analyzing the depen-
dence of the restarted approach on the restarting vector and on the conditioning of
matrices that are built during the process.

ON THE CONVERGENCE OF RESTARTED KRYLOV METHODS 433

2.2. Notation. Matlab notation for matrices and vectors will be used; (u)i
denotes the ith component of the vector u, while um indicates the mth term in a
vector sequence.

We shall denote by (wi, σi, ui) the singular triplets of A, so that Awi = σiui
and A�ui = σiwi, for i = 1, . . . , n [9]. Throughout the paper we assume that the
coefficient matrix is scaled so that σ1 = O(1); therefore, we shall only refer to the size
of the smallest singular values. We shall use the 2-norm for vectors and the induced
norm for matrices; (wi(X), σi(X), ui(X)) will indicate the ith singular triplet of the
matrix X. The condition number of a full rank rectangular matrix V ∈ R

n×m with
m ≤ n is defined as κ(V) = σ1(V)/σm(V). X

† will indicate the pseudoinverse of a tall
rectangular matrix X, X† = (X�X)−1X�. The vector ei will denote the ith column
of the identity matrix I, whose dimension will be clear from the context. Moreover,
cos θ(x, y) will denote the cosine of the angle between the two vectors x and y; the
dependence on x, y will be omitted when clear from the context. Exact arithmetic
will be assumed throughout the paper. In the following lemma we recall some known
facts.

Lemma 2.1 (see [9]). Let L = L̂+E ∈ R
m×m. Let (wi, σi, ui) and (ŵi, σ̂i, ûi) be

the singular triplets of L and L̂, respectively. Then
(1) For each k = 1, . . . ,m, |σk − σ̂k| ≤ ‖E‖;
(2) Let γi = mink �=i |σi − σk|. The singular vectors satisfy [2]

max (sin θ(ui, ûi), sin θ(wi, ŵi)) ≤ ‖E‖
γi − ‖E‖ .

We shall always assume that γi is such that the upper bound only depends on
‖E‖.

3. The composition of the residual. The residual in the Krylov subspace of
dimension m can be written as

rm = −Vm+1[−e1, Hm]

[
1
ym

]
= v1(1− h�ym)− [v2, . . . , vm+1]Ĥmym,(3.1)

where ym is the solution obtained by the method of choice in the Krylov subspace. If
rm = v1, then the subspace Km(A, rm) ≡ Km(A, v1) is generated after restart, and
the restarting phase is locked. It is nearly locked when rm ≈ v1, that corresponds
to |1 − h�ym| ‖Ĥmym‖. It might well happen that Km(A, rm) ≈ Km(A, v1) even
though rm is very different from v1; however, we shall focus on the case in which the
closeness of the two spaces is highly influenced by the choice of the restarting vector.

In the next sections, for each method analyzed we investigate the composition
of the associated residual in terms of the vector basis, and in particular we give
expressions for v�1 rm. We will show that ‖h‖ and ‖Ĥ−1

m ‖ are key quantities in such
analysis. More precisely, for the GMRES residual we will show that

cos θ(v1, rm) =
1√

1 + ‖Ĥ−�
m h‖2

∀m > 0,

while for the Minpert residual

|v�1 rm| ≤ σmin(Ĥm)
2 ∀m > 0.

Considering that ‖Ĥ−1
m h‖ ≤ ‖Ĥ−1

m ‖ ‖h‖, the projection of the GMRES residual onto

v1 will not decrease for m such that the product ‖Ĥ−1
m ‖ ‖h‖ is small. Our interest is

434 V. SIMONCINI

in the case in which a small value of ‖h‖ is given (from the properties of the linear
system, for instance; see below). In such a case, the projection will depend on the

magnitude of ‖Ĥ−1
m ‖ as m increases. Since ‖Ĥ−1

k ‖ ≤ ‖Ĥ−1
k+1‖ for any k > 0, a value

of m large enough such that ‖Ĥ−1
m ‖ ‖h‖ is sufficiently large can be determined.

The magnitude of h� := v�1 AVm may depend on different factors; moreover, a
small ‖h‖ may arise at later restarts. We shall focus mostly on the case where ‖h‖ is
small due to the presence of small singular values in the coefficient matrix and due to a
large component of b onto the corresponding left singular vectors. When b = un, then
v1 = b implies h� = σnw

�
n Vm and ‖h‖ ≤ σn for any m > 0. A more likely situation

is the one in which b =
∑
i βiui with |βn| |βi|, for i < n, and we again assume that

‖b‖ = 1 so that
∑
i β

2
i = 1. In such a case the projection of b onto the smallest left

singular vector is less than one but dominant, with respect to the projection onto the
rest of the space. Setting v1 = b, we obtain h� = σnβnw

�
n Vm +

∑
i �=n σiβiw

�
i Vm so

that

‖h‖ ≤ σn|βn|+ σ1

√
1− β2

n ∀m > 0.

Hence, when σn is small and |βn| is much larger than the other βi’s, so as to make
the first addend dominant in the right-hand side of the inequality above, we will still
have ‖h‖ � 1. Note that the assumption that σn � σi is crucial for assessing the
magnitude of ‖h‖. Moreover, even if βn is not dominant when starting the process, a
large component of the first basis vector v1 onto un may appear at later restarts (cf.
Example 1 in section 7).

The discussion above easily generalizes to the case of a cluster of small singular
values (cf. Example 2 in section 7).

4. The GMRES approximate solution. In the GMRES algorithm, the solu-
tion vector ym is determined so as to solve the least squares problem [25]

min
y∈Rm

‖β0e1 −Hmy‖,(4.1)

where in our case β0 = ‖r0‖ = 1. In what follows we shall omit β0 when it corresponds
to a unit starting residual norm. The GMRES residual satisfies the Petrov–Galerkin
condition

rGm ⊥ AKm(A, r0).(4.2)

We next show that the projection of the residual onto the first basis vector is
equal to the residual norm.

Proposition 4.1. For any m > 0,

cos2 θ
(
rGm, v1

)
= ‖rGm‖2 =

1

1 + ‖Ĥ−�
m h‖2 .

Proof. Using (3.1), we first show that

v�1 r
G
m =

1

1 + ‖Ĥ−�
m h‖2 , [v2, · · · , vm+1]

�rGm = − 1

1 + ‖Ĥ−�
m h‖2 Ĥ

−�
m h.(4.3)

The GMRES solution is yGm = (H�
mHm)

−1H�
me1. Writing H�

mHm = Ĥ�
mĤm + hh�

and using the Sherman–Morrison formula we get yGm = (1+‖Ĥ−�
m h‖2)−1(Ĥ�

mĤm)
−1h.

The formulas follow from substituting yGm in h�yGm and in Ĥmy
G
m in (3.1).

ON THE CONVERGENCE OF RESTARTED KRYLOV METHODS 435

Let α = ‖Ĥ−�
m h‖2. Then using (4.3)

‖rGm‖2 = (1− h�yGm)2 + ‖Ĥmy
G
m‖2 =

1

(1 + α)2
+

α

(1 + α)2
=

1

1 + α
.

The relation for cos θ
(
rGm, v1

)
follows from combining the result above with

(4.3).
The relation for cos θ

(
rGm, v1

)
is somehow unexpected. Restarting is usually car-

ried out when the residual norm does not decrease sufficiently fast. Proposition 4.1
shows that if the residual norm has not decreased, then the projection of the residual
vector onto the first basis vector v1 is large, and restarting will produce little new
information.

From a practical point of view, this implies that monitoring the residual norm
decrease is also fundamental for restarting purposes. If the residual norm has not
decreased sufficiently before restarting with the new GMRES direction vector, a dif-
ferent restarting vector should be selected; this alternative is explored in Example 2.
Similar strategies were studied in [26].

The following proposition gives a sufficient condition, in terms of the singular
value decomposition of Ĥ−�

m , for ensuring that restarting with rGm will not lead to
stagnation.

Proposition 4.2. Let (ŵm, σ̂m, ûm) be the smallest singular triplet of Ĥm =
[0, I]Hm and let ξm = cos(ŵm, h). Given ε > 0, if for m large enough |ξm|σ̂−1

m ‖h‖ ≥
1√
ε
, then the GMRES residual rGm satisfies

v�1 r
G
m ≤

ε

1 + ε
.(4.4)

Proof. Due to (3.1) and (4.3), the inequality (4.4) corresponds to writing

1

1 + ‖Ĥ−�
m h‖2 ≤

ε

1 + ε
or, equivalently,

1

ε
≤ ‖Ĥ−�

m h‖2.

Let (ŵi, σ̂i, ûi) be the singular triplets of Ĥm. Then

‖Ĥ−�
m h‖2 =

m∑
i=1

(ŵ�
i h)

2

σ̂2
i

≥ (ŵ�
mh)

2

σ̂2
m

= ξ2m
‖h‖2
σ̂2
m

.

Therefore, if σ̂2
m ≤ εξ2m‖h‖2, it follows that ‖Ĥ−�

m h‖2 ≥ ξ2mσ̂
−2
m ‖h‖2 ≥ 1

ε .

Roughly speaking, Proposition 4.2 shows how much the product ‖Ĥ−1
m ‖ ‖h‖ in-

fluences the projection of the residual onto v1. For m such that the product σ̂−1
m ‖h‖

is less than one, the bound in (4.4) may be close to one. Such a situation is reported
in Figure 4.1, for the first example in section 7 with right-hand side b = un(A) so that

‖h‖ ≤ σn. In the figure, we show the dependence of the residual on σ̂−1
m ≡ ‖Ĥ−1

m ‖:
the GMRES residual starts decreasing when m is large enough so that σ̂−1

m ≥ σ−1
n .

We next provide an estimate of the distance between the approximate solution at
step m and the (zero) starting approximate solution. In order to do so, we define the

triangular matrix Lm := [−e1, Hm]. The matrix Lm is singular if and only if Ĥm is
singular and satisfies [14]

[A,−b]
[
en+1,

[
Vm
0

]]
= Vm+1Lm(4.5)

436 V. SIMONCINI

0 10 20 30 40 50 60
10

15

10
10

10
5

10
0

10
5

10
10

10
15

Krylov subspace dimension

m
a

g
n

it
u

d
e

||H^
m
1 ||

σ
n
1

||r
m

||

Fig. 4.1. Example 1. Convergence history of GMRES (solid line) as the Krylov subspace

dimension increases. Also plotted are σmin(A)
−1 and ‖Ĥ−1

m ‖ as m increases.

so that σmin(Lm) → 0 as m → n. Of interest is the fact that Lm can be written as
perturbation of a triangular matrix with one known singular triplet, that is

Lm =

[−1 0

0 Ĥm

]
+

[
0 h�

0 0

]
=: L̂+ E,(4.6)

where ‖E‖ = ‖h‖ and observe that (e1, 1,−e1) is a singular triplet of L̂. From
Lemma 2.1 there exists k such that |σk(Lm)− 1| ≤ ‖E‖. Using the next proposition,
we can infer that the case k = m + 1 corresponds to almost stagnation of GMRES,
when ‖h‖ is small.

Proposition 4.3. Let xGm be the GMRES approximate solution in Km(A, r0).
Then

cos θ
(
[xGm; 1], en+1

) ≥ σmin(Lm)

‖rGm‖
.

Proof. Since ‖[xGm; 1]‖ = ‖[1; yGm]‖, cos θ = (1+‖yGm‖2)−1/2. The GMRES problem
can be formulated as the augmented system

[
L�
mLm e1
e�1 0

] [
t
η

]
=

[
0
1

]
,

from which it follows that[
1
yGm

]
=

1

‖L−�
m e1‖2

L−1
m L−�

m e1 so that
√
1 + ‖yGm‖2 ≤

‖L−1
m ‖

‖L−�
m e1‖

.

The result follows from noticing that ‖L−�
m e1‖2 = 1 + ‖Ĥ−�

m h‖2 and from using
Proposition 4.1.

Although σmin(Lm) is always not greater than ‖rGm‖ [14], the bound in Propo-
sition 4.3 shows that there must be a gap between σmin(Lm) and ‖rGm‖ in order to
improve the approximate solution xGm.

ON THE CONVERGENCE OF RESTARTED KRYLOV METHODS 437

5. Two other approaches.

5.1. The full orthogonalization method (FOM) approximate solution.
In the full orthogonalization method (FOM) [23] the approximate solution ym ∈ R

m

solves the linear system Hmy = β0e1. This is equivalent to imposing the following
Galerkin condition on the residual [23]:

rFm ⊥ Km(A, r0).(5.1)

Such a condition should be compared to the GMRES Petrov–Galerkin condition in
(4.2). The vector ym is well defined for Hm nonsingular; the singularity of Hm

corresponds to exact stagnation of GMRES. A detailed matrix analysis of (full) FOM
and GMRES has been done in [3, 6]; see also [28, 10].

In a restarted context, the two methods may differ substantially, because the
Galerkin property ensures that rFm ⊥ v1 so that at each restart a completely new
direction vector is taken. However, lack of stagnation in the restarting phase of
FOM does not necessarily imply convergence of the restarted process; as a result, the
residual norm of restarted FOM may oscillate endlessly. In section 6.2 we analyze the
quantities that may influence the degradation of the restarting process.

5.2. The minimum perturbation approximate solution. In [14] a new
Krylov subspace method called Minpert was developed. Borrowing the idea from
the total least squares theory, the approximate solution xMm ∈ x0 + Km(A, r0) is
computed so as to solve the following problem:

min
xm∈x0+Km(A,r0)

‖[∆A,∆b]‖F , subject to (A−∆A)xm = b+∆b.(5.2)

Here ‖ · ‖F indicates the Frobenius norm. Therefore, xMm is the closest approximation
in x0 + Km(A, r0) in a backward error sense. We shall again assume x0 = 0. The
problem can be formulated as follows [14, 26]:

min
z∈Gm
‖z‖=1

‖[A,−b]z‖, Gm = span

{
en+1,

[
Vm
0

]}
.

The approximate solution is then computed as xMm = (z)1:n/(z)n+1. Using (4.5), the
problem transforms into

min
w∈Rm+1

‖w‖=1

‖Lmw‖

so that

yMm =
1

(wm+1)1
(wm+1)2:m+1, xMm = Vmy

M
m , rMm =

σm+1

(wm+1)1
Vm+1um+1,(5.3)

where (wm+1, σm+1, um+1) is the smallest singular triplet of Lm; the achieved con-
strained minimum is ‖[∆A,∆b]‖F = σmin(Lm). The procedure is then restarted by
generating the Krylov subspace Km(A, r

M
m). It was shown in [14, 26] that in some

problems this approach may be more effective than restarted GMRES.
A necessary condition for the approximate solution to exist is that (wm+1)1 �= 0.

On the other hand, if wm+1 ≡ e1, then the solution exists but the method stagnates,
since yMm = 0. If h = 0 the first row of Lm is e�1 ; therefore, the Minpert solution

438 V. SIMONCINI

may be either zero or undefined, depending on whether wm+1 = e1 or wm+1 �= e1,
respectively [26].

The case 0 < ‖h‖ � 1 provides a less pessimistic picture. We start by showing
that exactly as in GMRES (cf. Proposition 4.1), the quantity v�1 r

M
m depends on the

value which is actually minimized by the method.
Proposition 5.1. For any m > 0, v�1 r

M
m = σmin(Lm)

2. Moreover, given ε > 0,

if σm(Ĥm) ≤
√
ε, then v�1 r

M
m ≤ ε.

Proof. Let (w, σ, u) be the smallest singular triplet of Lm. From (3.1) we have
v�1 r

M
m = 1− h�yMm . The solution yMm is written as in (5.3); therefore, we have

[−e1, Hm]

[
1
yMm

]
=

σ

(w)1
u

so that Hmy
M
m = e1 +

σ
(w)1

u and h�yMm = 1 + σ
(w)1

(u)1. From L�
mu = σw we also

have −(u)1 = σ(w)1 from which h�yMm = 1 − σ2. Moreover, we have σm+1(Lm)
2 ≤

σm(Ĥm)
2 ≤ ε from which the second bound follows.

Referring to Figure 4.1 and comparing to Proposition 4.2 for GMRES, the Minpert
method may compute a better restarting vector than GMRES for m < 20, since in
such a case, σn ≤ σm(Ĥm) < 1.

In the next proposition we evaluate the angle between the Minpert residual and
the first basis vector v1. We show that if σmin(Lm) is sufficiently smaller than one,
then restarting with rMm will not lead to stagnation.

Proposition 5.2. Let Lm = L̂m + E and k be such that |σk(Lm)− 1| ≤ ‖E‖ ≡
‖h‖. Let rMm be the Minpert residual. If k < m+ 1, then

∣∣cos θ (v1, rMm)∣∣ ≤ δ√
1− δ2 with δ = O(‖h‖).

Proof. Let (w, σ, u) be the smallest singular triplet of Lm and note that | cos θ| =
|(u)1|. Using (4.6), Lemma 2.1 ensures that there exists k such that the left singular
vector uk of Lm satisfies

cos2 θ(uk, e1) ≡ |(uk)1|2 ≥ 1− ‖E‖2
(γk − ‖E‖)2 , ‖E‖ = ‖h‖.(5.4)

Therefore, we can write uk =
√
1− δ2e1 + δq, ‖q‖ = 1, e�1 q = 0. For k < m + 1,

0 = u�k u =
√
1− δ2e�1 u + δq�u so that |(u)1| = δ(1 − δ2)−1/2|q�u| ≤

δ(1− δ2)−1/2.
In [14] a detailed analysis of Minpert was provided and comparison results with

GMRES were proved. Here we show that the Minpert approximate solution can also
be related to the FOM approximate solution.

Proposition 5.3. Let yMm = (H�
mHm−σ2I)−1H�

me1 and let yFm = H
−1

m e1 be the
Minpert and FOM solutions, respectively, with σ = σm+1(Lm). Then

‖yMm − yFm‖
‖yMm ‖

≤ max(σ2, |h2
m+1,m − σ2|)

σmin(Hm)2
,

where hm+1,m = e�m+1Hmem.

Proof. We note that H�
m(e1)1:m+1 = H

�
m(e1)1:m. Therefore,

(H�
mHm − σ2I)yMm = H

�
mHmy

F
m,

and H
�
mHm(y

M
m −yFm) = (σ2I−h2

m+1,meme
�
m)y

M
m , from which the result follows.

ON THE CONVERGENCE OF RESTARTED KRYLOV METHODS 439

The bound of Proposition 5.3 suggests that the two approximate solutions will be
very different when σmin(Hm) is much less than 1, that is, when the FOM solution
is ill-conditioned.

6. Restarting the process. In this section we show how the selection of the
new direction influences the performance of the restarted process. To simplify the
presentation we shall only work on the first restart, although analogous considera-
tions can be derived for later restarts. All variables that change with restart will be

equipped with a superscript: V
(k)
m indicates the Krylov orthogonal basis at the kth

restart; k = 0 corresponds to the very first Arnoldi process (before the first restart).
To avoid indexing overwhelming, we omit the superscript that qualifies the method
when restarting is also indicated.

All methods we have introduced determine the residual after m iterations as
rm = Vm+1g for some g ∈ R

m+1 and then generate a new Krylov subspaceKm(A, rm).
The subspace generated after one restart is span{v1, . . . , vm, rm, Arm, . . . , Am−1rm}
and we have

span{v1, . . . , vm, rm, Arm, . . . , Am−1rm} ⊆ span{v1, . . . , vm, . . . , v2m},(6.1)

where span{v1, . . . , vm, . . . , v2m} is the subspace of dimension 2m generated by the
method with the same starting vector without restarting. Note that the firstm orthog-
onal vectors are the same, and that the two subspaces in (6.1) coincide if v�m+1rm �= 0,
while strict inclusion appears otherwise. In exact arithmetic, restarted FOM generates
the entire subspace span{v1, . . . , v2m}, since rm and vm+1 are collinear.

The effectiveness of the restarted approach will first depend on how well the entire
subspace K2m(A, rm) is approximated by the subspace generated with restarting.
Second, it may depend on the generation of new quantities after restart, that may
lead to more ill-conditioned computation than in the unrestarted process.

Here and in what follows we use the term global subspace to indicate the subspace
generated as a sum of Krylov subspaces in the restarting process. A complete subspace
will instead denote the subspace generated without restarting. Moreover, while we
can assume that the dimension of a complete subspace coincides with the number of
processed Arnoldi vectors {v1, v2, . . . , vk}, the dimension of the global subspace will
in general be less than or equal to the total number of constructed Arnoldi vectors.

6.1. Restarted GMRES. In this section we show that the updated GMRES
solution after one restart can be written in closed form as the solution of a least
squares problem in R

2m with a nonorthogonal basis.
We start by showing that an Arnoldi–type relation in R

2m×2m holds for the
restarted process. The relation can be easily verified by comparing the two sides of
the equality.

Lemma 6.1. Let V
(0)
m = [v

(0)
1 , . . . , v

(0)
m] be the orthogonal basis for Km(A, b) and

rGm = V
(0)
m+1g be the GMRES residual in Km(A, b) with g = e1 −H(0)

m (H
(0)
m)†e1. Also

let V
(1)
m = [v

(1)
1 , . . . , v

(1)
m] be the orthogonal basis for Km(A, r

G
m). Then

A[V (0)
m , V (1)

m] = [V
(0)
m+1, v

(1)
2 , . . . , v

(1)
m+1]N2m, N2m =

[
H

(0)
m

g
‖g‖ (h

(1))�

0 Ĥ
(1)
m

]

with (h(1))� = e�1 H
(1)
m and Ĥ

(1)
m = [0, I]H

(1)
m .

Other constructions would be possible, although this definition of N2m made
simple the derivation of an explicit form for the restarted solution.

440 V. SIMONCINI

Proposition 6.2. Let V
(0)
m and V

(1)
m be as above. Then the GMRES restarted

solution can be written as x
(1)
m = V

(0)
m y

(0)
m + V

(1)
m y

(1)
m = [V

(0)
m , V

(1)
m]z with z = N†

2me1.
That is, z solves the least squares problem

min
z∈R2m

‖e1 −N2mz‖.

Proof. We have y
(0)
m = (H

(0)
m)†e1 and y

(1)
m = (H

(1)
m)†(‖rGm‖e1). By direct calcula-

tion, we find

[
z1
z2

]
= (N�

2mN2m)
−1N�

2me1 =

[
((H

(0)
m)�H(0)

m)−1(H
(0)
m)� 0

((Ĥ
(1)
m)�Ĥ(1)

m + h(1)(h(1))�)−1h(1) g
�

‖g‖ ∗

]
e1.

It readily follows that z1 = y(0). Noticing that g�

‖g‖e1 = (1−(h(0))�y(0))/‖rGm‖ = ‖rGm‖,
it also follows that z2 = y

(1)
m .

Corollary 6.3. Let V
(0)
m and V

(1)
m be as above and let V2m+1 = [V

(0)
m+1, v

(1)
2 , . . . ,

v
(1)
m+1], S2m+1 = V �

2m+1V2m+1, and R2m = V �
2m[V

(0)
m , V

(1)
m]. If V2m+1 is full rank, then

N2m = S−1
2m+1H2mR2m and

‖r(1)m ‖ ≤ κ(V2m+1) ‖rG2m‖,(6.2)

where rG2m is the GMRES residual obtained in K2m(A, b). Moreover,

cos θ(rG2m, r
(1)
m) =

‖rG2m‖
‖r(1)m ‖

.(6.3)

Proof. The restarted solution is computed so as to minimize ‖e1 − N2mz‖. On

the other hand, ‖r(1)m ‖ = ‖V2m+1(e1 −N2mz)‖ ≤ ‖V2m+1‖ ‖e1 −N2mz‖, and we have

min
z
‖e1 −N2mz‖ ≤ ‖S−1

2m+1‖min
z
‖e1 −H2mR2mz‖ = ‖S−1

2m+1‖min
y
‖e1 −H2my‖.

Noticing that ‖S−1
2m+1‖ ‖V2m+1‖ = κ(V2m+1), the bound (6.2) follows. We have

(rG2m)
�r(1)m = (e1 −H2my)

�V �
2m+1V2m+1(e1 −N2mz)

= (e1 −H2my)
�S2m+1(e1 −N2mz)

= e�1 S2m+1e1 − e�1 S2m+1N2mz − y�H�
2mS2m+1e1 + y�H�

2mS2m+1N2mz

= 1− e�1 H2mR2mz − y�H�
2mS2m+1e1 + e�1 H2mR2mz

= 1− y�h = ‖rG2m‖2,
where we have used S2m+1e1 = e1. The relation for cos θ immediately follows.

Note that the two matrices S2m and R2m only differ in the m+ 1st column.
The bound (6.2) shows that the norm of the residual after one restart may be

much larger than the optimal residual norm generated in the complete subspace by
full GMRES, if the basis V2m+1 is ill-conditioned. On the other hand, (6.3) says
that if the global basis is well conditioned, the two residuals are very close, also in
terms of direction. This shows that in this case iterating the restarted procedure with
that value of m does not deteriorate the performance of the process, with respect,
for instance, to restarting after 2m iterations. Intuitively, this result shows that if

ON THE CONVERGENCE OF RESTARTED KRYLOV METHODS 441

m large enough is determined so that a good restarting vector can be constructed,
then a larger value of m is unnecessary. Clearly, the problem of selecting a good m
is encountered at each restarting phase, suggesting that a dynamic selection of the
subspace dimension could be a good strategy to optimize the computational cost. In
other words, if a maximum of mmax basis vectors can be stored, then m = mmax may
be necessary in just a few cases, whereas most restarting phases may need m < mmax

basis vectors in order to effectively improve the approximation while providing a good
new restarting vector; this strategy would allow us to lower the computational cost
of the overall process.

Bounds similar to (6.2) have been determined for other nonorthogonal quasi-
minimization procedures [8, 10], such as a truncated version of GMRES [23]. A

discussion on the subspace V2m, the restarting effects and relations between r
(1)
m and

rG2m, can be found in [7].

The nonorthogonal basis [V
(0)
m , V

(1)
m] becomes ill-conditioned if the projection of

the new starting vector v
(1)
1 onto the old space V

(0)
m is too large. We have shown in

the previous section that this may be the case when ‖h‖ � 1. The basis [V
(0)
m , V

(1)
m]

will certainly lose rank if (v
(1)
1)�v(0)

m+1 = 0; a lower bound for (v
(1)
1)�v(0)

m+1 is given
next.

Proposition 6.4. With the notation above, we have

cos2 θ(v
(1)
1 , v

(0)
m+1) ≥

σ2
min(H

(0)

m)

(h
(0)
m+1,m)

2 + σ2
min(H

(0)

m)
.

Proof. Recall that v
(1)
1 = |rm|/‖rm‖. Since all terms refer to the first Arnoldi

process, we shall drop the restart superscript. Let ū be the unit null vector of H�
m.

Then rm = Vm+1(e1 − HmH
†
me1) = (ū)1Vm+1ū so that |rm|/‖rm‖ = |Vm+1ū| and

cos2 θ = (ū)2m+1. Moreover, 0 = H�
mū = H

�
m(ū)1:m + hm+1,mem(ū)m+1. Therefore, if

(ū)1:m = 0, then cos θ = 1, otherwise

σmin(Hm) = min
x∈Rm

‖H�
mx‖
‖x‖ ≤ ‖H

�
m(ū)1:m‖
‖(ū)1:m‖ =

|(ū)m+1| |hm+1,m|√
1− |(ū)m+1|2

.

Collecting all terms and comparing with cos θ, the result follows.
The bound shows that ill-conditioning of the global basis may result from the

ill-conditioning of H
(0)

m , unless convergence is approached (small |h(0)
m+1,m|).

6.2. Restarted FOM. In this section we show that an Arnoldi-type relation
can be exploited to relate the restarted version of FOM to the complete approach.

Lemma 6.5. Let V
(0)
m = [v

(0)
1 , . . . , v

(0)
m] be the Arnoldi basis for Km(A, b) and let

rFm be the FOM residual in Km(A, b). Let also V
(1)
m = [v

(1)
1 , . . . , v

(1)
m] be the Arnoldi

basis for Km(A, r
F
m). Then span{[V (0)

m , V
(1)
m]} = K2m(A, b), and

A[V (0)
m ,−V (1)

m] = [V (0)
m ,−V (1)

m+1]M2m,(6.4)

where (M2m)1:m+1,1:m := H
(0)
m and (M2m)m:2m+1,m+1:2m := H

(1)
m .

Proof. We have AV
(0)
m = V

(0)
m+1H

(0)
m and AV

(1)
m = V

(1)
m+1H

(1)
m . Using the fact

that v
(1)
1 = rFm/‖rFm‖ = −v(0)

m+1, the result follows from explicitly writing A[V
(0)
m ,

−V (1)
m].

442 V. SIMONCINI

The representation matrix M2m is upper Hessenberg and has the following form:

M2m =

x x x
x x x

x x
x x x x

x x x
x x

x

.

This pattern highlights the fact that the restarted procedure is simply a particular
way of truncating the full orthogonalization scheme. A common truncation strategy is
the incomplete orthogonalization method (IOM(m)), where the corresponding matrix
has banded Hessenberg form [23].

Proposition 6.6. The FOM approximate solution after one restart can be writ-
ten as

x(1)
m = V (0)

m y(0)
m + V (1)

m y(1)
m = [V (0)

m ,−V (1)
m]z with z =M

−1

2me1,

where M2m = [I, 0]M2m.

Proof. We have y
(0)
m = (H

(0)

m)−1e1 and y
(1)
m = (H

(1)

m)−1(‖rFm‖e1). Note that

‖rFm‖ = |h(0)
m+1,me

�
my

(0)
m |. The system M2mz = e1 can be written as

[
H

(0)

m 0

h
(0)
m+1,me1e

�
m H

(1)

m

] [
z1
z2

]
= e1.

The first block row gives z1 = (H
(0)

m)−1e1 = y
(0)
m . The second block row givesH

(1)

m z2 =

−h(0)
m+1,me1e

�
mz1, so that x

(1)
m = V

(0)
m y

(0)
m + V

(1)
m y

(1)
m = [V

(0)
m ,−V (1)

m]z.

The distance between the two residuals r
(1)
m and rF2m is simply measured by the

angle between the last orthogonal vectors of the bases V
(1)
m+1 and V2m+1, that is,

cos θ
(
rF2m, r

(1)
m

)
= v�2m+1v

(1)
m+1,

measuring how far the last generated basis vector is from the latest vector of the fully
orthogonal basis.

The relation with the FOM solution xF2m = V2mH
−1

2me1 can be made more explicit.
We first need the following lemma, which relates the representation matrices of the
restarted and unrestarted processes.

Lemma 6.7. Let V
(0)
m = [v

(0)
1 , . . . , v

(0)
m] and V

(1)
m = [v

(1)
1 , . . . , v

(1)
m] be as in Propo-

sition 6.5 and let S2m = V �
2m[V

(0)
m ,−V (1)

m] be nonsingular. Then H2m = S2m+1M2mS
−1
2m

and

H2m = S2mM2mS
−1
2m + h

(1)
m+1,m(S2m)

−1
2m,2mse

�
2m,

where s = −V �
2mv

(1)
m+1.

Proof. The relation for H2m follows from comparing (2.1) and (6.4). The relation
for H2m follows from explicitly writing

H2m = [S2m, s]

[
M2m

h
(1)
m,m+1e

�
2m

]
S−1

2m.

ON THE CONVERGENCE OF RESTARTED KRYLOV METHODS 443

Note that the matrices H2m and S2mM2mS
−1
2m only differ in the last column.

Proposition 6.8. With the notation of Lemma 6.7, let q = [V
(0)
m ,−V (1)

m]·
M

−1

2mS
−1
2ms. Let also α1 = h

(1)
m+1,m(z)2m with |α1| = ‖r(1)m ‖, where z = M

−1

2me1 is

the restarted FOM solution, and let α2 = 1 + h
(1)
m+1,me

�
2mM

−1

2mS
−1
2ms. Then

x(1)
m = xF2m +

α1

α2
q,(6.5)

‖x(1)
m − xF2m‖ ≤

‖r(1)m ‖
|α2| κ([V

(0)
m ,−V (1)

m])‖M−1

2m‖ ‖s‖.(6.6)

Proof. Let τ = h
(1)
m+1,m/(S2m)2m,2m and observe that S2me1 = e1. Let us drop

the subscripts and apply the Sherman–Morrison formula to H so as to obtain

H
−1
e1 = SM

−1
S−1e1 − τSM−1

S−1s
(
1 + τe�2mSM

−1
S−1s

)−1

e�2mSM
−1
S−1e1

= SM
−1
e1 − h(1)

m+1,mSM
−1
S−1s

(
1 + h

(1)
m+1,me

�
2mM

−1
S−1s

)−1

e�2mM
−1
e1

= SM
−1
e1 − α1

α2
SM

−1
S−1s.

Therefore,

xF2m = V2mH
−1
e1

= [V (0)
m ,−V (1)

m]M
−1
e1 − α1

α2
[V (0)
m ,−V (1)

m]M
−1
S−1s = x(1)

m −
α1

α2
q.

The solution xF2m can be recovered from (6.5) for S2m+1 = I; in such a case indeed
s = 0, and therefore q = 0. In general, ‖s‖ ≤ 1. A relative bound for the difference
between the two residuals can be easily obtained from (6.6) as

‖r(1)m − rF2m‖
‖r(1)m ‖

≤ ‖A‖|α2| κ([V
(0)
m ,−V (1)

m])‖M−1

2m‖ ‖s‖.(6.7)

As in restarted GMRES, the condition number of the basis enters in the bound,
whereas ‖A‖ is around one, by assumption. While it is difficult to evaluate the role
of α2, it is clear that the estimates in (6.6) and (6.7) are influenced by the magnitude

of ‖M−1

2m‖, and our experiments confirmed that its magnitude strongly affects the
restarted approach (cf. Example 3, section 7). Using the definition of M2m we can
write

M
−1

2m =

[
(H

(0)

m)−1 0

−hm+1,m(H
(1)

m)−1e1e
�
m(H

(0)

m)−1 (H
(1)

m)−1

]

so that

‖M−1

2m‖ ≥ max
{
‖(H(0)

m)−1‖, ‖(H(1)

m)−1‖, |hm+1,m| ‖(H(1)

m)−1e1‖ ‖e�m(H
(0)

m)−1‖
}
.

Therefore, the conditioning of the restarted representation matrix M2m is as large as
that of each restarting m ×m representation matrix; in fact, it could be as large as
their product.

444 V. SIMONCINI

6.3. Restarted Minpert. As for the previous methods, an Arnoldi-like relation
can be deduced for restarted Minpert. Unfortunately, due to the derivation of the
solution which involves a nonlinear problem, the approximate solution cannot be
written explicitly. For the sake of completeness, we report below the matrix relation
similar to that proved for restarted GMRES and restarted FOM.

Proposition 6.9. Let V
(0)
m = [v

(0)
1 , . . . , v

(0)
m] be the Arnoldi basis for Km(A, b)

and let rMm be the Minpert residual in Km(A, b). Also let V
(1)
m = [v

(1)
1 , . . . , v

(1)
m] be the

Arnoldi basis for Km(A, r
M
m). Then span{[V (0)

m , V
(1)
m]} ⊆ K2m(A, b), and

A[V (0)
m , V (1)

m] = [V
(0)
m+1, v

(1)
2 , . . . , v

(1)
m+1]T2m, T2m =

[
H

(0)
m ςu (h(1))�

0 Ĥ
(1)
m ,

]
,(6.8)

where u = um+1(L
(0)
m) and ς =sgn((u)1).

Proof. Let (w, σ, u) be the smallest singular triplet of L
(0)
m . We have rMm =

−σ/(w)1V (0)
m+1u, that is, rMm is a linear combination of the basis elements, so that

the first assertion follows. Since −σ/(w)1 = σ2/(u)1, using the fact that v
(1)
1 =

rMm /‖rMm ‖, we have v(1)
1 = ςV

(0)
m+1u. The remaining result follows from forming A[V

(0)
m ,

−V (1)
m].

Corollary 6.10. Let V
(0)
m and V

(1)
m be as above and let V2m+1 = [V

(0)
m+1, v

(1)
2 , . . . ,

v
(1)
m+1], S2m+1 = V �

2m+1V2m+1, and R2m = V �
2m[V

(0)
m , V

(1)
m]. If V2m+1 is full rank, then

T2m = S−1
2m+1H2mR2m.

Note that the triangular matrices S2m+1 and R2m are not in general the same as
those of restarted GMRES in Corollary 6.3.

The matrix T2m in (6.8) can only be formed once the singular value problem with

L
(0)
m has been solved; therefore, a closed form for the restarted solution cannot be

derived.

7. Numerical experiments. In this section we provide additional numerical
evidence of the theoretical results presented in the paper. In the description below,
GMRES(m) stands for restarted GMRES with maximum Krylov subspace dimension
equal to m; analogous notation is used for the other methods. In all tests we set
x0 = 0. All tests were done with Matlab 5.2 [15] on a Sun workstation.

Indefiniteness of the coefficient matrix is a possible additional bottleneck for
Krylov subspace methods, as convergence may slow down. For this reason, we will
only show experiments with positive definite matrices.

Example 1. The matrix in this test comes from the discretization via centered
finite differences of the problem [14]

(−e−xyux)x + (−exyuy)y + 10(ux + uy)− 60u = f

with Dirichlet zero boundary conditions on the unit square. The resulting non-
symmetric matrix has size n = 100 and smallest singular values σ99 = 1.1982e −
01, σ100 = 8.4646e − 03. The plots shown in previous sections described the perfor-
mance of the methods with right-hand side b = un.

Here we report on the convergence history of the methods for different right-hand
side selections:

• Random entries. We consider b having random entries uniformly distributed
in [0, 1]. In Figure 7.1(left) the composition of b in terms of left singular

ON THE CONVERGENCE OF RESTARTED KRYLOV METHODS 445

0 10 20 30 40 50 60 70 80 90 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

component

m
a
g
n
it
u
d
e

0 50 100 150 200 250
10

10

10
8

10
6

10
4

10
2

10
0

10
2

GMRES(10)

MinPert(10)

FOM(10)

Global subspace generated

n
o

rm
 o

f
re

la
ti
v
e

 r
e

s
id

u
a

l

Fig. 7.1. Example 1. Left: composition of the right-hand side in terms of singular vectors.
Right: convergence history of the methods.

vectors of the coefficient matrix is depicted; note that this selection provides
a very large component onto the critical singular vector, that is, the one
corresponding to the smallest singular value. Figure 7.1(right) reports on
the performance of the methods for m = 10 versus the number of vectors

generated in the global subspace span{[V (0)
m , V

(1)
m , V

(2)
m , . . .]} =span{Vkm}.

In Figure 7.2 we report on the convergence history of the restarted approaches
for different values of m; on the right of each plot, another plot depicts the di-

mension growth of the global subspace span{[V (0)
m , V

(1)
m , V

(2)
m , · · ·]} generated

during the restarted procedure; this is measured using the Matlab function
rank(Vkm, 10−12) [15]. The connection between loss of rank of the gener-
ated basis and the stagnation of the restarted process is evident in GMRES.
Note also that the dimension of the global subspace in restarted FOM and
restarted Minpert is much closer to the full dimension mk after k − 1 ≥ 0
restarts, especially for m = 10.
• b = u80. In this test we consider b = u80. The convergence history of the
methods for m = 10 is shown in Figure 7.3(left). After five restarts, both
GMRES and Minpert show stagnation. Then, Minpert is able to recover
while GMRES is not. The residual norm of FOM rapidly and monotonically
decreases. Even if not present at the beginning, the projection onto u100

appears at later restarts: the projection of the restarting vector onto u100 is
shown in Figure 7.3(right) for all methods. After five restarts, the convergence
history behaves as if the right-hand side had a dominant component onto u100,
as in the previous case; therefore, similar considerations apply.

Concerning the first selection of a right-hand side, we remark that had one chosen
a random right-hand side with entries normally distributed (Matlab function randn,
for instance), the projection onto un would not have been so large. This phenomenon
should be related to the fact that the coefficient matrix is a discretization of a differ-
ential operator. The selection of the right-hand side in testing iterative solvers is an
important problem that deserves a separate analysis.

446 V. SIMONCINI

0 10 20 30 40 50 60 70 80 90 100
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

m=10

m=20

m=30

number of generated vectors of the global subspace

n
o
rm

 o
f
re

la
ti
v
e
 r

e
s
id

u
a
l

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

m=10

m=20

m=30

number of generated vectors of the global subspace

ra
n

k
 o

f
g

e
n

e
ra

te
d

 b
a

s
is

0 10 20 30 40 50 60 70 80 90 100
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

m=30

m=20

m=10

number of generated vectors of the global subspace

n
o
rm

 o
f
re

la
ti
v
e
 r

e
s
id

u
a
l

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

m=30
m=20

m=10

number of generated vectors of the global subspace

ra
n

k
 o

f
g

e
n

e
ra

te
d

 b
a

s
is

0 10 20 30 40 50 60 70 80 90 100
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

m=10

m=20

m=30

number of generated vectors of the global subspace

n
o
rm

 o
f
re

la
ti
v
e
 r

e
s
id

u
a
l

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

m=10

m=20

m=30

number of generated vectors of the global subspace

ra
n

k
 o

f
g

e
n

e
ra

te
d

 b
a

s
is

Fig. 7.2. Example 1. Relation between convergence and global basis rank for restarted GMRES,
Minpert, and FOM (from top to bottom, respectively). Left: Convergence history of each method
for m = 10, 20, 30. Right: dimension of global subspace for m = 10, 20, 30.

Example 2. We analyze the behavior of the restarted methods when A has two
small singular values and the right-hand side has a large component onto the corre-
sponding left singular space. Using the matrix A from Example 1, we define A1 :=
A−u99.11w

�
99 with smallest singular values σ99 = 9.815e−03, σ100 = 8.4646e−03. We

set b = b̃/‖b̃‖, where b̃ = u99−u100. In Figure 7.4(left) the convergence history of the
restarted approaches is reported for m = 15. The convergence history of GMRES(20)
is also plotted. Convergence for m = 20 is expected: indeed, Figure 7.4(right) reports

the residual norm and ‖Ĥ−1
m ‖ as done in Figure 4.1. The plot shows that after 20

ON THE CONVERGENCE OF RESTARTED KRYLOV METHODS 447

0 50 100 150 200 250 300 350
10

9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

GMRES(10)

FOM(10)

Minpert(10)

Global subspace generated

n
o

rm
 o

f
re

la
ti
v
e

 r
e

s
id

u
a

l

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GMRES(10)

Minpert(10)

number of restarts

|c
o

s
 θ

 (
 r

m(k
)
,

u
n
)

|

FOM(10)

Fig. 7.3. Example 1. Left: convergence history of the restarted methods for m = 10 and

b = u80. Right: values of | cos θ(r(k)m , un)| at restart k for each method.

iterations ‖Ĥ−1
m ‖ ≥ σ−1

n−1 so that, according to Proposition 4.2, the projection onto
the first basis vector becomes less dominant and restarting will not lead to stagnation,
at least during the first restart.

In Figure 7.5 we also show the convergence history of GMRES(15) when at the
first restart the GMRES residual is replaced by the FOM residual; the next subspace
is thus built with that vector as starting direction. Note that after that, GMRES(15)
converges very satisfactorily. Similar considerations were done in [26]. This exam-
ple shows that missing the good very first restarting direction may have disastrous
effects.

0 100 200 300 400 500 600 700 800
10

10

10
8

10
6

10
4

10
2

10
0

10
2

GMRES(15)

FOM(15)

Minpert(15)

Global subspace generated

n
o

rm
 o

f
re

la
ti
v
e

 r
e

s
id

u
a

l

GMRES(20)

0 5 10 15 20 25 30 35 40 45 50 55
10

10

10
5

10
0

10
5

10
10

σ
n1
1

||H
^

m
1 ||

||r
m

||

Krylov subspace dimension

Fig. 7.4. Example 2. Left: Convergence history of restarted GMRES, Minpert, and FOM.

Right: Relation between GMRES residual norm and ‖Ĥ−1
m ‖.

448 V. SIMONCINI

0 50 100 150 200 250 300 350 400 450
10

10

10
8

10
6

10
4

10
2

10
0

10
2

Global subspace generated

n
o

rm
 o

f
re

la
ti
v
e

 r
e

s
id

u
a

l

GMRES(15)

GMRES(15)+FOM

Fig. 7.5. Example 2. Convergence of restarted GMRES. GMRES(15) stagnates whereas simply
switching to FOM at the very first restart makes the algorithm converge.

Example 3. We consider the elliptic problem associated with the operator

L(u) = −∆u+ 2e2(x
2+y2)ux − 10u

and Dirichlet boundary conditions in [0, 1] × [0, 1]. We consider the centered fi-
nite differences discretization that leads to the matrix A ∈ R

100×100; tests were
run with the matrix Ã = A − .1I with smallest singular value σmin(Ã) = 1.208 ·
10−2. Figure 7.6 shows the convergence history of the restarted methods with b =
u100(Ã). The convergence curve of full FOM is also reported. The condition number

κ([V
(0)
m , V

(1)
m , V

(2)
m , . . .]) of the global basis generated by FOM(m) and Minpert(m)

grows very quickly: for restarted FOM the values of κ ≈ κ([V
(0)
m , V

(1)
m , V

(2)
m , . . .]) as

the number j of restarts grows are reported below.

0 100 200 300 400 500 600 700
10

10

10
8

10
6

10
4

10
2

10
0

10
2

Number of vectors generated in the global subspace

n
o

rm
 o

f
re

la
ti
v
e

 r
e

s
id

u
a

l

FOM(10)

GMRES(10)

FullFOM Minpert(10)

Fig. 7.6. Example 3. Convergence of restarted methods for m = 10 and of full FOM.

ON THE CONVERGENCE OF RESTARTED KRYLOV METHODS 449

j 0 1 2 3 4 5
κ 1 1 · 101 3 · 102 5 · 104 2 · 108 1 · 1013

The bound in (6.7) shows that the condition number of the basis influences the dis-
tance between the unrestarted and restarted FOM processes, and the plot confirms
that, on this problem, restarting has a harmful effect; indeed, full FOM converges to
the required tolerance in only 46 iterations. Similar considerations hold for Minpert.
We also observe that the restarted FOM residual norm oscillates for a very large
number of restarts; this behavior can be explained by monitoring the magnitude of

‖M−1

km‖ or, more cheaply, of ‖(H(k)

m)−1‖, and recalling the discussion after Proposi-

tion 6.8. In addition to κ, also the value of ‖M−1

km‖ influences the difference between
the unrestarted and restarted FOM procedures. However, in order to correctly apply
the result of Proposition 6.8 to this stage of the process we have to assume that the
global basis has full rank. To this end, we have stopped FOM(m) after 11 restarts
and then started both full FOM and restarted FOM with the obtained approximate

solution x
(11)
10 as initial approximation. We can thus compare restarted FOM with full

FOM with the same starting vector. The convergence curve of FOM(m) obviously
continued the one in Figure 7.6, while unrestarted FOM with initial approximation

x
(11)
10 converged in about 50 iterations. The basis of the global subspace generated by

restarted FOM quickly became ill-conditioned, but more importantly, ‖M−1

km‖ ≈ 103

after three restarts; we recall that ‖M−1

km‖ will be always at least as large as the value
‖(H(k)

m)−1‖ of each restarting phase. Therefore, already by simply monitoring the

magnitude of ‖(H(k)

m)−1‖ at each restart we may be able to predict the behavior of
the restarted approach.

8. Discussion and conclusions. In this paper we have only occasionally men-
tioned the eigenvalues of the coefficient matrix A. In practice, however, the spectrum
of A and, more precisely, the distribution of the eigenvalues, is important in the
performance of restarted Krylov subspace methods. Recent papers have focused on
improving the information generated by GMRES and FOM at restart time by in-
cluding spectral information, in the form of eigenvalue or eigenvector approximations
[18, 20, 5, 24]. Such information can indeed considerably improve the convergence,
making in some cases the performance of the restarted versions comparable to that of
the unrestarted ones, in terms of iterations [24, 20]. On the other hand, the improve-
ment usually depends on the value of the restarting parameter m and on the amount
of information that is kept at later restarts. Some tuning is therefore necessary in
order to attain the expected improvement.

Often problems are due to the presence of eigenvalues that are clustered and close
to the origin. Unfortunately, unless a priori information is available, these eigenvalues
may be difficult to detect. However, such clusters are sometimes associated with small
singular values of the matrix, for which our theory applies. As an example, consider
the following matrix, which is a variant of a problem in [18]:

A = bidiag(d, 1), A ∈ R
100×100

with diagonal d = [.01, .02, .03, .04, 10, 11, . . . , 105]. The diagonal elements coincide
with the eigenvalues of A. The smallest singular values of the matrix are σ99 ≈ 0.98
and σ100 ≈ 2.3 · 10−7. If one restart of all methods is carried out for b = u100 and
m = 10, we get the quantities listed in the following table.

450 V. SIMONCINI

v�1 r
(0)
m ‖r(0)m ‖ ‖r(1)m ‖

GMRES(10) 0.494 0.70 0.4940
Minpert(10) 5e-14 0.98 1.3e-07
FOM(10) 1e-16 0.98 3.0e-08

The behavior of the methods could be explained in terms of eigenvalues: both FOM
(through Ritz values) and Minpert (through the roots of its residual polynomial [26])
are able to accurately detect the smallest eigenvalues for m = 10 before the first
restart, whereas GMRES is not. However, the failure of the first GMRES restart
is well predicted (with no a priori information on the eigenvalue distribution) by

inspecting ‖(Ĥ(0)
m)−1‖ ‖h(0))‖ before the first restart. Also inspired by this numerical

evidence, we are currently further investigating the connection between eigenvalues
and singular values.

In this paper we have highlighted the quantities that play an important role
at restart time, although we believe our analysis is still far from being exhaustive.
We have derived new tools for monitoring the goodness of the current GMRES and
Minpert residuals as new starting vectors in a restarting phase when A has small (but
not tiny) singular values. Moreover, we have given closed forms for the approximate
solutions of restarted GMRES and FOM, making explicit their dependence on the
sensitivity of new matrices. Numerical experiments show that restarted FOM may be
superior to the other two approaches, unless ill-conditioning of the matrices generated
during the restarted process becomes too harmful.

It seems that restarted GMRES is penalized on the problems analyzed in this
paper, which assume a particular distribution of singular values and a corresponding
selection of right-hand side. We have shown, however, that simple variants (such as
restarting with a different direction vector) can naturally adjust its performance. We
have mainly focused on the selection of the restarting vector; although we have not
treated the topic, it would also be important to explicitly quantify the convergence
delay of the restarted process, say in terms of number of iterations, with respect to
the full process.

Appendix. The case b = un.

When the right-hand side is b = un we can explicitly estimate the distance of the
approximate solution given by the chosen method from the exact solution x = σ−1

n wn,

in terms of ‖h‖, ‖Ĥ−1
m ‖. We first need the following lemma.

Lemma A.1. Let (wn, σn, un) be the smallest singular triplet of A. Suppose m
steps of the Arnoldi recurrence have been taken, with AVm = VmHm+hm+1,mvm+1e

�
m

and v1 = un. Let also (w̄m, σ̄m, ūm) be the smallest singular triplet of Hm. Then

| cos θ (wn, Vmw̄m) | = σ̄m
σn

√
1− δ2, δ = O(‖h‖).

Proof. Let τ = ±√1− δ2. Writing w�
n = σ−1

n u�nA and ūm = τe1 + δq, with
‖q‖ = 1, e�1 q = 0, we have

w�
n Vmw̄m = σ−1

n u�n VmHmw̄m + hm+1,mσ
−1
n u�n vm+1e

�
mw̄m

=
σ̄m
σn

u�n Vm(τe1 + δq) + hm+1,m
1

σn
u�n vm+1e

�
mw̄m =

σ̄m
σn

τ.

The last equality follows from un = v1.

ON THE CONVERGENCE OF RESTARTED KRYLOV METHODS 451

Theorem A.2. Let x be the exact solution to (1.1) for b = un and let xGm, x
F
m

and xMm be the GMRES, FOM, and Minpert approximate solutions, respectively. Let
σn be the smallest singular value of A and σ = σmin(Lm), δ = O(‖h‖). Then

cos θ
(
x, xGm

)
=

1

σn

‖Ĥ−�
m h‖2

‖(Ĥ�
mĤm)−1h‖ ,

∣∣cos θ (x, xFm)∣∣ ≥
∣∣∣∣ σ̄mσn −

δ√
1− δ2

∣∣∣∣ ,
∣∣cos θ (x, xMm)∣∣ ≥ 1

σn

(1− σ2)(σm(Hm)
2 − σ2)

‖Hm‖ .

Proof. For b = un, we have wn = x/‖x‖, where wn = σ−1
n A�un. Moreover,

xGm/‖xGm‖ = Vmy
G
m/‖yGm‖. Note that

w�
n Vmy

G
m = σ−1

n e�1 Hmy
G
m = σ−1

n h�yGm

so that, using (4.3) and yGm = (1 + ‖Ĥ−�
m h‖2)−1(Ĥ�

mĤm)
−1h,

cos θ
(
x, xGm

)
=

1

‖yGm‖
1

σn
h�yGm =

‖Ĥ−�
m h‖2

σn‖(Ĥ�
mĤm)−1h‖ .

For the FOM approximation, let |τ | = √1− δ2 and ūm be as in the proof of

Lemma A.1. Then, yFm = H
−1

m e1 = τ−1H
−1

m (ūm − δq), and ‖xFm‖ = ‖yFm‖ ≤ σ̄−1
m .

Using Lemma A.1,

|w�
n x

F
m| =

1

|τ |
∣∣∣∣ 1

σ̄m
w�
n Vmw̄m − δw�

n VmH
−1

m q

∣∣∣∣ = 1

|τ |
∣∣∣∣ |τ |σn − δw

�
n VmH

−1

m q

∣∣∣∣
≥ 1

|τ |
∣∣∣∣ |τ |σn − δ|w

�
n VmH

−1

m q|
∣∣∣∣ ≥ 1

|τ |
∣∣∣∣ |τ |σn − δ

1

σ̄m

∣∣∣∣ .
It follows that

| cos θ (x, xFm) | = 1

‖xFm‖
|w�
n x

F
m| ≥

∣∣∣∣ σ̄mσn −
δ

|τ |
∣∣∣∣ .

For the Minpert approximation, we have cos θ
(
x, xMm

)
= σ−1

n u�nAVmy
M
m /‖yMm ‖

= σ−1
n e�1 Hmy

M
m /‖yMm ‖. Moreover, e�1 Hmy

M
m = 1 − σ2 and using the closed form

of the solution, ‖yMm ‖ ≤ ‖Hm‖/(σm(Hm)
2 − σ2), from which the third result

follows.

Acknowledgments. We thank E. De Sturler for explanations on [7] and Z.
Strakoš for helpful comments on an earlier version of the paper. We also thank the
two anonymous referees for encouraging the revision of the presentation.

REFERENCES

[1] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue
problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[2] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[3] P. N. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci.

Stat. Comput., 12 (1991), pp. 58–78.

452 V. SIMONCINI

[4] P. N. Brown and H. F. Walker, GMRES on (nearly) singular systems, SIAM J. Matrix
Anal. Appl., 18 (1997), pp. 37–51.

[5] A. Chapman and Y. Saad, Deflated and augmented Krylov subspace techniques, J. Numer.
Linear Algebra Appl., 4 (1997), pp. 43–66.

[6] J. Cullum and A. Greenbaum, Relations between Galerkin and norm-minimizing iterative
methods for solving linear systems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 223–247.

[7] E. De Sturler, Truncation Strategies for Optimal Krylov Subspace Methods, SIAM J. Numer.
Anal., 36 (1999), pp. 864–889.

[8] R. W. Freund and N. M. Nachtigal, QMR: A quasi-minimal residual method for non-
Hermitian linear systems, Numer. Math., 60 (1991), pp. 315–339.

[9] G. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, 1996.

[10] A. Greenbaum, Iterative methods for solving linear systems, SIAM, Philadelphia, PA, 1997.
[11] A. Greenbaum, V. Pták, and Z. Strakoš, Any nonincreasing convergence curve is possible

for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465–469.
[12] Y. Huang and H. van der Vorst, Some observations on the convergence behavior of GMRES,

Tech. Rep. 89-09, Faculty of Technical Mathematics and Informatics, Delft University of
Technology, Delft, The Netherlands, 1989.

[13] W. D. Joubert, On the convergence behavior of the restarted GMRES algorithm for solving
nonsymmetric linear systems, Numer. Linear Algebra Appl., 1 (1994), pp. 427–448.

[14] E. M. Kasenally and V. Simoncini, Analysis of a minimum perturbation algorithm for non-
symmetric linear systems, SIAM J. Numer. Anal., 34 (1997), pp. 48–66.

[15] MATLAB User’s Guide, The MathWorks, Inc., Natick, MA, 1998.
[16] J. Meza and W. Symes, Deflated Krylov methods for nearly singular linear systems, J. Optim.

Theory Appl., 72 (1992), pp. 441–458.
[17] J. C. Meza, A modification to the GMRES method for ill-conditioned linear systems, Tech.

Rep. SAND95-8220, Scientific Computing Dept., Sandia National Labs., Livermore, CA,
1995.

[18] R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix
Anal. Appl., 16 (1995), pp. 1154–1171.

[19] R. B. Morgan, On restarting the Arnoldi method for large scale eigenvalue problems, Math.
Comp., 65 (1996), pp. 1213–1230.

[20] R. B. Morgan, Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems
of equations, Tech. Rep., Baylor University, Waco, TX, 1997.

[21] C. Paige, B. Parlett, and H. van der Vorst, Approximate solutions and eigenvalue bounds
from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995), pp. 115–134.

[22] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp.,
37 (1981), pp. 105–125.

[23] Y. Saad, Iterative methods for sparse linear systems, The PWS Publishing Company, Boston,
MA, 1996.

[24] Y. Saad, Analysis of augmented Krylov subspace methods, SIAM J. Matrix Anal. Appl., 18
(1997), pp. 435–449.

[25] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.

[26] V. Simoncini, A new variant of restarted GMRES, Numer. Linear Algebra Appl., 6 (1999),
pp. 61–77.

[27] L. N. Trefethen, Approximation theory and numerical linear algebra, in Algorithms for Ap-
proximation II, J. C. Mason and M. G. Cox, eds., Chapman and Hall, London, 1990,
pp. 336–360.

[28] H. A. van der Vorst and C. Vuik, The superlinear convergence behaviour of GMRES, J.
Comput. Appl. Math., 48 (1993), pp. 327–341.

AN ALGEBRAIC APPROACH TO THE CONSTRUCTION OF
POLYHEDRAL INVARIANT CONES∗

MARIA ELENA VALCHER† AND LORENZO FARINA‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 453–471

Abstract. In this paper, based on algebraic arguments, a new proof of the spectral characteri-
zation of those real matrices that leave a proper polyhedral cone invariant [Trans. Amer. Math. Soc.,
343 (1994), pp. 479–524] is given. The proof is a constructive one, as it allows us to explicitly obtain
for every matrix A, which satisfies the aforementioned spectral requirements, an A-invariant proper
polyhedral cone K.

Some new results are also presented, concerning the way A acts on the cone K. In particular,
K-irreducibility, K-primitivity, and K-positivity are fully characterized.

Key words. invariant cones, polyhedral cones, K-irreducibility/primitivity/positivity, spectral
radius, maximal modulus eigenvalues

AMS subject classifications. 15A18, 15A48, 51M20, 52B99, 93C05

PII. S0895479898335465

1. Introduction and motivation. The last decades have witnessed a long
stream of research aiming at generalizing the results of the Perron–Frobenius the-
ory for nonnegative matrices (see [6, 9, 15, 21] for a complete survey) to a larger class
of linear transformations. As a result, an extensive literature on the subject is now
available. In fact, the infinite-dimensional case, first developed by Krein and Rutman
in [14], is fully discussed in [17, 18], while the finite-dimensional aspects of this theory
can be found in [6].

In the finite-dimensional context, research efforts led to the introduction of the
notion of a matrix that leaves a proper cone invariant [2, 3, 7, 24], and to the determi-
nation of necessary and sufficient conditions for a real square matrix A to exhibit this
property. It turns out that the existence of a proper A-invariant cone depends only
on the spectral structure of A and, in particular, on its maximal modulus eigenvalues
[2, 3, 6, 24].

More recently, some authors [4, 11] have investigated the above problem under the
additional requirement that the proper A-invariant cone is polyhedral, namely, has a
finite set of extremal vectors. It is worthwhile noticing that this problem arises in quite
a few applications, such as in the nonnegative realization problem [1], in the relative
stability of the Leontieff models in economics [16], in the description of dynamic
systems by means of behavioral inequalities [23], in the synthesis of feedback control
laws under state and/or input constraints [5], and in the analysis of positively invariant
sets for continuous/discrete time systems [10, 22]. See [5] for further applications. For
all these applications, in fact, the existence of a polyhedral cone, left invariant by a
given square matrix A, represents the main ingredient of the problem itself.

In a recent paper [21], Tam and Schneider analyzed, by means of geometric tools,
the properties of the core of a cone-preserving map, thus obtaining, as a significant

∗Received by the editors March 16, 1998; accepted for publication (in revised form) by S. Van
Huffel February 18, 2000; published electronically July 11, 2000.

http://www.siam.org/journals/simax/22-2/33546.html
†Dipartimento di Ingegneria dell’Innovazione, Università di Lecce, strada per Monteroni, 73100

Lecce, Italy (elena.valcher@unile.it).
‡Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, via Eudossiana

18, 00184 Roma, Italy (farina@dis.uniroma1.it).

453

454 MARIA ELENA VALCHER AND LORENZO FARINA

by-product of this more general analysis, a spectral characterization of those real
matrices that leave a proper polyhedral cone invariant (see Theorem 7.8 in [21]).

In this paper, based on algebraic arguments, we provide an alternative proof of
the above characterization. Significantly enough, this proof is a constructive one, as
it yields, when the assigned matrix A fulfills the aforementioned spectral conditions,
a proper polyhedral A-invariant cone. Furthermore, by exploiting this algebraic ap-
proach, we devise what seems to be new conditions on the spectrum of A, which are
equivalent to the existence of a proper polyhedral cone K such that A is K-irreducible,
K-primitive, or K-positive.

We will not address explicitly here the interesting problem of characterizing all
possible A-invariant cones, but we will deal with the preliminary step of constructing
at least one of them. This represents an important starting point, especially for
the aforementioned control problem under state constraints. On the first hand, a
fundamental issue in this context is that of determining a suitable invariant region
in which to constrain the state evolution. This region can be a polyhedral cone, for
instance, but even when our interest is in a different kind of invariant region (typically
a polytope), by preliminarily constructing a proper polyhedral A-invariant cone one
can obtain, as a by-product, a positively invariant polytope for the state dynamics.
Indeed, in order to construct an invariant polytope for the n × n system matrix A,
it is sufficient to construct a polyhedral cone, left invariant by the extended matrix

(of size n + 1)
[r 0
0 A

]
, where r is any positive real number strictly larger than the

spectral radius of A. The projection of the cone over its last n components provides
the desired invariant polytope.

On the other hand, if we assume a somehow opposite point of view and suppose
that the physical constraints on the system naturally define a set S in which we want
our state evolution to be confined, a major issue is that of constructing a suitable
invariant region (as large as possible) that is strictly included in S [8, 10]. By assuming
this point of view, a possible choice is that of choosing as invariant region a polyhedral
cone or a polytope (again, obtained by first constructing a suitable polyhedral cone,
left invariant by the extended matrix, and by later considering its projection). In
the concluding section, once the details of our algorithm have been clarified, we will
show, by means of an example, how our constructive procedure allows us to tackle
this problem.

Finally, it is worthwhile to remark that in the special case of economical mod-
els, for which positively invariant regions correspond to “conservative” economical
situations [16], the explicit construction of positively invariant regions allows us to
determine areas of operating conditions where it can be convenient to lead the system,
by means of suitable economic policies.

The paper is organized as follows. In section 2 we introduce some basic defini-
tions of the theory of cones and some technical lemmas necessary for the subsequent
analysis. Section 3 presents the main results of the paper.

2. Definitions and preliminary results. Throughout the paper we let R
n
+

denote the nonnegative orthant, namely the set of nonnegative vectors in the n-
dimensional Euclidean space R

n. A set K ⊂ R
n is said to be a cone if αK ⊂ K for all

α ≥ 0; a cone is convex if it contains, with any two points, the line segment between
them. A convex cone K is solid if it contains an open ball of R

n, or, equivalently,
if the interior of K, int(K), is nonempty, and it is pointed if K ∩ {−K} = {0}. A
closed, pointed, solid convex cone is called a proper cone. A cone K is said to be

CONSTRUCTION OF POLYHEDRAL INVARIANT CONES 455

polyhedral if it can be expressed as the set of nonnegative linear combinations of a
finite set of generating vectors. This amounts to saying that a positive integer k and
an n × k matrix C can be found such that K coincides with the set of nonnegative
combinations of the columns of C. In this case, we adopt the notation K := Cone(C).

A convex cone F ⊂ K is a face of K if for every v ∈ F , condition v = u1 + u2,
for some u1,u2 ∈ K, implies u1,u2 ∈ F .

We call a bounded polyhedral set, namely, a bounded intersection of a finite
family of closed halfspaces, a polytope. Every polytope can be expressed as the set of
convex linear combinations of a finite family of (extremal) points.

If A is an n × n real matrix, we denote by σ(A) its spectrum and by ρ(A) its
spectral radius, i.e., ρ(A) := max{|λ| : λ ∈ σ(A)}. For every λ ∈ σ(A), the degree of λ
in A, deg λ, is the size of the largest diagonal block in the Jordan canonical form of A
that contains λ (i.e., the multiplicity of λ as a zero of the minimal polynomial of A).

Given A ∈ R
n×n and a cone K ⊆ R

n, we say that A leaves K invariant (K is
A-invariant) if AK ⊆ K. In this case, A is

• K-irreducible if the only faces of K that A leaves invariant are {0} or K itself;
• K-primitive if the only nonempty subset of the boundary of K that A leaves
invariant is {0};

• K-positive if A(K \ {0}) ⊆ int(K), namely, A maps each point of K, distinct
from the origin, into int(K).

As is well known [6], for every proper cone K we have

A is K-positive⇒ A is K-primitive⇒ A is K-irreducible.

If A = [aij] is a matrix (in particular, a vector), we write
• A ≥ 0 (A nonnegative), if aij ≥ 0 for all i, j;
• A > 0 (A nonzero nonnegative), if aij ≥ 0 for all i, j, and ahk > 0 for at

least one pair (h, k);
• A� 0 (A positive), if aij > 0 for all i, j.

As a first step, we present some technical lemmas.
Lemma 2.1 (see [11], Theorem 3.1). Let C be any n × k real matrix, devoid of

zero columns. Cone(C) is a proper (polyhedral) cone if and only if C has rank n and
ker C includes no nonzero nonnegative vector.

Lemma 2.2 (see [19]). Let A be an n×n real matrix that leaves a proper polyhedral
cone K invariant. Then, for every nonsingular matrix T ∈ R

n, T−1AT leaves a proper
polyhedral cone invariant.

Lemma 2.3. Let P be a convex polytope of R
2, which includes the origin in its

interior, and let C ∈ R
2×k be a matrix having as column vectors the extremal points

of P. Every point x lying in the interior of P can be expressed as

x = Ca,

for some vector a� 0 with
∑k
i=1 ai < 1.

Proof. The result follows immediately from elementary geometric arguments.

3. Main results. In [24] Vandergraft proved that the spectrum of every matrix
A that leaves a proper cone invariant satisfies two important requirements, i.e., ρ(A)
is in σ(A) and for every maximal modulus eigenvalue λ of A we have deg λ ≤ deg ρ(A).
The above pair of constraints constitutes the well-known Perron–Schaefer condition
[21]. Conversely, when σ(A) fulfills this condition, a proper cone K can be found such
that AK ⊆ K.

456 MARIA ELENA VALCHER AND LORENZO FARINA

The following theorem shows that, by simply introducing further “regularity”
constraints on the maximal modulus eigenvalues, it is possible to obtain a similar
statement for matrices that leave proper polyhedral cones invariant. More precisely,
polyhedrality depends on the fact that the argument of each maximal modulus eigen-
value λ ∈ σ(A) is a rational multiple of 2π or, equivalently, that λ/ρ(A) is a root of
unity. Notice that this is not unexpected, as nonnegative matrices always leave the
nonnegative orthant invariant and, indeed, their spectral structure satisfies all these
requirements.

Theorem 3.1 (see [21]). An n×n real matrix A leaves a proper polyhedral cone
K ⊂ R

n invariant if and only if
(i) ρ(A) ∈ σ(A);

and, when ρ(A) �= 0,
(ii) λ ∈ σ(A) with |λ| = ρ(A) implies deg λ ≤ deg ρ(A) =: m;
(iii) λ ∈ σ(A) with |λ| = ρ(A) implies λ/ρ(A) is a root of unity.
Proof. [Necessity.] As K is, in particular, a proper cone, (i) and (ii) follow from

the well-known theorem credited to Birkhoff and Vandergraft (see also [6], pp. 6–7).
The necessity of (iii) was proved in [4]. The same result was later proved also in [20]
(see Theorem 7.6) by means of a rather straightforward proof.

[Sufficiency.] By Lemma 2.2, it entails no loss of generality assuming that A is in
real Jordan form. In fact, we can always reduce to this case by means of a suitable
change of basis in R

n.
If A is nilpotent, it is nonnegative and hence leaves the nonnegative orthant R

n
+

invariant. If ρ(A) is positive, we can suppose ρ(A) = 1, because A leaves a proper
polyhedral cone invariant if and only if A/ρ(A) does. Possibly after suitable row-
column permutations, A takes the following block-diagonal structure:

A =

J1

J2

. . .

Jt
Jt+1

. . .

Jr
F1

. . .

Fs

,(1)

where the Ji’s, i = 1, 2, . . . , r, are Jordan blocks corresponding to real eigenvalues,
i.e.,

Ji =

λi 1
λi 1

λi
. . .
. . . 1

λi

∈ R

ni×ni ,(2)

and satisfying the following three conditions:
(a) 1 = λ1 ≥ λ2 ≥ · · · ≥ λt ≥ 0 > λt+1 ≥ · · · ≥ λr ≥ −1,
(b) λi = λi+1 implies ni ≥ ni+1, (consequently, J1 is the Jordan block of size

m = deg 1 corresponding to the eigenvalue 1), and

CONSTRUCTION OF POLYHEDRAL INVARIANT CONES 457

(c) λi = −1 implies ni ≤ m,
whereas the Fi’s, i = 1, 2, . . . , s, are Jordan blocks associated with pairs of conjugate
complex eigenvalues σi ± jωi, ωi �= 0, i.e.,

Fi =

σi ωi
−ωi σi

1 0
0 1
σi ωi
−ωi σi

1 0
0 1

. . .
. . .

. . .
1 0
0 1

. . .
σi ωi
−ωi σi

∈ C
(2n̄i)×(2n̄i),(3)

and satisfying
(d) 1 ≥ (σ2

1 + ω2
1) ≥ · · · ≥ (σ2

s + ω2
s) > 0,

(e) σi + jωi = σi+1 + jωi+1 implies n̄i ≥ n̄i+1, and
(f) σ2

i + ω2
i = 1 implies n̄i ≤ m.

We aim at constructing a block-triangular matrix C such that Cone(C) is an A-
invariant (polyhedral) proper cone. To this end, we separately analyze each block
appearing in A.
• Blocks corresponding to nonnegative real eigenvalues: every ni × ni

block Ji, corresponding to an eigenvalue λi ≥ 0, is a nonzero nonnegative matrix and
hence leaves the positive orthant R

ni
+ = Cone(Ini

) invariant. Therefore,

JiIni = IniJi, i = 1, 2, . . . , t.(4)

• Blocks corresponding to negative real eigenvalues: each ni×ni block Ji,
corresponding to an eigenvalue λi < 0, leaves the vector space R

ni , which is a solid
(of course, not pointed) polyhedral cone, invariant. Indeed, for i = t+ 1, . . . , r,

Ji [Ini
| − Ini] = [Ini | − Ini

]

[
Ni −λiIni

−λiIni
Ni

]
,(5)

where

Ni :=

0 1
0 1

0
. . .
. . . 1

0

∈ R

ni×ni
+ .(6)

As a consequence, for ni ≤ m we get

[
J1 0

0 Ji

][
Im

Ini
0

Ini
0

0 Ini
−Ini

]
=

[
Im

Ini
0

Ini
0

0 Ini
−Ini

]
 J1

(1 + λi)Ini
0

(1 + λi)Ini
0

0 Ni −λiIni

0 −λiIni
Ni

 ,(7)

while for ni > m, a case that possibly occurs for negative real eigenvalues λi different
from −1, we have[

J1 0

0 Ji

] [
Im Im emw(λi, ni −m) Im emw(λi, ni −m)

0 Ini −Ini

]

458 MARIA ELENA VALCHER AND LORENZO FARINA

=

[
Im Im emw(λi, ni −m) Im emw(λi, ni −m)

0 Ini −Ini

]
,

J1 (1 + λi)Im em−1w(λi, ni −m) (1 + λi)Im em−1w(λi, ni −m)

0 Ni −λiIni

0 −λiIni Ni

 ,(8)

where e0 is by definition the zero vector, while, when i is positive, ei is the ith
canonical (column) vector in R

m (having all zero entries, except for the ith, which is
1), and

w(λ, k) :=
[1

1+λ
1

(1+λ)2 · · · 1
(1+λ)k

]
.

• Blocks corresponding to pairs of complex conjugate eigenvalues σi ±
jωi: let v

(i)
1 be a nonzero real vector (for instance, [1 0]T), and consider the vector

sequence v
(i)
� :=

[
σi ωi

−ωi σi

]
v

(i)
�−1, � > 1. Since σ2

i + ω2
i ≤ 1, and when σ2

i + ω2
i = 1

then σi ± jωi are roots of unity, there exists some positive integer ki such that

[
σi ωi
−ωi σi

]
v

(i)
ki

=

ki−1∑
�=0

a
(i)
� v

(i)
�+1

holds true for suitable a
(i)
� ≥ 0, � = 0, 1, . . . , ki − 1, with

∑
� a

(i)
� ≤ 1. More precisely,

when σi±jωi are roots of unity, then it is possible to choose ki as the smallest positive

integer such that (σi+jωi)
ki+1 = 1 and set a

(i)
0 = 1 and a

(i)
� = 0 for � = 1, 2, . . . , ki−1.

Meanwhile, for σ2
i + ω2

i < 1, the integer ki is the smallest positive integer such that

(ki + 1)|arg(σi + jωi)| is at least 2π radians, and the positive coefficients a
(i)
� sum

up to a quantity that is strictly smaller than 1 (see Lemma 2.3). Therefore, in both
cases, the real matrix

Ci :=
[
v

(i)
1 v

(i)
2 · · · v

(i)
ki

] ∈ R
2×ki

is of full row rank and satisfies

[
σi ωi
−ωi σi

]
Ci = Ci Γi,(9)

where

Γi :=

0 a
(i)
0

1 0 a
(i)
1

1 0 a
(i)
2

1
. . .

...
. . . 0 a

(i)
ki−2

1 a
(i)
ki−1

∈ R

ki×ki
+ .(10)

CONSTRUCTION OF POLYHEDRAL INVARIANT CONES 459

Thus we get

Fi

Ci

. . .

Ci

 =

Ci

. . .

Ci

Γi Iki

Γi Iki

Γi

. . .

. . . Iki

Γi

,(11)

where, of course, the block diagonal matrix in (11), having all Ci’s as diagonal blocks,
has size (2n̄i)× (n̄iki).

Let 1k be the k-dimensional (row) vector with all entries equal to 1. For n̄i ≤ m
we get

J1 0

0 Fi

Im e11ki . . . en̄i1ki

0

Ci
. . .

Ci

=

Im e11ki . . . en̄i
1ki

0

Ci
. . .

Ci

J1 e1ci e2ci · · · en̄i
ci

0

Γi Iki
Γi Iki

Γi
. . .
. . . Iki

Γi

(12)

with ci :=
[
0 0 · · · 0 1−∑� a

(i)
�

] ≥ 0. On the other hand, if n̄i > m, a

situation that may occur only for σ2
i + ω2

i < 1 and hence for
∑
� a

(i)
� < 1, we have

that the spectral radius of Γi is strictly smaller than 1, and the identity

[
J1 0

0 Fi

]

Im e11ki . . . em1ki Xi

Ci

. . .

0 Ci

Ci

. . .

Ci

(13)

=

Im e11ki
e21ki

. . . em1ki
Xi

Ci

Ci

. . .

0 Ci

Ci

. . .

Ci

J1 e1ci e2ci . . . emci 0 · · · 0

Γi Iki

Γi

. . .

. . .

0 Γi Iki

Γi

. . .

. . . Iki
Γi

460 MARIA ELENA VALCHER AND LORENZO FARINA

holds true for some nonnegative matrix Xi, of size m × [(n̄i −m)ki], devoid of zero
columns. In fact, as the spectral radius of Γi is strictly smaller than 1, the matrix
equation in the unknown matrix X

J1X = [em1ki 0] +X

Γi Iki
Γi Iki

Γi
. . .
. . . Iki

Γi

(14)

is solvable [13] and admits as its (unique) solution

Xi :=

∫ +∞

0

exp(−J1t) [em1ki 0] exp

Γi Iki
Γi Iki

Γi
. . .
. . . Iki

Γi

t

dt.

(This can be proved by simply replacing the above expression in (14).) By the struc-
ture and the nonnegativity property of the matrices involved, Xi is nonnegative and
has no zero columns.

So, if we now consider the block triangular matrix

C=

Im 0 . . . 0 X̃t+1 . . . X̃r X̄1 . . . X̄s

In2

.
.
.

Int

Int+1
− Int+1

.
.
.

Inr − Inr
C1

.
.
.

C1

.
.
.

Cs

.
.
.

Cs

,

where the nonnegative matrices X̃i and X̄i (devoid of zero columns) are easily derived
by the previous equations (4), (7), (8), (12), and (14), it is easy to check that C is of
two full row rank and its kernel does not include nonnegative vectors, except for the
zero one. Consequently, the A-invariant polyhedral cone Cone(C) is, by Lemma 2.1,
proper.

Remarks. The above proof provides, for a matrix A that fulfills (i)–(iii) of Theo-
rem 3.1, an explicit procedure for constructing a proper polyhedral cone left invariant
by A. As a matter of fact, this procedure does not lead to the construction of a

unique cone: different choices of the vectors v
(i)
1 lead to different A-invariant poly-

hedral cones. Also, small variations could be introduced in the design procedure
that keep in with the spirit of the above constructive algorithm but better enlighten
the existence of several choices and hence of different polyhedral cones. This aspect,
however, falls outside the goals we aimed to achieve in this paper.

The basic steps of the constructive algorithm can be briefly summarized as follows:

CONSTRUCTION OF POLYHEDRAL INVARIANT CONES 461

• construct the Jordan form of the matrix A (by assuming the same ordering
adopted in the proof);
• construct, for every pair of complex conjugate eigenvalues of A, the matrices
Ci and, correspondingly, the matrices Γi and Xi;

• now that we have obtained a proper polyhedral cone that is left invariant
by the Jordan form of A, apply the appropriate change of coordinates, and
obtain a proper polyhedral A-invariant cone.

It is worthwhile noticing that the procedure for obtaining a proper A-invariant
cone given by Vandergraft in [6] and [24] does not generally lead to a polyhedral cone,
not even when the eigenvalues of A satisfy all the abovementioned conditions. This
fact is clearly pointed out in the following example.

Example 3.1. Consider the real matrix

A =

 1 0 0
0 0 1
0 −1 0

 .

Its spectrum is σ(A) = (1, j,−j) and hence fulfills all the assumptions of Theorem 3.1.
A (complex) Jordan basis is

v1 =

 1
0
0

 , v2 =

 0
j/2
1/2

 , v̄2 =

 0
−j/2
1/2

 ,

and hence the Vandergraft cone is given by

K =

v ∈ R

n : v =

α0
0

+

 0
a
b

 , a2 + b2 ≤ α2, α ≥ 0

and is clearly not polyhedral. By applying the procedure described in the previous
proof, we construct a proper polyhedral cone left invariant by A, namely, the one
generated by the columns of the matrix

C =

1 1 1 1 1

0 1 0 −1 0
0 0 −1 0 1

 .

Theorem 3.1 clarifies under what conditions a matrix A leaves a proper polyhedral
cone, say K, invariant. When trying to strengthen this result, by requiring that A
is also K-irreducible, we have to restrict our attention to a smaller class of matrices,
namely, those that satisfy the conditions of Theorem 3.1 and whose maximal modulus
eigenvalues have degree 1.

The proof of the following theorem resorts to a well-known characterization of a
K-irreducible matrix [6].

Theorem 3.2. Let A be an n× n real matrix. The matrix A leaves invariant a
proper polyhedral cone K ⊂ R

n, for which it is K-irreducible if and only if
(i) ρ(A) ∈ σ(A);
(ii) ρ(A) is simple and for every λ ∈ σ(A) with |λ| = ρ(A), deg λ = 1,

and, if ρ(A) �= 0,
(iii) for every λ ∈ σ(A) with |λ| = ρ(A), λ/ρ(A) is a root of unity.

462 MARIA ELENA VALCHER AND LORENZO FARINA

Proof. [Necessity.] As A leaves a proper polyhedral cone invariant, (i) and (iii)
follow from Theorem 3.1. Moreover, since K is a proper A-invariant cone, (ii) follows
from the characterization of K-irreducibility due to Vandergraft [24] and Elsner [12].

[Sufficiency.] As in the proof of Theorem 3.1, we can assume that A is in real
Jordan form. If A is nilpotent, then, by assumption (ii), A has to be the 1 × 1 zero
matrix, which leaves K = R+ invariant and is K-irreducible.

Now suppose ρ(A) = 1 and assume

A =

1
J2

. . .

Jr
A1

. . .

As

,(15)

where Ji, i = 2, . . . , r, is the ni × ni Jordan block corresponding to the nonnegative
real eigenvalue λi, and 1 > λ2 ≥ · · · ≥ λr ≥ 0, whereas Ai, i = 1, 2, . . . , s, represents
the ni × ni Jordan block associated either with negative eigenvalues or with pairs of
complex conjugate eigenvalues. All Jordan blocks corresponding to the eigenvalue −1
have size 1, while those associated with any pair of complex conjugate eigenvalues of
modulus 1 have dimension 2.

We aim at explicitly constructing an A-invariant proper polyhedral cone K =
Cone(C), which includes only one (up to scalar multiples) eigenvector of A, lying in
int(K). This guarantees [7, Theorem 3.16, p. 11] that A is K-irreducible.

As in the previous proof, we can find full row rank matrices C̄i, nonnegative
matrices P̃i and Pi, and positive row vectors Xi (notice that m = 1) such that[

1 0
0 Ai

] [
1 Xi

0 C̄i

]
=

[
1 Xi

0 C̄i

] [
1 P̃i
0 Pi

]
, i = 1, 2, . . . , s.

Now consider the Jordan blocks Ji’s. Once we introduce the ni× (2ni) (full row rank)
matrices

D(λi, ni) :=

1

(1−λi)
ni−1

. .
.

1
(1−λi)

1

− 1

(1−λi)
ni−1

. .
.

− 1
(1−λi)−1

for i = 2, 3, . . . , r, we have

JiD(λi, ni) = D(λi, ni)Pi,

where

Pi :=

λi

1− λi λi

1− λi λi

. . .
. . .

1− λi λi

0

0

λi

1− λi λi

1− λi λi

. . .
. . .

1− λi λi

CONSTRUCTION OF POLYHEDRAL INVARIANT CONES 463

is a (2ni)× (2ni) nonnegative matrix.
So, it is easy to check that the following matrix

C =

1 12n2 · · · 12nr X1 . . . Xs

D(λ2, n2)
. . .

D(λr, nr)

C̄1

. . .

C̄s

generates an A-invariant proper polyhedral cone K = Cone(C). It is easily seen (due
to the fact that A is in real Jordan form, and hence its eigenvectors have a very simple
structure) that the only eigenvector of A lying in K is e1 and it corresponds to the
eigenvalue ρ(A) = 1. Moreover, by exploiting the property that the columns of each
matrix C̄i ∈ R

2×· generate a convex polytope, having the origin as an internal point,
and by recalling that the same holds true for each matrix D(λi, ni), we can apply
Lemma 2.3, and finally express e1 as a strictly positive combination of the columns
of C. Consequently, e1 belongs to int(K) (see [11]), and A is K-irreducible.

We provide, now, a characterization of a matrix A for which a proper polyhedral
cone K can be found such that A is K -primitive. As we will see, the spectral conditions
allowing for K-primitivity, with K proper and polyhedral, are the same allowing for
K′-positivity, with respect to some proper polyhedral cone K′, in general distinct from
K.

Theorem 3.3. Let A be any n × n real matrix. The following conditions are
equivalent:

(a) A leaves invariant a proper polyhedral cone K in R
n for which it is K-positive;

(b) A leaves invariant a proper polyhedral cone K′ in R
n for which it is K′-

primitive;
(c) the spectrum of A satisfies the following constraints:

(i) ρ(A) is a simple positive eigenvalue in σ(A);
(ii) for every λ ∈ σ(A) with λ �= ρ(A), |λ| < ρ(A).

Proof. (a)⇒ (b). If A leaves K invariant and is K-positive, it is also K-primitive,
and (b) holds for K′ := K.

(b) ⇒ (c). If A leaves invariant a proper polyhedral cone K′ in R
n for which it

is K′-primitive, then, in particular, it leaves a proper cone invariant for which it is
primitive. So, by a well-known result (see Theorem 4.10 in [6]), conditions (i) and (ii)
are satisfied.

(c) ⇒ (a). As in the previous proofs, we assume that A is in real Jordan form.
As ρ(A) is positive, we can suppose, without loss of generality, that ρ(A) is one and
A has the following form

A =

1
J2

. . .

Jr
F1

. . .

Fs

,(16)

464 MARIA ELENA VALCHER AND LORENZO FARINA

where Ji, i = 2, . . . , r, is the ni×ni Jordan block corresponding to the real eigenvalue
λi of A, with 1 > λi > −1, whereas Fi, i = 1, 2, . . . , s, is the 2n̄i × 2n̄i Jordan block
associated with the pair of complex conjugate eigenvalues σi± jωi, with σ2

i +ω2
i < 1.

• We consider, first, any Jordan block Ji. As 1 − λi > 0, we can select εi,
0 < εi < 1 − λi, and introduce the ni × (2ni) full row rank matrix (see the proof of
Theorem 3.2)

D(λi+εi, ni) :=

1

(1−λi−εi)
ni−1

. .
.

1
(1−λi−εi)

1

− 1

(1−λi−εi)
ni−1

. .
.

− 1
(1−λi−εi)−1

 .

It is easy to see that

JiD(λi + εi, ni) = D(λi + εi, ni)Pi,

where

Pi :=

λi

1 − λi − εi λi

1 − λi − εi λi

. . .
. . .

1 − λi − εi λi

0

0

λi

1 − λi − εi λi

1 − λi − εi λi

. . .
. . .

1 − λi − εi λi

is a (2ni)× (2ni) nonnegative matrix.

• Consider now the (2n̄i) × (2n̄i) Jordan block Fi corresponding to the pair of
conjugate complex eigenvalues σi ± jωi. As σ2

i + ω2
i < 1, there exists δi > 0 such

that (1 + δi)(σi ± jωi) still constitutes a pair of conjugate complex eigenvalues, with
modulus smaller than 1. The Hurwitz stability of

[
(1 + δi)σi (1 + δi)ωi
−(1 + δi)ωi (1 + δi)σi

]

guarantees, as in Theorem 3.1, that for any v
(i)
1 �= 0 (for instance, v

(i)
1 := e1),

the vector sequence v
(i)
1 , v

(i)
� :=

[(1 + δi)σi (1 + δi)ωi

−(1 + δi)ωi (1 + δi)σi

]
v

(i)
�−1, � > 1 satisfies the

following condition: there exists some positive integer ki such that

[
(1 + δi)σi (1 + δi)ωi
−(1 + δi)ωi (1 + δi)σi

]
v

(i)
ki

=

ki−1∑
�=0

a
(i)
� v

(i)

+1,

for suitable a
(i)
� > 0, � = 0, 1, . . . , ki − 1, with

∑
� a

(i)
� < 1. Therefore,

Ci :=
[
v

(i)
1 v

(i)
2 · · · v

(i)
ki

] ∈ R
2×ki

CONSTRUCTION OF POLYHEDRAL INVARIANT CONES 465

is a full row rank matrix satisfying

[
(1 + δi)σi (1 + δi)ωi
−(1 + δi)ωi (1 + δi)σi

]
Ci = Ci

0 a
(i)
0

1 0 a
(i)
1

1 0 a
(i)
2

1
. . .

...
. . . 0 a

(i)
ki−2

1 a
(i)
ki−1

,(17)

and, consequently,

[
σi ωi
−ωi σi

]
Ci = Ci

0 b
(i)
0

1
1+δi

0 b
(i)
1

1
1+δi

. . . b
(i)
2

. . . 0
...

1
1+δi

b
(i)
ki−1

,(18)

with b
(i)
� := a

(i)
� /(1 + δi) > 0 and

∑
� b

(i)
� < 1

1+δi
. Moreover, it is easy to verify that

for every τi > 0 the following equality holds

Fi

τ
1−n̄i
i Ci

. . .

τ−1
i Ci

Ci

 =

τ
1−n̄i
i Ci

. . .

τ−1
i Ci

Ci

Γi τiIki

Γi τiIki

Γi

. . .

. . . τiIki

Γi

 ,

where

Γi :=

0 b
(i)
0

1
1+δi

0 b
(i)
1

1
1+δi

0 b
(i)
2

. . .
. . .

...
. . . 0 b

(i)
ki−2

1
1+δi

b
(i)
ki−1

∈ R

ki×ki .(19)

Once we select positive real numbers εi, τi, and δi satisfying

εi < 1− λi, i = 1, 2, . . . , r, τi +
1

1 + δi
< 1, i = 1, 2, . . . , s,

466 MARIA ELENA VALCHER AND LORENZO FARINA

the full row rank matrix

C=

1 12n2
· · · 12nr

1kin̄1
· · · 1ksn̄s

D(λ2 + ε2, n2)

.
.
.

D(λr + εr, nr)

τ
−1+n̄1
1

C1

.
.
.

τ
−1
1

C1
C1

.
.
.

τ
−1+n̄s
s Cs

.
.
.

τ
−1
s Cs

Cs

generates a proper polyhedral A-invariant cone K := Cone(C), since C is of full row
rank and AC = CP for

P =

1
−

ε212n2
εr12nr

P2

.
.
.

Pr

c1 d1 . . . d1 . . . cs ds . . . ds

Γ1 τ1Ik1
Γ1

.
.
.

τ1Ik1
Γ1

.
.
.

Γs τsIks
Γs

.
.
.

τsIks
Γs

with

ci :=
[

δi
1+δi

· · · δi
1+δi

1−∑� b
(i)
�

]
> 0,

di :=
[

δi
1+δi

− τi · · · δi
1+δi

− τi 1−∑� b
(i)
� − τi

]
> 0,

i = 1, 2, . . . , s.

To prove that A is K-positive it is sufficient to show that the A-image of every column
of C lies in int(K). By the same reasonings adopted in the proof of Theorem 3.2, the
vector e1, which is the first column of C, is the only eigenvector of A lying in K
and it belongs to int(K). Moreover, the A-image of the ith column of C, say yi, is
a nonnegative linear combination of the columns of C involving the first column e1

(as all entries in the first row of P are nonzero). This implies that yi belongs to the
interior of K for every i.

Remarks. The above theorem not only provides a complete spectral characteriza-
tion of a matrix A for which a proper polyhedral cone K can be found such that A is
K-positive (K-primitive), but it also particularizes to polyhedral cones the well-known
result [6] that A is K-primitive for some proper cone K if and only if there is a proper
cone K′ such that A is K′-positive.

Moreover, up to now [6, 19] the pair of conditions (i) and (ii) on σ(A) was known
as necessary and sufficient for the existence of a proper cone K such that A is K-
positive [19]. Under this point of view, Theorem 3.3 represents a strengthening of this

CONSTRUCTION OF POLYHEDRAL INVARIANT CONES 467

result, and it proves that a matrix that is K-positive for some proper cone K is also
K′-positive for some proper polyhedral cone K′.

Example 3.2. Consider the following matrix:

A =

 1 0 0
0 0 1

2
0 − 1

2 0

 .

A satisfies conditions (i) and (ii) of Theorem 3.3, and its spectrum is σ(A) = (λ1, σ1+
jω1, σ1 − jω1) = (1,+j/2,−j/2). By assuming δ1 = 1/2, we get that

[
(1 + 1/2)0 (1 + 1/2)1/2

(1 + 1/2)(−1/2) (1 + 1/2)0

]

is still Hurwitz stable. So, by applying the procedure described in the previous proof,
we can construct a proper polyhedral cone left invariant by A, namely, the one gen-
erated by the columns of the matrix

C =

 1 1 1 1 1
0 1 0 − 9

16 0
0 0 − 3

4 0 27
64

 ,

and by solving equation AC = CP one can obtain the solution

P =

1 δ1
1+δ1

δ1
1+δ1

δ1
1+δ1

1−∑3
i=0 bi

0 0 0 0 b0
0 1

1+δ1
0 0 b1

0 0 1
1+δ1

0 b2
0 0 0 1

1+δ1
b3

with

b0 =
51

128
, b1 =

1

16
, b2 =

1

3
, b3 =

1

9
,

which implies A to be K-positive and hence K-primitive. Notice that A also leaves
invariant the proper not polyhedral cone

K1 =

v ∈ R

n : v =

 α

0
0

+

 0

a
b

 , a2 + b2 ≤ α2, α ≥ 0

for which it is K1-positive.

4. Concluding remarks. To conclude the paper, it is worthwhile clarifying the
relevance of our constructive procedure by means of a few additional comments and
of an applicative example.

By referring to the constrained control problem, described in the introduction,
consider the typical situation when the specific set S where we want to constrain the
state evolution is naturally defined by the physical constraint acting on the system.
As remarked in [8], such a set is not typically an invariant, and hence we are obliged to
look for an invariant set (as large as possible) that is strictly included in S. To reach
this goal, the constructive procedure described within the proof of Theorem 3.1 (or

468 MARIA ELENA VALCHER AND LORENZO FARINA

Theorems 3.2 or 3.3, if we want to endow the invariant set with additional properties)
can be exploited as follows. Assume without loss of generality that A is in real Jordan
form (a situation that, as we have seen, can always be obtained, possibly by means
of a suitable change of basis within the state space).

We can mechanically employ the algorithm and later rescale the generating vectors
of the polyhedral cone K in order to make either K or any of its projections, according
to the specific set S we started with, be included in S. Such a rescaling can be
performed by applying to the block triangular matrix C, whose columns generate the
cone K, a suitable block diagonal matrix

D = diag{d1Im, d2In2 , . . . , drInr
, d̄1I2n̄1 , . . . , d̄sI2n̄s},

where m,n2, . . . , nr, 2n̄1, . . . , 2n̄s are the sizes of the Jordan blocks (see the proof
of Theorem 3.1). In fact, if K = Cone(C) is invariant for the given matrix, then
K′ = Cone(DC) also is.

A significant improvement of such a procedure can be obtained by simply per-
forming the above algorithm several times, by exploiting the freedom degrees in the

choice of the vectors v
(i)
1 (cf. the proof of Theorem 3.1), and hence obtaining different

invariant polyhedral cones (or invariant polytope) included in S. As a final invariant
region, then, we can assume the convex sum of the invariant regions obtained at every
sweep of the algorithm.

Finally, it is also worthwhile to remark that the constructive procedure can lead
to good results, even though performed only once, if suitably tuned to the specific
region S we are considering. In fact, once we have chosen as first generating vector
of K the first canonical vector (which is, of course, the dominant eigenvector, and
hence must belong to every A-invariant region) the specific nonzero coefficients of

the remaining columns of C, in particular, the aforementioned vectors v
(i)
1 , can be

properly chosen in order to fall in S or on the boundary of S. Of course, also in this
situation, a final rescaling will be necessary.

To better understand the meaning of these considerations, let us analyze the
following example.

Consider the linear continuous time model of order 2, with a single input[
ẋ1(t)
ẋ2(t)

]
= A

[
x1(t)
x2(t)

]
+Bu(t)

describing a direct current electric motor, where x1 represents the armature current,
x2 the armature speed, and u(t) the armature voltage. As in [8], we assume that due
to load torque disturbances, the admissible fluctuations from the set point of the state
are 100% of the nominal value for the armature current and 20% of the nominal value
for the speed. No sensible fluctuations are assumed to affect the control variable u.
As it is customary, we will resort to the Euler approximating system in order to solve
the problem. This way, we come up with a discrete time system described by a pair
of matrices Ad and Bd, for which reasonable values (taken from Example 3 in [8]) are
the following ones:

Ad =

[
0.93 −0.86
0.06 0.9915

]
, Bd =

[
1
0

]
.

The above conditions on the fluctuations of the system variables translate into the
following constraining set for the state variables of the discretized system

S = {(x1, x2) : |x1| ≤ 1, |x2| ≤ 0.2}.

CONSTRUCTION OF POLYHEDRAL INVARIANT CONES 469

���� �� ���� � ��� � ���
��

����

����

����

���	

�

��	

���

���

���

�

��

	�

�

��
�

��
�� ��

�	�

Fig. 1. Invariant polytope inside S′ and its rescaled version.

Ad has two complex conjugate eigenvalues, which are strictly included in the (open)
unitary circle, and its (real) Jordan form is

J =

[
0.9607 0.2251
−0.2251 0.9607

]
.

The matrix T , representing the coordinate of the Jordan basis with respect to the
original basis, is

T =

[−0.9579 −0.1309
0 0.2554

]
.

As a consequence, the new state vector z = T−1x is constrained within the (convex)
polytope S′ defined by the following four vertices:

w1 =

[−1.151
0.7831

]
, w2 =

[−0.9369
−0.7831

]
, w3 = −w1, w4 = −w2.

Upon considering the extended matrix

[
1 0
0 J

]
=

 1 0 0
0 0.9607 0.2251
0 −0.2251 0.9607

 ,

we can construct, by means of the procedure described within the proof of Theo-
rem 3.1, an invariant cone. Starting from v1 = [1 0]T and by operating as in the
proof of Theorem 3.1 (in the part corresponding to complex conjugate eigenvalues)
we can obtain the recursive vector sequence v1,v2,v3,

It turns out that v25 is the first vector of the sequence that belongs to the convex
polytope generated by the previous ones (see the dashed polytope in Figure 1, where
the ∗’s represent the vectors of the sequence {vi}). Being interested only in the cone

470 MARIA ELENA VALCHER AND LORENZO FARINA

���� �� ���� � ��� � ���

���	�

���	

�����

����

�����

�

����

���

����

��	

��	�

�

�
Fig. 2. The resulting invariant polytope inside S.

-1.5 -1 -0.5 0 0.5 1 1.5

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

S

Fig. 3. Invariant polytope inside S obtained after two runs of the proposed constructive procedure.

projection on the plane including all these vectors, we can arrest the algorithm at this
point. We have obtained, in this way, a convex polytope that is not included in S.
However, by assuming as rescaling matrix

D =

[
d 0
0 d

]
, d = 0.86,

we obtain an invariant polytope included in S′. (See the polytope drawn with con-
tinuous lines in Figure 1: in this case the ∗’s are mapped into the small circles o.) Of
course, if we now refer to the representation with respect to the original state basis,
we obtain the invariant polytope depicted in Figure 2.

Finally, if we perform our constructive procedure starting from a different initial
vector, i.e., for v1 = [−1 0]T , and follow the same steps just described, by putting

CONSTRUCTION OF POLYHEDRAL INVARIANT CONES 471

together the results of the two runs, we finally obtain the invariant region (included
in S) depicted in Figure 3.

REFERENCES

[1] B.D.O. Anderson, M. Deistler, L. Farina, and L. Benvenuti, Nonnegative realization of a
linear system with nonnegative impulse response, IEEE Trans. Circuits Systems I. Fund.
Theory Appl., 43 (1996), pp. 134–142.

[2] G.P. Barker, On matrices having an invariant cone, Czechoslovak Math. J., 22 (1972), pp.
49–68.

[3] G.P. Barker, Theory of cones, Linear Algebra Appl., 39 (1981), pp. 263–291.
[4] G.P. Barker and R.E.L. Turner, Some observations on the spectra of cone preserving maps,

Linear Algebra Appl., 6 (1973), pp. 149–153.
[5] A. Berman, M. Neumann, and R.J. Stern, Nonnegative Matrices in Dynamic Systems, John

Wiley & Sons, New York, 1989.
[6] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Aca-

demic Press, New York, 1979.
[7] G. Birkhoff, Linear transformations with invariant cones, Amer. Math. Monthly, 74 (1967),

pp. 274–276.
[8] F. Blanchini, Constrained control for systems with unknown disturbances, Control Dyn. Syst.

Adv. Theory Appl., 51 (1992), pp. 129–182.
[9] R.A. Brualdi and H.J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, Cam-

bridge, UK, 1991.
[10] C. Burgat, A. Benzaouia, and S. Tarbouriech, Positively invariant sets of discrete-time

systems with constrained inputs, Internat. J. Systems Sci., 21 (1990), pp. 1249–1271.
[11] F. Burns, M. Fiedler, and E. Haynswort, Polyhedral cones and positive operators, Linear

Algebra Appl., 8 (1974), pp. 547–559.
[12] L. Elsner, Monotonie und randspektrum bei vollstetigen operatoren, Arch. Ration. Mech.

Anal., 36 (1970), pp. 356–365.
[13] T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980.
[14] M.G. Krein and M.A. Rutman, Linear operators leaving invariant a cone in Banach space,

Amer. Math. Soc. Trans. Ser., 10 (1950), pp. 199–325.
[15] H. Minc, Nonnegative Matrices, John Wiley & Sons, New York, 1988.
[16] J.W. Nieuwenhuis, Some results about a Leontieff-type model, in Frequency Domain and State

Space Methods for Linear Systems, C.I. Byrnes and A. Lindquist, eds., Elsevier Science,
Amsterdam, 1986, pp. 213–225.

[17] H.H. Schaefer, Banach Lattices and Positive Operators, Springer, New York, 1974.
[18] H.H. Schaefer, Topological Vector Spaces, 4th ed., Springer, New York, 1980.
[19] R. Stern and H. Wolkowicz, Invariant ellipsoidal cones, Linear Algebra Appl., 150 (1991),

pp. 81–106.
[20] B.S. Tam, On the distinguished eigenvalues of a cone-preserving map, Linear Algebra Appl.,

131 (1990), pp. 17–37.
[21] B.S. Tam and H. Schneider, On the core of a cone-preserving map, Trans. Amer. Math. Soc.,

343 (1994), pp. 479–524.
[22] S. Tarbouriech and C. Burgat, Positively invariant sets for continuous-time systems with

the cone-preserving property, Internat. J. Systems Sci., 24 (1993), pp. 1037–1047.
[23] A.A. ten Dam, Representations of dynamic systems described by behavioural inequalities, in

the Proceedings of ECC’93, Groningen, The Netherlands, 1993, pp. 1780–1783.
[24] J.S. Vandergraft, Spectral properties of matrices which have invariant cones, SIAM J. Appl.

Math., 16 (1968), pp. 1208–1222.

HOW CLOSE CAN THE LOGARITHMIC NORM OF A MATRIX
PENCIL COME TO THE SPECTRAL ABSCISSA?∗

INMACULADA HIGUERAS† AND BERTA GARCÍA-CELAYETA†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 472–478

Abstract. Given a least upper bound norm, the usefulness of the concept of logarithmic norm
depends on how closely the logarithmic norm approximates the spectral abscissa. To study this prob-
lem, Ström introduced in 1975 the concepts of logarithmically optimal norm and ε-logarithmically
optimal norm with respect to a matrix A. Recently Higueras and Garćıa-Celayeta have done an
extension of the concept of logarithmic norm for matrix pencils and, in a similar way, the usefulness
of the concept depends on how closely the logarithmic norm of the pencil approximates the spectral
abscissa. In this paper we study this problem and extend the concepts by Ström to matrix pencils.

Key words. matrix pencil, logarithmic norm, Lyapunov stability, differential algebraic system

AMS subject classifications. 15A22, 34D20, 65L07

PII. S0895479898346296

1. Introduction. The concept of logarithmic norm for a matrix was introduced
in 1958 by Dahlquist and Lozinskij as a tool for studying the growth of solutions of
ODEs and the error growth in discretization methods for their approximate solution.
For a matrix A, the logarithmic norm is defined by

µ[A] = lim
∆→0+

‖I + ∆A‖ − 1

∆
.

The norm here is generally assumed to be a least upper bound (l.u.b.) norm. The
actual numerical value of µ[A] depends on the norm on which µ[A] is based. If α(A)
denotes the spectral abscissa of A (i.e., the maximum real part of the eigenvalues of A),
it is known that given a linear constant coefficient ODE, x′(t) = Ax(t), the solution
is asymptotically stable if and only if α(A) < 0. A matrix A with α(A) < 0 is called a
stable matrix. The solution is stable if and only if α(A) ≤ 0 and no eigenvalues λ with
Re(λ) = 0 are defective. An eigenvalue λ of A is defective if it has a noncomplete set
of eigenvectors. In terms of elementary divisors, an eigenvalue is nondefective if the
elementary divisors associated with it are simple. A matrix satisfying these conditions
will be called a weakly stable matrix.

Given a linear variable coefficient ODE, x′(t) = A(t)x(t), the eigenvalues of the
matrix do not give any information about the asymptotic stability, but in terms of
the logarithmic norm we have the bound

‖x(t)‖ ≤ e

∫ t

0
µ[A(t)]dt‖x(0)‖, t ≥ 0 .

Thus if µ[A(t)] < 0, the solutions are asymptotically stable. It is known that α(A) ≤
µ[A]. For details on logarithmic norms, see [2].

∗Received by the editors October 27, 1998; accepted for publication (in revised form) by V.
Mehrmann January 12, 2000; published electronically August 9, 2000. This work was supported by
the Gobierno de Navarra, project “Técnicas de aproximación en la resolución de problemas diferen-
ciales y en la representación de superficies” (O.F. 508/1997).

http://www.siam.org/journals/simax/22-2/34629.html
†Departamento de Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona,

Spain (higueras@unavarra.es, berta@unavarra.es).

472

ε-EFFICIENCY OF NORMS AND MATRIX PENCILS 473

The usefulness of the concept of logarithmic norm depends on how closely µ[A]
approximates α(A). In [8] Ström introduces the concept of logarithmic inefficiency of
a norm with respect to the matrix A as

q[A] = µ[A]− α(A) ≥ 0(1.1)

and gives the following definition.
Definition 1.1. A norm is called logarithmically optimal with respect to A if

q[A] = 0; it is called logarithmically ε-efficient if q[A] ≤ ε.
Given a vector norm ‖ ·‖ and a nonsingular matrix T, we define the norm ‖x‖T =

‖Tx‖. The corresponding l.u.b. norm satisfies ‖A‖T = ‖TAT−1‖ and the logarithmic
norm µT [A] = µ[TAT−1]. It is said that ‖ · ‖ and ‖ · ‖T are similar.

In [8] the following theorem is proved.
Theorem 1.2. Given ε > 0, any monotonic norm ‖ · ‖ and the n× n matrix A,

we may find a logarithmically ε-efficient norm similar to ‖ · ‖.
For the rest of the paper we assume that the norms are monotonic. Thus from

Theorem 1.2, if the solution is asymptotically stable, then there exists a norm such
that µ[A] < 0. In terms of stable matrices, the following theorem can be stated.

Theorem 1.3. A matrix A is stable if and only if µ[A] < 0 for some norm.
Another theorem proved in [8] is the following one.
Theorem 1.4. Given A, there exists a logarithmically optimal norm if and only

if no eigenvalue λ of A with Reλ = α(A) is defective. The logarithmically optimal
norm can be chosen in a similar manner as the euclidean norm.

Thus from Theorem 1.4, if the solution is stable, then there exists a norm such
that µ[A] ≤ 0. In terms of weakly stable matrices, the following theorem can be stated.

Theorem 1.5. A matrix A is weakly stable if and only if µ[A] ≤ 0 for some
norm.

We consider now linear constant coefficient differential algebraic equations

Ax′(t) + Bx(t) = f(t) .(1.2)

In order to get uniqueness for the solution, the pencil (A,B) is assumed to be regular,
i.e., there is a value λ such that det(λA + B) �= 0. Observe that for ODEs we have
the pencil (I,−A). If k is the index of the pencil, then we have

R
n = Ker(Âk)⊕ Im(Âk) ,

with Â = (cA + B)−1A, B̂ = (cA + B)−1B for any c such that cA + B is regular. To
get the solution, we decompose

x(t) = ÂDÂx(t) + (I − ÂDÂ)x(t) = y(t) + z(t),

where AD is the Drazin inverse. One of the properties of the Drazin inverse is that
ÂDÂ is a projector onto Im(Âk) along Ker(Âk). In the homogeneous case, z(t) = 0
and the solution x(t) ∈ Im(ÂDÂ). Actually the homogeneous DAE (1.2) is an ODE
on the lower dimension subspace Im(ÂDÂ). For details, see [6], [1].

For a regular pencil, det(λA + B) is a polynomial of degree less than or equal to
n. The complex values λ such that det(λA + B) = 0 are called finite eigenvalues of
the pencil. Observe that not every pencil has eigenvalues. It is said that infinite is
an eigenvalue of the pencil (A,B) if det(A) = 0. ODEs have only finite eigenvalues;
DAEs have infinite eigenvalues and may have finite ones. We will consider only the set

474 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

of finite eigenvalues of the pencil and denote it by σ(A,B), finite spectrum of (A,B).
For λ ∈ C, the vectors v ∈ Cn such that (λA + B)v = 0 are called eigenvectors
associated with the finite eigenvalue λ. The eigenvectors associated with the infinite
eigenvalue are all the vectors in Ker(A). The spectral radius, denoted by ρ(A,B), is
defined as

ρ(A,B) = max{|λ| / λ ∈ σ(A,B) } .
The spectral abscissa of the pencil (A,B), denoted by α(A,B), is defined as

α(A,B) = max{ Re (λ) / λ ∈ σ(A,B) } .
For a regular matrix pencil (A,B), there are regular matrices P and Q such that

A = Q

(
Ir

U

)
P, B = Q

(
J

In−r

)
P,

where U is a nilpotent (n − r) × (n − r) matrix and J, an r × r matrix, is formed
by Jordan blocks associated with the finite eigenvalues of the pencil. The index of
nilpotency of the DAE (or index) is the order of nilpotency of the matrix U . The
pencil (diag(Ir, U),diag(J, In−r)) is called the Kronecker canonical form of (A,B).
Denoting M = (cIr + J)−1, N = (cU + In−r)−1U we obtain

Â = P−1

(
M

N

)
P, B̂ = P−1

(
Ir − cM

In−r − cN

)
P(1.3)

with M regular and N nilpotent with order the index of nilpotency of the pencil. A
simple computation gives −M−1 + cIr = −J .

For the homogeneous DAE (1.2) the solution is asymptotically stable if and only
if α(A,B) < 0. A matrix pencil (A,B) such that α(A,B) < 0 will be called a stable
matrix pencil. The solution is stable if and only if α(A,B) ≤ 0 and the elementary
divisors associated with the eigenvalues λ of the pencil (A,B) with Re(λ) = 0 are
simple [4]. A matrix pencil (A,B) satisfying these conditions will be called a weakly
stable matrix pencil.

For homogeneous linear variable coefficient DAEs, the eigenvalues of the pen-
cil (A(t), B(t)) do not give any information about the asymptotic stability. In [3] a
definition of logarithmic norm for a matrix pencil (A,B) was given,

µV [A,B] = lim
∆→0+

‖A,A + ∆B‖V − 1

∆
,

where V is a subspace such that

V �= {0} and V ∩ ker(A) = 0 ,(1.4)

and

‖A,B‖V = max
x∈V , x�=0

‖Bx‖
‖Ax‖ .(1.5)

A subspace V satisfying (1.4) will be called admissible subspace. Observe that for
V = R

n, µV [I,−B] = µ[B]. If A is regular, µV [A,B] = µV [I,BA−1]. If the norm is
an inner product norm, then

µV [A,B] = max
Ax�=0
x∈V

〈Ax,−Bx〉
〈Ax,Ax〉 .

ε-EFFICIENCY OF NORMS AND MATRIX PENCILS 475

If the eigenvectors of the pencil (A,B) are in V (or at least any eigenvector corre-
sponding to an eigenvalue which gives the spectral radius), then

α(A,B) ≤ µV [A,B] .

For x(t) the solution of the homogeneous linear variable coefficient DAE, and for
any admissible V such that x(t) ∈ V, we have the bound

‖A(t)x(t)‖ ≤ e

∫ t

0
µV [A(t),B(t)−A′(t)] dt‖Ax(0)‖, t ≥ 0,(1.6)

for any consistent initial condition x(0). For details on logarithmic norms for matrix
pencils, see [3].

In particular, for the homogeneous constant coefficient case, the solution is in
Im(ÂDÂ), and it can be proved [3] that it satisfies (1.4); thus we can take V =
Im(ÂDÂ). Inequality (1.6) shows that if µV [A,B] < 0 for V = Im(ÂDÂ), then

lim
t→∞ ‖Ax(t)‖ = 0,

but as

x(t) = ÂDÂx(t) = ÂD(cA + B)−1Ax(t) ,

it is equivalent to the asymptotic stability of the solution. Again the usefulness of the
concept of logarithmic norm depends on how closely µV [A,B] approximates α(A,B).

For the seminorm (1.5) it is also possible to give the concept of similarity. Given
a vectorial norm ‖ · ‖ and nonsingular matrices T and T̃ , we have

‖A,B‖V,T = max
x∈V , x�=0

‖Bx‖T
‖Ax‖T = max

x∈V , x�=0

‖TBx‖
‖TAx‖ = max

y∈T̃ V , y �=0

‖TBT̃−1y‖
‖TAT̃−1y‖ ;

thus we can define

‖A,B‖V,T = ‖TA, TB‖V = ‖TAT̃−1, TBT̃−1‖T̃ V ,

where T̃ V = {T̃ x / x ∈ V }. We also get

µV,T [A,B] = µV [TA, TB] = µT̃ V [TAT̃−1, TBT̃−1] .

The rest of the paper is organized as follows. In section 2 we extend the concepts
of logarithmically ε-efficiency norm and logarithmically optimal norm and prove the
analogous Theorems 1.2 and 1.4 for matrix pencils. In section 3, we use these theorems
to prove in an easier way a result in [7].

2. Logarithmic efficiency. We begin with the extension of (1.1).
Definition 2.1. The logarithmic inefficiency of a norm and a subspace V with

respect to the matrix pencil (A,B) is given by

qV [A,B] = µV [A,B]− α(A,B) .

Observe that now we have qV [A,B] ≥ 0 only if any eigenvector corresponding to
an eigenvalue that gives the spectral radius is in V .

Definition 2.2. A norm and a subspace V are logarithmically optimal with
respect to (A,B) if and only if qV [A,B] = 0 and logarithmically ε-efficient if 0 ≤
qV [A,B] ≤ ε.

476 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

We state and prove the extension to Theorem 1.2.
Theorem 2.3. Consider the pencil (A,B) and the admissible subspace V =

Im(ADA) if A and B commute and V = Im(ÂDÂ) otherwise. Given ε > 0 and
any monotonic norm ‖ · ‖, there exists a vectorial norm similar to ‖ · ‖ such that
0 ≤ qV [A,B] ≤ ε.

Proof. If the matrices A and B do not commute, consider the matrices Â =
(cA + B)−1A and B̂ = (cA + B)−1B for any c ∈ R such that (cA + B) is regular.
Thus µV [A,B] = µV,(cA+B)[Â, B̂]. Using (1.3), the Drazin inverse of Â is

ÂD = P−1

(
M−1

0

)
P .

We consider V = Im(ÂDÂ) and compute

µV,(cA+B)[Â, B̂] =µV,(cA+B)

[
P−1

(
M

N

)
P, P−1

(
Ir − cM

In−r − cN

)
P

]

=µV,(cA+B)P−1

[(
M

N

)
P,

(
Ir − cM

In−r − cN

)
P

]

=µV,(cA+B)P−1

[(
M

0

)
P,

(
Ir − cM

0

)
P

]

=µRr,(cA+B)P−1 [M, Ir − cM] = µRr,(cA+B)P−1 [Ir, (Ir − cM)M−1]

=µ(cA+B)P−1 [−M−1 + cIr],

where for x ∈ R
r and W, a regular n × n matrix, ‖x‖W , is defined as ‖x‖W =

‖(x, 0)t‖W . For matrices, we know by Theorem 1.2 that there exists a logarithmically
ε-efficient norm in R

r such that

µ[−M−1 + cIr]− α(−M−1 + cIr) < ε .

We simply have to extend this norm to R
n. To get the desired result, observe that

α(A,B) = α(Â, B̂) = α(M, Ir − cM) = α(−M−1 + cIr).

Corollary 2.4. If α(A,B) < 0, then there exists a vectorial norm and a sub-
space V, namely, V = Im(ÂDÂ) such that

µV [A,B] < 0.

It is not strange to have to work on the subspace V = Im(ÂDÂ) because actually
with the homogeneous DAE we are working in this lower-dimension subspace.

In terms of stable pencils, we can state the following result analogous to Theorem
1.3.

Theorem 2.5. The pencil (A,B) is stable if and only if for V = Im(ÂDÂ)
µV [A,B] < 0 for some norm.

We can also extend Theorem 1.4 as follows.
Theorem 2.6. Consider the pencil (A,B) and the admissible subspace V =

Im(ADA) if A and B commute and V = Im(ÂDÂ) otherwise. There exists a logarith-
mically optimal norm if and only if no eigenvalue λ with Reλ = α(A,B) is defective.
The logarithmically optimal norm may be chosen similar to the euclidean norm.

Proof. As in Theorem 2.3, µV [A,B] = µ(cA+B)P−1 [−M−1 + cI]; remember that
α(A,B) = α(−M−1 + cI) = α(−J). We also have to relate the elementary divisors

ε-EFFICIENCY OF NORMS AND MATRIX PENCILS 477

of the eigenvalues λ of (A,B) with the elementary divisors of the eigenvalues λ of
−J . As a regular pencil is strictly equivalent to its Kronecker canonical form and
strictly equivalent pencils have the same finite and infinite elementary divisors [5],
the elementary divisors (finite and infinite) of the pencil (A,B) are the same as the
elementary divisors (finite and infinite) of the pencil (diag(Ir, N),diag(J, In−r)). The
finite elementary divisors of this pencil are the elementary divisors of −J . Thus, if
λ is a finite eigenvalue of (A,B), the elementary divisors associated with it, neces-
sarily finite, are the same as those of −J . Now by Theorem 1.4 we have the desired
result.

In terms of weakly stable pencils, we can state the following result analogous to
Theorem 1.5.

Theorem 2.7. The pencil (A,B) is weakly stable if and only if for V = Im(ÂDÂ)
µV [A,B] ≤ 0 for some norm.

3. Some other applications. We have assumed that the pencil (A,B) is reg-
ular, but we can drop this condition if, for example, the Kronecker canonical form is
not needed.

Proposition 3.1. Given any monotonic norm ‖·‖ and the pencil (Π,−M), such
that

Π = P

(
Ir

0

)
P−1, M = P

(
M̃

0

)
P−1

with M̃ a r × r matrix such that α(M̃) < 0, there exists a norm similar to ‖ · ‖ such
that for V = Im(Π)

µV [Π,−M] < 0.

Proof. A simple computation gives

µV [Π,−M] = µRr,P [I,−M̃] = µ[M̃]

and we can apply Theorem 1.2.

As a corollary we can obtain Lemma 4.2 in [7].

Corollary 3.2. Given the m ×m real matrices M and Π such that Π2 = Π,
M = MΠ = ΠM and rankΠ = r. Let M have r nontrivial eigenvalues λ1, . . ., λr
and let them all have negative real part. Then there is a constant β > 0 and a regular
matrix C such that

〈Mz, z〉C ≤ −β〈z, z〉C ∀z ∈ Im(Π),(3.1)

where 〈x, y〉C = ytCtCx.

Proof. Expression (3.1) is simply µV [Π,−M] ≤ −β < 0 for an inner product
norm and V = Im(Π).

478 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

REFERENCES

[1] S.L. Campbell and C.D. Meyer, Jr., Generalized Inverses of Linear Transformations, Dover,
New York, 1991.

[2] K. Dekker and J.G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential
Equations, North-Holland, Amsterdam, 1984.

[3] I. Higueras and B. Garćıa-Celayeta, Logarithmic norms for matrix pencils, SIAM J. Matrix
Anal. Appl., 20 (1999), pp. 646–666.

[4] I. Higueras and B. Garćıa-Celayeta, Stability for Linear DAEs, Preprint 15, Departamento
de Matemática e Informática, Universidad Pública de Navarra, Pamplona, Spain, 1997.

[5] F.R. Gantmacher, The Theory of Matrices. Vol. II, Chelsea, New York, 1989.
[6] E. Griepentrog and R. März, Differential algebraic equations and their numerical treatment,

Teubner Texte zur Mathematik 88, Teubner, Leipzig, Germany, 1986.
[7] R. März, On Quasilinear Index 2 Differential Algebraic Equations, Preprint 269, Fachbereich

Mathematik, Humboldt Universität zu Berlin, Germany, 1990.
[8] T. Ström, On logarithmic norms, SIAM. J. Numer. Anal., 12 (1975), pp. 741–753.

UPDATING A GENERALIZED URV DECOMPOSITION∗

MICHAEL STEWART† AND PAUL VAN DOOREN‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 479–500

Abstract. An updating scheme for a quotient type generalization of a URV decomposition of
two matrices is introduced. This decomposition allows low complexity updating as rows are added
to two rectangular matrices, determining the dimension of three distinct subspaces. One of these
subspaces is the intersection of the range space of the two matrices—information which leads to a
potential application in subspace algorithms for system identification.

Key words. generalized SVD, URV decomposition, system identification

AMS subject classifications. 65F15, 65F20

PII. S0895479897320460

1. Introduction. The quotient singular value decomposition of two matrices,
A and B, with an equal number of rows m, has been described in several ways. The
justification for the name is most obvious when A and B are both square and of the
same size and when A has full rank. Suppose an application demands knowledge
of the singular values of A−1B. It is well known in the context of the generalized
eigenvalue problem, in which the goal is to find the eigenvalues of A−1B, that the
best approach is to compute the eigenvalues by applying orthogonal transformations
to A and B without explicitly computing A−1B. This also applies to the singular
value problem and, instead of computing A−1B, a more reasonable approach is to
directly compute invertible X and orthogonal VA and VB such that

X−1AVA = ΣA, X−1BVB = ΣB ,

where ΣB and ΣA are diagonal. This solves the problem, since

A−1B = VAΣ
−1
A ΣBV

T
B

is clearly the singular value decomposition of A−1B. If X is required to be orthogonal,
then the best that can be done is to make ΣA and ΣB triangular. An appropriate
choice of orthogonal X, VA, and VB guarantees that Σ−1

A ΣB will be diagonal.
More generally, when A and B are possibly rank deficient m × na and m × nb

matrices, the generalized SVD [10, 13] has been defined by

X−1AV1 =

[
ΣA
0

]
r

m− r, X−1BV2 =

[
ΣB
0

]
r

m− r,(1.1)

where

ΣA =

IA SA

0A

 , ΣB =

0B SB

IB

∗Received by the editors April 23, 1997; accepted for publication (in revised form) by L. Eldén
September 11, 1998; published electronically August 9, 2000. This work was supported by ARPA
grant 60NANB2D1272 and NSF grant CCR-9209349.

http://www.siam.org/journals/simax/22-2/32046.html
†Computer Sciences Laboratory, RSISE, Australian National University, Canberra, ACT 0200,

Australia (stewart@discus.anu.edu.au).
‡CESAME, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (vdooren@anma.ucl.

ac.be).

479

480 MICHAEL STEWART AND PAUL VAN DOOREN

with diagonal positive definite SA and SB satisfying S2
A + S2

B = I and where r is the
rank of

[
A B

]
. The partitionings are such that SA and SB are the same size, r3. The

identity matrices IB and IA are r2×r2 and (r1−r3)×(r1−r3), where r1 is the rank of
A. The zero blocks 0A and 0B are (r−r1)× (na−r1) and (r−r2−r3)× (nb−r2−r3).
The decomposition reveals that r3 is the dimension of the intersection of the range
spaces of A and B.

In the rectangular case in which A has full rank the decomposition reveals the
singular values of A†B, where A† denotes the pseudoinverse of A. If A is rank deficient,
then the decomposition reveals singular values associated with a quotient formed from
the B-weighted pseudoinverse of A [4, 2].

An early development of the generalized SVD was given in [10]. A general descrip-
tion suitable for adaptation to a URV decomposition is as follows: the m× (na + nb)
matrix

[
A B

]
is decomposed as

UT
[
A ‖ B]V = UT

[
A ‖ B]

[
V1 0
0 V2

]
=

R11 0

0 0
0 0

∣∣∣∣∣∣

∣∣∣∣∣∣
S13 R14 0
R23 0 0
0 0 0

 ,(1.2)

where R11 is r1× r1 and upper triangular with full rank and R23 is r2× r2 and upper
triangular with full rank. The rectangular block

R14 =

[
R̂14

0

]

is r1 × r3 with full column rank r3, and R̂14 is square and upper triangular. Clearly
the first r3 columns of U form a basis for the intersection of the range spaces. Since
the rank of A is clearly r1 and the rank of B is r2 + r3, this decomposition reveals the
same rank information as the quotient SVD.

Further, if we define R̂11 to be the r3× r3 leading principal submatrix of R11 and

R̂−1
11 R̂14 = V11ΣRV

T
14

to be the SVD of R̂−1
11 R̂14, then

R̂11V11 = R̂14V14Σ
−1
R ,

and consequently there exists an orthogonal UR such that UTR R̂11V11 and UTR R̂14V14

are both upper triangular. Applying UR, V11, and V14 to the relevant rows and columns
of (1.2) will maintain the structure of (1.2) while ensuring that R̂−1

11 R̂14 will be di-

agonal. Note that the singular values of R̂−1
11 R̂14 are not changed by these further

orthogonal transformations.
If U and V are required to be orthogonal, then this is the most condensed form

one can obtain. However, if we define

X−1 =

R−1

11 −R−1
11 S13R

−1
23 0

0 R−1
23 0

0 0 I

UT ,

then

X−1
[
A ‖ B]V =

I 0 0
0 I 0
0 0 0
0 0 0

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

0 R̂−1
11 R̂14 0

0 0 0
I 0 0
0 0 0

 .

UPDATING A GENERALIZED URV DECOMPOSITION 481

If the original orthogonal transformations were chosen so that R̂−1
11 R̂14 is diagonal

and positive definite, then clearly R̂−1
11 R̂14 = S−1

A SB . Thus up to permutations and
scaling by S−1

A we recover the quotient SVD as presented in [10] and we can conclude

that the quotient singular values of A and B are the singular values of R̂−1
11 R̂14 even

when R̂−1
11 R̂14 is not diagonal. This is the justification for viewing the decomposition

as a quotient type generalization of the URV decomposition.
In this paper we do not require diagonality of R̂−1

11 R̂14 and we present an algorithm
to efficiently update a rank revealing decomposition that is related to (1.2) when rows
are added to the matrices A and B. An obvious application is recursive identification
of MIMO systems. The algorithm in [7] requires the intersection of the range spaces
of two matrices and may be adapted for use with the decomposition. A summary of
the main idea will be presented in section 5. Further details are in [12].

Other papers have considered updating for a quotient generalization of the ULV
decomposition [5] in the case in which A and B are na×m and nb×m with na, nb ≥ m
and the update involves the addition of rows to A and B. In the formulation chosen
in this paper in which the matrices have an equal number of rows, this is equivalent to
updating under the addition of columns to A and B. The method was first proposed
in [5] for the case in which A has full rank and extended in [6] to the rank deficient
case. A natural application for these decompositions is in prewhitening of colored
noise in signal processing [4]. Because of the assumptions on the dimensions of the
matrices in [5] and [6] and the difference between updating under the addition of
columns and rows, the algorithms considered in this paper are substantially different
from the previous work on generalized ULV decompositions.

The set of all rank deficient matrices is a subset of measure zero in the set of all
matrices. If m ≥ na + nb, then A and B can have nonempty range space intersection
only when

[
A B

]
is rank deficient. Moreover, A or B can be rank deficient only

when
[
A B

]
is rank deficient. It follows that when m ≥ na + nb the decomposition

(1.2) has the form

UT
[
A ‖ B]V = UT

[
A ‖ B]

[
V1 0
0 V2

]
=

R11

0
0

∣∣∣∣∣∣

∣∣∣∣∣∣
S13

R23

0

(1.3)

except on a measure zero set. This represents the special case of (1.2) when r1 = na,
r2 = nb, and r3 = 0. Because of numerical errors or noisy data, we can always expect
a quotient URV to have the trivial structure (1.3).

Thus an exact quotient URV gives no real information about the relation between
the numerical range spaces of A and B. Instead of computing the exact quotient
URV, we will attempt to compute a rank-revealing decomposition that shows when
small perturbations give a nontrivial quotient URV structure of the type (1.2). The
perturbations we allow will take the form of small nonzero elements in some of the
blocks of (1.2) that were previously zero. We constrain U and V to be orthogonal
and drop the requirement that R̂−1

11 R̂14 must be diagonal. The result is

UT
[
A ‖ B]

[
V1 0
0 V2

]
=

R11 E12

0 E22

0 E32

0 E42

0 F52

0 0

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

S13 R14 E15

R23 E24 E25

0 F34 E35

0 0 F45

0 0 0
0 0 0

.(1.4)

482 MICHAEL STEWART AND PAUL VAN DOOREN

The blocks R11 and R23 are square and upper triangular. In (1.2), R14 was upper
triangular with full column rank. To make the updating easier, we modify this in
(1.4): we allow R14 to have potentially large elements arranged in the form of an
upper triangular matrix that has had its columns reversed. The rest of the elements
can be nonzero but are constrained to be below a prespecified tolerance. The elements
below the cross diagonal are kept small enough that they will not cause the block to
become rank deficient when the triangular part R14 is kept suitably well conditioned
by an appropriate method for deflating small singular values. Letting r represent a
potentially large element and e represent an element which is small relative to the
tolerance, the 4× 3 case of R14 looks like

R14 =

r r r
r r e
r e e
e e e

 .

Although the structure of R14 may seem odd, it turns out that both the permuted tri-
angular structure and the possibility of having small nonzeros below the cross diagonal
significantly simplify the updating algorithm.

In further examples, we will follow the convention used for describing the structure
of R14. An r will always represent a potentially large element and an e will represent
an element which is small relative to the tolerance. The algorithm will keep the
elements which should be small from growing inappropriately.

Each F block of the decomposition is an upper triangular matrix with norm of
the order of the tolerance. Each E block is an arbitrary matrix, also with norm of the
order of the tolerance. The S block is an arbitrary matrix. With sufficiently small E
and F blocks, the decomposition gives estimates of the numerical range spaces of A
and B, along with an estimate of the numerical intersection in the form of the basis
provided by the first r3 columns of U .

The justification for the small nonzero blocks in (1.4) is that they allow us to find
a nontrivial quotient URV structure associated with a slightly perturbed pair of ma-
trices. The locations of these blocks are chosen to facilitate updating. The algorithm
will be designed to perform deflations of small singular values using a tolerance that
will keep these elements suitably small.

However, in some applications this might not be sufficient. If we wish to reliably
identify the most rank deficient nearby quotient SVD structure corresponding to the
smallest ranks for A, B, and

[
A B

]
, then it is natural to expect these perturbations,

and hence the magnitudes of the E and F blocks, to be not much larger than the
smallest perturbations to A and B required to give a quotient URV structure of the
form (1.2). Inordinately large elements in this blocks might cause the tolerance to be
reached too early in the deflation process, leading to an overestimate of the ranks of
A and B and an underestimate of the intersection dimension.

Unfortunately, standard quotient QR and URV algorithms fail by this standard
and the method of this paper suffers from a similar problem. The difficulty centers
on the fact that R23 is a part of a URV decomposition,

R23 E24 E25

0 F34 E35

0 0 F45

 ,(1.5)

that estimates a numerical rank for P⊥
AB. The exact decomposition (1.2) reveals the

UPDATING A GENERALIZED URV DECOMPOSITION 483

exact rank of P⊥
AB. When the range space of A is sufficiently sensitive to pertur-

bations, small perturbations of A can lead to large changes in the small singular
values of P⊥

AB that correspond to the exactly zero singular values shown in the un-
perturbed (1.2). Thus, even when dealing with small perturbations to a matrix pair
with the exact structure (1.2), the E and F blocks in (1.5) might be significantly
larger than the original perturbations to the data.

We illustrate the problem with the matrix pair

A =

1 0
0 δ
0 ε
0 0

 , B =

0 0
1 0
0 0
0 1

 ,(1.6)

where 0 < ε < δ < 1. We suppose that δ is significantly smaller than 1 but that it is
large enough that A can be considered to have full numerical rank. We assume that
the perturbing quantity ε is small enough that it is of the same order as the tolerance
used in rank decisions. A perturbation of norm ε to A clearly results in two full rank
matrices with an exact one-dimensional row subspace intersection.

Consider the orthogonal transformation given by the QR factorization of A,

1 0 0 0
0 δ√

δ2+ε2
ε√

δ2+ε2
0

0 −ε√
δ2+ε2

δ√
δ2+ε2

0

0 0 0 1

1 0
0 δ
0 ε
0 0

∣∣∣∣∣∣∣∣

0 0
1 0
0 0
0 1

 =

1 0

0
√
δ2 + ε2

0 0
0 0

∣∣∣∣∣∣∣∣

0 0
δ√

δ2+ε2
0

−ε√
δ2+ε2

0

0 1

 .

This decomposition gives the SVD of P⊥
AB. The smallest singular value is ε/

√
δ2 + ε2.

If δ is sufficiently small, we would conclude that P⊥
AB has full rank. This would imply

that ri = 0, so that the algorithm completely misses the possibility that there is a
nontrivial range space intersection achieved by matrices within O(ε) of A and B. The
end result is a misleadingly partitioned quotient URV that fails to reveal an interesting
and potentially useful feature of A and B.

Sensitivity in rank decisions is fundamental to any generalized URV or generalized
QR algorithm that starts with an estimate of the range space of A and proceeds with
a rank decision for P⊥

AB, including the methods described in [9, 1]. The algorithms in
[5, 6] are somewhat different in that they make rank decisions on a matrix with singular
values equal to the generalized singular values of A and B. Since generalized singular
values can be sensitive to perturbations [8], the rank decisions in these methods can
also be difficult.

Although the updating problem considered here is more involved, the basic tools
needed to update this decomposition have already been developed for the problem of
updating a URV decomposition in [11]. The algorithm can be broken into two stages.
The first restores the form of the decomposition when new rows are added to A and
B. After this stage of the update, the decomposition has the same general form, but
the triangular R matrices are potentially of different size and might no longer have full
rank. The second stage looks for small singular values of the R blocks and recursively
deflates these blocks, using the scheme described in [11], until they have full rank.

When it is obvious after representing the new rows in the bases provided by V1

and V2 that the new information does not increase the ranks of any of the full rank
blocks, parts of the updating algorithm are not needed. This is essentially the same
simplification as appears in [11]. To avoid giving the details of too many special cases,

484 MICHAEL STEWART AND PAUL VAN DOOREN

r r r r r r2 r r r r r r1
r r r r e e r r r r e e
0 r r r e e r r r e e e
0 0 r r e e r r e e e e
0 0 0 r e e r r e e e e
0 0 0 0 e e r r e e e e
0 0 0 0 e e 0 r e e e e
0 0 0 0 e e 0 0 e e e e
0 0 0 0 e e 0 0 0 e e e
0 0 0 0 e e 0 0 0 0 e e
0 0 0 0 e e 0 0 0 0 01 e
0 0 0 0 e e 0 0 0 0 0 0
0 0 0 0 02 e 0 0 0 0 0 0

Fig. 2.1. An example.

we deal only with the most general and the most difficult case here. This algorithm
applies in every contingency, but if it is immediately obvious that the new data will
not significantly change the estimates of the subspaces, then some of the steps are
unnecessary. We will be more precise about which steps can be skipped in section 3.

2. The updating algorithm. We first describe how to restore the general struc-
ture after new rows are added to A and B, leaving the discussion of deflation for
section 3. We also ignore initialization issues by assuming that at some stage the
decomposition has already been computed and we are simply interested in computing
the update. This does not evade the description of an essential step since the algo-
rithm applies in degenerate cases when the sizes of some of the triangular matrices
are zero (although this might involve the elimination of superfluous steps). Thus, the
process can be initialized by setting the decomposition to zero, setting the unitary
matrices to the identity, and starting the algorithm with the first rows of A and B.
It could also start at some later point by applying a more conventional generalized
SVD algorithm to compute the initial decomposition.

If two rows, aT and bT , are added to A and B, respectively, and each row of the
old matrix is weighted by 0 < α < 1, then

[
1 0
0 UT

] [
aT

αA

∣∣∣∣
∣∣∣∣ b

T

αB

] [
V1 0
0 V2

]
=

aT1 aT2
R11 E12

0 E22

0 E32

0 E42

0 F52

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bT3 bT4 bT5
S13 R14 E15

R23 E24 E25

0 F34 E35

0 0 F45

0 0 0
0 0 0

,(2.1)

where aTi and bTi are the obvious partitionings of aTV1 and bTV2. The blocks of the
decomposition shown here are the same as those shown in (1.4) but weighted by α.
The problem is to update the orthogonal matrices U and V to restore the structure
of the decomposition and to deal with possible rank changes in the R matrices.

To illustrate how we can restore the appropriate structure, we take as an example
Figure 2.1. This shows an extra row added to the top of a matrix that has the general
form described in (1.4). We may efficiently restore the original structure through the

UPDATING A GENERALIZED URV DECOMPOSITION 485

application of sequences of Givens rotations of the form

G =

[
c s
−s c

]
,

where c2 + s2 = 1, to the appropriate rows and columns of the matrix in Figure 2.1.
A description of how to compute Givens rotations to introduce zeros in a numerically
reliable manner may be found in [3].

When showing the updating of the decomposition, the approach taken here for
dealing with Givens rotations is to mark the elements that are to be eliminated with
a number indicating their order and to give any additional information in the text.
Such information includes whether the rotation acts on the row or column containing
the marked element, along with which other row or column the rotation also acts on.
In this algorithm, the rotations will always act on a row or column that is adjacent to
the numbered row or column in addition to the numbered row or column itself. The
identity of the adjacent row or column is not always explicitly mentioned in the text,
but the examples should make this detail of the procedure clear.

Many of the rotations will destroy the structure of a block of the decomposition
so that it is sometimes necessary to apply additional rotations to fix this damage. The
elements that must be eliminated to fix the structure will be marked with the same
number as the rotation that originally did the damage. Occasionally there will be a
sequence of two such fixes beyond the original rotation. The fix will always be applied
on the opposite side of the rotation which originally did the damage. Thus damage
caused by rotations applied on the left are fixed by rotations applied on the right and
vice versa. All such rotations can be easily spotted, since they always correspond to
either a marked zero element or one of the small elements of the R14 block—elements
for which no rotation would be needed if they had not been made potentially large
by another rotation.

In Figure 2.1 the numbered elements represent two sequences of right rotations to
zero the marked elements. Rotation 1 acts on the column of the numbered element and
the preceding column to eliminate the marked element, destroying the triangularity
of the F45 block. It can be restored after the Givens rotation is applied from the right
by a rotation from the left. Rotation 2 destroys the triangular structure of the F52

block. This can also be maintained through the appropriate use of a left rotation. In a
more general setting, rotations 1 and 2 would each be replaced by multiple rotations
that are intended to zero all but the first element of aT2 and bT5 , respectively, and,
after each rotation, it would be necessary to apply an additional rotation to fix F52

and F45

The result of these rotations is the matrix shown in Figure 2.2. Now that rotations
have been applied to concentrate large elements from the new rows into a region in
which they can damage at most two columns, we can take advantage of the permuted
triangular structure of the overall decomposition and apply a sequence of rotations
that are essentially the same as those used in QR updating. Each numbered rotation,
except for those in R14, acts on the numbered row and the preceding row to introduce
the necessary zeros. The only additional complication is the need to preserve the
triangular structure of R14. Figure 2.2 marks the elements to be eliminated by left
rotations. Each left rotation operates on the row marked and the previous row to
eliminate the marked element. The first r3 rotations, rotations 1 and 2 in this example,
will destroy the structure of the R14 block. For rotation 1, we may fix the damage to
R14 by using a right rotation on the numbered column and the one before it and then

486 MICHAEL STEWART AND PAUL VAN DOOREN

r r r r r 0 r r r r r 0
r1 r r r e e r r r r e1 e
0 r2 r r e e r r r e2 e e
0 0 r3 r e e r r e e e e
0 0 0 r4 e e r r e e e e
0 0 0 0 e e r5 r e e e e
0 0 0 0 e e 0 r6 e e e e
0 0 0 0 e e 0 0 e7 e e e
0 0 0 0 e e 0 0 02 e8 e e
0 0 0 0 e e 0 0 0 01 e9 e
0 0 0 0 e e 0 0 0 0 0 e10
0 0 0 0 e11 e 0 0 0 0 0 0
0 0 0 0 0 e12 0 0 0 0 0 0

Fig. 2.2. A sequence of left rotations.

r r r r r e r r r r r e
0 r r r r e r r r r e e
0 0 r r r e r r r e e e
0 0 0 r r e r r r e e e
0 0 0 0 r e r r r e e e
0 0 0 0 r6 e 0 r r e e e
0 0 0 0 r5 e 0 0 r e e e
0 0 0 0 r4 e 0 0 0 e e e
0 0 0 0 r3 e 0 0 0 0 e e
0 0 0 0 r2 e 0 0 0 0 0 e
0 0 0 0 r1 e 0 0 0 0 0 0
0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2.3. Left rotations to repartition R11.

fix the damage to F34 by using a left rotation. We allow rotations 3 and 4 to fill the
first column of R14 with potentially large elements, eventually moving down to add a
potentially large column to the beginning of E24, which results in the pattern shown
in Figure 2.3.

At this point, it is necessary to repartition the matrix to prepare for a deflation.
The reason for the peculiar reversed triangular structure of R14 becomes clear. This
figure shows a sequence of elements to be eliminated by left rotations. These rotations
will add extra elements into the subdiagonals of R23, F34, and F45 to give a matrix
that has essentially the same form as the original decomposition. This matrix suggests
a natural repartitioning. We expand the size of the square blocks R11 and R23 by one.
The rest of the matrix can be repartitioned along these lines, except that an extra
column is added onto the right of R14. The new partitioning is marked in Figure 2.3
and in Figure 2.4. In Figure 2.4 it is clear that the general form of the decomposition
has been restored.

The matrix has now been repartitioned so that it has its original form, but it is
possible that some of the R blocks will not have full rank. To finish the update we
need a general procedure to take a matrix of the correct form, (1.4), and determine

UPDATING A GENERALIZED URV DECOMPOSITION 487

r r r r r e r r r r r e
0 r r r r e r r r r e e
0 0 r r r e r r r e e e
0 0 0 r r e r r r e e e
0 0 0 0 r e r r r e e e
0 0 0 0 0 e r r r e e e
0 0 0 0 0 e 0 r r e e e
0 0 0 0 0 e 0 0 r e e e
0 0 0 0 0 e 0 0 0 e e e
0 0 0 0 0 e 0 0 0 0 e e
0 0 0 0 0 e 0 0 0 0 0 e
0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2.4. The repartitioned matrix with the correct form restored.

an appropriate size for all triangular matrices. The procedure is the deflation method
introduced in [11], applied to R11, R23, and R14, along with additional rotation to fix
any damage done to the structure by the deflations.

An implementation of this algorithm in MATLAB code is given in the appendix.
This implementation deals with special cases (ri = 0 for i = 1, 2, 3 and/or A or B
has full rank) which were glossed over in the description of the algorithm. For the
most part, these special cases involve omitting only the unnecessary steps. To avoid
producing an overwhelming quantity of code, the deflation procedures described in
the next section are hidden in function calls. The implementation of these deflations
is fairly straightforward, given an understanding of the basic methods of the updating
algorithm. We will not present codes for these functions. Finally, we note that the
algorithm can be made more efficient by comparing components of the new rows
with the tolerance and avoiding certain steps (and the deflations) when the new rows
cannot change the rank of A or B.

3. The deflation process. The deflation process for each block proceeds by
finding a small singular value associated with the block, using knowledge of an asso-
ciated singular vector to apply transformations forcing the rightmost column to have
elements only of the order of this singular value, and continuing the process recursively
on a smaller triangular matrix. The overall process proceeds by recursively deflating
R11 until an appropriate rank is found, then deflating R23 in a similar manner, and
then finally deflating R14.We will describe the deflations in this order. The basic idea
behind the procedure in [11] is to find a vector ‖w‖2 = 1 such that

‖R11w‖ ≈ σmin(R11),

where σmin(R11) denotes the smallest singular value ofR11. The literature on condition
estimation contains reliable methods which find such a w with O(r21) complexity; the
precise method is not particularly important for our explanation of the procedure.

If ‖R11w‖ is small enough to be considered a null vector within the tolerance,
then R11 is nearly rank deficient and must be deflated. A sequence of rotations is
constructed, zeroing the elements of w in order until the last component is reached.
While at the same time applying left rotations, also to R11 and in the manner de-

488 MICHAEL STEWART AND PAUL VAN DOOREN

scribed in [11] to preserve triangularity, we obtain

R11 =

r r r r e
0 r r r e
0 0 r r e
0 0 0 r e
0 0 0 0 e

 .

Then pattern of e elements holds since

σmin(R) ≈ ‖Rw‖ = ‖ÛTRV̂ V̂ Tw‖ = ‖ÛTRV̂ en‖,

while ÛTRV̂ en is the last column of the new R which results from this deflation
procedure. As described in relation to Figure 2.2, while it is convenient we fix the
effects of the left rotation on R14, but after a certain point, we let the first column
of R14 fill with large elements. The result of this is shown in Figure 3.1. The matrix
has to be repartitioned to make R11 smaller. This can be done by eliminating the
elements marked in Figure 3.1 with left rotations which act on the numbered row and
the row just before it. The result is Figure 3.2.

The effect of the deflating R11 on the sizes of the other R blocks is simple to see.
Each time the size of R11 decreases, the size of R23 potentially increases and the size
of R14 potentially decreases.

The deflation of R23 is performed next and the deflation of R14 last. The effects
of the deflation on R23 are very simple to deal with: none of the rotations damage the
overall structure of the decomposition, so all that is needed is the standard deflation
procedure from [11], resulting in Figure 3.3. A sequence of left rotations needed to
produce zeros in the last column of S13 so that it can become the first column of R14

is shown, together with right rotations needed to fix the effect of these on R11. Thus,
each deflation results in a decrease in the size of R23 and an increase in the size of R14.
If the ranks are to be restored to their original values, then it will be necessary to carry
out two deflations on R23. The result of these two deflations, with the corresponding
repartitioning for R23 and R14, is shown in Figure 3.4. The assumption that the ranks
return to their original values is not essential to the algorithm, and it is adopted here
only for convenience on the grounds that the algorithm will typically operate in steady
state. The method of deflation is general and applies even without this assumption.

The deflation process for R14 is similar, although it is worth taking note of minor
differences imposed by the odd structure of the block. First, the methods for finding
w usually involve a back substitution. Here we ignore the small nonzero elements in
attempting to find

‖R14w‖ ≈ σmin(R14).

Assuming that we have such a w, we apply rotations to introduce zeros into all but the
last element and apply these rotations, together with rotations to fix the permuted
triangular structure of R14. Further rotations will be needed to fix R11 and F34. The
result of single deflation will be

R14 =

r r e
r r e
r e e
e e e

 .

UPDATING A GENERALIZED URV DECOMPOSITION 489

r r r r e e r r r r r e
0 r r r e e r r r r e e
0 0 r r e e r r r r e e
0 0 0 r e e r r r r e e
0 0 0 0 e e r r r r e e
0 0 0 0 0 e r1 r r r e e
0 0 0 0 0 e 0 r2 r r e e
0 0 0 0 0 e 0 0 r3 r e e
0 0 0 0 0 e 0 0 0 r4 e e
0 0 0 0 0 e 0 0 0 0 e5 e
0 0 0 0 0 e 0 0 0 0 0 e6
0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3.1. After a deflation of R11.

r r r r e e r r r r r e
0 r r r e e r r r r e e
0 0 r r e e r r r r e e
0 0 0 r e e r r r r e e
0 0 0 0 e e r r r r e e
0 0 0 0 e e 0 r r r e e
0 0 0 0 e e 0 0 r r e e
0 0 0 0 e e 0 0 0 r e e
0 0 0 0 e e 0 0 0 0 e e
0 0 0 0 e e 0 0 0 0 0 e
0 0 0 0 e e 0 0 0 0 0 0
0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3.2. After deflation of R11 and repartitioning.

r r r r e e r r r r r e
0 r r r e e r r r r e e
0 02 r r e e r r r r2 e e
0 0 01 r e e r r r r1 e e
0 0 0 0 e e r r r e e e
0 0 0 0 e e 0 r r e e e
0 0 0 0 e e 0 0 r e e e
0 0 0 0 e e 0 0 0 e e e
0 0 0 0 e e 0 0 0 0 e e
0 0 0 0 e e 0 0 0 0 0 e
0 0 0 0 e e 0 0 0 0 0 0
0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3.3. After a deflation of R23.

490 MICHAEL STEWART AND PAUL VAN DOOREN

r r r r e e r r r r r e
0 r r r e e r r r r e e
0 0 r r e e r r r e e e
0 0 0 r e e r r e e e e
0 0 0 0 e e r r e e e e
0 0 0 0 e e 0 r e e e e
0 0 0 0 e e 0 0 e e e e
0 0 0 0 e e 0 0 0 e e e
0 0 0 0 e e 0 0 0 0 e e
0 0 0 0 e e 0 0 0 0 0 e
0 0 0 0 e e 0 0 0 0 0 0
0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3.4. After two deflations of R23.

A sequence of left rotations will easily transform this to

R14 =

r r e
r e e
e e e
e e e

 ,

and the damage that the left rotations do to R11 can easily be fixed by right rotations.
This completes the deflation of all of the triangular blocks.

Since many of the basic principles were illustrated by appealing to an example, it
is worth noting that the deflation process for each block is quite general and does not
depend on the sizes of the blocks. The deflation might have to be done for each block
several times, but because each deflation returns the matrix to its correct form, they
can be performed recursively for each block until the proper ranks are determined.
As explained above, the deflation process is first applied recursively to R11 until its
rank has been determined, and then we do the same for R23 and finally R14.

There is one difficulty that has not yet been mentioned. The code given in the
appendix assumes that prior to the update r1 ≥ r3. This is generally not a problem,
but if the size of R23 drops sufficiently after several deflations, then r3 will temporar-
ily increase by a corresponding amount before R14 is deflated. After the first such
deflation on R23 for which this is a problem, we will have R14 of the form

R14 =

r r r r
r r r e
r r e e

 .

Right rotations should be applied to compress this into the first 3 columns. The effect
on F34 may be fixed with left rotations. This will keep r3 = r1 while the appropriate
size of R23 is being determined.

The algorithm in this paper is essentially an extension of the URV algorithm as
described in [11] and it inherits the simplicity with which the URV decomposition can
deal with updates that do not increase any of the ranks. If after applying V1 and V2

to the new row vectors it is apparent that none of the ranks increase, the generalized
URV updating can proceed in a manner similar to the simplified URV algorithm by
skipping the rotations shown in Figures 2.1 and 2.3 and by skipping the deflation of

UPDATING A GENERALIZED URV DECOMPOSITION 491

R11 and R14. Because of the way the rotations in Figure 2.2 change the partitioning of
R23 and R14 it will still be necessary to do a deflation on R23. This is all in contrast
to the ULV algorithm in which substantial additional computations are needed to
avoid a deflation.

In the sample code in the appendix, we have hidden the deflations in functions
which are not presented in this paper. Since the deflations involve fewer special cases
and parallel the method of [11] more closely than the update, we have left them out.

4. Complexity. The decomposition has a fairly involved structure and, from
the description given here, it might be assumed that the algorithm is computationally
intensive. In fact, considering the difficulty of the problem, this is not the case; the
computational complexity is surprisingly reasonable. The exact numbers will depend
on r1, r2, and r3 in addition to the number of columns in A and B. To simplify
matters for comparison, we assume ranks which are reasonable in the context of the
identification algorithm of [7]. In particular, we assume that A and B each have 2i
columns and that r1 = i + n, r2 = i, and r3 = n. We assume that i is slightly
larger than n. If left rotations are not accumulated to form U (knowledge of U is not
required by the updating algorithm), then the complexity involved in updating this
decomposition when none of the ranks change is at worst 325i2 + 120in + 6n2 flops.
If it is apparent in the first stage of the update that the new rows do not increase the
ranks of the R blocks, then the update can be computed with much lower complexity.

These numbers look very bad, but when the level of difficulty inherent in the
problem is taken into account, they are quite reasonable. If i is only slightly larger than
n, so that the difference can be absorbed into lower-order terms, then the complexity
is 451(4i)2/16. Thus, since the decomposition involves a matrix combining both A and
B with a total of 4i columns, the worst-case complexity involved is really expressed
more reasonable as approximately 28(4i)2 flops.

This is certainly large when compared with the updating of a QR decomposition
of a matrix of the same size. The QR decomposition involves only 3(4i)2 flops, but an
ordinary URV decomposition is a different matter. Just to compute a URV decom-
position of A involves 71i2 + 6in+ 3n2 flops. Again, assuming i and n are close and
ignoring lower-order terms, the complexity is roughly 5(4i)2. Thus updating the quo-
tient URV is about a factor of three more costly than computing URV decompositions
for A and B separately. Depending on the ranks involved, it is often not much more
costly than updating the URV decomposition of a single matrix with 4i columns.

The generalized URV decomposition is similar in spirit to the generalized QR
factorization of [9]. However, a generalized QR factorization does not lend itself to
updating. In terms of computational complexity, the use of the URV updating method
is justifiable only when updates are needed. The method is not competitive for finding
the subspaces associated with the generalized SVD of a single matrix.

5. An application to system identification. Consider the state space model

xk+1 = Akxk +Bkuk,(5.1)

yk = Ckxk +Dkuk,

where xk is n× 1, uk is m× 1, and yk is p× 1.
Assuming we have observations of the input and output vectors, uk and yk,

the identification problem is to find an order, n, and time-varying system matri-
ces {Ak, Bk, Ck, Dk} that satisfy, or approximately satisfy, (5.1) for some n× 1 state
sequence xk.

492 MICHAEL STEWART AND PAUL VAN DOOREN

If the output vectors are generated by a time-invariant model {A,B,C,D} and
observations are corrupted by noise, we want the estimated model to converge to
{A,B,C,D} or to some model {SAS−1, SB,CS−1, D} given by a change of basis for
xk and having identical input/output behavior.

More realistically, it is often assumed that the state space model is slowly time-
varying and that there is small noise on the observed input and output vectors. Under
those circumstances, we wish to provide an algorithm to track variations in the model.

The generalized URV decomposition applies naturally to a system identification
algorithm developed in [7]. The approach can be characterized by two steps: find an
estimate of the state sequence xk, and then obtain the system matrices from the least
squares problem [

xk+i+j−1 · · · xk+i+1

yk+i+j−2 · · · yk+i

]
Wj−1

=

[
Aj Bj
Cj Dj

] [
xk+i+j−2 · · · xk+i
uk+i+j−2 · · · uk+i

]
Wj−1,

(5.2)

where Wj is a diagonal weighting matrix defined by

Wj =

[
1 0
0 αjWj−1

]

for |αj | < 1 and W1 = 1. The index k is the time at which observations begin and
k + i + j − 1 is the time at which the latest observations have been made. Indices
k and i are fixed, but j grows as more observations are made. To keep the notation
compact, the indexing of the system matrices will show only the dependence on j,
although {Aj , Bj , Cj , Dj} will depend on observation up to uk+i+j−1 and yk+i+j−1.

Define the mi× j block Toeplitz matrices

UK =

uk+j−1 uk+j−2 · · · uk
uk+j uk+j−1 · · · uk+1

...
...

...
uk+j+i−2 uk+j+i−3 · · · uk+i−1

 ,

Yk =

yk+j−1 yk+j−2 · · · yk
yk+j yk+j−1 · · · yk+1

...
...

...
yk+j+i−2 yk+j+i−3 · · · yk+i−1

 ,

and

Tk =

[
Uk
Yk

]
.

The following theorem from [7] provides a means for generating an appropriate
sequence of state vectors.

Theorem 5.1. Let the vectors uk and yk be generated by

xk+1 = Axk +Buk,

yk = Cxk +Duk,

UPDATING A GENERALIZED URV DECOMPOSITION 493

where the rank of

[
CT ATCT · · · (AT)n−1CT

]
(5.3)

is n.

Let

Xk =
[
xk+j−1 xk+j−2 · · · xk

]

and

Xk+i =
[
xk+i+j−1 xk+i+j−2 · · · xk+i

]
.

For i ≥ n, if rank(Xk)= rank(Xk+i) = n and the matrices

[
Uk
Xk

]
,

[
Uk+i
Xk+i

]
,

 Uk
Uk+i
Xk

(5.4)

all have full rank mi + n, mi + n, and 2mi + n, respectively, then Tk and Tk+i both
have rank mi + n and the intersection of the span of the rows of Tk and Tk+i has
dimension n. Further, there is a basis, X, of the intersection for which

X =
[
xk+i+j−1 xk+i+j−2 · · · xk+i

]
,

and different bases for this space correspond to state vector sequences of models with
equivalent input/output behavior under a transformation of the form

{SAS−1, SB,CS−1, D}.

The rank condition on (5.3) implies the observability of the linear system; without
this assumption the full information contained in the state sequence will not be seen
in the output and any identification scheme can be expected to fail. The condition on
the rank of Xk and Xk+i implies that the input fully excites all modes of the system.
This is also a standard and necessary assumption in system identification.

The rank assumption involving (5.4) is stronger: it clearly implies the rank con-
dition on Xk and Xk+i. The key point is to make sure that Uk and Uk+i have full
rank and to make sure that Xk is not contained in their span. A full rank condition
on the inputs is standard in identification. The joint condition on Xk is less standard,
but it can be verified that it is satisfied generically and the probability that it fails de-
creases when j is increased. More details about the implications of these assumptions
together with a proof of the theorem may be found in [7].

If α �= 1, we look for the intersection of the span of the rows of TkWj and
Tk+iWj . In that case, the theorem shows that the intersection is the weighted state
vector sequence required by (5.2).

The generalized URV algorithm can be used to update the intersection of the
range spaces of TTk and TTk+i as new observations are made and new rows are added
to the matrices. This leaves the solution of (5.2) to complete the identification process.
It is possible to efficiently update the QR decomposition needed to solve (5.2) while
updating the generalized URV decomposition. Further details are contained in [12].

494 MICHAEL STEWART AND PAUL VAN DOOREN

In order to show the effectiveness of the decomposition, we consider the system
defined by

A =

.4 0 .8
.4 .4 −.4
.4 0 .4

 , B =

 1 2
3 1
−4 2

 ,

C =

[
0 −1 0
1 −2 −1

]
, D =

[
1 0
0 1

]
.

The system can be verified to be stable with its largest eigenvalue having magnitude
strictly less than 1. The observability condition is also easily verified.

We generated a sequence of input vectors uk with elements that were randomly
generated according to zero mean normal distribution with variance 1. An initial
state vector was chosen as x1 = 0. A sequence of output vectors, yk, was generated
by (5.1).

Before applying the identification algorithm, each component of the input and
output vectors was perturbed by zero mean unit variance normal noise scaled by .01,
resulting in a noise component two orders of magnitude below the signal component.
The tolerance for deflation of all three triangular blocks was set to an absolute value
of .5. To give an idea of the relative significance of this tolerance, the data matrices
satisfy ∥∥ [TT1 TTi+1

] ∥∥ ≈ 100

for j = 50. The value of this norm for j = 20 is approximately 50. We used i = 3 and
data were taken for j = 24, . . . , 50.

For each j the generalized URV decomposition correctly identified the order n = 3.
When the identified model was driven by the inputs uk starting with the earliest iden-
tified state vector xi+1, the difference between the outputs produced by the identified
model and the original model was of the same order of magnitude as the noise. We
define

Y =
[
yi+1 yi+2 · · · y100

]
as a matrix of original, unperturbed outputs and

Ŷj =
[
ŷi+1 ŷi+2 · · · ŷ100

]
as the matrix of simulated outputs produced by the system identified using j columns
of T1 and Ti+1. The errors

‖Y − Ŷj‖2
‖Y ‖2

are shown in Figure 5.1.
Clearly the algorithm is successful in handling this level of noise. However, if

we increase the noise level by a factor of 10, the algorithm fails dramatically; it is
not possible to find a tolerance for which the ranks r2 and r3 are estimated reliably.
Nevertheless the rank r1 and the sum r2 + r3 = r1 are both estimated reliably for a
choice of absolute tolerance of 1.

The problem is the inherent sensitivity of the generalized SVD computation as
characterized by a simple perturbation analysis in section 1. For rank estimation, the

UPDATING A GENERALIZED URV DECOMPOSITION 495

Fig. 5.1. The identification output residual for varying j.

relevant singular values of T1 for j = 50 are

σ9(T1) = 5.3, σ10(T1) = .78.

This drop in the singular values is likely to be spotted as significant. By theorem 5.1,
we know that rank(T1) = mi + n = 6 + n so that we can deduce that n = 3 simply
from an accurate estimate of r1. Similarly the rank of Ti+1 is easily determined to be
6 + n and, given a correct estimate of r1, we know that r2 should be 6 and r3 should
be 3.

Unfortunately, determining the correct values of r2 and r3 is often not as easy as
determining their sum. The reason is that determining r2 is a secondary rank decision
that depends on a prior estimate of the range space of TT1 . Although the singular
values of T1 and T2 are perfectly conditioned with respect to noise perturbations,
the estimate of the range space of TT1 can be sensitive if R11 is ill-conditioned. An
accurate estimate of this range space is required to determine r2.

The problem can occur even when using more refined algorithms. Given the SVD
of TT1

TT1 =
[
U1 U2

] [Σ1 0
0 Σ2

] [
WT

1

WT
2

]
,

where U2 is j× (j− r1), the problem of estimating r2 is equivalent to determining the
rank of UT2 T

T
i+1. We know that this rank should be 6. But it turns out that

σ6(U
T
2 Ti+1) = 5.0, σ7(U

T
2 Ti+1) = 4.2.

This is a virtually impossible rank decision. Decreasing the noise variance for the
same inputs verifies that the predictions of Theorem 5.1 are correct and that the
artificially high value of σ7(U

T
2 T

T
i+1) is due solely to noise.

496 MICHAEL STEWART AND PAUL VAN DOOREN

Fig. 5.2. Output Residuals: High noise with n determined from r1.

Because generalized singular values can be sensitive to perturbations [8] and their
computation depends on a nonorthogonal transformation, a method that looks di-
rectly at generalized singular values can also involve difficult decisions. Thus the
failure of the algorithm is not really due to a difficulty in estimating rank using the
imperfect URV methods. The problem is inherent in the rank decisions being made.
This difficulty is one reason that the most reliable quotient SVD algorithms avoid
making rank decisions whenever there is an alternative. Even with the most stable of
algorithms, deciding which generalized singular value pairs belong to SA and SB or
to IA and IB can be a difficult problem.

Fortunately, Theorem 5.1 provides a means for obtaining a suboptimal solution
with the correct order even in the higher noise case. We use noise that is .1 times zero
mean unit variance normal noise and set the absolute tolerance to 1 for determining r1.
Instead of estimating r2 and r3 using the standard deflation procedure, we determine
r2 and r3 from the relations deduced from Theorem 5.1

r3 = r1 −mi, r2 = mi.

We apply deflations to R23 and R14 to enforce these relations even when it results in
slightly too large values in E or F blocks. The result is an algorithm that recovers
the correct n but in which the intersection can be corrupted by the relaxation of the
tolerance in the deflation of R23 and R14. In practice, accepting a slightly corrupted
intersection is not as harmful as estimating the order incorrectly. As noted, any
algorithm for computing intersections applied to this problem is likely to be faced
with this sort of choice. The resulting output errors are shown in Figure 5.2.

6. Conclusions. In this paper, we have presented an updating algorithm for a
quotient type generalization of the URV decomposition. Three ranks must be esti-
mated, and consequently the details of the algorithm are quite involved. However,

UPDATING A GENERALIZED URV DECOMPOSITION 497

depending on the rank of the matrices, the overall computational complexity is often
not much worse than computing a URV decomposition of equal size.

With respect to reliability, the algorithm performs very well in an application to
system identification in which inputs and outputs are perturbed by moderate noise.
The sequence of three interdependent rank decisions can be difficult in a high noise
setting, but experiments with SVD based methods and the sensitivity results in [8]
suggest that the difficulty is inherent in estimating ranks associated with generalized
SVD and is not a result of a flaw in the algorithm.

Appendix. Sample code. In this appendix, we present a sample code for
updating a quotient URV decomposition. To allow better illustration of the general
outline of the algorithm, the code for deflation has been hidden in three function
calls. This code deals with degenerate cases in which any of the three relevant ranks
becomes zero or one. Handling these cases adds significantly to the complexity of the
code; for reasons of brevity they were not described in the text.

function [R,U,V1,V2,r1,r2,r3]=gurv(R,U,V1,V2,r1,r2,r3,x1,x2,tol)

%

% For a 2n by 2n matrix R, m by 2n U and n by n V1 and V2 for which

%

% [A B]=U*R*[V1’ 0; 0 V2’]

%

% with A and B m by n, this code updates the decomposition by adding

% rows x1 and x2 to obtain the decomposition for [x1 x2;A B].

% Within the tolerance specified by tol:

% r1 is the rank of A.

% r3 is the dimension of the intersection.

% r2+r3 is the rank of B.

n2=max(size(R)); n=n2/2; rb=r2+r3; [m1,m2]=size(U);

if (max(m1,m2)==0)

U=[1 zeros(1,2*n)];

else

U=[1 zeros(1,m2);zeros(m1,1) U];

end

x=[x1*V1,x2*V2]; R=[x;R];

if (r1<n-1)

for i=n:-1:r1+2

G=givens(R(1,i-1),R(1,i));

R(:,i-1:i)=R(:,i-1:i)*G’;

V1(:,i-1:i)=V1(:,i-1:i)*G’;

G=givens(R(n+i,i-1),R(n+i+1,i-1));

R(n+i:n+i+1,i-1:n)=G*R(n+i:n+i+1,i-1:n);

U(:,n+i:n+i+1)=U(:,n+i:n+i+1)*G’;

end

end

% If B was not full rank then adding the new row gives a triangular

% structure to R14 after the appropriate zeros have been introduced

% into the row.

if (rb<n-1)

for i=n:-1:rb+2

G=givens(R(1,n+i-1),R(1,n+i));

498 MICHAEL STEWART AND PAUL VAN DOOREN

R(:,n+i-1:n+i)=R(:,n+i-1:n+i)*G’;

V2(:,i-1:i)=V2(:,i-1:i)*G’;

G=givens(R(r1+i,n+i-1),R(r1+i+1,n+i-1));

R(r1+i:r1+i+1,n+i-1:2*n)=G*R(r1+i:r1+i+1,n+i-1:2*n);

U(:,r1+i:r1+i+1)=U(:,r1+i:r1+i+1)*G’;

if (r1<n)

R(r1+i:r1+i+1,r1+1:n)=G*R(r1+i:r1+i+1,r1+1:n);

end

end

end

% If B is full rank then we make R14 triangular using left rotations.

if ((rb==)&(r3>0))

for i=1:r3

G=givens(R(i,2*n-i+1),R(i+1,2*n-i+1));

R(i:i+1,:)=G*R(i:i+1,:);

U(:,i:i+1)=U(:,i:i+1)*G’;

if (i>1)

G=givens(R(i+1,i),R(i+1,i-1));

R(1:i+1,i-1:i)=R(1:i+1,i-1:i)*G;

V1(:,i-1:i)=V1(:,i-1:i)*G;

end

end

end

if (rb<n)

r3=r3+1;

rb=rb+1;

end

% We have to handle the case of full-rank B, r2+r3=n, separately.

% The case r2+r3=n-1 doesn’t require any work at this stage at all.

% This restores the ‘‘triangular’’ structure of R11.

if (r1>0)

if(r3>1)

for i=1:r3-1

G=givens(R(i,i),R(i+1,i));

R(i:i+1,:)=G*R(i:i+1:);

U(:,i:i+1)=U(:,i:i+1)*G’;

G=givens(R(i+1,n+rb-i),R(i+1,n+rb+1-i));

R(:,n+rb-i:n+rb+1-i)=R(:,n+rb-i:n+rb+1-i)*G’;

V2(:,rb-i:rb+1-i)=V2(:,rb-i:rb+1-i)*G’;

G=givens(R(r1+rb-i+1,n+rb-i),R(r1+rb-i+2,n+rb-i));

R(r1+rb-i+1:r1+rb-i+2,n+rb-i:2*n)=G*R(r1+rb-i+1:r1+rb-i+2,

n+rb-i:2*n);

U(:,r1+rb-i+1:r1+rb-i+2)=U(:,r1+rb-i+1:r1+rb-i+2)*G’;

if (r1<n)

R(r1+rb-i+1:r1+rb-i+2,r1+1:n)=G*R(r1+rb-i+1:r1+rb-i+2,r1+1:n);

end

end

% Continue to restore the triangular structure, but now don’t worry

% about fixing R14.

UPDATING A GENERALIZED URV DECOMPOSITION 499

for i=r3:r1

G=givens(R(i,i),R(i+1,i));

R(i:i+1,:)=G*R(i:i+1,:);

U(:,i:i+1)=U(:,i:i+1)*G’;

end

else

% The case of r3<2; we don’t need to fix anything.

for i=r:r1

G=givens(R(i,i),R(i+1,i));

R(i:i+1,:)=G*R(i:i+1,:);

U(:,i:i+1)=U(:,i:i+1)*G’;

end

end

end

% Now restore the triangular structure for R23, F34, F45.

for i=r1+1:r1+n

G=givens(R(i,n+i-r1),R(i+1,n+i-r1));

R(i:i+1,n+i-r1:2*n)=G*R(i:i+1,n+i-r1:2*n);

U(:,i:i+1)=U(:,i:i+1)*G’;

if (r1<n)

R(i:i+1,r1+1:n)=G*R(i:i+1,r1+1:n);

end

end

% We restore the triangular structure of F52.

for i=r1+n+1:2*n

G=givens(R(i,i-n),R(i+1,i-n)):

R(i:i+1,i-n:n)=G*R(i:i+1,i-n:n);

U(:,i:i+1)=U(:,i:i+1)*G’;

end

if (r2<n)

r2=r2+1;

if (r3>0)

r3=r3-1;

end

end

% And we repartition R11.

if (r1<n)

for i=r1+n:-1:r1+1

G=givens(R(i,r1+1),R(i+r,r1+1));

R(i:i+1,r1+1:2*n)=G*R(i:i+1,r1+1:2*n);

U(:,i:i+1)=U(:,i:i+1)*G’;

end

r1=r1+1;

end

U=U(:,1:2*n);

R=R(1:2*n,:);

[R,U,V1,V2,r1,r2,r3]=deflateR11(R,U,V1,V2,r1,r2,r3,n,tol);

[R,U,V1,V2,r1,r2,r3]=deflateR23(R,U,V1,V2,r1,r2,r3,n,tol);

[R,U,V1,V2,r1,r2,r3]=deflateR14(R,U,V1,V2,r1,r2,r3,n,tol);

500 MICHAEL STEWART AND PAUL VAN DOOREN

Acknowledgments. This paper presents research results of the Belgian Pro-
gramme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime
Minister’s Office for Science, Technology and Culture. The scientific responsibility
rests with its authors.

REFERENCES

[1] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[2] L. Eldén, A weighted pseudoinverse, generalized singular values, and constrained least squares

problems, BIT, 22 (1982), pp. 487–502.
[3] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University

Press, Baltimore, MD, 1989.
[4] P. C. Hansen, Rank-deficient prewhitening with quotient SVD and ULV decomposition, BIT,

38 (1998), pp. 34–43.
[5] F. T. Luk and S. Qiao, A new matrix decomposition for signal processing, Automatica J.

IFAC, 30 (1994), pp. 39–43.
[6] F. T. Luk and S. Qiao, An adaptive algorithm for interference cancelling in array processing,

in SPIE Advanced Signal Processing Algorithms, Architectures and Implementations VI,
1996, pp. 151–161.

[7] M. Moonen, B. De Moor, L. Vandenberghe, and J. Vandewalle, On- and off-line identi-
fication of linear state-space models, Internat. J. Control, 49 (1989), pp. 993–1014.

[8] C. C. Paige, A note on a result of Sun Ji-guang: Sensitivity of the CS and GSV decomposition,
SIAM J. Numer. Anal., 21 (1984), pp. 186–191.

[9] C. C. Paige, Some aspects of generalized QR factorizations, in Reliable Numerical Compu-
tation, M. G. Cox and S. J. Hamarling, eds., Clarendon Press, Oxford, 1990, pp. 71–91.
Cited in Å. Björck, available via anonymous ftp from math.liu.se in pub/references.

[10] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM
J. Numer. Anal., 18 (1981), pp. 398–405.

[11] G. W. Stewart, An updating algorithm for subspace tracking, IEEE Trans. Signal Process.,
40 (1992), pp. 1535–1541.

[12] M. Stewart and P. Van Dooren, An updating algorithm for on-line MIMO system identifi-
cation, in SVD in Signal Processing III, Algorithms and Applications, M. Moonen and B.
De Moore, eds., Elsevier, New York, 1995.

[13] C. F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal., 13
(1976), pp. 76–83.

ON THE CHOLESKY FACTORIZATION OF THE GRAM MATRIX
OF MULTIVARIATE FUNCTIONS∗

TIM N. T. GOODMAN† , CHARLES A. MICCHELLI‡ , GIUSEPPE RODRIGUEZ§ , AND

SEBASTIANO SEATZU¶

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 501–526

Abstract. We study the Cholesky factorization of certain bi-infinite matrices and related finite
matrices. These results are applied to show that if the uniform translates of a suitably decaying
multivariate function are orthonormalized by the Gram–Schmidt process over certain increasing
finite sets, then the resulting functions converge to translates of a fixed function which is obtained
by a global orthonormalization procedure. This convergence is also illustrated numerically.

Key words. Cholesky factorization, Gram–Schmidt process, orthonormal, multivariate

AMS subject classifications. 15A23, 41A63, 42C05

PII. S0895479899343274

1. Introduction. We begin with a function φ : R
d → R and form the translates

of this function by vectors in the lattice Z
d. We order these translates in some fash-

ion and use the standard Gram–Schmidt process to orthonormalize them relative to
Lebesgue measure on some bounded domain of R

d. These orthonormalized functions
are not generally the translates of a fixed function relative to our chosen ordering of
Z
d. That is, the Gram–Schmidt process will not preserve this property of the original

functions to which it is applied. However, we believe under mild conditions on the
function φ, the ordering of the translates and the growth of the domain relative to the
finite number of translates orthonormalized, there will emerge a limiting profile. By
our definition a limiting profile is a function such that its translates formed from the
chosen ordering of Z

d will asymptotically represent the result of the Gram–Schmidt
process. This could be observed computationally [16] in the special case when φ was
a low degree univariate B-spline and positive integer shifts are orthonormalized rela-
tive to an interval [0, n], where n grows large. The motivation for this investigation
was to use orthogonal splines in various applications; see also [14]. Subsequently, we
proved first in [11] for compactly supported function, including B-splines of arbitrary
degree, and then later for functions which decay exponentially [13], for example the
Gaussian, again for positive integer translates on [0, n] that indeed a limiting pro-
file emerges from the Gram–Schmidt process. The intent of this paper is to do the
same for multivariate functions which can have less than exponential decay. The
multivariate case leads to a richer theory.

∗Received by the editors March 3, 1999; accepted for publication (in revised form) by U. Helmke
April 12, 2000; published electronically August 9, 2000. The first and second authors were partially
supported by NATO grant CRG 950849. The third and fourth authors were partially supported
by the Italian Ministry of University and Scientific and Technological Research and a University of
Cagliari coordinated research project.

http://www.siam.org/journals/simax/22-2/34327.html
†Department of Mathematical Sciences, University of Dundee, Dundee DD1 4HN, Scotland, UK

(tgoodman@mcs.dundee.ac.uk).
‡IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY

10598 (cam@watson.ibm.com).
§Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica,

00133 Roma, Italy (rodriguez@mat.uniroma2.it).
¶Dipartimento di Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari, Italy

(seatzu@unica.it).

501

502 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

In this paper we extend our previous results about the existence of a limiting pro-
file in two ways. First we provide multivariate examples relative to certain orderings
of the lattice Z

d, and second, we allow for functions that have algebraic decay. Now
let us review the steps we take in our analysis and connect them to existing theory in
the matrix theory literature.

The first step of the analysis performed in [11] was to identify the form of the
limiting profile as a linear combination of negative integer translates of φ whose coef-
ficients form a lower triangular Toeplitz matrix that provides a Cholesky factorization
of the inverse of the bi-infinite Gram matrix of all integer translates of the function
φ. However, for bi-infinite matrices there are many Cholesky factorizations. The
realization that the one we wanted is the (finite) minimal phase factorization, as it
is known in the engineering literature (see, for example, [3, 21]), of the symbol of the
banded Toeplitz matrix (the trigonometric polynomial formed from the diagonal ele-
ments of the Toeplitz matrix) led us to resolve the form of the limiting profile. With
this information in hand, the complete analysis requires estimates for the decay of the
elements of the inverse of the Toeplitz Gram matrix formed from all translates of φ,
the assumed decay of the function φ, and the difference between the inverse of finite
sections of the bi-infinite minimal phase Cholesky factor and the Cholesky factors of
the inverse of the finite Gram matrix that appears in the Gram–Schmidt process. For
the latter estimate, we required perturbation results for Cholesky factorization which
are independent of the order of the matrix [23]. The decay of the inverse of a banded
Toeplitz matrix is easily seen. This fact has been the subject of some interest in the
literature in the general case of banded matrices. Using an idea from [10], this was
done in [4] for a banded matrix coming from a problem in spline interpolation. Later
this was extended to any banded matrix in [8] and then improved further in [9]. A
study of Cholesky factorization of an arbitrary positive definite symmetric bi-infinite
matrix was done in [6]. In that paper a uniquely distinguished Cholesky factor was
characterized which in the case of a banded block Toeplitz bi-infinite matrix reduces
to the finite minimal phase factorization.

In retrospect, the link between the limiting profile and finite minimal phase fac-
torization rests with work by Bauer [1, 2] where he demonstrated that the Cholesky
factors of the principal sections of semi-infinite Toeplitz matrix will converge to a
banded lower triangular matrix whose elements yield the finite minimal phase factor
for the bi-infinite matrix, thereby providing a numerical algorithm for the construc-
tion of the finite minimal phase factorization. Although the problem studied here has
no connection to wavelet analysis, the appearance of finite minimal phase factoriza-
tion in wavelet analysis (see, for example, [19]) provides a weak link between them.
Motivated by this connection and also by some work of Schoenberg on orthonormal-
izing cardinal splines [22] we tested several of the most well-known algorithms to find
this factorization on these two cases [12]. One of them that differs from the Bauer
procedure which is important to us here is called the cepstral method; see [3, 21].
This algorithm is based on the work done independently in [5] and [15]; see also [12]
and [24] for further information on this issue. We then extended the results of [11] to
include functions that decay exponentially in [13]. Although it is not directly related
to the concern in this paper we point out that Bauer’s work was extended in [26]
to the block Toeplitz case; see also [25] for further developments concerning block
Toeplitz matrices. These ideas are useful in the study of the asymptotic behavior of
the Gram–Schmidt process applied to a finite set of univariate functions and their
integer translates; see [18].

MULTIVARIATE CHOLESKY FACTORIZATION 503

Unfortunately, a finite minimal phase factorization does not exist in the multi-
variate case. In fact, there are bivariate nonnegative trigonometric polynomials which
cannot be written as the modulus squared of an algebraic polynomial restricted to
the torus; see, for example, [17]. Therefore, this excludes an identification with the
limiting profile in the multivariate case when φ is compactly supported. Fortunately,
though, it is the basis of the cepstral algorithm that resolves our problem. Specifi-
cally, we decompose the logarithm of the symbol as an appropriate sum of two terms
relative to our chosen partial order of Z

d. One of the summands is discarded and
the other is exponentiated to form the desired factor that yields the limiting profile.
When φ has some assumed decay at infinity we then estimate the decay of the coeffi-
cients of this factorization by following a technique in [20]. This is all done in detail
in section 2 of the paper. In this section we also study the connection between the
bi-infinite Gram matrix and the finite Gram matrices for certain subsets of functions
restricted to certain finite domains. Section 3 then considers in greater generality the
connection between Cholesky factors of certain bi-infinite and related finite matrices.
Specializing these results to the situation of section 2, section 4 gives the required
results on convergence of orthonormal functions on increasing finite sets to translates
of a globally orthonormalized function.

The convergence results are illustrated numerically in section 5 for the case of
a linear bivariate box spline. The numerical procedure for the factorization of the
symbol follows the method used in section 2. The Gram–Schmidt orthonormalization
depends on the ordering of the translates of the function, and numerical results are
given for both the ordering considered in the previous sections and for another order-
ing. For both cases we observe numerically an exponential rate of convergence to the
limiting profile.

2. Spectral factorization and limiting profile. Before studying the limiting
profile corresponding to the Gram–Schmidt orthonormalization process of uniform
translates of a multivariate function over increasing intervals, we need to state some
properties of the infinite Gram matrix associated with the mentioned functions.

Hence, taking an integer d ≥ 1, suppose that φ : R
d → R is a measurable function

satisfying

|φ(x)| ≤ β(|x|), x ∈ R
d,(2.1)

where

|x| := |x1|+ |x2|+ · · ·+ |xd|
and β is a decreasing, positive function in [0,∞) satisfying∫ ∞

0

td−1β(t)dt <∞.(2.2)

We note that (2.1) and (2.2) imply that φ is bounded and integrable on R
d.

For j ∈ Z
d we write φj := φ(· − j). We shall describe a procedure for orthonor-

malizing {φj}j∈Zd . For j, k ∈ Z
d, let

Tjk =

∫
Rd

φj(x)φk(x)dx = tj−k,(2.3)

where

tj = t−j =

∫
Rd

φ(x)φj(x)dx.

504 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

We let T denote the Gram matrix

T = (Tjk)j,k∈Zd .

Lemma 2.1. There are constants A > 0, a > 0, such that |tj | ≤ Aβ(a|j|) for all
j in Z

d.
Proof. Take j in Z

d and assume, for some �, that j� ≥ |jk|, k = 1, . . . , d. Then

∫
x�≥ 1

2 j�

|φ(x)||φ(x− j)|dx ≤
∫
x�≥ 1

2 j�

β

(
1

2
j�

)
|φ(x− j)|dx

≤ β

(
1

2
j�

)∫
Rd

|φ(x− j)|dx ≤ β

(|j|
2d

)∫
Rd

|φ(x)|dx.

Also, we observe that

∫
x�≤ 1

2 j�

|φ(x)||φ(x− j)|dx =

∫
x�≥ 1

2 j�

|φ(j − x)||φ(−x)|dx

≤
∫
x�≥ 1

2 j�

|φ(j − x)|β
(
1

2
j�

)
dx ≤ β

(|j|
2d

)∫
Rd

|φ(x)|dx,

and therefore we conclude that

|tj | ≤
∫

Rd

|φ(x)||φ(x− j)|dx ≤ 2β

(|j|
2d

)∫
Rd

|φ(x)|dx.

From Lemma 2.1 and (2.2) we have that the sequence {tj} belongs to �1(Z
d), that

is,

∑
j∈Zd

|tj | <∞.

We can then associate with φ the symbol of the Toeplitz matrix T , that is, the
trigonometric series

tφ(x) =
∑
j∈Zd

tje
ijx, x ∈ R

d,

and we assume that

tφ(x) > 0, x ∈ R
d.

Take ρ ≥ 0 and let

f(x) =
∑
j∈Zd

aje
ijx, aj ∈ R, x ∈ R

d

with

‖f‖ρ :=
∑
j∈Zd

|aj |(1 + |j|)ρ and |f |∞ = max
x∈Rd

|f(x)|.

Then ‖f · g‖ρ ≤ ‖f‖ρ · ‖g‖ρ, since βj = (1 + j)ρ, j ∈ Z+ is such that βj+k ≤ βjβk.

MULTIVARIATE CHOLESKY FACTORIZATION 505

We shall need the following result.
Lemma 2.2. There exist a positive constant C > 0 and an integer k ≥ 1, depend-

ing only on d and ρ, such that

|f |∞ ≤ ‖f‖ρ ≤ |f |∞ + Cmax
|α|=k

α∈Z
d
+

|Dαf |∞,(2.4)

where α = (α1, α2, . . . , αd) and

Dα :=
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂xαd

d

.

Proof. Below K1, K2, and C represent some constants. There is a K1 > 1 such
that

|x|2 ≤ K1|x|22, x = (x1, x2, . . . , xd)
T ∈ R

d

and

|x|22 =
d∑

j=1

x2
j ,

so that
 ∑

j∈Zd\{0}
|aj |(1 + |j|)ρ

2

≤ K2

 ∑

j∈Zd\{0}
|aj ||j|ρ2

2

≤ K2

∑
j∈Zd\{0}

|j|−d−1
2

∑
j∈Zd\{0}

|aj |2|j|2ρ+d+1
2

by the Cauchy–Schwarz inequality.
Set k := �ρ+ d+1

2 and bound the last sum above by

C max
|α|=k

α∈Z
d
+

∑
j∈Zd\{0}

|aj |2j2α1
1 . . . j2αd

d = C max
|α|=k

α∈Z
d
+

1

(2π)d

∫
[−π,π]d

|Dαf(x)|2dx

≤ C max
|α|=k

α∈Z
d
+

|Dαf |2∞.

Since |a0| ≤ |f |∞ ≤ ‖f‖ρ , this proves (2.4).
The following result and its proof extend that of Newman [20].
Theorem 2.3. Suppose ρ ≥ 0 and let

f(x) =
∑
j∈Zd

aje
ijx, x ∈ R

d,

where

‖f‖ρ <∞.

Let F be an analytic function on a neighborhood of the range of f (which is a compact
set). Then, ‖F ◦ f‖ρ <∞.

506 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

Proof. Let Θ be a bounded open set containing the range Rf of f and on which
F is analytic. Choose a closed rectifiable curve Γ surrounding Rf and contained in Θ
of distance ε0 > 0 from Rf . Thus |ζ − z| ≥ ε0, ζ ∈ Γ, and z ∈ Rf . For any δ < 1/2
choose a trigonometric polynomial P such that ‖P − f‖ρ ≤ δε0, and range RP ⊂ Θ.
Since |P − f |∞ ≤ ‖P − f‖ρ ≤ δε0, we have for ζ ∈ Γ and z ∈ RP that

|ζ − z| = |ζ − P (x0)| = |ζ − P (x0) + f(x0)− f(x0)|
≥ |ζ − f(x0)| − |P (x0)− f(x0)|
≥ (1− δ)ε0.

Hence by Cauchy’s integral formula for z ∈ RP ,

F (k)(z)

k!
=

1

2πi

∫
Γ

F (ζ)

(ζ − z)
k+1

dζ,

we have ∣∣∣∣F
(k)(z)

k!

∣∣∣∣ ≤ 1

2π

(
1

(1− δ)ε0

)k+1

max
x∈Θ
|F (x)|.

For n ≥ 0 we set for x ∈ R
d

fn(x) = (F (n) ◦ P)(x).
Then for each k ∈ Z+, by the chain rule, there is a positive constant K1 (depending
on P and k) such that for |α| = k,

|Dαfn|∞ ≤ K1 max
0≤j≤k

∣∣∣F (n+j) ◦ P
∣∣∣
∞

.

Thus there is a constant K2 > 0 such that

max
|α|=k

|Dαfn|∞
n!

≤ K2(1 + nk)

((1− δ)ε◦)n
.

Hence, for k as in Lemma 2.2, there is a constant K3 > 0 with

‖fn‖ρ
n!

≤ K3(1 + nk)

((1− δ)ε0)n
.

For x ∈ R
d, since F is analytic on Θ, a set which contains both f(x) and P (x), we

have that

(F ◦ f)(x) =
∞∑
n=0

fn(x)

n!
(f(x)− P (x))

n
.

Thus

‖F ◦ f‖ρ ≤
∞∑
n=0

‖fn‖ρ
n!
‖(f − P)n‖ρ ≤ K3

∞∑
n=0

(1 + nk)

(
δ

1− δ

)n

<∞.

To state the main theorem of this section we shall need a total ordering on Z
d,

denoted by the symbol �, having the additional property
α � 0 if and only if − α � 0,

for any α ∈ Z
d. We write α ≺ β whenever α �= β and α � β.

MULTIVARIATE CHOLESKY FACTORIZATION 507

Theorem 2.4. Suppose ρ ≥ 0 and assume that β is a decreasing, positive function
on [0,∞) satisfying

∫ ∞

0

tρ+d−1β(t)dt <∞.(2.5)

Then tφ has a spectral factorization

tφ(x) = h(−x)h(x), x ∈ R
d,(2.6)

where

h(x) =
∑
j0

σje
ijx, x ∈ R

d,(2.7)

σj ∈ R, for j � 0, and

∑
j0

|σj |(1 + |j|)ρ <∞.

Moreover,

1

h(x)
=
∑
j0

γje
ijx, x ∈ R

d,(2.8)

where γj ∈ R, j � 0, and

∑
j0

|γj |(1 + |j|)ρ <∞.

Furthermore, if β decays exponentially, i.e., there are constants c > 0 and λ in (0, 1)
with β(t) ≤ cλt, t ≥ 0, then the sequences {σj : j � 0}, {γj : j � 0} in (2.7) and
(2.8) also decay exponentially, i.e., there are constants k > 0 and µ in (0, 1) with
|σj |, |γj | ≤ kµ|j|, j � 0.

Proof. By (2.5) and Lemma 2.1 we have that

∑
j∈Zd

|tj |(1 + |j|)ρ <∞.

Since the range of tφ lies in (0,∞) we may apply Theorem 2.3 to show that the
function f := log tφ has a trigonometric series expansion

f(x) =
∑
j∈Zd

fje
ijx, x ∈ R

d,(2.9)

where fj = f−j , fj ∈ R, j ∈ Z
d, and

∑
j∈Zd

|fj |(1 + |j|)ρ <∞.

Now, decompose f as f = f− + f+, where

f−(x) =
1

2
f0 +

∑
j≺0

fje
ijx, f+(x) =

1

2
f0 +

∑
j�0

fje
ijx, x ∈ R

d,

and the symbol � denotes the order specified before.

508 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

Theorem 2.3 may be applied to show that the function h := exp f+ has a trigono-
metric series (2.7), where σj ∈ R, j � 0, and∑

j0

|σj |(1 + |j|)ρ <∞.

Then for x in R
d,

tφ(x) = exp f(x) = exp f−(x) exp f+(x)

= exp f+(−x) exp f+(x) = h(−x)h(x),
which gives (2.6). For x ∈ R

d, tφ(x) > 0 and so h(x) �= 0. Thus we can apply
Theorem 2.3 again to show that the function 1/h has a trigonometric series (2.8),
where γj ∈ R, j � 0, and ∑

j0

|γj |(1 + |j|)ρ <∞.

Moreover, when β(t) ≤ cλt, t ≥ 0, where c > 0 and λ ∈ (0, 1), then for j in Z
d, by

Lemma 2.1,

|tj | ≤ Acλa|j|

for some constants A, a > 0. Thus there are two constants k > 0 and µ ∈ (λ, 1) such
that |tj | ≤ kµ|j|. In this case tφ can be extended to a function

Tφ(z) =
∑
j∈Zd

tjz
j

analytic on some neighborhood of the torus

T d :=
{
z = (z1, z2, . . . , zd) ∈ C

d : |z1| = |z2| = · · · = |zd| = 1
}
.

Since Tφ(z) > 0 on some neighborhood of T d, it follows that F (z) := log Tφ(z) is
analytic on some neighborhood of T d. With F (eix) = f(x), the coefficients {fj} in
(2.9) decay exponentially as |j| → ∞. Let

F+(z) =
1

2
f0 +

∑
j�0

fjz
j

and H(z) = expF+(z). Then H and 1/H are analytic on a neighborhood of T d with
H(eix) = h(x), and the coefficients {σj : j � 0} and {γj : j � 0} in (2.7) and (2.8)
decay exponentially. Also Tφ(z) = H(z−1)H(z) holds on some neighborhood of T d

which gives (2.6).
In the one-dimensional case (d = 1), spectral factorization problems of the type

(2.6) have been studied at length by Krein [15] and by Calderon, Spitzer, and Widom
[5]. In particular, for ρ = 0 and d = 1, the existence of (2.6) is an immediate conse-
quence of the necessary and sufficient conditions for spectral factorizability stated in
the aforementioned papers.

Setting σj = 0 for j ≺ 0 we let Ljk = σj−k for j, k ∈ Z
d and let L denote the

matrix L = (Ljk)j,k∈Zd . Note that L is lower triangular, i.e., Ljk = 0 for j ≺ k. Also
for j in Z

d, ∑
k∈Zd

|Ljk| =
∑
k∈Zd

|σk| <∞,

MULTIVARIATE CHOLESKY FACTORIZATION 509

and so L gives a bounded operator on L∞(Zd). Similarly the Gram matrix T defined
in (2.3) is a bounded operator on L∞(Zd).

From (2.6) and (2.7) we have

tj =
∑
�∈Zd

σj+�σ�, j ∈ Z
d,

and so, for j, k ∈ Z
d,

Tjk = tj−k =
∑
�∈Zd

σj−k+�σ� =
∑
�∈Zd

σj−�σk−� =
∑
�∈Zd

Lj�Lk� = (LLT)jk.

Thus T = LLT , which gives the Cholesky factorization of the Gram matrix T , relative
to the ordering ≺.

Now, (2.7) and (2.8) give for j in Z
d,

∑
�∈Zd

σj−�γ� = δj,0,

and so

∑
�∈Zd

Lj�γ�−k = δj,k =
∑
�∈Zd

γj−�L�k,

where γj = 0 if j ≺ 0. Thus L has the lower triangular inverse L−1 given by

(L−1)jk = γj−k, j, k ∈ Z
d.(2.10)

Since

∑
j∈Zd

|γj | <∞,

L−1 gives a bounded inverse for L on L∞(Zd). As a result, since L and L−1 are lower
triangular matrices both bounded in �∞(Zd), the Cholesky factorization T = LLT

gives the spectral factorization of T with respect to the fixed ordering.
Now we define

ψ(x) =
∑
j0

γiφ(x+ j), x ∈ R
d

and write ψj := ψ(· − j), j ∈ Z
d. Recall that

∑
j0

|γj | <∞

and φ is bounded and integrable on R
d. It follows that ψ is bounded and integrable

on R
d. Moreover, for j in Z

d, x in R
d,

ψj(x) =
∑
k0

γkφ(x− j + k) =
∑
k∈Zd

L−1
jk φ(x− k),

510 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

and so, for j, k ∈ Z
d,

∫
Rd

ψj(x)ψk(x)dx =
∑

�,m∈Zd

L−1
j� L−1

km

∫
Rd

φ�(x)φm(x)dx

= (L−1T (L−1)T)jk = (L−1LLT (L−1)T)jk = δj,k.

Therefore the set of functions {ψj : j ∈ Z
d} are orthonormal.

We shall now consider orthonormalizing a finite subset of the functions {φj : j ∈
Z
d} restricted to a bounded subset of R

d. With this aim we now define the ordering
� on Z

d as the lexicographical ordering with respect to

α1 + α2 + · · ·+ αd, α2 + α3 + · · ·+ αd, . . . , αd−1 + αd, αd,

i.e., α ≺ β if for some k, 1 ≤ k ≤ d,

αk + αk+1 + · · ·+ αd < βk + βk+1 + · · ·+ βd

and for 1 ≤ j < k,

αj + αj+1 + · · ·+ αd = βj + βj+1 + · · ·+ βd.

Fix a number η in (0, 1
d). For n = 1, 2, . . . , let Jn = {j ∈ Z

d
+ : |j| ≤ (1− η)n} and

Ωn = {x ∈ R
d
+ : |x| ≤ n}. For j in Jn, let φn

j denote φj restricted to Ωn.

We construct orthonormal functions ψn
j , j ∈ Jn, on Ωn by the Gram–Schmidt

process applied to φn
j , j ∈ Jn, with respect to the prefixed ordering �. Thus for

j ∈ Jn,

φn
j =

∑
k∈Jn

Ln
jkψ

n
k

for a nonsingular lower triangular matrix Ln = (Ln
jk)j,k∈Jn

.

Let Gn denote the Gram matrix (Gn
jk)j,k∈Jn :

Gn
jk =

∫
Ωn

φn
j (x)φ

n
k (x)dx =

∫
Ωn

φj(x)φk(x)dx.(2.11)

Then

Gn
jk =

∑
�,m∈Jn

Ln
j�L

n
km

∫
Ωn

ψn
� (x)ψ

n
m(x)dx =

∑
�∈Jn

Ln
j�L

n
k�,

and so Gn = Ln(Ln)T .

We shall show at the end of section 3 that, under certain conditions on β, for all
large enough n and j in Jn with j� ≥ ηn, � = 1, . . . , d,

sup
x∈Ωn

∣∣ψn
j (x)− ψj(x)

∣∣→ 0 as n→∞,

with a convergence rate depending on β. Let us begin the demonstration by recording
some matrix theoretic facts. To this end, take j in Jn with j� ≥ ηn, � = 1, . . . , d.

MULTIVARIATE CHOLESKY FACTORIZATION 511

Then for all x ∈ Ωn,

∣∣ψn
j (x)− ψj(x)

∣∣ =
∣∣∣∣∣∣
∑
k∈Jn

(Ln)−1
jk φn

k (x)−
∑
k∈Zd

L−1
jk φk(x)

∣∣∣∣∣∣
≤
∑
k∈Jn

∣∣∣((Ln)−1
jk − L−1

jk

)
φk(x)

∣∣∣+ ∑
k �∈Jn

∣∣∣L−1
jk φk(x)

∣∣∣
≤ K

∑
k∈Jn

∣∣∣(Ln)−1
jk − L−1

jk

∣∣∣+K
∑
k �∈Jn

∣∣∣L−1
jk

∣∣∣

(2.12)

for some constant K > 0. Now, suppose for ρ > 0 that (2.5) is satisfied. We note for
k � j, k �∈Jn, that we must have k� < 0 for some �, 1 ≤ � ≤ d, and so

|j − k| ≥ min{j� : � = 1, . . . , d} ≥ ηn.

By (2.10) we obtain the estimate

∑
k �∈Jn

|L−1
jk | =

∑
k�j

|γj−k| ≤
∑
k�j

|γj−k| (1 + |j − k|)ρ
(ηn)ρ

≤ Cn−ρ(2.13)

for a constant C > 0, by Theorem 2.4. Also, if β decays exponentially, then Theorem
2.4 shows that |L−1

jk | ≤ cµ|j−k| for constants c > 0 and µ in (0, 1). Consequently, we
obtain that

∑
k �∈Jn

|L−1
jk | ≤ c

d∑
�=1

∑
j∈Z

d

j�<0

µ|j−k|

= c

d∑
�=1

∞∑
m=1

µj�+m

{ ∞∑
r=−∞

µ|r|
}d−1

≤ c1µ
ηn

(2.14)

for some c1 > 0.
In summary, we have considered the decay of the second term in (2.12) and it

remains to consider the first term in (2.12). We recall that L is the Cholesky factor
of the bi-infinite Gram matrix T , while Ln is the Cholesky factor of the finite Gram
matrix Gn. In the next section we shall consider in more generality the connection
between Cholesky factors of bi-infinite and related finite matrices. In order to apply
these results we shall need to examine the connection between the matrices T,Gn and
the matrix G = (Gjk)j,k∈Zd defined by

Gjk =

∫
[0,∞)d

φj(x)φk(x)dx.(2.15)

First, we note some simple properties of any decreasing positive function β on [0,∞).
Lemma 2.5. Let β be the function defined in section 2 and i, j ∈ Z+.
(i) If x ≤ β(i) + β(j) and x ≤ β(|i− j|), then x ≤ 2β(1

4 (i+ j)).
(ii) If x ≤ β(i) and x ≤ β(j), then x ≤ β(1

2 (i+ j)).
Proof. To prove (i), without loss of generality we suppose i ≤ j. If i ≥ 1

2j, then
x ≤ β(i) + β(j) ≤ 2β(1

2j) ≤ 2β(1
4 (i+ j)). If i ≤ 1

2j, then x ≤ β(|i− j|) = β(j − i) ≤
β(1

2j) ≤ β(1
4 (i+ j)).

512 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

Moreover, max{i, j} ≥ 1
2 (i + j), and so x ≤ β(max{i, j}) ≤ β(1

2 (i + j)). This
proves (ii).

Furthermore, we note that Lemma 2.1 can be expressed as follows: there are
constants A, a > 0 such that

|Tij | ≤ Aβ(a|j − i|)(2.16)

for all i, j ∈ Z
d.

Lemma 2.6. There are numbers B, b > 0 such that

|Tij −Gij | ≤ B

d∑
�=1

β
(
b(i� + j� + |j − i|)), ∀i, j ∈ Z

d, i, j ≥ 0.

Proof.

|Tij −Gij | =
∣∣∣∣∣
∫

Rd\[0,∞)d
φ(x− i)φ(x− j)dx

∣∣∣∣∣
≤
∑
σ

∫
[0,∞)d

|φ(σx− i)| |φ(σx− j)|dx,

where σx = (±x1, . . . ,±xd) and we sum over all σ except σx = (x1, . . . , xd). Take
any such σ and choose � with (σx)� = −x�. Then

∫
[0,∞)d

|φ(σx− i)| |φ(σx− j)|dx ≤
∫

[0,∞)d
β(x� + i�)|φ(σx− j)|dx

≤ β(i�)

∫
Rd

|φ(x)|dx.

Similarly, we have that

∫
[0,∞)d

|φ(σx− i)| |φ(σx− j)|dx ≤ β(j�)

∫
Rd

|φ(x)|dx.

Consequently, there exists a C > 0 with

|Tij −Gij | ≤ C

d∑
�=1

(β(i�) + β(j�)).

Also, we note that

|Tij −Gij | ≤ 2

∫
Rd

|φ(x− i)φ(x− j)|dx ≤ 2Aβ(a|j − i|),

as in (2.16). The result now follows from Lemma 2.5.
Lemma 2.7. There exist numbers B, b > 0 such that

|Gij −Gn
ij | ≤ B

d∑
�=1

β
(
b(2n− i� − j� + |j − i|))

for all i, j ∈ Jn.

MULTIVARIATE CHOLESKY FACTORIZATION 513

Proof. Since

|Gij −Gn
ij | ≤

∫
[0,∞)d\[0,n]d

|φ(x− i)| |φ(x− j)|dx

=

∫
(−∞,n]d\[0,n]d

|φ(n− x− i)| |φ(n− x− j)|dx

≤
∫

Rd\[0,∞)d
|φ(−x+ n− i)| |φ(−x+ n− j)|dx,

the result follows as in Lemma 2.6.
Lemma 2.8. There are numbers C, c > 0 such that

|Tij −Gn
ij | ≤ C

d∑
�=1

β
(
c(i� + j� + |j − i|))

for all i, j in Jn.
Proof. For � = 1, . . . , d, when i� + j� ≤ 2(1 − η)n it follows that 2n ≥ i�+j�

1−η and

2n− i� − j� ≥ (1
1−η − 1)(i� + j�). Therefore we conclude that

β
(
b (2n− i� − j� + |j − i|)) ≤ β

(
b(((1− η)−1 − 1)(i� + j�) + |j − i|)),

from which the result follows from Lemmas 2.6 and 2.7.
Lemma 2.9. Let GJn = (Gij)i,j∈Jn . Then

‖GJn
−Gn‖2 ≤ Kndβ(kn)

for constants K, k > 0.
Proof. As i� + j� ≤ 2(1− η)n, � = 1, . . . , d, we conclude that

β
(
b(2n− i� − j� + |j − i|)) ≤ β

(
b(2n− (i� + j�))

) ≤ β(2bηn).

Invoking Lemma 2.7, we obtain the estimate

|Gij −Gn
ij | ≤ Bdβ(2bηn),

and therefore

‖GJn −Gn‖22 ≤
∑

i,j∈Jn

|Gij −Gn
ij |2 ≤ n2dB2d2β(2bηn)2,

which gives the result.

3. Cholesky factorization. As before we require the function β to satisfy (2.2).
We note that for some constant K,

∑
k∈Zd

β(|k|) ≤ K

∞∑
j=1

jd−1β(j) ≤ K

∫ ∞

0

td−1β(t)dt,

which is finite by (2.2). We write

‖β‖ :=
∑
k∈Zd

β(|k|),

514 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

and for any subset I of Z
d we let MI denote the set {A : A = (Ajk)j,k∈I} of real

matrices on I. For A in MI we let

‖A‖2 = sup{‖Ax‖2 : ‖x‖2 ≤ 1}
be the usual �2(I) operator norm and define the norm

‖A‖T = sup{|Ajk|/β(|j − k|) : j, k ∈ I}.
Lemma 3.1. For any I ⊆ Z

d and A in MI ,

‖A‖2 ≤ ‖β‖ ‖A‖T .(3.1)

Proof. We may extend any vector x = (xj : j ∈ I) in �2(I) to a vector in �2(Z
d)

by setting xj = 0 for j �∈ I. Similarly, we set Ajk = 0 for (j, k) �∈ I2. This process
does not alter ‖x‖2 or ‖A‖2. Now, take x in �2(I) and for each k in Z

d define a vector
yk = (Aj,j+kxj+k : j ∈ Z

d). Then

‖yk‖22 =
∑
j∈Zd

|Aj,j+kxj+k|2 ≤
∑
j∈Zd

‖A‖2Tβ(|k|)2|xj+k|2 = ‖A‖2Tβ(|k|)2‖x‖22.

Hence we get

‖Ax‖2 =
∥∥∥∥∥∥
∑
k∈Zd

yk

∥∥∥∥∥∥
2

≤
∑
k∈Zd

‖yk‖2 ≤ ‖A‖T ‖x‖2
∑
k∈Zd

β(|k|),

which implies (3.1).
Remark 3.1. This result holds for the �p-norm ‖A‖p, 1 ≤ p ≤ ∞, as well.
For any I ⊆ Z

d, we define I+ = {j ∈ I : j1, . . . , jd ≥ 0}. For any matrix A in MI

we define A+ in MI to be the restriction of A to I+. For I ⊆ Z
d
+, A in MI , and c > 0

we define

‖A‖H,c = sup

{
|Ajk|

/ d∑
l=1

β (cmax{jl + kl, |j − k|}) : j, k,∈ I

}
.

Since

‖A‖H,c ≥ 1

d
sup {|Ajk|/β(c|j − k|) : j, k ∈ I} ,

Lemma 3.1 gives the inequality

‖A‖2 ≤ d ‖β(c ·)‖ ‖A‖H,c.(3.2)

Lemma 3.2. For any I ⊆ Z
d and A, B in MI ,

‖(AB)+ −A+B+‖H, 12
≤ 2 ‖β‖ ‖A‖T ‖B‖T .

Proof. For any j, k in I+ we have that

|((AB)+)jk − (A+B+)jk| ≤
∑

�∈I\I+
|Aj�B�k|

≤ ‖A‖T ‖B‖T
d∑

i=1

∑
�i<0
�∈Z

d

β(|j − �|)β(|�− k|).
(3.3)

MULTIVARIATE CHOLESKY FACTORIZATION 515

For any � in Z
d, either |j − �| ≥ 1

2 |j − k| or |�− k| ≥ 1
2 |j − k|, and so

∑
�i<0
�∈Z

d

β(|j − �|)β(|�− k|) ≤ 2 ‖β‖β
(
1

2
|j − k|

)
.(3.4)

When 1 ≤ i ≤ d and �i < 0 it follows that |j − �| ≥ ji − �i ≥ ji, and so

∑
�i<0
�∈Z

d

β(|j − �|)β(|�− k|) ≤ β(ji) ‖β‖.

Similarly this sum is bounded by β(ki)‖β‖ and therefore is also bounded by β(1
2 (ji+

ki))‖β‖. Thus we conclude that
d∑

i=1

∑
�i<0
j∈Z

d

β(|j − �|)β(|�− k|) ≤ 2 ‖β‖
d∑

i=1

min

{
β

(
1

2
(ji + ki)

)
, β

(
1

2
|j − k|

)}

= 2‖β‖
d∑

i=1

β

(
max

{
1

2
(ji + ki),

1

2
|j − k|

})
.

Using inequality (3.3) we obtain

|((AB)+)jk − (A+B+)jk| ≤ 2 ‖A‖T ‖B‖T ‖β‖
d∑

i=1

β

(
1

2
max{ji + ki, |j − k|}

)
,

which gives the result.
Lemma 3.3. Suppose 0 ≤ c ≤ 1. Then for any I ⊆ Z

d
+ and A, B in MI

‖AB‖H, 12 c
≤ 2 ‖β(c ·)‖ ‖A‖T ‖B‖H,c,

‖AB‖H, 12 c
≤ 2 ‖β(c ·)‖ ‖B‖T ‖A‖H,c.

Proof. For j, k in I we have that

|(AB)jk| ≤
∑
�∈I
|Aj�B�k| ≤ ‖A‖T ‖B‖H,c

×
∑
�∈Z

d
+

β(|j − �|)
d∑

i=1

β
(
c max{�i + ki, |�− k|}).

(3.5)

Now, for 1 ≤ i ≤ d, we observe that
∑
�∈Z

d
+

β(|j − �|)β(c max{�i + ki, |�− k|}) ≤ ∑
�∈Z

d
+

β(c|j − �|)β(c|�− k|)

≤ 2 ‖β(c ·)‖β
(
1

2
c|j − k|

)
,

(3.6)

as in (3.4). Also, if �i ≤ 1
2ji − 1

2ki, then |j − �| ≥ ji − �i ≥ 1
2ji +

1
2ki, from which it

follows that

β(|j − �|) ≤ β

(
1

2
(ji + ki)

)
≤ β

(
1

2
c(ji + ki)

)
.

516 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

Moreover, if �i ≥ 1
2ji − 1

2ki, then �i + ki ≥ 1
2ji +

1
2ki and so we obtain

∑
�∈Z

d
+

β(|j − �|)β(cmax{�i + ki, |�− k|}) ≤ 2 ‖β(c)‖β
(
1

2
c(ji + ki)

)
.

Using (3.6) and (3.5) successively we see that

∑
�∈Z

d
+

β(|j − �|)β(cmax{�i + ki, |�− k|}) ≤ 2 ‖β(c ·)‖β
(
1

2
c max{ji + ki, |j − k|}

)

and

‖AB‖H, 12 c
≤ 2 ‖β(c ·)‖ ‖A‖T ‖B‖H,c.

The other inequality follows similarly.
To prove our next result we shall need the following theorem.
Theorem A (see Sun [23]). Let A be a finite positive real symmetric matrix

with A = LLT its Cholesky factorization. If E is a symmetric matrix satisfying
‖E‖F ≤ 1

2‖A−1‖−1
2 , then the unique Cholesky factorization of A+E = (L+G)(L+G)T

satisfies

‖G‖F ≤
√
2 ‖A‖ 1

2
2 ‖A−1‖2‖E‖F .

For n ∈ Z+, we let In = {j ∈ Z
d
+ : |j| ≤ n}.

Lemma 3.4. For n ∈ Z+, let An be a symmetric positive definite matrix in
MIKn

, Kn ∈ Z+, such that {‖A−1
n ‖2 : n ∈ Z+} is bounded. Suppose that ‖An − I‖H,1

is uniformly bounded and An has Cholesky factorization An = LnL
T
n . We assume

tdβ(t)→ 0 as t→∞ and take ρ > 1. Then there are constants M , K so that for any
m ≥M and m ≤ Kn ≤ ρm,∑

j,k∈IKn

{|(Ln)jk − δjk|2 : j� ≥ m, � = 1, . . . , d or k� ≥ m, � = 1, . . . , d
}

≤ Km2dβ(m)2.

Proof. When m ∈ Z+, we define

Jm = {j ∈ Z
d : j� ≤ m− 1 for some �, � = 1, . . . , d}.

For 0 ≤ m ≤ Kn ≤ ρm, we introduce the matrix An,m in MIKn
defined by

(An,m)jk =

{
(An)jk, j, k ∈ IKn ∩ Jm,

δj,k otherwise.

Let En,m = An−An,m and observe that (En,m)jk = 0 when j, k ∈ IKn ∩Jm. Suppose
j, k ∈ IKn

, j �∈ Jm, or k �∈ Jm, then

|(En,m)jk| = |(An − I)j,k|

≤ ‖An − I‖H,1

d∑
�=1

β
(
max{j� + k�, |j − k|})

≤ C

d∑
�=1

β(j� + k�)

MULTIVARIATE CHOLESKY FACTORIZATION 517

for some C > 0. Now, either j� ≥ m, � = 1, . . . , d or k� ≥ m, � = 1, . . . , d. Therefore
for � = 1, . . . , d, j� + k� ≥ m and β(j� + k�) ≤ β(m), from which it follows that

|(En,m)j,k| ≤ Cdβ(m)

and also

‖En,m‖F ≤ Cdβ(m)Kd
n ≤ C1m

dβ(m)(3.7)

for a constant C1 > 0. Since

lim
m→∞mdβ(m) = 0

and {‖A−1
n ‖2 : n ∈ Z+} is bounded, we can choose M so that for all m ≥ M and

m ≤ Kn ≤ ρm,

‖En,m‖F <
1

2
‖A−1

n ‖−1
2 .

Now, the Cholesky factor of An,m is Ln,m, obtained from Ln by the same process as
we obtained An,m from An. Since ‖An − I‖H,1 is uniformly bounded, we see from
(3.2) that ‖An − I‖2 is uniformly bounded and hence so is ‖An‖2. We can apply
Theorem A to obtain

‖Ln − Ln,m‖F ≤ C2‖En,m‖F ≤ C3m
dβ(m)

for constants C2, C3 ≥ 0, by (3.7). Thus we conclude that

∑
j,k∈IKn

{|(Ln)jk − δjk|2 : j� ≥ m, � = 1, . . . , d or k� ≥ m, � = 1, . . . , d
}

≤ C2
3m

2dβ(m)2.

Theorem 3.5. For n ∈ Z+, let An be a symmetric positive definite matrix in
MIKn

, Kn ∈ Z+, such that {‖A−1
n ‖2 : n ∈ Z+} is bounded. Suppose that An has

Cholesky factorization An = LnL
T
n . Let L in M

Z
d
+
be lower triangular with ‖L‖T ,

‖L−1‖T finite and ‖An − (LLT)IKn
‖H,1 uniformly bounded. We assume tdβ(t) → 0

as t→∞ and take ρ > 1. Then there are constants M , K so that for m ≥M and j,
k in IKn with m ≤ Kn ≤ ρm, the following hold.

If either j� ≥ 5
4m, � = 1, . . . , d or k� ≥ m, � = 1, . . . , d, then

|(Ln − L)jk| ≤ Kmdβ
(m
4

)
.(3.8)

If j� ≥ m, � = 1, . . . , d, then

|(L−1
n − L−1)jk| ≤ Kmdβ

(m
4

)
.(3.9)

Proof. Let Vn be the restriction of L to IKn
. Since L is lower triangular, L−1

restricted to IKn is V −1
n , and so we obtain that

‖Vn‖T ≤ ‖L‖T , ‖V −1
n ‖T ≤ ‖L−1‖T .

518 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

Now,

‖V −1
n An(V

−1
n)T − In‖H, 14

= ‖V −1
n (An − VnV

T
n)(V −1

n)T ‖H, 14

= ‖V −1
n (An − (LLT)IKn

)(V −1
n)T ‖H, 14

≤ C ‖V −1
n ‖T ‖An − (LLT)IKn

‖H,1 ‖(V −1
n)T ‖T

for some C > 0, by Lemma 3.3, and so is uniformly bounded. Note that

V −1
n An(V

−1
n)T = (V −1

n Ln)(V
−1
n Ln)

T .

Also, from Lemma 3.1 we see that ‖(V −1
n An(V

−1
n)T)−1‖2 is uniformly bounded. Hence

by Lemma 3.4, there are constants M , K so that for any m ≥M and m ≤ Kn ≤ ρm

∑
j,k∈IKn

{|(V −1
n Ln)jk − δjk|2 : j� ≥ m, � = 1, . . . , d or k� ≥ m, � = 1, . . . , d

}

≤ K2m2dβ
(m
4

)2

.

(3.10)

Now, for j, k ∈ IKn
,

|(Ln − L)jk| = |(Ln − Vn)jk| =
∣∣(Vn(V

−1
n Ln − I))jk

∣∣

=

∣∣∣∣∣∣
∑
�≤j

Lj�((V
−1
n Ln)�k − δ�k)

∣∣∣∣∣∣
≤
∑
�≤j

‖L‖Tβ(|j − �|) ∣∣(V −1
n Ln)�k − δ�k

∣∣ .

If ki ≥ m, i = 1, . . . , d, then by (3.10)

|(Ln − L)jk| ≤ ‖L‖T ‖β‖Kmdβ
(m
4

)
.

Now, suppose we have that

ji ≥ 5

4
m, i = 1, . . . , d.

If �i ≥ m, i = 1, . . . , d, then by (3.10),

∣∣(V −1
n Ln)�k − δ�k

∣∣ ≤ Kmdβ
(m
4

)
,

otherwise �i < m for some 1 ≤ i ≤ d and so |j − �| ≥ |ji − �i| ≥ m
4 . Thus we have

confirmed that

|(Ln − L)jk| ≤ ‖L‖T ‖β‖Kmdβ
(m
4

)
+
∑
l≤j

‖L‖Tβ
(m
4

) ∥∥V −1
n Ln − I

∥∥
2
.

Since ‖An‖2 is uniformly bounded, it follows that ‖Ln‖2 is also uniformly bounded.
Also, ‖V −1

n ‖2 is uniformly bounded by Lemma 3.1, and so ‖V −1
n Ln− I‖2 is uniformly

bounded. Thus for some C > 0, we obtain that

|(Ln − L)jk| ≤ Cmdβ
(m
4

)
.

MULTIVARIATE CHOLESKY FACTORIZATION 519

Now, take j, k in IKn
with ji ≥ m, i = 1, . . . , d. Then∣∣(L−1

n − L−1)jk
∣∣ = ∣∣((I − V −1

n Ln)L
−1
n)jk

∣∣
≤
∑

�∈IKn

∣∣(I − V −1
n Ln)j�

∣∣ ∣∣(L−1
n)�k

∣∣

≤

∑

�∈IKn

∣∣(I − V n
−1Ln)j�

∣∣2

1
2 ∥∥L−1

n

∥∥
2

≤ C1m
dβ
(m
4

)

for some C1 > 0, by (3.10) and the fact that ‖A−1
n ‖2 is uniformly bounded.

Corollary 3.6. If in Theorem 3.5 we let L be in MZd rather than in M
Z
d
+
, then

(3.8) and (3.9) hold with β(m4) replaced by β(m8).
Proof. In this case we use the inequality∥∥An − (L+LT

+)IKn

∥∥
H, 12
≤ ∥∥An − (LLT)IKn

∥∥
H, 12

+
∥∥(LLT)+ − L+LT

+

∥∥
H, 12

.

Applying Lemma 3.2, noting that ‖·‖H, 12
≤ ‖·‖H,1, we see that ‖An−(L+LT

+)IKn
‖H, 12

is uniformly bounded. We can now apply Theorem 3.5 with L replaced by L+ and β
replaced by β(1

2) to give the result.
We now return to the situation of section 2.
Corollary 3.7. Suppose that the matrix G in (2.15) is invertible in �2(Z

d
+) and

that the sequences {σj : j � 0}, {γj : j � 0} in Theorem 2.4 satisfy |σj |, |γj | ≤ β(c|j|),
j � 0, for c > 0. We assume that tdβ(t) → 0 as t → ∞ and take ρ > 1. Then there
is a constant M such that for all m ≥ M and j, k in IKn with Kn ≤ ρm, j� ≥ m,
� = 1, . . . , d, ∣∣∣(Ln)−1

jk − L−1
jk

∣∣∣ ≤ C1m
dβ(Cm),(3.11)

and ∑
k∈Ikn

∣∣∣(Ln)−1
jk − L−1

jk

∣∣∣ ≤ C2m
2dβ(Cm)(3.12)

for constants C,C1, C2 ≥ 0.
Proof. We apply Corollary 3.6 with An = Gn. By Lemma 2.9 and the assumption

on G, ‖(Gn)−1‖2 is uniformly bounded. Recalling Lemma 2.8 we see that all the
conditions of Corollary 3.6 are satisfied with β replaced by β(k) for some k > 0.
Then (3.11) follows from Corollary 3.6 and (3.12) follows from (3.11) on recalling
that Kn ≤ ρm.

4. Gram–Schmidt asymptotics. We are now ready to use the material devel-
oped in the previous two sections to state conditions under which the Gram–Schmidt
process described in section 2 converges when n→∞.

It is convenient to consider two cases. First take p > d and suppose that for all
q < p, there is a constant c1 > 0 with |φ(x)| ≤ c1(1 + |x|)−q, x ∈ R

d. Then, from
Theorem 2.4 we see that for all r < p−d, there exists c2 with |σj |, |γj | ≤ c2(1+ |j|)−r,
j � 0. In Corollary 3.7 we choose β(t) = (1 + t)−r, t > 0, for any r < p − d with
r > d. Then (3.12) gives, for any s < p− 3d, a constant c3 so that∑

k∈Jn

∣∣∣(Ln)−1
jk − L−1

jk

∣∣∣ ≤ c3(1 + n)−s

520 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

for all j in Jn, j� ≥ ηn, � = 1, . . . , d. We have already seen in (2.13) that in this case,
for any r < p− d there is a constant c4 with

∑
k �∈Jn

∣∣∣L−1
jk

∣∣∣ ≤ c4n
−r.

Thus we have established the following result.
Theorem 4.1. Suppose that φ : R

d → R is a measurable function satisfying, for
some p > 3d, that for all q < p there is a constant c1 with

|φ(x)| ≤ c1(1 + |x|)−q, x ∈ R
d.

Suppose that G in (2.15) is invertible on �2(Z
d
+). Take s < p − 3d and any η in

(0, 1
d). Then there exist N and C > 0 such that for all n ≥ N and x in Ωn := {x ∈

R
d : x1, . . . , xd ≥ 0, |x| ≤ n}, and any j in Z

d with |j| ≤ (1 − η)n and j� ≥ ηn,
� = 1, . . . , d, we have the estimate∣∣ψn

j (x)− ψj(x)
∣∣ ≤ Cn−s.

The next case we consider is a function φ which decays exponentially. We have
seen in this case in Theorem 2.4 that the sequences {σj :� 0}, {γj :� 0} also decay
exponentially. Recalling (2.14), we can apply Corollary 3.7 with β(t) = cµt, t > 0,
for some c > 0 and µ in (0, 1) to give the following result.

Theorem 4.2. Suppose that φ : R
d → R is a measurable function satisfying for

some c > 0 and λ in (0, 1)

|φ(x)| ≤ cλ|x|, x ∈ R
d.

Suppose that G in (2.15) is invertible on �2(Z
d
+) and η ∈ (0, 1

d). Then there exist
N,C > 0 and µ in (0, 1) so that for all n ≥ N , x in Ωn, and any j in Z

d with
|j| ≤ (1− η)n and j� ≥ ηn, � = 1, . . . , d, we have the estimate

|ψn
j (x)− ψj(x)| ≤ Cµn.

5. The special case of box splines. For the sake of illustration, in this section
we identify the limiting profile in a simple case. Let φ(x, y), (x, y) ∈ R

2, the linear
bivariate box spline (Figure 1), that is,

φ(x, y) =

1− y x ∈ [0, 1), y ∈ [x, 1),
1− x x ∈ [0, 1), y ∈ [0, x),
1− x+ y x ∈ [0, 1), y ∈ (−1 + x, 0),

φ(−x,−y) x ∈ (−1, 0), y ∈ (−1, 1 + x),

0 otherwise,

and, for j = (j1, j2) ∈ Z
2, we consider the integer translates φj(x, y) := φ(x−j1, y−j2).

Let T = {ti−j} be the Gram matrix (2.3) generated by the functions φj , j ∈ Z
2.

It is straightforward to confirm that

tj =

1
2 for j = (0, 0),

1
12 for j = (±1, 0), (0,±1), (1, 1), and (−1,−1),
0 otherwise.

MULTIVARIATE CHOLESKY FACTORIZATION 521

−2 −1 0 1 2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

Fig. 1.

Hence the corresponding symbol is

tφ(x, y) =
∑
j∈Z2

tje
i(j1x+j2y)

=
1

6
(3 + cosx+ cos y + cos(x+ y)), x, y ∈ R,

which is strictly positive on R
2, since minx,y∈R tφ(x, y) =

1
4 . Furthermore, as φ has

a compact support, there exists an exponentially decaying function β which satisfies
(2.1).

As a result of Theorem 2.4, tφ has a spectral factorization

tφ(x, y) = h(−x,−y)h(x, y), x, y ∈ R,

which depends on the ordering � fixed on Z
2. Moreover, the coefficients {σj : j � 0}

and {γj : j � 0} of the factor h(x, y) and of its reciprocal 1/h(x, y) decay exponentially
with respect to |j|, that is, there are constants k > 0 and µ in (0, 1) with |σj |, |γj | ≤
kµ|j|, j � 0.

These coefficients can be obtained by following the procedure adopted in Theo-
rem 2.4 to prove the existence of the spectral factorization of tφ with respect to the
chosen ordering. The computational procedure, which is a generalization of one of the
algorithms studied in [12], consists in evaluating the coefficients of the Fourier series of
f := log tφ. Then, taking into account a fixed ordering on Z

2, the Fourier coefficients
{σj : j � 0} of h := exp f+ are obtained. In this algorithm the bidimensional fast
Fourier transform (FFT) and its inverse are used repeatedly. As 1/h := exp(−f+),
the same procedure can be immediately adapted to compute the Fourier coefficients
{γj : j � 0} of 1/h with little more computational effort.

Note that it is not easy in general to prove the positivity of tφ for an arbitrary
function φ. Once this assumption is proved, it remains to overcome only a numerical
difficulty, consisting in the computation of the coefficients γj we have to consider. If

522 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

1 2 4 7

3 5 8

6 9

10

Fig. 2.

1 5 8 10

2 6 9

3 7

4

Fig. 3.

φ decays exponentially, which is of course the case if it is compactly supported, it is
sufficient to compute a relatively small number of coefficients. Otherwise, this number
can be large, as it happens in the case of algebraic decaying of φ.

In order to highlight how the spectral factorization depends on the ordering �
chosen on Z

2, let us consider the following two cases:
(a) the lexicographical ordering with respect to j1 + j2, j2, i.e., � � m if either

�1 + �2 < m1 +m2 or �1 + �2 = m1 +m2 and �2 ≤ m2;
(b) the usual lexicographical ordering on Z

2, so that � � m if either �1 < m1 or
�1 = m1 and �2 ≤ m2.
For n ≥ 1, let Jn = {j ∈ Z

2
+ : j1 + j2 ≤ n− 1}. The orderings (a) and (b) restricted

to J4 are illustrated in Figure 2 and Figure 3, respectively.
Now, let Ωn = {x ∈ R

2
+ : x1 + x2 ≤ n} and let φn

j be the restriction to Ωn of the
box spline φj . We then construct a sequence of orthonormal splines ψn

j , j ∈ Jn, on
Ωn by the Gram–Schmidt process applied to φn

j , j ∈ Jn, with respect to the prefixed
ordering. Thus, for j ∈ Jn,

ψn
j =

∑
k∈Jn

(Ln)−1
jk φn

k ,(5.1)

where Ln is the Cholesky factor of the Gram matrix Gn associated with the box
splines φn

k as in (2.11).
As the functions φn

k are locally supported, Gn is a sparse matrix. An indication
of its sparsity is given by Figure 4 and Figure 5, where the dots denote the position of
the nonzero entries of the matrix G10 for the two orderings described above. Recalling
that the box splines φj , j ∈ Z

2, are unconditionally stable [7], we conclude that the
corresponding Gram matrix G in (2.15) is positive definite.

Let

ψ(x, y) =
∑
j0

γjφ−j(x, y), x, y ∈ R,

where {γj : j � 0} are the coefficients of the Fourier series of 1/h(x, y).
As the coefficients {γj : j � 0} decay exponentially with respect to |j|, for all

practical applications ψ can be considered a locally supported function. Figure 6 and
Figure 7 show the entries of the matrix Γ = {γi−j : i, j ∈ Z

2} which have modulus
greater than 10−16 (small dots) and 10−8 (big dots) for the two orderings considered.

MULTIVARIATE CHOLESKY FACTORIZATION 523

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Fig. 4.

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Fig. 5.

In both cases bidimensional FFTs were computed using 64 points on each axis, that
is, based upon 4096 coefficients. For the first ordering (second ordering), 817 (785)
have modulus greater than 10−16 and 205 (204) greater than 10−8. Moreover, for
both orderings

γj < 10−16 for |j| > 41 and γj < 10−8 for |j| > 22.

A graph of the limiting profile ψ(x, y) related to the first ordering is depicted in
Figure 8. This graph is hardly distinguishable from the one obtained by the second
ordering.

For ordering (a), Theorem 4.2 states that for fixed η in (0, 1
2) and |j| ≤ (1 −

η)n, j1, j2 > ηn, (x, y) in Ωn, |ψn
j (x, y) − ψj(x, y)| decays exponentially as n → ∞.

Numerically, we consider the quantity

εn = max
(x,y)∈Ωn

∣∣ψn
jn(x, y)− ψjn(x, y)

∣∣,
which we approximate on a finite grid. Here jn is chosen to make εn close to minimum.
According to our experience, a good value of jn is

(�n2 − 1, �n2 − 1
)
.

−30 −20 −10 0 10 20 30

30

20

10

0

−10

−20

−30

Fig. 6.

−30 −20 −10 0 10 20 30

30

20

10

0

−10

−20

−30

Fig. 7.

524 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

−5

0

5 −5

0

5

−0.5

0

0.5

1

1.5

Fig. 8.

For ordering (b) we have no theoretical convergence result, but we shall also
consider εn as defined above. From experience, εn is close to minimum when jn =(�n3 , �n3).

As n → ∞, εn gives a measure of the distance of ψn
jn

from the appropriate
translate of the limiting profile ψ. We found out that, in both cases, εn decays

3 6 9 12 15 18 21 24 27 30
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Fig. 9.

MULTIVARIATE CHOLESKY FACTORIZATION 525

0 5 10 15 20

20

15

10

5

0 1e−8

1e−7

1e−6

1e−5

1e−4

1e−3

1e−2

1e−1

1

Fig. 10.

0 5 10 15 20

20

15

10

5

0 1e−8

1e−7

1e−6

1e−5

1e−4

1e−3

1e−2

1e−1

1

Fig. 11.

exponentially, but the two decay rates are quite different. Figure 9, where dots and
squares indicate the values of εn with respect to the first and the second ordering,
highlights this property.

This result is due to the fact that the sequence of domains Ωn that we use in the
orthonormalization process favors the first ordering. In order to justify this statement,
we consider n = 20 and, for each of the two orderings, we take jn as above specified,
that is j20 = (9, 9) for the first ordering and (7,7) for the second. Then we consider the
coefficients (Ln)−1

jnk
of ψn

jn
and we depict the magnitude of their modulus, in grayscale,

in Figure 10 and Figure 11, respectively. Note the different level of gray on the edges
of Ωn in the two figures. The lighter shade of Figure 11 indicates that in the second
ordering we ignore substantial coefficients and, as a result, for moderately high values
of n the approximation of ψjn by ψn

jn
is worse in this case than in the other one.

REFERENCES

[1] F. Bauer, Ein direktes Iterations Verfahren zur Hurwitz-zerlegung eines Polynoms, Arch.
Elektr. Uebertragung, 9 (1955), pp. 285–290.

[2] F. Bauer, Beiträge zur Entwicklung numerischer Verfahren für programmgesteuerte Rechen-
anlagen, ii. Direkte Faktorisierung eines Polynoms, Sitz. Ber. Bayer. Akad. Wiss., (1956),
pp. 163–203.

[3] B. Bogert, M. Healy, and J. Tukey, The quefrency alanysis of time series for echoes:
Cepstrum pseudo-autocovariance, cross-cepstrum and saphe cracking, in Proceedings of
the Symposium for Time Series Analysis, M. Rosenblatt, ed., New York, John Wiley and
Sons, 1963, pp. 209–243.

[4] C. D. Boor, A bound on the L∞-norm of L2-approximation by splines in terms of a global
mesh ratio, Math. Comp., 30 (1976), pp. 765–771.

[5] A. Calderón, F. Spitzer, and H. Widom, Inversion of Toeplitz matrices, Illinois J. Math.,
3 (1959), pp. 490–498.

[6] C. Chui, P. Smith, and J. Ward, Cholesky factorization of positive definite bi-infinite matri-
ces, Numer. Funct. Anal. Optim., 5 (1982), pp. 1–20.

[7] W. Dahmen and C. Micchelli, Translates of multivariate splines, Linear Algebra Appl., 52
(1983), pp. 217–234.

[8] S. Demko, Inverses of band matrices and local convergence of spline projections, SIAM J.
Numer. Anal., 14 (1977), pp. 616–619.

[9] S. Demko, W. Moss, and P. Smith, Decay rates for inverses of band matrices, Math. Comp.,
43 (1984), pp. 491–499.

[10] J. Douglas Jr., T. Dupont, and L. Wahlbin, Optimal L∞ error estimates for Galerkin ap-
proximations to solutions of two-point boundary value problems, Math. Comp., 29 (1975),
pp. 475–483.

526 GOODMAN, MICCHELLI, RODRIGUEZ, AND SEATZU

[11] T. Goodman, C. Micchelli, G. Rodriguez, and S. Seatzu, On the Cholesky factorization
of the Gram matrix of locally supported functions, BIT, 35 (1995), pp. 233–257.

[12] T. Goodman, C. Micchelli, G. Rodriguez, and S. Seatzu, Spectral factorization of Laurent
polynomials, Adv. Comput. Math., 7 (1997), pp. 429–454.

[13] T. Goodman, C. Micchelli, G. Rodriguez, and S. Seatzu, On the limiting profile arising
from orthonormalizing shifts of exponentially decaying functions, IMA J. Numer. Anal.,
18 (1998), pp. 331–354.

[14] A. Innocenti, G. Rodriguez, and S. Seatzu, Orthogonal Splines with Applications to Mul-
tivariate Least Squares and Integral Equations of the First Kind, Tech. Report CRS4-
APPMATH-93-15, CRS4, Cagliari, Italy, 1993.

[15] M. Krein, Integral equations on the half-line with kernel depending on the difference of the
arguments, Uspehi Mat. Nauk, 13 (1958), pp. 3–120. (in Russian); AMS Translations, 22
(1962), pp. 163–288 (in English).

[16] J. Mason, G. Rodriguez, and S. Seatzu, Orthogonal splines based on B-splines—with ap-
plications to least squares, smoothing and regularization problems, Numer. Algorithms, 5
(1993), pp. 25–40.

[17] J. McClellan, Multidimensional spectral estimation, Proc. IEEE, 70 (1982), pp. 1029–1039.
[18] C. V. D. Mee, G. Rodriguez, and S. Seatzu, Block Cholesky factorization of infinite matrices

and orthonormalization of vectors of functions, in Advances in Computational Mathemat-
ics, Z. Chen, Y. Li, C. Micchelli, and Y. Xu, eds., Lecture Notes in Pure and Appl. Math.
202, M. Dekker, New York, Basel, 1998, pp. 423–455.

[19] C. Micchelli and T. Sauer, Regularity of multiwavelets, Adv. Comput. Math., 7 (1997),
pp. 455–545.

[20] D. Newman, A simple proof of Wiener’s 1/f theorem, Proc. Amer. Math. Soc., 48 (1975),
pp. 264–265.

[21] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, Prentice Hall Signal Pro-
cessing Series, Prentice Hall, Englewood Cliffs, NJ, 1989.

[22] I. Schoenberg, Cardinal Spline Interpolation, CBMS-NSF Regional Conf. Ser. in Appl. Math.
12, SIAM, Philadelphia, PA, 1973.

[23] J.-G. Sun, Perturbation bounds for the Cholesky and QR factorizations, BIT, 31 (1991),
pp. 341–352.

[24] H. Widom, Inversion of Toeplitz matrices. II, Illinois J. Math., 4 (1960), pp. 88–99.
[25] H. Widom, Asymptotic behavior of block Toeplitz matrices and determimants. II, Adv. Math.,

21 (1976), pp. 1–29.
[26] D. Youla and N. Kazanjian, Bauer-type factorization of positive matrices and the theory of

matrix polynomials orthogonal on the unit circle, IEEE Trans. Circuits Systems I Fund.
Theory Appl., 25 (1978), pp. 57–69.

PRINCIPAL PIVOTING METHOD FOR SOLVING COLUMN
SUFFICIENT COMPLEMENTARITY PROBLEMS∗

A. L. N. MURTHY† AND G. S. R. MURTHY†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 527–532

Abstract. The linear complementarity problem (q, A) is to find, for a given real square matrix
A of order n and a real column vector q of order n, a nonnegative vector z such that Az + q ≥ 0 and
zt(Az + q) = 0. It is known that when A is a positive semidefinite matrix, one can use a principal
pivoting method to compute a solution to (q, A) if it has one and to conclude that the problem
has no solution otherwise. Cottle, Pang, and Venkateswaran [Linear Algebra Appl., 114/115 (1989),
pp. 231–249] introduced the class of sufficient matrices and widened the scope of a principal pivoting
algorithm to solve linear complementarity problems with row sufficient matrices. Our main result in
this article is to show that this algorithm can be extended to solve even the problems with column
sufficient matrices.

Key words. linear complementarity problem, column sufficiency, principal pivoting

AMS subject classification. 90C33

PII. S0895479899363526

1. Introduction. The linear complementarity problem (LCP) with data A ∈
Rn×n and q ∈ Rn, denoted by (q,A), is to find a vector z such that

Az + q ≥ 0, z ≥ 0, and zt(Az + q) = 0.

LCPs have a wide range of applications both in theory and practice (see [2, 9]).
Though algorithms are available to solve special classes of LCPs, computing the so-
lution to a general LCP (q,A) or exhibiting that the problem has no solution has
remained as an open question. Lemke and Howson [6] produced an algorithm that
can process many classes of LCPs often encountered in practice. An algorithm is said
to process a problem if it either finds a solution to the problem or concludes that
the problem has no solution. There are other algorithms to solve the special cases of
LCPs, such as Cottle and Dantzig’s principal pivoting algorithms, Murty’s least index
method, and so on (see [2] and [9] for details). These algorithms are different from
Lemke’s algorithm and are based on principal pivoting.

In this article our main concern is to establish that a principal pivoting algorithm
can be used to solve LCPs (q,A) in which A is a column sufficient matrix (see below
for definitions of matrix classes). Using a result of Murthy and Parthasarathy [7],
we will show that if A is a column sufficient Q0-matrix, then (q,A) can be processed
using the algorithm in question. This result is useful in deriving a number of results.

The question of whether an algorithm processes a given LCP (q,A) depends upon
the properties of the matrix A, and this has led to the evolution of a variety of matrix
classes in the theory of LCP. We shall define some of the matrix classes which will be
relevant to this article.

In section 2 we shall present the necessary background and the key result from
[7] along with its applications. In section 3, we shall present our main results.

∗Received by the editors November 5, 1999; accepted for publication (in revised form) by R.
Brualdi March 9, 2000; published electronically August 9, 2000.

http://www.siam.org/journals/simax/22-2/36352.html
†Indian Statistical Institute, Street No. 8, Habsiguda, Hyderabad, India (simhaaln@hotmail.com,

murthygsr@hotmail.com).

527

528 A. L. N. MURTHY AND G. S. R. MURTHY

2. Key result and its applications. For A ∈ Rn×n and q ∈ Rn, define the
sets F (q,A) and S(q,A) as

F (q,A) = { z ∈ Rn
+ : Az + q ≥ 0 }

and

S(q,A) = { z ∈ F (q,A) : zt(Az + q) = 0 }.

Note that S(q,A) is the set of solutions to LCP (q,A). The matrix A is said to be (i)
a Q0-matrix if S(q,A) �= ∅, whenever F (q,A) �= ∅; (ii) a Q-matrix if S(q,A) �= ∅
for all q; (iii) a positive semidefinite if xtAx ≥ 0 for all x; (iv) a copositive matrix
xtAx ≥ 0 for all nonnegative x; (v) an E0-matrix if for every nonnegative vector
x �= 0 there exists an index i such that xi > 0 and (Ax)i ≥ 0; (vi) a P0-matrix if
every principal minor of A is nonnegative.

IfAαα, the principal submatrix ofA with respect to the index set α, is nonsingular,
then the matrix M defined by

Mαα = (Aαα)−1, Mαᾱ = −MααAαᾱ, Mᾱα = AᾱαMαα, and Mᾱᾱ = Aᾱᾱ −MᾱαAαᾱ

is called the principal pivotal transform (PPT) of A with respect to α. For any
q ∈ Rn, the vector p defined by

pα = −(Aαα)−1qα, pᾱ = qᾱ −Aᾱα(Aαα)−1qα

is called PPT of q with respect to A and α.
The new LCP (p,M) is called the PPT of (q,A) with respect to α. There is a

one-to-one correspondence between the solution set of (q,A) and that of (p,M). The
reader may refer to [2] for details of notation and preliminary results. Consider (q,A)
and let (p,M) be its PPT with respect α �= ∅.

Definition 1. We say that (p,M) is obtained by a single (resp., double) pivot if
|α|, the size of α, is equal to 1 (resp., 2).

Many algorithms have been proposed to solve LCPs based on principal pivoting
methods. See [2, 9] for detailed discussions on this topic. But these algorithms have
the limitation that they can process only certain classes of LCPs. Given below is one
such algorithm which uses only single or double pivots. Graves [5] proposed a lexi-
cographic procedure and showed that LCPs involving positive semidefinite matrices
can be processed by this algorithm (see [9] for a complete description and proof).

Algorithm 2.
Step 0. Input M = A and p = q.
Step 1. If p ≥ 0, then z = 0 is a solution to (p,M); obtain a solution of (q,A)

using this and stop.
Step 2. If there exists an index i such that pi < 0 and ith row of M is nonpos-

itive, then conclude that (q,A) has no solution and stop.
Step 3. Choose i with pi < 0 using the lexicographic rule. If mii > 0, then

replace (p,M) by its PPT with respect to α = {i}. If mii = 0, then
choose j from {k : mki < 0} using the lexicographic rule and replace
(p,M) by its PPT with respect to α = {i, j}. Go to Step 1.

Cottle, Pang, and Venkateswaran [3] introduced the class of sufficient matrices
(see below for definitions) and expanded the scope of Algorithm 2 to LCPs involving
row sufficient matrices.

PIVOTING ALGORITHM FOR COLUMN SUFFICIENT LCPs 529

Definition 3. A matrix A ∈ Rn×n is said to be a column sufficient matrix (Cs-
matrix) if for every x ∈ Rn, [xi(Ax)i ≤ 0 for all i] implies [xi(Ax)i = 0 for all i].
The matrix A is said to be a row sufficient matrix (Cr-matrix) if A

t is a Cs-matrix,
and A is said to be sufficient if it is both row and column sufficient.

Remark 4. An equivalent characterization of Cs-matrices is that A is a Cs-matrix
if and only if S(q,A) is convex for all q (see Theorem 3.5.8 of [2]).

Murthy and Parthasarathy [8] introduced the class of fully copositive matrices,

denoted as Cf
0 -matrices (a matrix is said to be fully copositive if all its PPTs are

copositive), and showed that LCP (q,A) can be processed by Algorithm 2 when A is

a Cf
0 ∩ Q0-matrix . In this article we will show that this algorithm works even in

the case of Cs ∩Q0-matrices. A key result in establishing this result is the following
theorem.

Theorem 5 (see Murthy and Parthasarathy [7]). Suppose A ∈ Rn×n∩E0∩Q0.
Assume that for some i, j, aii = 0 and aij > 0. Then there exists a k such that
aki < 0.

The above theorem is an extension of Pang’s result for E0∩Q-matrices to E0∩Q0-
matrices. Pang’s result states that if A is an E0∩Q-matrix, then any nonzero solution
of (0, A) must have at least two nonzero coordinates (see [10]). Theorem 5 has very
interesting applications. It has been used to prove that Stone’s conjecture is true for
matrices of order up to n ≤ 5. Stone’s conjecture states that every Ef

0 ∩Q0-matrix is

a P0-matrix (A is said to be an Ef
0 -matrix if every PPT of A is an E0-matrix). See

[4, 11, 7, 1] for details. Theorem 5 is also used in proving (i) Cf
0 ∩Q0-matrices are P0-

matrices, (ii) Cf
0 ∩Q0-matrices are completely Q0 (i.e., all the principal submatrices

are Q0), all their PPTs are completely Q0-matrices, and (iii) (q,A) can be processed

by Algorithm 2 when A is a Cf
0 ∩Q0-matrix.

3. Main results. We shall present our two main results in this section. The first
result states that if A is in Cs∩Q0, then for any q, (q,A) is processible by Algorithm 2.
In our second result we show that (q,A) can be processed by Algorithm 2 even without
the assumption of Q0 on A. The main requirement for (q,A) to be processible by
Algorithm 2 is contained in the following result.

Theorem 6. Let A ∈ Rn×n be such that for any PPT M of A the following
conditions hold:

(i) mii ≥ 0 for all i,

(ii) for any i, j, if mii = 0 and mij > 0, then there exists a k such that mki < 0,
and

(iii) for any i, j satisfying mii = 0, mji < 0, then mij > 0.

Then A is a Q0-matrix.

Refer to [9] for a proof of the above theorem. Though the proof in [9] is presented
for positive semidefinite matrices, what is required essentially is that the matrix A
should satisfy the assumptions of Theorem 6. Positive semidefinite matrices satisfy
these conditions because if A is a positive semidefinite matrix, then for any i with
aii = 0, we have aij + aji = 0 for all j. These assumptions are satisfied by a larger
class of matrices introduced by Cottle, Pang, and Venkateswaran [3] (see also section
3.5 of [2]). Murthy and Parthasarathy [8] showed that the assumptions are satisfied

by Cf
0 ∩Q0-matrices. Our next result states that any matrix satisfying the conditions

of Theorem 6 is a Q0-matrix.

Theorem 7. Suppose A ∈ Rn×n satisfies the conditions of Theorem 6. Then A
is a Q0-matrix.

530 A. L. N. MURTHY AND G. S. R. MURTHY

Proof. Suppose Algorithm 2 is applied to (q,A). Since no cycling occurs, from
the assumptions of the theorem the algorithm terminates either in Step 1 or in Step 2
in a finite number of iterations. If the termination is in Step 1, then (q,A) has a
solution, and if the algorithm terminates in Step 2, then F (q,A) = ∅. Therefore, it
follows that A is a Q0-matrix.

The conditions of Theorem 6 are sufficient only for a matrix to be a Q0-matrix. To
see that these conditions are not necessary, one can give the trivial example, namely,
that any negative (entrywise) matrix is a Q0-matrix. In our next theorem we show
that any Cs ∩Q0-matrix satisfies the conditions of Theorem 6.

Theorem 8. Suppose A ∈ Rn×n is a Cs ∩Q0-matrix. Then for any q ∈ Rn,
Algorithm 2 processes (q,A).

Proof. It suffices to show that A satisfies the conditions of Theorem 6. If A is
in Cs ∩ Q0, then so are all PPTs of A [2]. Let M be any PPT of A. Since every
column sufficient matrix is a P0-matrix, mii ≥ 0 for all i. The fact that M satisfies
(ii) follows from the fact that every P0-matrix is an E0-matrix and from Theorem 5.

Next, suppose mii = 0 and mji < 0 for some i and j. Since M ∈ P0, mij ≥ 0.
If mij = 0, then M cannot be a column sufficient matrix. Therefore, M satisfies
condition (iii) also. Thus, A satisfies the conditions of Theorem 6.

It is known that Cs is not a subset of Q0. One might ask the question whether
the Q0 condition can be dropped from Theorem 8. The answer is no. The matrix
below serves as a counterexample.

Example 9. Consider the matrix

A =

 0 1 −1

0 1 0
1 0 0

 .

It is easy to check that A is copositive and a Cs-matrix. Since every copositive
matrix is an E0-matrix, it follows from Theorem 5 that A is not a Q0-matrix. Taking
q = (−1, 2, 3)t, if we try to use Algorithm 2 to solve (q,A), we get stuck in the very
first iteration itself. However, this problem can be processed by applying Algorithm 2
to an augmented problem.

Theorem 10. Suppose A ∈ Rn×n. Consider the augmented matrix

M =

[
A I
−I 0

]
,(1)

where I is the identity matrix of order n. Then M is a Cs-matrix if and only if A is
a Cs-matrix.

Proof. Since every principal submatrix of a Cs-matrix is also in Cs, we need
only prove the “if” part. Let x, y ∈ Rn and zt = (xt, yt). Suppose zi(Mz)i ≤ 0
for all i. Then we have xi(Ax)i + xiyi ≤ 0 for all i and −xiyi ≤ 0 for all i. From
these two inequalities it follows that xi(Ax)i ≤ −xiyi ≤ 0 for all i. Since A ∈ Cs,
xi(Ax)i = 0 for all i. It follows from the first inequality that xiyi ≤ 0, and from the
second inequality that xiyi = 0 for all i. It follows that M is a Cs-matrix.

When A is a Cs-matrix, the augmented matrix defined in (1) is used to solve
(q,A) using iterative (convergence) procedures (see Theorem 5.9.7 and the discussion
following it in [2]). This procedure is applied to the augmented problem (q̄,M), where
q̄t = (qt, pt) with p being a very large positive vector. The following result is used in
recovering a solution of (q,A) from the solution of (q̄,M).

PIVOTING ALGORITHM FOR COLUMN SUFFICIENT LCPs 531

Theorem 11. Suppose A ∈ Rn×n and let M be the augmented matrix defined
in (1). Let p, q ∈ Rn and let q̄t = (qt, pt). Assume that S(q,A) �= ∅. Then (xt, yt)t,
x, y ∈ Rn, is a solution to (q̄,M) for all large positive vectors p if and only if x ∈
S(q,A) and y = 0.

For a proof of this theorem, see Theorem 3.7.17 of [2]. We are now ready to
establish our main result.

Theorem 12. Suppose A ∈ Rn×n is a Cs-matrix. Then the augmented matrix
M defined in (1) is a column sufficient Q0-matrix.

Proof. Column sufficiency of M is already established in Theorem 10. To show
that M is a Q0-matrix, we shall show that M satisfies the conditions of Theorem 6.
The matrix M satisfies conditions (i) and (iii) because it is a Cs-matrix. So it suffices
to show that it satisfies condition (ii). Clearly M satisfies condition (ii). It remains
to show that every PPT of M satisfies this condition. Partition the matrix A as

A =

[
B C
D E

]
,

where B and E are square matrices (the case where B is equal to A is also included).
We need to consider two types of PPTs—one with respect to [B−I

I
0] and the other

with respect to B. First let us consider the case of PPT with respect to [B−I
I
0]. This

is given by

G =

0 0 −I 0
0 E −D I
I −C B 0
0 −I 0 0

 .

From the structure of G it is clear that condition (ii) is satisfied. Next, let us consider
the PPT with respect to B. This is given by

H =

B−1 −B−1C −B−1 0
DB−1 E −DB−1C −DB−1 I
−B−1 B−1C B−1 0

0 −I 0 0

 .

Since B is nonsingular, every row and every column of B−1 has a nonzero entry. Using
this and the structure of H it is easy to see that every column of H (except the last
block of columns) has a negative entry. Therefore, H satisfies condition (ii). This
completes the proof of the theorem.

Corollary 13. Suppose A ∈ Rn×n is column sufficient and q ∈ Rn. Then the
problem (q,A) can be processed by Algorithm 2.

Proof. Solve the augmented problem (q̄,M) and use Theorem 11 to obtain a
solution to (q,A), if it has one; otherwise, conclude that (q,A) has no solution.

We shall solve the problem (q,A) mentioned in Example 9 by applying Algo-
rithm 2 to the augmented problem. The augmented matrix M and the augmented
vector q̄ are given by

M =

0 1 −1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1
−1 0 0 0 0 0

0 −1 0 0 0 0
0 0 −1 0 0 0

, q̄ =

−1
2
3
λ
λ
λ

,

532 A. L. N. MURTHY AND G. S. R. MURTHY

where λ is a large positive number. Following Algorithm 2, the first PPT is with
respect to α = {1, 4}. Let (q̄1,M1) denote the PPT of (q̄,M) with respect to α =
{1, 4}. Then

M1 =

0 0 0 −1 0 0
0 1 0 0 1 0
0 0 0 −1 0 1
1 −1 1 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

, q̄1 =

λ
2

3 + λ
1
λ
λ

.

Since q̄1 ≥ 0, a solution to (q̄,M) is given by (λ, 0, 0, 1, 0, 0)t. From Theorem 11, we
conclude that (q,A) has no solution.

It is to be observed that when Algorithm 2 is applied to problems involving
positive semidefinite matrices or row sufficient matrices, the terminal conclusion is
that one either has a solution or that the problem has no feasible solution (that is,
F (q,A) = ∅). However, in the above example, the problem has a feasible solution,
yet we are able to conclude that the problem has no solution.

We shall conclude this paper with the following question. The augmented matrix
given in (1) is Q0 when A is a column sufficient matrix. Is this true that the augmented
matrix is a Q0-matrix for an arbitrary square matrix A? The authors are not aware
of an answer to this problem.

Acknowledgment. The authors wish to thank Professor T. Parthasarathy for
some useful discussions they had during his recent visit to the Indian Statistical In-
stitute.

REFERENCES

[1] A. K. Biswas and G. S. R. Murthy, A note on E
f
0 ∩ Q0-matrices, in Game Theoretical

Applications to Economics and Operations Research, T. Parthasarathy, B. Dutta, J. A. M.
Potters, T. E. S. Raghavan, D. Ray, and A. Sen, eds., Academic Publishers, Dordrecht,
The Netherlands, 1997, pp. 149–152.

[2] R. W. Cottle, J. S. Pang, and R. E. Stone, The Linear Complementarity Problem, Aca-
demic Press, New York, 1992.

[3] R. W. Cottle, J. S. Pang, and V. Venkateswaran, Sufficient matrices and the linear
complementarity problem, Linear Algebra Appl., 114/115 (1989), pp. 231–249.

[4] R. W. Cottle and R. E. Stone, On the uniqueness of solutions to linear complementarity
problems, Math. Programming, 27 (1983), pp. 191–213.

[5] R. L. Graves, A principal pivoting simplex algorithm for linear and quadratic programming,
Oper. Res., 15 (1967), pp. 482–494.

[6] C. E. Lemke and J. T. Howson, Jr., Equilibrium points of bimatrix games, SIAM J. Appl.
Math., 12 (1964), pp. 413–423.

[7] G. S. R. Murthy and T. Parthasarathy, Some properties of fully semimonotone Q0-
matrices, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1268–1286.

[8] G. S. R. Murthy and T. Parthasarathy, Fully copositive matrices, Math. Programming, 82
(1998), pp. 401–411.

[9] K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann
Verlag, Berlin, 1988.

[10] J. S. Pang, On Q-matrices, Math. Programming, 17 (1979), pp. 243–247.
[11] R. E. Stone, Geometric Aspects of Linear Complementarity Problem, Ph.D. thesis, Depart-

ment of Operations Research, Stanford University, Stanford, CA, 1981.

FAST STRUCTURED TOTAL LEAST SQUARES ALGORITHM FOR
SOLVING THE BASIC DECONVOLUTION PROBLEM∗

NICOLA MASTRONARDI† , PHILIPPE LEMMERLING‡ , AND SABINE VAN HUFFEL‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 533–553

Abstract. In this paper we develop a fast algorithm for the basic deconvolution problem. First
we show that the kernel problem to be solved in the basic deconvolution problem is a so-called
structured total least squares problem. Due to the low displacement rank of the involved matrices
and the sparsity of the generators, we are able to develop a fast algorithm. We apply the new
algorithm on a deconvolution problem arising in a medical application in renography. By means of
this example, we show the increased computational performance of our algorithm as compared to
other algorithms for solving this type of structured total least squares problem. In addition, Monte-
Carlo simulations indicate the superior statistical performance of the structured total least squares
estimator compared to other estimators such as the ordinary total least squares estimator.

Key words. deconvolution, structured total least squares, displacement rank, structured total
least norm, generalized Schur algorithm

AMS subject classifications. 15A03, 62P10, 65C05

PII. S0895479898345813

1. Introduction. Deconvolution problems occur in many areas such as reflec-
tion seismology, telecommunications, and medical applications [5, 23, 3, 12], to name
just a few. In this paper we develop a fast algorithm for the basic deconvolution prob-
lem. The latter problem is depicted in Figure 1.1, where u(k) represents the measured
input (whereas u0(k) is the true but unmeasured input) and y(k) represents the mea-
sured output (whereas y0(k) is the true but unmeasured output) at time k; nu(k) and
ny(k) are i.i.d. white Gaussian measurement noise added, respectively, to the input
and to the output. The system, represented by its transfer function X0(z), is a lin-
ear time-invariant system with impulse response x ∈ R

n×1. The basic deconvolution
problem can now be formulated as follows:

Given the noisy (we assume Gaussian i.i.d. additive noise of equal variance)
measurements u(k), k = 1, . . . ,m+ n− 1 and y(k), k = 1, . . . ,m,
of the linear system, find a maximum likelihood (ML) estimate for the
system impulse response x0(i), i = 1, . . . , n.

∗Received by the editors October 8, 1998; accepted for publication (in revised form) by G. Golub
April 10, 2000; published electronically August 9, 2000. This work was supported by the National
Research Council of Italy under the Short Term Mobility Program, by the EC “Training and Mobil-
ity for Researchers” project entitled “Advanced Signal Processing for Medical Magnetic Resonance
Imaging and Spectroscopy” (contract ERBFMRXCT970160), by the Belgian Programme on Interuni-
versity Poles of Attraction (IUAP-4/2 & 24), initiated by the Belgian State, Prime Minister’s Office
for Science, and by a Concerted Research Action (GOA) project of the Flemish Community, entitled
“Model-based Information Processing Systems.”

http://www.siam.org/journals/simax/22-2/34581.html
†Dipartimento di Matematica, Università della Basilicata, via N. Sauro 85, 85100 Potenza, Italy

(mastronardi@unibas.it).
‡Department of Electrical Engineering, ESAT-SISTA, Katholieke Universiteit Leuven,

Kardinaal Mercierlaan 94, 3001 Heverlee, Belgium (philippe.lemmerling@esat.kuleuven.ac.be,
sabine.vanhuffel@esat.kuleuven.ac.be). The second author is a Ph.D. student funded by the IWT
(Flemish Institute for Support of Scientific-Technological Research in Industry). The third author is
a Senior Research Associate with the F.W.O. (Fund for Scientific Research-Flanders).

533

534 N. MASTRONARDI, P. LEMMERLING, AND S. VAN HUFFEL

u0(k)

nu(k)

u(k)

y0(k)

ny(k)

X0(z)

y(k)

Fig. 1.1. This figure shows a schematic outline of the basic deconvolution problem. The goal
is to estimate the impulse response x0 starting from the noisy input (u(k)) and the noisy output
(y(k)).

In the next section we show that the ML estimator for the basic deconvolution
problem is a so-called structured total least squares (STLS) problem [19]. The STLS
problem is an extension of the ordinary total least squares (TLS) problem [11, 29].
The ordinary TLS problem can be formulated as follows:

min
∆A,∆y,x

‖[∆A ∆y]‖2F(1.1)

such that (s.t.) (A+∆A)x = y +∆y,

with A ∈ R
m×n and y ∈ R

m×1. The STLS formulation additionally imposes a
structure on the correction matrix [∆A ∆y] (e.g., a Hankel structure), hence its name
structured TLS. Furthermore, it is possible that the different elements in [∆A ∆y] get
a user-defined weighting, different from the one represented by the Frobenius norm of
[∆A ∆y].

In recent years many problem formulations and associated solution methods have
been devised for the STLS problem: the structured total least norm (STLN) approach
[24, 25, 30], the constrained total least squares (CTLS) approach [1, 2], and the
Riemannian singular value decomposition (RiSVD) approach [7]. We will use the
straightforward optimization approach adopted in the STLN framework, since the
other approaches either do not have efficient algorithms to solve them (e.g., the RiSVD
approach) or they introduce numerical inaccuracies by forming products involving
the data matrix [A y] and its transpose (e.g., the CTLS approach). The basic
deconvolution problem, formulated as Ax ≈ y and described in section 2, is solved
using the 2-norm STLN algorithm described in [25], with A Toeplitz-structured and
y unstructured. This iterative STLN algorithm solves as kernel problem in each
iteration step a least squares problem involving a higher-dimensional structured and
sparse data matrix. However, the STLN algorithm in [25], requiring O

(
(m+ n)3

)
operations, does not exploit these matrix features. A fast implementation requiring
O(mn2 +m2) operations which partially exploits the matrix structure was presented
in [24]. In this paper we present a computationally faster algorithm of O(mn + n2)
operations based on the generalized Schur algorithm [16]. The improved efficiency
is obtained by fully exploiting the low displacement rank of the involved matrices
(displacement rank 5) and the sparsity of the corresponding generators throughout
all computations. In addition, we prove that this STLS estimator provides statistically
better estimates of the impulse response given input and output data affected by i.i.d.
zero mean noise with equal variance, compared to the ordinary TLS estimator. These

FAST STRUCTURED TOTAL LEAST SQUARES ALGORITHM 535

are the main contributions of this paper.
The paper is organized as follows. Section 2 describes the basic deconvolution

problem and also outlines the 2-norm STLN algorithm with unstructured right-hand
side, as described in [25], for solving this problem. Section 3 describes a fast algorithm
for solving the kernel problem of the STLN approach applied to the basic deconvo-
lution problem: a least squares (LS) problem involving structured matrices. As will
be shown, the algorithm is based on the low displacement rank of the involved matri-
ces. Section 4 describes some examples of typical deconvolution problems in order to
demonstrate the dependency of the number of flops on the problem size and to show
the increased computational efficiency w.r.t. existing implementations. To illustrate
the statistical properties of the STLS estimator, a simulation experiment based on
a medical application in renography is described. By means of a Monte-Carlo sim-
ulation, using several noise levels, we show the improved statistical accuracy of the
deconvolution results obtained with the STLS estimator as compared to other esti-
mators such as the TLS estimator that do not impose a structure on the correction
matrix [∆A ∆y].

2. The basic deconvolution problem. Starting from the problem formulation
of the basic deconvolution problem in section 1, it is straightforward to show that a
ML estimate can be found as the solution of the following problem (for a proof, see
[2]):

min
E,x

αTα+ βTβ

s.t. (A+ E)x = y + β,(2.1)

with

A =

u(n) u(n− 1) . . . u(1)
u(n+ 1) u(n) . . . u(2)

...
. . .

...
u(m+ n− 1) u(m+ n− 2) . . . u(m)

 ∈ R

m×n,

E =

α(n) α(n− 1) . . . α(1)
α(n+ 1) α(n) . . . α(2)

...
. . .

...
α(m+ n− 1) α(m+ n− 2) . . . α(m)

 ∈ R

m×n,

β = (A+ E)x− y ∈ R
m×1,

with E the correction applied to A, β the correction applied to y, y ∈ R
m×1 the

output, and x ∈ R
n×1 the impulse response. Problem (2.1) is a STLS problem,

since corrections can be applied to the left-hand side matrix A of the constraints in
(2.1) (implying that it is a total LS type problem) and in addition the corresponding
correction matrix E is structured (implying that we have to deal with a structured
TLS problem). As already mentioned in the introduction, we will apply the STLN
approach, implying that we solve (2.1) as an optimization problem. Using the zeroth
and first order terms of the Taylor series expansion of β = (A + E(α))x − y (where
we use the notation E(α) to denote the dependence of E on α) around [αT xT]T ,
we obtain the Gauss–Newton method for solving (2.1) (for a proof, see [25]). The
outline of the basic deconvolution algorithm, which is equivalent to the 2-norm STLN
algorithm with unstructured right-hand side [25] for A Toeplitz, is then as follows:

536 N. MASTRONARDI, P. LEMMERLING, AND S. VAN HUFFEL

Basic Deconvolution Algorithm

Input: extended data matrix [A y] ∈ R
m×(n+1) (m > n) of full rank n+ 1.

Output: correction vector α and parameter vector x s.t. αTα + βTβ is as small as
possible and β = (A+ E(α))x− y.
Step 1: α← 0

x← A\y
Step 2: while stop criterion not satisfied

Step 2.1: min∆x,∆α

∥∥∥∥M
[
∆α
∆x

]
+

[
β
α

]∥∥∥∥
2

with M =

[
X A+ E
I 0

]
∈ R

(2m+n−1)×(m+2n−1)

Step 2.2: x← x+∆x
α← α+∆α

end

with X ∈ R
m×(m+n−1) defined such that Xα = Ex. Taking E as defined previously

in the deconvolution problem (2.1), X becomes

X =

x(n) x(n− 1) · · · x(1) 0 · · · · · · 0

0 x(n) x(n− 1) · · · x(1) 0
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 x(n) x(n− 1) · · · · · · x(1)

.

Note that A\y in Step 1 is a shorthand notation for the LS solution of the overdeter-
mined system of equations Ax ≈ y. As described in [17], more advanced initialization
steps are possible. They yield better starting values in the sense that convergence
takes place in fewer iterations and to a better local minimum. However the price
to be paid is an increase in computational complexity of the initialization. Due to
the nature of the problem we consider, the simple LS estimate will turn out to be
sufficient in the considered application.

We use the following stop criterion in our implementation of the algorithm:

‖[∆αT ∆xT]‖2 < 10−6.

3. Fast algorithm. In this section we describe a fast algorithm for solving the
LS problem in Step 2.1 of the basic deconvolution algorithm described in the previous
section. It basically consists of a fast triangularization of the matrix M, followed by
the solution of the normal equations

MTM [∆αT ∆xT]T = RTR[∆αT ∆xT]T = −MT [βT αT]T ,

with M = Q[RT 0]T the QR factorization of M . The triangularization of the matrix
M can be obtained by means of the QR decomposition of M with a computational
complexity of O((m + n)3). The algorithm considered in [25] requires O(mn2 +m2)
flops. We propose an algorithm for computing the matrix R, based on the gener-
alized Schur algorithm, exploiting displacement representation [14, 8] of the matrix
MTM that requires O(mn + n2) flops. First we describe briefly the displacement
representation of a matrix (see [8, 14] for more details).

FAST STRUCTURED TOTAL LEAST SQUARES ALGORITHM 537

Let Zk ∈ R
k×k be the lower shift matrix, that is

Zk =

0 0 · · · 0
1 0 · · · 0

. . .
. . .

1 0

and x ∈ R
k. We denote by Lk(x) the so-called Krylov matrix generated by x :

Lk(x) =
[
x, Zkx, Z2

kx, . . . , Zk−1
k x

]
.

The following lemma holds [8].
Lemma 3.1. For an arbitrary matrix A ∈ R

k×k,

A− ZkAZT
k =

δ̂∑
i=1

gih
T
i if and only if A =

δ̂∑
i=1

Lk(gi)Lk(hi)
T ,

gi, hi ∈ R
k, i = 1, . . . , δ̂.

The matrix pair Gδ̂(A) = {X,Y } , where X =
[
g1, . . . , gδ̂

]
and Y =

[
h1, . . . , hδ̂

]
,

is called a generator of A. Generators are clearly not unique and can be of different
lengths. The smallest possible length is called the displacement rank of A and is
denoted by δ(A).

Remark 3.1. A symmetric matrix A has a symmetric generator, in the sense that
gi = ±hi, i = 1, . . . , δ̂. Hence, its displacement representation has the symmetric form

A =

p∑
i=1

Lk(gi)Lk(gi)
T −

δ̂∑
i=p+1

Lk(gi)Lk(gi)
T .

The matrix

G =

gT1
...

gT
δ̂

is called a generator matrix.
Definition 3.1. A generator matrix is said to be in proper form if its first

nonzero column has a single nonzero entry, i.e.,

G =

0 0 ∗ · · · ∗
...

...
... · · · ...

0 0 ∗ · · · ∗
0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
...

...
... · · · ...

0 0 ∗ · · · ∗

,

where the elements denoted by “∗” are generally different from zero. The row corre-
sponding to the nonzero entry is called the pivot.

Given a displacement representation of MTM , it is possible to compute a fac-
torization with a computational complexity proportional to the displacement rank of
MTM . Since MTM is a block-Toeplitz-like matrix it is more natural to consider its
displacement representation with respect to the block-shift matrix Z = Zm+n−1⊕Zn
[13]. For clarity of exposition, this is illustrated in Appendix A for a 5× 5 matrix.

538 N. MASTRONARDI, P. LEMMERLING, AND S. VAN HUFFEL

3.1. Generators for MTM . For the sake of brevity, in the following we indi-
cate the Krylov matrices Lm+2n−1(x) by L(x). The displacement rank of MTM is 5,
that is, δ(MTM) = 5.

Lemma 3.2. Let w = M(2 : 2m + n − 1,m + n)/‖M(2 : 2m + n − 1,m + n)‖2
and t = M(2 : 2m+ n− 1, 2 : m+2n− 1)Tw. The following vectors form a generator
of MTM :

g1 = M(1, :)T ,
g2 = e1,
g3 = [0, t

T]T ,
g4 = [0, t(1 : m+ n− 2)T , 0, t(m+ n : m+ 2n− 2)T]T ,
g5 = [0,M(m, 1 : m+ n− 2)T , 0,M(m,m+ n : m+ 2n− 2)T]T ,

where e1 = [1, 0, . . . , 0︸ ︷︷ ︸
m+2n−2

]T . Then

MTM =

3∑
i=1

L(gi)L(gi)
T −

5∑
i=4

L(gi)L(gi)
T .(3.1)

Proof. Construct MTM and ZMTMZT ; then straightforward manipu-
lations show that MTM − ZMTMZT can be expressed as a sum of five rank 1
matrices.

Following the technique described in [8, 22] we can easily construct the generalized
Schur algorithm for the computation of R with computational complexity of O(m2 +
mn+ n2).

In the following section we consider a fast version of the generalized Schur algo-
rithm that requires only 18mn + 34.5n2 flops, taking into account the “sparsity” of
the vectors gi, i = 1, . . . , 5.

3.2. Description of the algorithm. Amatrix Θ is said to be JMTM -orthogonal
if ΘTJMTMΘ = JA, where JMTM = diag(1, 1, 1,−1,−1).

Let

G0 =

gT1
gT2
gT3
gT4
gT5

 .

Denoting by Gi−1 the generator matrix at the beginning of the ith iteration of
the algorithm, a JMTM -orthogonal matrix Θi is chosen such that Hi−1 = ΘiGi−1 is
in proper form, having the first row as pivot.

The generator matrix Gi is updated in the following way:

Gi(1, :) = Hi−1(1, :)Z
T ,

Gi([2 : 5], :) = Hi−1([2 : 5], :).

Furthermore, H(i− 1, :) becomes the ith row of R.
Starting from the vectors gi, i = 1, . . . , 5, and following the same steps of the

method proposed in [8, 22] (see also Appendix A), we transform these vectors in the
following way: [

gTi
gTj

]
:= Q

[
gTi
gTj

]
,(3.2)

FAST STRUCTURED TOTAL LEAST SQUARES ALGORITHM 539

where Q is either a Givens rotation (updating) if L(gi) and L(gj) have the same sign in
the sum (3.1) or a hyperbolic rotation (downdating) if these terms have opposite sign
in the sum (3.1). We perform the downdating step by means of a stabilized hyperbolic
rotation [27], since the latter is more stable. Furthermore, at the kth iteration, the
matrix Q is chosen to annihilate the kth entry of the resulting vector gj . At the end
of the kth iteration, we have gj(k) = 0, j �= 1. Then g1(k : m+ 2n− 1) is the kth row
of R and we set g1 := Zg1.

We divide the algorithm into four phases:
(1) initialization: i = 1,
(2) the iterations for i = 2 : m,
(3) the iterations for i = m+ 1 : m+ n− 1,
(4) the iterations for i = m+ n : m+ 2n− 1.
3.2.1. Initialization: i = 1. The only vectors with the first entry different

from 0 are g1 and g2. The new vectors g̃1 and g̃2 are computed as

[
g̃T1
g̃T2

]
= G

[
gT1
gT2

]
,

where G is the Givens rotation chosen to annihilate the first element of g2. The first

row of R is g̃T1 . In the following we denote by g
(i)
k , k = 1, . . . , 5, the vectors at the ith

iteration. Then we define

g
(1)
1 = Zg̃1 = [0, g̃1(1 : m+ n− 2)T , 0, g̃1(m+ n : m+ 2n− 2)T]T ,

g
(1)
2 = g̃2,

g
(1)
3 = g3,

g
(1)
4 = g4,

g
(1)
5 = g5.

The number of flops for this phase is 4n.

3.2.2. Iterations for i = 2 : m. In each iteration of this phase L(g
(i−1)
1)

is updated with L(g
(i−1)
2), and L(g

(i−1)
3), L(g

(i−1)
4) is updated with L(g

(i−1)
5), and

L(g
(i−1)
1) is downdated with L(g

(i−1)
4). Since g5 has m initial zeros, L(g

(1)
5) does not

contribute to this phase.

Moreover, the structure of the vectors g
(i−1)
k , k = 1, 2, at the beginning of the ith

iteration is

g
(i−1)
1 = [0, . . . , 0︸ ︷︷ ︸

i−1

, ∗, · · · , ∗, ∗︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
m−i+1

, ∗, · · · , ∗︸ ︷︷ ︸
n−1

]T ,

g
(i−1)
2 = [0, . . . , 0︸ ︷︷ ︸

i−1

, ∗, · · · , ∗︸ ︷︷ ︸
n−1

, 0, . . . , 0, 0︸ ︷︷ ︸
m−i+1

, ∗, · · · , ∗︸ ︷︷ ︸
n

]T ,

where the entries ∗ are in general different from 0. Then updating L(g
(i−1)
1) with

L(g
(i−1)
2) fills in only the (m+ n)th entry of the updated g

(i−1)
1 . To complete the ith

iteration, L(g
(i−1)
1) must be updated with L(g

(i−1)
3) and downdated with L(g

(i−1)
4).

To explain this computation, we describe the iteration for i = 2, recalling that the

vectors g
(1)
3 and g

(1)
4 are equal, except for the (m+ n)th element (the entries of these

vectors are generally different from 0). Let

540 N. MASTRONARDI, P. LEMMERLING, AND S. VAN HUFFEL

g
(1)
1 = [0, ξ2, . . . , ξn+1, 0, . . . , 0︸ ︷︷ ︸

m−2

, ξm+n, . . . , ξm+2n−1]
T ,(3.3)

g
(1)
3 = [0, ζ2, . . . , ζm+n−1, ζm+n, ζm+n+1, . . . , ζm+2n−1]

T ,

g
(1)
4 = [0, ζ2, . . . , ζm+n−1, µm+n, ζm+n+1, . . . , ζm+2n−1]

T .

We observe that the (m + n)th entry of g
(1)
4 is equal to 0. The Givens rotation used

during the updating is

G =

[
c
(1)
G s

(1)
G

−s
(1)
G c

(1)
G

]
, with c

(1)
G =

ξ2√
ξ2
2 + ζ2

2

and s
(1)
G =

ζ2√
ξ2
2 + ζ2

2

.

The updated vectors g̃
(1)
1 and g̃

(1)
3 are

g̃
(1)
1 = c

(1)
G g

(1)
1 + s

(1)
G g

(1)
3 ,(3.4)

g̃
(1)
3 = −s

(1)
G g

(1)
1 + c

(1)
G g

(1)
3 ,(3.5)

with g̃
(1)
1 = [0, ξ̃2, . . . , ξ̃m+2n−1]

T
(
ξ̃2 =

√
ξ2
2 + ζ2

2

)
. Moreover, we point out that, for

(3.3),

g̃
(1)
3 (n+ 2 : n+m− 1) = c

(1)
G g

(1)
3 (n+ 2 : n+m− 1).(3.6)

To finish the iteration for i = 2, L(g̃
(1)
1) must be downdated with L(g

(1)
4) by means of

the stabilized hyperbolic rotation

H =

[
1 0

ρ
√
1− ρ2

][1√
1−ρ2 0

0 1

] [
1 ρ
0 1

]
,

where ρ is such that H[ξ̃2, ζ2]
T = [ξ̂2, 0]

T . Taking (3.4) into account, it is straightfor-
ward to see that

ρ = −s
(1)
G and

√
1− ρ2 = c

(1)
G .

The downdated vectors ĝ
(1)
1 and g̃

(1)
4 are

ĝ
(1)
1 =

g̃
(1)
1 − s

(1)
G g

(1)
4

c
(1)
G

= g
(1)
1 +

s
(1)
G

(
g
(1)
3 − g

(1)
4

)

c
(1)
G

(3.7)

and

g̃
(1)
4 = −s

(1)
G ĝ

(1)
1 + c

(1)
G g

(1)
4 .(3.8)

Hence,

g̃
(1)
4 = −s

(1)
G ĝ

(1)
1 + c

(1)
G g

(1)
4(3.9)

= −s
(1)
G g

(1)
1 +

c
(1)
G

2
g
(1)
4 − s

(1)
G

2
(g

(1)
3 − g

(1)
4)

c
(1)
G

= −s
(1)
G g

(1)
1 +

g
(1)
4 − (1− c

(1)
G

2
)g

(1)
3

c
(1)
G

.

FAST STRUCTURED TOTAL LEAST SQUARES ALGORITHM 541

From (3.5) and (3.9), g̃
(1)
3 and g̃

(1)
4 continue to be equal, except for the (m + n)th

entry. Furthermore, from (3.7), we observe that g
(1)
1 and ĝ

(1)
1 differ in their (n+m)th

entry. ĝ
(1)
1 now becomes the 2nd row of R, and, for the next iteration, the updated

vectors are

g
(2)
1 = Zĝ

(1)
1 =

[
0, 0, ĝ

(1)
1 (2 : m+ n− 2)T , 0, ĝ

(1)
1 (m+ n : m+ 2n− 2)T

]T
,

g
(2)
5 = g

(1)
5 ,

g
(2)
2 = g

(1)
2 ,

g
(2)
3 = g̃

(1)
3 ,

g
(2)
4 = [g̃

(1)
3 (1 : m+ n− 1)T , γ, g̃

(1)
3 (m+ n+ 1 : m+ 2n− 1)T]T ,

where γ = −s
(1)
G ĝ

(1)
1 (m + n) + c

(1)
G g

(1)
4 (m + n). To reduce the computational cost of

this phase, we observe that it is not necessary to calculate g
(2)
3 (n + 3 : m + n − 1)

since at the next iteration the corresponding entries of the vector g
(2)
1 are equal to 0.

Hence for the vector g
(3)
3 (n+ 4 : m+ n− 1) the following relation holds:

g
(3)
3 (n+ 4 : m+ n− 1) = c

(2)
G c

(1)
G g

(1)
3 (n+ 4 : m+ n− 1)

and, at the ith iteration,

g
(i−1)
3 (n+ i : m+ n− 1) = c

(i−2)
G · · · c(2)

G c
(1)
G g

(1)
3 (n+ i : m+ n− 1).

Hence it is sufficient to store the partial product

c
(i−2)
G · · · c(2)

G c
(1)
G(3.10)

into a temporary variable and multiply g
(1)
3 (n+i−1) with this variable at the beginning

of the ith iteration. At the end of each iteration we set R(i, i : m+2n−1) = ĝ
(i−1)
1 (i :

m+ 2n− 1), g
(i)
1 = Zĝ

(i−1)
i . Hence the number of flops of this phase is 18mn.

3.2.3. Iterations for i = m+1 : m+n−1. The only difference of this phase

with the previous one is that L(g
(i−1)
5) must also be downdated from L(g

(i−1)
1). Let

ĝ
(i−1)
1 be the first generator at the end of the ith iteration. We set R(i, i : m+2n−1) =

ĝ
(i−1)
1 (i : m+ 2n− 1), g

(i)
1 = Zĝ

(i−1)
i . The number of flops of this phase is 22.5n2.

3.2.4. Iterations for i = m + n : m + 2n − 1. This phase is similar to the

previous one. The only difference is that the vector g
(i−1)
4 must also be computed,

since now it differs from g
(i−1)
3 . Let ĝ

(i−1)
1 be the first generator at the end of the ith

iteration. Also after each iteration of this phase we set R(i, i : m+2n−1) = ĝ
(i−1)
1 (i :

m+ 2n− 1), g
(i)
1 = Zĝ

(i−1)
i . The number of flops of this phase is 12n2.

The Matlab-like code to compute the R factor by means of the described algorithm
can be found in Appendix B.

3.3. Modified problem. We will now consider a slightly modified problem
(2.1). The modification consists of the introduction of an error-free zero upper tri-
angular part in the matrix A and by consequence E also has a zero upper triangular
part. This modified problem typically arises if the system is assumed to be causal
with zero initial state, implying that its inputs u(t) are zero for t ≤ 0. In this case,

542 N. MASTRONARDI, P. LEMMERLING, AND S. VAN HUFFEL

the first n − 1 inputs are zero followed by m nonzero values. The latter means that
A ∈ R

m×n and E ∈ R
m×n are as follows:

A =

u(1) 0 . . . 0
u(2) u(1) . . . 0
...

. . .
. . .

...
...

. . . u(1)
...

...
u(m) u(m− 1) . . . u(m− n+ 1)

,

E =

α(1) 0 . . . 0
α(2) α(1) . . . 0
...

. . .
. . .

...
...

. . . α(1)
...

...
α(m) α(m− 1) . . . α(m− n+ 1)

.

By consequence, X becomes (remember that X is defined by Xα = Ex)

X =

x(1)
x(2) x(1)
...

. . .
. . .

x(n)
. . .

. . .
. . .

. . .
. . .

. . .
. . .

x(n) · · · x(2) x(1)

∈ R

m×m.

Again we define M as

M =

[
X A+ E
I 0

]
∈ R

2m×(m+n),

with I ∈ R
m×m the identity matrix and 0 ∈ R

m×n the null matrix. The displacement
rank of MTM with respect to the block shift matrix Z = Zm ⊕ Zn is 5. Let w1 =
M(:, 1)/‖M(:, 1)‖2 and t1 = MTw1. Let w2 = M(:,m+ 1)/‖M(:,m+ 1)‖2 and t2 =
MTw2. Then the generators of MTM with respect to Z are

g1 = t1,
g2 = [0, t2(2 : m+ n)T]T ,
g3 = [0, t2(2 : m)

T , 0, t2(m+ 2 : m+ n)T]T ,
g4 = [0, t

T
1 (2 : m+ n)]T ,

g5 = [0,M(m, 1 : m− 1)T , 0,M(m,m+ 1 : m+ n− 1)T]T ,

and

MTM =

2∑
i=1

L(gi)L(gi)
T −

5∑
i=3

L(gi)L(gi)
T .

FAST STRUCTURED TOTAL LEAST SQUARES ALGORITHM 543

Also in this case, taking into account the sparsity of the vectors, g1, g4, g5, and since
g2 and g3 differ only in the (m + 1)th entry, following the same technique described
in section 3.2, it is possible to construct an algorithm for the fast triangularization of
M requiring 18mn+ 16.5n2 flops. As a matter of fact, the algorithm for solving this
modified deconvolution problem1 (which will be referred to as the modified deconvolu-
tion algorithm) has the same outline as described in section 2, when the appropriate
matrices A, E, M , and X are used. For the sake of brevity, we omit the Matlab-
like code. The corresponding Matlab m-files can be obtained from the authors upon
request.

3.4. Stability of the computation of the R factor. The stability of the
proposed algorithm is studied in [20]. In [27] the generalized Schur algorithm is
proved to be backward stable, provided one hyperbolic rotation is performed in a
stable way [4] at each step. In phase 1 and phase 2 of the algorithm described in
the section 3, two hyperbolic rotations are performed in a stable way. In [20] it is
proved that also in this case the generalized Schur algorithm performs reliably and
the following result holds.

Theorem 3.1. Let G be the generator matrix of M. Let R be the matrix of the
QR factorization of M computed by means of the generalized Schur algorithm applying
a sequence of Givens rotations and two mixed hyperbolic rotations per iteration. Then

‖MTM −RTR‖F ≤ 62(m+ n− 1)(m+ n)ε
(
2
√

m+ n‖R‖F + ‖G‖2F
)
.

4. Numerical experiments. In this section we illustrate by means of two exam-
ples the efficiency of the algorithms described in section 3. To illustrate the statistical
properties of the STLS estimator, a simulation experiment based on a medical appli-
cation in renography is introduced. The next subsection describes the three examples
that will be used in this section.

4.1. Examples. The first example is a typical deconvolution problem. Referring
to Figure 1.1, we start from the exact impulse response x0 = [1.9 3.3 4.4 5.4 5.9 6.2
6.3 6.4 6.5 6.45 6.3 6.2 6.1 5.9 5.8 5.7 5.6 5.4 5.3 5.0 4.85 4.6 4.0 3.4 2.8 1.7 1.3 1.0 0.2
0.0]T ∈ R

30×1. The true but unmeasured input u0 is i.i.d. Gaussian noise of unit
variance, except for the first 29 entries which equal 0. The latter implies that the first
example is an illustration of the modified problem described in section 3.3. The true
but unmeasured output y0 is calculated as a convolution of x0 and u0. The measured
input u and output y are obtained by perturbing u0 and y0 with i.i.d. Gaussian noise
of variance 1e− 4.

The second example is similar to the previous one but now the exact impulse re-
sponse x0 equals [1.9 3.3 4.4 5.4 5.9 6.2 6.3 6.1 5.8 5.6 5.3 5.0 4.85 4.6 4.0 3.4 1.8 1.0 0.2
0.0]T ∈ R

20×1. Again u0 is i.i.d. Gaussian noise of unit variance, but this time there
are no initial zeros. Thus the latter serves as an example for the basic deconvolution
problem (and not the modified one). The measured input u and output y are obtained
by perturbing u0 and y0 with i.i.d. Gaussian noise of variance 1e− 4.

The third example is a deconvolution problem that occurs in renography [9]. The
goal here is to determine via deconvolution the so-called renal retention function of
the kidney, which in system theoretic terms corresponds to the impulse response x0

of the system in Figure 1.1. This retention function visualizes the mean whole kidney

1Note that the problem described here is basically also a basic deconvolution problem, with a
specific input sequence. However, a specific name is given to this problem and its corresponding
algorithm so that they can easily be referred to.

544 N. MASTRONARDI, P. LEMMERLING, AND S. VAN HUFFEL

transit time of one unit of a tracer injected into the patient, and it enables a physician
to evaluate the renal function and renal dysfunction severity after transplantation. In
order to obtain this impulse response, the following experiment is conducted. A
radioactive tracer is injected in an artery of the patient. The measured input of
the system (u in Figure 1.1) is the by noise perturbed arterial concentration of the
radioactive tracer as a function of time. This concentration is measured by means of
a gamma camera, and thus in discretized time u(k) represents the number of counts
registered in the vascular region at the entrance of the kidney under study during the
kth sampling interval. The measured output y(k) (the so-called renogram) represents
the (by noise perturbed) number of counts registered in the whole kidney region by the
gamma camera in the kth sampling interval. Deconvolution analysis of the renogram
is based on modeling the kidney as a linear time-invariant causal system with zero-
initial state. This is why we consider the modified problem, described in section
3.3. Since this third example will be used to investigate the statistical properties of
the STLS estimator, we have to use a simulation example instead of a real in vivo
measurement. We will use the same simulation example as described in [31]. The
noiseless input is described as follows:

u0(k + 1) = Ae(−a1k∆t) +Be(−a2k∆t) + Ce(−a3k∆t), k = 0, 1, 2, . . . , (tobs/∆t)− 1,
withA = 40.3, B = 45.2, C = 15.2, a1 = 1.8, a2 = 0.43, and a3 = 0.035. ∆t represents
the sampling interval, expressed in minutes, and tobs is the total observation time.
The exact impulse response is characterized by the following function:

x0(k + 1) =

{
1 k = 0, 1, 2, . . . , (t1/∆t)− 1
(k∆t− t2)/(t1 − t2) k = t1/∆t, (t1/∆t) + 1, . . . , (t2/∆t)− 1 ,

with t1 = 3 minutes, t2 = 5 minutes, and tobs = 20 minutes. The noiseless output y0

is then obtained by convolution of the noiseless input u0 with the proposed impulse
response x0. In matrix format we have that

Ax0 = y0,

where

A =

u0(1) 0 . . . 0
u0(2) u0(1) . . . 0
...

. . .
. . .

...
...

. . .
. . . u0(1)

...
. . .

. . .
...

u0(m) u0(m− 1) . . . u0(m− n+ 1)

∈ R

m×n.

For ∆t = 1/3 minutes, we have that m ≡ 3tobs = 60 and n ≡ 3t2 = 15. As
described in [10], these functions and constants are a realistic simulation of real in
vivo measurements.

4.2. Efficiency. In this subsection we first consider the dependence of the com-
putational cost of the modified deconvolution algorithm for solving the modified prob-
lem described in section 3.3 on the problem size (i.e., the dimensions m × n of the
matrix A). Given the iterative nature of the algorithm, the total number of floating
point operations (flops) is a multiple of the flops necessary to execute Step 2.1 of

FAST STRUCTURED TOTAL LEAST SQUARES ALGORITHM 545

Table 4.1
This table shows the number of flops for the different parts of Step 2.1 of the modified decon-

volution algorithm, as well as their sum. The bold numbers show the flop count as measured by the
Matlab flops command, whereas the other numbers represent the theoretical flop count.

m× n part 1 part 2 part 3 part 4 part 5 total
600× 30 78243 73478 352652 73831 75036 653240

78243 73478 338850 73831 75036 639438
1200× 30 155643 147878 690452 147631 150036 1291640

155643 147878 662850 147631 150036 1264038
600× 15 41718 38168 179507 37816 39021 336230

41718 38168 165713 37816 39021 322436

the modified deconvolution algorithm. Therefore, we will analyze this step in further
detail.

In Step 2.1 we solve a LS problem by solving the corresponding normal equations

RT

(
R

[
∆α
∆x

])
= −MT

[
β
α

]
,(4.1)

where R is the triangular factor of the QR factorization of M . From (4.1), the
description of the fast QR algorithm in section 3.3 and the specific structure of M
and R, we obtain the following theoretical number of computations for Step 2.1:

part 1: Calculation of the generators: 4mn+ 9m+ 0.5n2 + 12.5n+ 18.
part 2: Construction of the right-hand side (see (4.1)): 4mn+ 4m− n2 − n+ 8.
part 3: Fast QR: 18mn+ 16.5n2.
part 4: Solving a lower triangular system (see (4.1)): 4mn+ 3m+ n+ 1.
part 5: Solving an upper triangular system (see (4.1)): 4mn+ 5m+ n+ 6.
This means that overall the algorithm is O(mn), when m >> n, as is mostly the

case. To illustrate the dependence on m and n, we consider three different cases based
on the first example described in subsection 4.1. The first case (first row of Table 4.1)
is constructed by generating u0 ∈ R

600×1. The second case (second row of Table 4.1)
is constructed by generating u0 ∈ R

1200×1. The third case (third row of Table 4.1)
is similar to the first case (and thus also derived from the first example described
in subsection 4.1), but now only the first 15 elements of x0 are used to generate y0

with u0 ∈ R
600×1. In Table 4.1 we give the number of flops of the different parts

of Step 2.1, as well as their sum. Flops are calculated using the Matlab command
flops. Note that each cell of the table is divided into two parts: the upper part (bold
number) contains the flop count obtained using the Matlab command flops, whereas
the lower part gives the theoretical number of flops as determined at the beginning
of this subsection. Note the close resemblance between the upper and lower part of
each cell. Furthermore, from the table we clearly can see that the computational cost
of Step 2.1 is O(mn).

To illustrate the better computational efficiency of the newly presented imple-
mentation of the basic deconvolution algorithm (referred to as alg1), we compare its
efficiency with that of the standard STLN approach [25, 30] (referred to as alg2) and
the faster STLN algorithm for Toeplitz STLS problems described in [24] (referred to
as alg3). As an example we take the second example described in the previous subsec-
tion because this is a basic deconvolution problem (see also [30]). We use an example
different from the previous paragraph since the algorithm alg3 solves the basic decon-
volution problem and not the modified one. As a consequence alg1 is the algorithm
described in section 3.2. Table 4.2 shows three cases. The first (m×n = 300×20) and

546 N. MASTRONARDI, P. LEMMERLING, AND S. VAN HUFFEL

Table 4.2
This table shows the following ratios: the number of flops for the calculation of the R factor

in alg2 w.r.t. the number of flops for the calculation of the R factor in alg1 (flopsalg2/flopsalg1)
and the number of flops for the calculation of the R factor in alg3 w.r.t. the number of flops for
the calculation of the R factor in alg1 (flopsalg3/flopsalg1), for matrices A of dimension m × n.
The bold numbers shows the flop count as measured by the Matlab flops command, whereas the other
numbers come from the theoretical flop count.

m× n flopsalg2/flopsalg1 flopsalg3/flopsalg1
300× 20 1327.67 10.41

1432.27 10.93
600× 20 4949.15 13.19

5362.55 13.94
300× 10 2290.15 8.70

2671.12 9.76

the second case (m×n = 600×20) are generated using the second example described
in subsection 4.1, by generating, respectively, u0 ∈ R

319×1 and u0 ∈ R
619×1. The

third case is also based on the second example described in subsection 4.1, but now
u0 ∈ R

309×1 and only the first 10 elements of the impulse response x0 are used to gen-
erate y0. Since the algorithms only differ in the part where the fast (Q)R factorization
is performed, Table 4.2 shows only the following figures: the number of flops for the
calculation of the R factor in alg2 w.r.t. the number of flops for the calculation of the
R factor in alg1 (flopsalg2/flopsalg1) and the number of flops for the calculation of
the R factor in alg3 w.r.t. the number of flops for the calculation of the R factor in
alg1 (flopsalg3/flopsalg1). Note that from section 3 and from the implementation in
[24] we have the following theoretical flop counts for the (Q)R factorization:

alg1: 18mn+ 34.5n2,
alg2: 3p

2(p− q/3), p = 2m+ n− 1, q = m+ 2n− 1,
alg3: 17mn+ 3m2 + 8mn2.
Again each cell in Table 4.2 is subdivided into an upper and a lower part. The

upper part (bold numbers) contains the abovementioned ratios obtained using the
Matlab command flops, whereas the lower part contains the abovementioned ratios
based on the theoretical flop counts. We clearly see the computational advantage of
alg1 over alg2 and alg3, for different sizes m × n of the matrix A. Also notice the
close resemblance between the theoretical and Matlab-based flop count.

4.3. Accuracy. We compare the statistical accuracy of the STLS estimator with
that of the TLS estimator which in [31] was shown to outperform other estimators
by far. To this end, we perform for each noise standard deviation σν a Monte-Carlo
simulation consisting of 100 runs. In every run, we add a different realization of i.i.d.
white Gaussian noise with standard deviation σν to the noiseless input u0 and the
noiseless output y0 of the previously described medical simulation example. The ob-
tained noisy vectors u and y are used as input to the modified deconvolution algorithm
described at the beginning of section 3.3. To compare the performance of both esti-

mators at a noise level σν , we average for both estimators the relative error
‖x−x0‖2

‖x0‖2

over the different runs. Table 4.3 shows that in the case of the STLS estimator, the
relative errors are 9% to 14% lower than in the case of the TLS estimator, confirming
the statistical superior performance of the STLS estimator.

5. Conclusions. We have proposed new fast implementations of the algorithms
that solve the basic and modified deconvolution problem in a ML sense. The algo-
rithms solve the corresponding STLS problems in O(mn) flops by exploiting the low

FAST STRUCTURED TOTAL LEAST SQUARES ALGORITHM 547

Table 4.3
This table shows the relative error

‖x−x0‖2
‖x0‖2

for the TLS and STLS estimator, averaged over

100 runs, for different noise standard deviations σν .

σν TLS STLS
0.05 0.0010 0.0009
0.071 0.0015 0.0013
0.087 0.0018 0.0016
0.1 0.0021 0.0018
0.158 0.0032 0.0029
0.224 0.0046 0.0041
0.274 0.0056 0.0049
0.316 0.0064 0.0057

σν TLS STLS
0.5 0.0104 0.0091
0.707 0.0138 0.0123
0.866 0.0177 0.0153
1 0.0204 0.0180

1.58 0.0313 0.0279
2.24 0.0454 0.0402
2.74 0.0576 0.0513
3.16 0.0660 0.0601

displacement rank of the matrices involved in the basic deconvolution problem and
the sparsity of the corresponding generators.

By means of a deconvolution example, we illustrate the improved efficiency of
our implementation of the basic deconvolution algorithm as compared to other im-
plementations of algorithms for solving this type of STLS problem. We use a medical
example in renography to illustrate the superior statistical performance of the STLS
estimator as compared to other estimators.

6. Appendix A. Triangularization of a symmetric positive definite ma-
trix expressed by its displacement representation. Let A ∈ R

n×n be a sym-
metric positive definite matrix with displacement representation

A =

q∑
i=1

L(gi)L(gi)
T −

p∑
i=q+1

L(gi)L(gi)
T , p ≤ n,(6.1)

where gi ∈ R
n, i = 1, . . . , p. We can write (6.1) in the following way:

A = [L(g1), . . . L(gq), L(gq+1), . . . , L(gp)]

I

. . .

I
−I

. . .

−I

L(g1)T

...
L(gq)T

L(gq+1)T

..

.
L(gp)T

= [L(g1), . . . L(gq), L(gq+1), . . . , L(gp)]J

L(g1)T

...
L(gq)T

L(gq+1)T

...
L(gp)T

,

where I is the identity matrix of order n. We say that a matrix Q is J-orthogonal if
J = QJQT . To compute the Cholesky factor of A, we have to construct a J-orthogonal

548 N. MASTRONARDI, P. LEMMERLING, AND S. VAN HUFFEL

matrix Q such that

QT

L(g1)
T

...
L(gm)

T

L(gm+1)
T

...
L(gp)

T

=

R
O
...
...
O

,

where R,O ∈ R
n×n, R is upper triangular, and O is the null matrix.

As an example, we briefly describe how to obtain the matrix R in case A ∈ R
5×5,

and its displacement representation is given by

A = L(g1)L(g1)
T + L(g2)L(g2)

T − L(g3)L(g3)
T − L(g4)L(g4)

T .

Then

J =

I
I
−I

−I

 ,

where I is the identity matrix of order 5, and

LT =

g1(1) g1(2) g1(3) g1(4) g1(5)
g1(1) g1(2) g1(3) g1(4)

g1(1) g1(2) g1(3)
g1(1) g1(2)

g1(1)
g2(1) g2(2) g2(3) g2(4) g2(5)

g2(1) g2(2) g2(3) g2(4)
g2(1) g2(2) g2(3)

g2(1) g2(2)
g2(1)

g3(1) g3(2) g3(3) g3(4) g3(5)
g3(1) g3(2) g3(3) g3(4)

g3(1) g3(2) g3(3)
g3(1) g3(2)

g3(1)
g4(1) g4(2) g4(3) g4(4) g4(5)

g4(1) g4(2) g4(3) g4(4)
g4(1) g4(2) g4(3)

g4(1) g4(2)
g4(1)

.(6.2)

Denote by Gi,j , Hi,j the Givens and hyperbolic rotation of order 20, respectively,
where Gi,j , Hi,j are the identity matrices except for the following four entries:

Gi,j(i, i) = Gi,j(j, j) = c; Gi,j(i, j) = s; Gi,j(j, i) = −s;
Hi,j(i, i) = Hi,j(j, j) = c; Hi,j(i, j) = −s; Hi,j(j, i) = −s.

FAST STRUCTURED TOTAL LEAST SQUARES ALGORITHM 549

The following matrices are J-orthogonal:

Gi,j , 1 ≤ i, j ≤ 10, or 11 ≤ i, j ≤ 20,
Hi,j , 1 ≤ i ≤ 10, and 11 ≤ j ≤ 20.

Now we describe briefly how to annihilate the matrices L(gi)
T , i = 2, . . . , 4, to ob-

tain R. At the first step, we consider the Givens rotation G1,6 chosen to annihilate
the entries g2(1) of L. We can construct the Givens matrices Gi,i+5, i = 2, . . . , 5,
such that the multiplication of these matrices with L annihilates the diagonal el-
ements of the matrix L(g2)

T without any additional computation, because of the
block Toeplitz structure of L. We remark that these matrices are J-orthogonal. Let
Q1,2 =

∏5
i=1 Gi,i+5. Then

Q1,2L
T =

g̃1(1) g̃1(2) g̃1(3) g̃1(4) g̃1(5)
g̃1(1) g̃1(2) g̃1(3) g̃1(4)

g̃1(1) g̃1(2) g̃1(3)
g̃1(1) g̃1(2)

g̃1(1)
0 g̃2(2) g̃2(3) g̃2(4) g̃2(5)

0 g̃2(2) g̃2(3) g̃2(4)
0 g̃2(2) g̃2(3)

0 g̃2(2)
0

g3(1) g3(2) g3(3) g3(4) g3(5)
g3(1) g3(2) g3(3) g3(4)

g3(1) g3(2) g3(3)
g3(1) g3(2)

g3(1)
g4(1) g4(2) g4(3) g4(4) g4(5)

g4(1) g4(2) g4(3) g4(4)
g4(1) g4(2) g4(3)

g4(1) g4(2)
g4(1)

.

We call the multiplication of Q1,2 times L an update between L(g1) and L(g2). Then
we set L := Q1,2L. We remark that the newly computed matrices L(g1) and L(g2)
continue to have the Toeplitz structure. To compute this update it is sufficient to
update the vectors g1 and g2 (instead of L(g1) and L(g2)),

(
g̃T1
g̃T2

)
=

(
c s
−s c

)(
g1
T

g2
T

)
,

where c and s are the same “Givens coefficients” of the matrix G1,6. In the same
way, we compute the Givens rotation G11,16 chosen to annihilate the (16, 1) entry
of the new L and the corresponding Givens matrices Gi+10,i+15, i = 2, . . . , 5. Let

550 N. MASTRONARDI, P. LEMMERLING, AND S. VAN HUFFEL

Q3,4 =
∏5
i=1 Gi+10,i+15. Then

Q3,4L
T =

g̃1(1) g̃1(2) g̃1(3) g̃1(4) g̃1(5)
g̃1(1) g̃1(2) g̃1(3) g̃1(4)

g̃1(1) g̃1(2) g̃1(3)
g̃1(1) g̃1(2)

g̃1(1)
0 g̃2(2) g̃2(3) g̃2(4) g̃2(5)

0 g̃2(2) g̃2(3) g̃2(4)
0 g̃2(2) g̃2(3)

0 g̃2(2)
0

g̃3(1) g̃3(2) g̃3(3) g̃3(4) g̃3(5)
g̃3(1) g̃3(2) g̃3(3) g̃3(4)

g̃3(1) g̃3(2) g̃3(3)
g̃3(1) g̃3(2)

g̃3(1)
0 g̃4(2) g̃4(3) g̃4(4) g̃4(5)

0 g̃4(2) g̃4(3) g̃4(4)
0 g̃4(2) g̃4(3)

0 g̃4(2)
0

.(6.3)

We call the multiplication of Q3,4 times L an update between L(g3) and L(g4), and
we define L := Q3,4L. Also in this case, because of the Toeplitz structure of these
matrices, in order to compute the new L it is sufficient to update the vectors g3 and

g4 only, i.e., (
g̃T3
g̃T4

) = (c s
−s c

)(g3
T

g4
T), where c and s are the same “Givens coef-

ficients” of the matrix G11,16. To complete an iteration we consider the hyperbolic
rotation H1,11 constructed to annihilate the (11, 1) entry of the matrix (6.3). With-
out any computation we also obtain from H1,11 the associated hyperbolic rotations

Hi,i+10, i = 2, . . . , 5. Let S1,3 =
∏5
i=1 Hi,i+10. Then

S1,3L
T =

ĝ1(1) ĝ1(2) ĝ1(3) ĝ1(4) ĝ1(5)
ĝ1(1) ĝ1(2) ĝ1(3) ĝ1(4)

ĝ1(1) ĝ1(2) ĝ1(3)
ĝ1(1) ĝ1(2)

ĝ1(1)
0 g̃2(2) g̃2(3) g̃2(4) g̃2(5)

0 g̃2(2) g̃2(3) g̃2(4)
0 g̃2(2) g̃2(3)

0 g̃2(2)
0

0 ĝ3(2) ĝ3(3) ĝ3(4) ĝ3(5)
0 ĝ3(2) ĝ3(3) ĝ3(4)

0 ĝ3(2) ĝ3(3)
0 ĝ3(2)

0
0 g̃4(2) g̃4(3) g̃4(4) g̃4(5)

0 g̃4(2) g̃4(3) g̃4(4)
0 g̃4(2) g̃4(3)

0 g̃4(2)
0

.(6.4)

We observe that the matrix S1,3Q3,4Q1,2 is J-orthogonal. We call the multiplication
of S1,3 times L a downdate between L(g1) and L(g3). Also in this case, since these
matrices have a Toeplitz structure, it is sufficient to downdate the vectors g1 and g3

in order to compute the multiplication S1,3L,

(
ĝT1
ĝT3

)
=

(
c −s
−s c

)(
g̃T1
g̃T3

)
,

FAST STRUCTURED TOTAL LEAST SQUARES ALGORITHM 551

where c and s are the same “hyperbolic coefficients” of the matrix H1,11. Then, the
first row of (6.4) is the first row of R. To compute the other rows of R, we apply the
previous procedure to the matrix L(2 : 20, 2 : 5).

In general, 6n flops are required to update or downdate two vectors of length n.
Hence 3(δ − 1)n2 flops are required to compute the triangularization of a symmetric
positive definite matrix of order n and displacement rank δ.

7. Appendix B. Matlab-like program for the basic deconvolution prob-
lem. The algorithm is summarized in the function FTriang. generator is a Matlab
function that, given the matrix M, computes the generator gi, i = 1 . . . , 5 of MTM.
The functions givens computes the coefficients of the involved Givens rotation. The
variables t1, t2, t3, t4 are temporary variables like temp in which the partial product
(3.10) is stored.
function[R]=FTriang(M,m,n)
(g1, g2, g3, g4, g5) = generator(M);
temp = 1;mn1 = m + 2n− 1;mn2 = m + 2n− 2;
% Initialization
(c, s) = givens(g1(1), g2(1));(

gT1 ([1 : n,m + n : mn1])
gT2 ([1 : n,m + n : mn1])

)
=

(
c s
−s c

)(
gT1 ([1 : n,m + n : mn1])
gT2 ([1 : n,m + n : mn1])

)

R(1, 1 : mn1) = gT1 ; gT1 (2 : mn1) = gT1 (1 : mn2); g1(m + n) = 0;
% Phase 1
for i = 2 : m,

(c, s) = givens(g1(i), g2(i));(
gT1 ([i : n + i− 1,m + n : mn1])
gT2 ([i : n + i− 1,m + n : mn1])

)
=

(
c s
−s c

)(
gT1 ([i : n + i− 1,m + n : mn1])
gT2 ([i : n + i− 1,m + n : mn1])

)

t3 = g3(n + m); t4 = g4(n + m);
(c, s) = givens(g1(i), g3(i));
gT3 ([i + 1 : n + i− 1,m + n : mn1]) = −sgT1 ([i + 1 : n + i− 1,m + n : mn1])

+cgT3 ([i + 1 : n + i− 1,m + n : mn1]);
g1(m + n) = g1(m + n) + s(t3 − t4)/c;
g4(m + n) = −sg1(m + n) + ct4;
temp = temp× c;
if i < m,

g3(n + i) = temp× g3(n + i);
end

R(i, i : mn1) = g1(i : mn1);
g1(i + 1 : mn1) = g1(i : mn2); g1(m + n) = 0;

end

% Phase 2
for i = m + 1 : m + n− 1,

(c, s) = givens(g1(i), g2(i));(
gT1 (i : mn1)
gT2 (i : mn1)

)
=

(
c s
−s c

)(
gT1 (i : mn1)
gT2 (i : mn1)

)

t3 = g3(n + m); t4 = g4(n + m);
(c, s) = givens(g1(i), g3(i));
gT3 (i + 1 : mn1) = −sgT1 (i + 1 : mn1) + cgT3 (i + 1 : mn1);
g1(m + n) = g1(m + n) + s(t3 − t4)/c;
g4(m + n) = −sg1(m + n) + ct4;
s = g5(i)/g1(i);

c1 =
√

g1(i)2 − g5(i)2;
c = c1/g1(i);
% ρ = −s/c

552 N. MASTRONARDI, P. LEMMERLING, AND S. VAN HUFFEL

gT1 (i + 1 : m + n) =
(
gT1 (i + 1 : m + n) − sgT5 (i + 1 : m + n)

)
/c;

gT5 (i + 1 : m + n) = −sgT1 (i + 1 : m + n) + cgT5 (i + 1 : m + n);
g1(i) = c1;
R(i, i : mn1) = gT1 (i : mn1); gT1 (i + 1 : mn1) = gT1 (i : mn2); g1(m + n) = 0;

end

g4(n + m) = t4; g4(m + n + 1 : mn1) = g3(m + n + 1 : mn1);
% Phase 3
for i = m + n : mn1,

(c, s) = givens(g1(i), g2(i));(
gT1 (i : mn1)
gT2 (i : mn1)

)
=

(
c s
−s c

)(
gT1 (i : mn1)
gT2 (i : mn1)

)

(c, s) = givens(g1(i), g3(i));(
gT1 (i : mn1)
gT3 (i : mn1)

)
=

(
c s
−s c

)(
gT1 (i : mn1)
gT3 (i : mn1)

)

(c, s) = givens(g5(i), g4(i));(
gT5 (i : mn1)
gT4 (i : mn1)

)
=

(
c s
−s c

)(
gT5 (i : mn1)
gT4 (i : mn1)

)

s = g5(i)/g1(i);

c1 =
√

g1(i)2 − g5(i)2;
c = c1/g1(i);
% ρ = −s/c

gT1 (i + 1 : m + n) =
(
gT1 (i + 1 : m + n) − sgT5 (i + 1 : m + n)

)
/c;

gT5 (i + 1 : m + n) = −sgT1 (i + 1 : m + n) + cgT5 (i + 1 : m + n);
g1(i) = c1;
R(i, i : mn1) = gT1 (i : mn1); gT1 (i + 1 : mn1) = gT1 (i : mn2);

end

Acknowledgment. The first author would like to acknowledge the hospitality of
the Dept. Elektrotechniek (ESAT), Katholieke Universiteit Leuven, where this work
took place.

REFERENCES

[1] T. J. Abatzoglou and J. M. Mendel, Constrained total least squares, in Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, 1987,
pp. 1485–1488.

[2] T. J. Abatzoglou, J. M. Mendel, and G. A. Harada, The constrained total least squares
technique and its applications to harmonic superresolution, IEEE Trans. Signal Process.,
39 (1991), pp. 1070–1086.

[3] M. T. Bajen, R. Puchal, A. Gonzalez, J. M. Grinyo, A. Castelao, J. Mora, and J.
Martin Comin, MAG3 renogram deconvolution in kidney transplantation: Utility of the
measurement of initial tracer uptake, J. Nucl. Med., 38 (1997), pp. 1295–1299.

[4] A. W. Bojanczyk, R. P. Brent, P. Van Dooren, and F. R. De Hoog, A note on downdating
the Cholesky factorization, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 210–221.

[5] A. Capderou, D. Douguet, T. Similowski, A. Aurengo, and M. Zelter, Non-invasive as-
sessment of technetium-99m albumin transit time distribution in the pulmonary circulation
by first-pass angiocardiography, Eur. J. Nucl. Med., 24 (1997), pp. 745–753.

[6] S. Chandrasekaran and Ali H. Sayed, Stabilizing the generalized Schur algorithm, SIAM J.
Matrix Anal. Appl., 17 (1996), pp. 950–983.

[7] B. De Moor, Total least squares for affinely structured matrices and the noisy realization
problem, IEEE Trans. Signal Process., 42 (1994), pp. 3004–3113.

[8] J. Chun, T. Kailath, and H. Lev–ari, Fast parallel algorithms for QR and triangular fac-
torization, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 899–913.

[9] J. S. Fleming and B. A. Goddard, A technique for the deconvolution of the renogram, Phys.
Med. Biol., 19 (1974), pp. 546–549.

[10] J. S. Fleming,Measurement of Hippuran plasma clearance using a gamma camera, Phys. Med.

FAST STRUCTURED TOTAL LEAST SQUARES ALGORITHM 553

Biol., 22 (1977), pp. 526–530.
[11] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The John Hopkins Univer-

sity Press, Baltimore, MD, 1996.
[12] R. Howman Giles, A. Moase, K. Gaskin, and R. Uren, Hepatobiliary scintigraphy in a pe-

diatric population: Determination of hepatic extraction fraction by deconvolution analysis,
J. Nucl. Med., 34 (1993), pp. 214–221.

[13] T. Kailath and J. Chun, Generalized displacement structure for block–Toeplitz, Toeplitz–
block, and Toeplitz–derived matrices, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 114–128.

[14] T. Kailath, S. Kung, and M. Morf, Displacement ranks of matrices and linear equations,
J. Math. Anal. Appl., 68 (1979), pp. 395–407.

[15] S. Y. Kung and K. S. Arun, and D. V. Bhaskar Rao, State-space and singular-value
decomposition-based approximation methods for the harmonic retrieval problem, J. Opt.
Soc. Amer., 73 (1983), pp. 1799–1811.

[16] T. Kailath and Ali H. Sayed, Displacement structure: Theory and applications, SIAM Rev.,
37 (1995), pp. 297–386.

[17] P. Lemmerling, I. Dologlou, and S. Van Huffel, Speech compression based on exact mod-
eling and structured total least norm optimization, in Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing (ICASSP’98), Vol. 1, Seattle, WA,
1998, pp. 353–356.

[18] P. Lemmerling, I. Dologlou, and S. Van Huffel, Variable rate speech compression based on
exact modeling and waveform vector quantization, in Proceedings of the Signal Processing
Symposium (SPS’98), IEEE Benelux Signal Processing Chapter, Leuven, Belgium, 1998,
pp. 127–130.

[19] P. Lemmerling, S. Van Huffel, and B. De Moor, Structured total least squares problems:
Formulations, algorithms and applications, in Recent Advances in Total Least Squares
Techniques and Errors-in-Variables Modeling, S. Van Huffel, ed., SIAM, Philadelphia, 1997,
pp. 215–223.

[20] N. Mastronardi, P. Van Dooren, and S. Van Huffel, On the stability of the generalized
Schur algorithm, ESAT-SISTA Report TR 99-82, ESAT Laboratory, Katholieke Univer-
siteit Leuven, Belgium, 1999.

[21] J.G. Nagy, Fast inverse QR factorization for Toeplitz matrices, SIAM J. Sci. Comput., 14
(1993), pp. 1174–1193.

[22] H. Park and L. Eldén, Stability analysis and fast triangularization of Toeplitz matrices,
Numer. Math, 76 (1997), pp 383–402.

[23] J. J. Pedroso de Lima, Nuclear medicine and mathematics, Eur. J. Nucl. Med., 23 (1996),
pp. 705–719.

[24] J. B. Rosen, H. Park, and J. Glick, Total Least Norm Problem: Formulation and Algo-
rithms, Preprint 94–041, Army High Performance Computing Research Center, University
of Minnesota, 1993, revised 1994.

[25] J. B. Rosen, H. Park, and J. Glick, Total least norm formulation and solution for structured
problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 110–126.

[26] P. Stoica, R. L. Moses, B. Friedlander, and T. Söderström, Maximum likelihood esti-
mation of the parameters of multiple sinusoids from noisy measurements, IEEE Trans.
Acoust., Speech Signal Process., 37 (1989), pp. 378–391.

[27] M. Stewart and P. Van Dooren, Stability issues in the factorization of structured matrices,
SIAM J. Matrix Anal. Appl., 18 (1997), pp. 104–118.

[28] S. Van Huffel, C. Decanniere, H. Chen, and P. Van Hecke, Algorithm for time-domain
NMR data fitting based on total least squares, J. Magn. Reson., A110 (1994), pp. 228–237.

[29] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Computational Aspects
and Analysis, Frontiers Appl. Math. 9, SIAM, Philadelphia, 1991.

[30] S. Van Huffel, H. Park, and J. Ben Rosen, Formulation and solution of structured total
least norm problems for parameter estimation, IEEE Trans. Signal Process., SP-44 (1996),
pp. 2464–2474.

[31] S. Van Huffel, J. Vandewalle, M. Ch. De Roo, and J. L. Willems, Reliable and effi-
cient deconvolution technique based on total linear least squares for calculating the renal
retention function, Med. & Biol. Eng. & Comput., 25 (1987), pp. 26–33.

MULTISPLITTING METHODS: OPTIMAL SCHEMES FOR THE
UNKNOWNS IN A GIVEN OVERLAP∗

R. E. WHITE†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 554–568

Abstract. Consider a linear algebraic problem where the set of unknowns is a union of subsets.
Let the coefficient matrix have a splitting associated with each subset. The traditional multisplitting
method forms a weighted sum, over the overlapping unknowns, of the iterates for each such splitting
to obtain a single parallel iterative method. An optimal alternative to the weighted sums will
be presented. Convergence of this new form of multisplitting (MS) method can be studied for
both symmetric positive definite (SPD) matrices and M-matrices. Applications to PDEs and the
equilibrium equations for fluid flow in a driven cavity will be presented.

Key words. multisplitting, comparison, fluid flow

AMS subject classifications. 65F10, 65N20

PII. S0895479898334678

1. Introduction. Consider a linear algebraic system

Au = b,(1)

where A is an n×n matrix. Let A = Bk−Ck, where k = 1, . . . ,K are K splittings of
A with Bk nonsingular. Let Dk be diagonal matrices with nonnegative components
such that ΣDk = I. The summation will always be understood to be from k = 1 to
k = K. O’Leary and White [5] introduced the following weighted multisplitting (MS)
algorithm where the next value of u is denoted by u+.

Weighted MS algorithm.

u+ = u+
(
ΣDkBk

−1
)
r(u), r(u) = b−Au

=
(
ΣDkBk

−1Ck
)
u+

(
ΣDkBk

−1
)
b

= Hu+Gb.

Under appropriate conditions one can show that G is nonsingular so that upon
defining B = G−1 and A = B−C,H will become B−1C. If this new splitting is weak
regular when A is an M -matrix (see [5]) or if it is P -regular when A is a symmetric
positive definite (SPD) matrix (see White [9] or Benassi and White [1]), then the
spectral radius of H will be less than 1 and the weighted MS algorithm will converge.

The purpose of the weighted MS algorithm is to be able to use multiprocessing
computers, and therefore, the computations in the summations are to be done con-
currently.

The diagonal matrices serve both as a “weighting” of the overlapping computa-
tions and as a “masking” of the nodes not associated with block k. The latter role
ensures that the work done by each splitting will be small relative to the main problem
with n unknowns.

∗Received by the editors February 27, 1998; accepted for publication (in revised form) by M.
Eiermann June 3, 1999; published electronically August 9, 2000.

http://www.siam.org/journals/simax/22-2/33467.html
†Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC 27695-8205

(white@math.ncsu.edu).

554

MULTISPLITTING SCHEMES 555

The purpose of this paper is to propose an optimal alternative to the diagonal
matrices. Optimal can be interpreted in three ways. First, choose iteration matrix, H,
so that the spectral radius ofH is a minimum. Second, chooseH so that the “residual”

R(u) = r(u)T r(u)(2)

is a minimum for u = u+. The third case is for A being SPD (AT = A, and xTAx > 0
for x �= 0) so that Au = b is equivalent to minimizing the quadratic form

J(u) = 1/2 uTAu− uT b.(3)

In this case we want to choose H so that J(u+) is a minimum.
In this paper we consider two variations on the weighted MS algorithm, the MinR

MS and the MinJ MS algorithms. We shall study convergence of these when A is either
an M -matrix or an SPD matrix. Section 2 contains the definitions and equivalent
forms of these variations. Sections 3 and 4 have the convergence theorems for the
SPD matrices and the M -matrices, respectively. In the last section we present an
application to elliptic partial differential equations and to the driven cavity problem.
In the driven cavity problem we use the new MS algorithm as a preconditioner in the
restarted GMRES algorithm.

2. Optimal MS algorithms. Let Pk ⊂ {1, . . . , n} with k = 0, 1, . . . ,K and
with empty intersections. Let Sk = P0 ∪ Pk for k = 1, . . . , k represent overlapping
blocks of unknowns ui, where i ∈ Sk. Associated with each block Sk is a splitting
A = Bk − Ck, where Bk is nonsingular. In Figure 1 we let K = 2.

P1

P2

P0

Fig. 1. Blocks of nodes.

Example. Consider a discretization of −∆u + a1ux + a2uy + cu = f on (0, 1) ×
(0, 1). Let K = 2 and P1 and P2 be associated with the lower and upper blocks of
(0, 1)× (0, 1).

A =

A00 A01 A02

A10 A11 A12

A20 A21 A22

 ,

Aii =Mi −Ni,

B1 =

M0

A10 M1

M2

 ,

556 R. E. WHITE

and

B2 =

M0

M1

A20 M2

 .

In order to define the new version of the MS algorithm, we use the n×nk matrix
Ek =

[
0 . . . 0 Ik 0 . . . 0

]T
,

where nk is the cardinality of Pk and Ik is the nk × nk identify matrix. Define the
new u for the block k to be

uk
+ = Ek

T (u+Bk
−1r(u)).

Define the N × 1 column vector, v, where n = n0 +N and N = Σnk,

v =
[
u1

+T . . . uK
+T
]T
.

Finally, we must choose u0
+ so that the n× 1 vector, u+, will be “optimal”:

u+ =
[
u0

+T vT
]T
.

Let A be written as a 2× 2 block matrix where A00 is n0 × n0 and Z11 is N ×N :

A =

[
A00 Z01

Z10 Z11

]
.(4)

Theorem 1. Let A be an SPD matrix. Let J(u) be the quadratic form (3)
associated with the algebraic system (1). u0

+ satisfies the inequality for all n0 × 1
vectors w,

J

([
u0

+

v

])
≤ J

([
w
v

])

if and only if

A00 u0
+ = b0 − Z01v,

where b = [b0
T b1

T]
T

with b0 a n0 × 1 vector.
Proof. Let[

w
v

]
=

[
0
v

]
+

[
w
0

]
.

J

([
w
v

])
= 1/2

[
w
v

]T [
A00 Z01

Z10 Z11

] [
w
v

]
−
[
w
v

]T [
b0
b1

]

= 1/2

[
0
v

]T [
A00 Z01

Z10 Z11

] [
0
v

]
+

[
w
0

]T [
A00 Z01

Z10 Z11

] [
0
v

]

+ 1/2

[
w
0

]T [
A00 Z01

Z10 Z11

] [
w
0

]
−
[
w
0

]T [
b0
b1

]
−
[
0
v

]T [
b0
b1

]

= (1/2vTZ11v − vT b1) + (1/2wTA00w − wT (b0 − Z01v)).

Since v is fixed, it suffices to minimize the second term. Because A is an SPD matrix,
A00 is also an SPD matrix. Therefore, the second term is a minimum if and only if
w = u0

+ satisfies A00u0
+ = b0 − Z01v.

MULTISPLITTING SCHEMES 557

MinJ MS algorithm. Let A = Bk − Ck be K splittings. Let A = [Aij] be
represented by (K+1)× (K+1) blocks associated with the partition of the unknown
nodes so that in (4), Z01 =

[
A01 . . . A0K

]
, Z10 =

[
A10

T . . . AK0
T
]T
, and Z11 is a

K ×K block matrix whose block components are Aij with i, j = 1, . . . ,K:

uk
+ = Ek

T (u+Bk
−1r(u)) (concurrent computations),

A00 u0
+ = b0 − ΣA0kuk

+ (serial computations),

u+ =
[
u0

+Tu1
+T . . . uK

+T
]T
.

If A is not an SPD matrix, then the linear algebraic problem (1) will not be
equivalent to minimizing J(u) in (3) so that the above u0

+ is not applicable. An
alternative is to minimize the residual R(u) as defined in (2).
Theorem 2. Let A be represented by a 2 × 2 block as in (4). Assume the first

block column [A00
TZ10

T]
T

has full column rank. u0
+ satisfies the inequality for all

n0 × 1 vectors w

R

([
u0

+

v

])
≤ R

([
w
v

])

if and only if u0
+ satisfies the normal equations

[
A00

T Z10
T
] [A00

Z10

]
u0
T =

[
A00

T Z10
T
] [b0 − Z01v
b1 − Z11v

]
,

where b = [b0
T b1

T]
T

with b0 a n0 × 1 vector.
Proof.

r

([
w
v

])
= b−A

[
w
v

]
=

[
b0 −A00w − Z01v
b1 − Z10w − Z11v

]

=

[
b0 − Z01v
b1 − Z11v

]
−
[
A00

Z10

]
w.

Since v is fixed, it suffices to apply the normal equations to[
A00

Z10

]
w =

[
b0 − Z01v
b1 − Z11v

]
.

MinR MS algorithm. Let A = Bk − Ck be K splittings. Let A = [Aij]
be represented by (K + 1) × (K + 1) blocks associated with the partition of the

unknown nodes so that in (4), Z01 =
[
A01 . . . A0K

]
, Z10 =

[
A10

T . . . AK0
T
]T
, Z11 is

a K ×K block matrix whose block components are Aij with i, j = 1, . . . ,K, and b =

[b0
T b1

T . . . bK
T]
T
:

uk
+ = Ek

T (u+Bk
−1r(u)) (concurrent computations),

(A00
TA00 +ΣAk0

TAk0)u0
+ = A00

T (b0 − ΣA0kuk
+) + ΣAi0

T (bk − ΣAikuk+)

(serial computations),

u+ =
[
u0

+Tu1
+T . . . uK

+T
]T
.

The serial computations in the MinR MS algorithm are more elaborate than the
serial computations in the MinJ MS algorithm. For most of this paper we will focus
on the MinJ MS algorithm. Even though it was formulated for the SPD matrices, one
can establish convergence results for the M -matrix case that may not be SPD.

558 R. E. WHITE

3. SPD matrices and the MinJ MS algorithm. Before presenting several
examples we will find it convenient to use the following representation lemma for the
MinJ MS algorithm.

Representation Lemma. Let A = Bk −Ck be K splittings and assume Bk and
A00 are nonsingular. The MinJ MS algorithm may be represented by

u+ = u+Gr(u),

where

G =

A00
−1E0

T − ΣA00
−1A0kEk

TBk
−1

E1
TB1

−1

...

EK
TBK

−1

.

If H is defined via GA = I − H, then u+ = Hu + Gb and the MinJ algorithm will
converge if H has a spectral radius more than 1. Moreover, if G is nonsingular, then
the MinJ MS algorithm may be represented by a single splitting A = B − C, where
B = G−1.

Proof. For k > 0 we have uk
+ = Ek

T (u+Bk
−1r(u)). For k = 0, u0

+ is defined by

A00u0
+ = b0 − ΣA0kuk

+

= b0 − ΣA0kEk
T (u+Bk

−1r(u))−A00u0 +A00u0

= E0
T r(u)− ΣA0kEk

TBk
−1r(u) +A00u0.

u0
+ = (A00

−1E0
T − ΣA00

−1A0kEk
TBk

−1)r(u) + u0.

Since for k > 0, Ek
Tu = uk, we have

u+ =

u0

u1

...
uK

+

A00
−1E0

T − ΣA00
−1A0kEk

TBk
−1

E1
TB1

−1

...

EK
TBK

−1

 r(u).

Let A be an SPD matrix, and therefore, its diagonal blocks are SPD. O’Leary
and White [5] observed that if all the MSs were P -regular (A = B − C symmetric
with B nonsingular and BT + C positive definite), then the weighted MS algorithm
may or may not converge. A modification of this example shows this is also the case
for the MinJ MS algorithm.

Example. This example illustrates the importance of assuming appropriate struc-
ture of the MSs so as to be able to establish convergence of the MinJ MS algorithm.

MULTISPLITTING SCHEMES 559

The appropriate structure was discussed in White [9] for the weighted MS algorithm:

A =

1

3/4

3/4

with A00 = [1] and A11 =

[
3/4

3/4

]
;

B1 =

1

4 1

−1 1/2

 and B2 =

1

1/2 −1
1 4

with

E1 =
[
0 1 0

]T
and E2 =

[
0 0 1

]T
.

By the Representation Lemma

G =

1 0 0

E1
TB1

−1

E2
TB2

−1

 =

1 0 0

0 1/6 −1/3
0 −1/3 1/6

 .

H is defined via GA = I −H so that

H =

0 0 0

0 7/8 1/4

0 1/4 7/8

 .

The eigenvalues of H are 0 and 7
8 ± 1

4 , and therefore, the MinJ MS algorithm will not
converge for this choice of Bk and Ek. However, If B1 and B2 are interchanged, then
the new iteration matrix will be

Ĥ =

0 0 0

0 0 −1/4
0 −1/4 0

 .

This iteration matrix has eigenvalues equal to 0 and ± 1
4 , and so, the MinJ MS will con-

verge.

In order to impose some structure on A and the MSs and to keep the notation
from becoming a burden, we let K = 2. Results from K > 2 are straightforward
and may be formulated by decomposing the last diagonal block. We will consider two
cases, the block diagonal MinJ MS and the incomplete block Gauss–Seidel MinJ MS.

Block diagonal MinJ MS. Let A = Bk−Ck, where for k > 0, Akk =Mk−Nk.

Bk =

A00

M1

M2

 for both k = 1 and k = 2,

E1
TB1

−1 =
[
0 M1

−1 0
]
,

E2
TB2

−1 =
[
0 0 M2

−1
]
.

560 R. E. WHITE

By the Representation Lemma

G =

[
A00

−1 0 0
]− [0 A00

−1A01M1
−1 0

]− [0 0 A00
−1A02M2

−1
]

[
0 M1

−1 0
]

[
0 0 M2

−1
]

=

A00

−1 −A00
−1A01M1

−1 −A00
−1A02M2

−1

0 M1
−1 0

0 0 M2
−1

 .

Example. This example illustrates a MinJ MS algorithm that converges faster
than a corresponding weighted MS algorithm:

A =

2 −1 −1
−1 2 0

−1 0 2

with B1 = B2 =

2 0 0

0 2 0

0 0 2

 .

The weighting matrices for the weighted MS algorithm will be

D1 =

1/2

1

0

 and D2 =

1/2

0

1

 .

The G matrix for the weighted MS algorithm will be

Gw = D1B1
−1 +D2B

−1
2 =

1/2

1/2

1/2

 .

The H matrix for the weighted MS algorithm will be

Hw = I −GwA =

0 1/2 1/2

1/2 0 0

1/2 0 0

 .

The eigenvalues of Hw are ± 1√
2 and 0.

The G matrix for the block diagonal MinJ MS algorithm is

G =

1/2 1/4 1/4

0 1/2 0

0 0 1/2

 .

The H matrix for the MinJ MS algorithm is

H = I −GA =

1/2 0 0

1/2 0 0

1/2 0 0

 .

The eigenvalues of H are 1
2 , 0 and 0. Therefore, for these same splittings the MinJ

MS will converge faster than the weighted MS algorithm.

MULTISPLITTING SCHEMES 561

Theorem 3. Consider the block diagonal MinJ MS algorithm, where K = 2. If
A is SPD and [

M1
T +N1 −A12

−A21 M2
T +N2

]

is positive definite, then the block diagonal MinJ MS algorithm will converge to the
solution of (1).

Proof. We shall show that the algorithm is given by a single P -regular splitting.
Note for the block diagonal MinJ MS algorithm that G is nonsingular and a block
elementary matrix

G = B−1 and B =

A00 A01 A02

M1

M2

 .

Thus, A = B − C and

C = −A+B = −

A00 A01 A02

A10 A11 A12

A20 A21 A22

+

A00 A01 A02

M1

M2

 .

Because A is symmetric and Akk =Mk −Nk for k > 0,

C =

0 0 0

−A10 N1 −A12

−A20 −A21 N2

and

BT + C =

A00 0 0

0 M1
T +N1 −A12

0 −A21 M2
T +N2

 .

Since A is SPD, A00 is SPD. Therefore, B
T + C will be positive definite if the as-

sumption is true.
Another more complicated MS is the following incomplete block Gauss–Seidel

MS. Here the word incomplete is used because we delete some of the blocks in the
lower triangular part of A so as to obtain concurrent calculations. For the MinJ
MS this will possibly generate a symmetric G, but the iteration matrix, H, for this
scheme will have the same eigenvalues as the iteration matrix for the block diagonal
MS algorithm!

Incomplete block Gauss–Seidel MinJ MS.

B1 =

A00 0 0

A10 M1 0

0 0 M2

 and B2 =

A00 0 0

0 M1 0

A20 0 M2

 ,

E1
TB1

−1 =
[−M1

−1A10A00
−1 M1

−1 0
]
,

E2
TB−1

2 =
[−M2

−1A20A00
−1 0 M2

−1
]
.

562 R. E. WHITE

By the Representation Lemma

G =

[
A00

−1 0 0
]−A00

−1A01E1
TB1

−1 −A00
−1A02E2

TB2
−1

E1
TB−1

1

E2
TB−1

2

=

X −A00
−1A01M1

−1 −A00
−1A02M2

−1

−M1
−1A10A00

−1 M1
−1 0

−M2
−1A20A00

−1 0 M2
−1

 ,

where

X = A00
−1 +A00

−1A01M1
−1A10A00

−1 +A00
−1A02M2

−1A20A00
−1.

A more compact way of writing the both block MinJ MSs for A is as follows,
where A00 and M are nonsingular:

Z =
[
A01 A02

]
and W =

[
A10

T A20
T
]
,

M =

[
M1

M2

]
and N =

[
N1 −A12

−A21 N2

]
,

A =

[
A00 Z

WT M −N

]
.

For the block diagonal MinJ MS we have

Gd = Bd
−1 =

[
A00

−1 −A00
−1ZM−1

0 M−1

]
.

For the incomplete block Gauss–Seidel MinJ MS we have

Gigs = Bigs
−1 =

[
A00

−1 +A00
−1ZM−1WTA00

−1 −A00
−1ZM−1

−M−1WTA00
−1 M−1

]
.

Note, if M is symmetric and W = Z, then Gigs will be symmetric.
Theorem 4. Let A be possibly nonsymmetric with nonsingular A00 and M . The

iteration matrices for the block diagonal MinJ MS, Hd, and for the incomplete block
Gauss–Seidel MinJ MS, Higs, are

Hd =

[
A00

−1ZM−1WT −A00
−1ZM−1N

−M−1WT M−1N

]

and

Higs =

[
0 −A00

−1Z(M−1N +M−1WTA00
−1Z)

0 M−1N +M−1WTA00
−1Z

]
.

Moreover, Hd and Higs have the same eigenvalues.
Proof. The definition of the iteration matrix is given by the formula GA = I−H.

Thus, Hd = I −GdA and Higs = I −GigsA, and the formulas follow by block matrix
products.

MULTISPLITTING SCHEMES 563

By the block row operations we may write Hd as a product

Hd = UL =

[
I −A00

−1Z

0 I

][
0 0

−M−1WT M−1N

]
.

Then Hd is similar to LU and

U−1HdU = LU =

[
0 0

−M−1WT M−1WTA00
−1Z +M−1N

]
.

Since both Higs and U
−1HdU have the same nonzero diagonal block and have a block

row or column equal to zero, they must have the same eigenvalues.

4. M-matrices and the MinJ MS algorithm. Even though the MinJ MS
was designed for the SPD case, it will also work for the M -matrix case. But the
optimal sense will not be realized because the algebraic problem (1) is not equivalent
to the quadratic minimization problem (3). When the MSs are weak regular (A =
B − C with B−1 ≥ 0 and B−1C ≥ 0), we establish convergence similar to O’Leary
and White [5]. When the MSs are regular (A = B −C with B−1 ≥ 0 and C ≥ 0), we
establish comparison results similar to Woznicki [10], and Csordas and Varga [2], and
for MSs Elsner [3] and Marek and Szyld [4].
Theorem 5. Let A be a nonsingular M -matrix (A−1 ≥ 0 and A has nonpositive

off-diagonal components). If A = Bk−Ck for k = 1, . . . ,K are weak regular splittings,
then G,H ≥ 0, where G is given by the Representation Lemma for MinJ MS and
H = I −GA. Moreover, the following are true and equivalent:

1. G is nonsingular,
2. A = B − C, where B = G−1 is a weak regular splitting and represents the

MinJ MS, and
3. MinJ MS algorithm is convergent.

Proof. Since A is a nonsingular M -matrix, A00 is also a nonsingular M -matrix.
Thus, A00

−1 ≥ 0 and for k > 0,−A0k ≥ 0. Since each splitting is weak regular, both
Bk

−1 and Bk
−1Ck ≥ 0. Simply apply the Representation Lemma to obtain

G =

A00
−1E0

T − ΣA00
−1A0kEk

TBk
−1

E1
TB1

−1

...

EK
TBK

−1

≥ 0.

In order to show H ≥ 0, use H = I −GA and the Representation Lemma:

H = I −

A00
−1E0

T − ΣA00
−1A0kEk

TBk
−1

E1
TB1

−1

...

EK
TBK

−1

A

= I −

A00
−1E0

TA− ΣA00
−1A0kEk

TBk
−1A

E1
TB1

−1A

...

EK
TBK

−1A

.

564 R. E. WHITE

E0
TA =

[
A00 A01 . . . A0K

]
. Since A = Bk − Ck, Bk−1, A = I −Bk−1Ck.

H = I −

A00
−1
[
A00 A01 . . . A0K

]− ΣA00
−1A0kEk

T (I −Bk−1Ck)

E1
T (I −B1

−1C1)
...

EK
T (I −BK−1CK)

=

−ΣA00
−1A0kEk

TBk
−1Ck

E1
TB1

−1C1

...

EK
TBK

−1CK

≥ 0.

The proof of the truth and equivalence of statements 1, 2, and 3 follows from
Theorem 1 in White [8]. This theorem is applicable because A−1, G, and H ≥ 0. It
suffices to show that each row of G has some nonzero component. The zero block row
of G is given by

E0
TG =

[
A00

−1 −A00
−1A01E1

TB1
−1 . . .−A00

−1A0KEK
TBK

−1
]
.

Since A00
−1,−A0k, Bk

−1 ≥ 0 for k > 0, E0
TG ≥ [A00

−1 0 . . . 0
]
. Because A

is a nonsingular M -matrix, A00 is also and must be nonsingular. Therefore, each
row of A00

−1 must have a nonzero component. Because of the matrix inequality
E0

TG ≥ [
A00

−1 0 . . . 0
]
, each row in the zero block row E0

TG must have a

nonzero component. The k block row of G is Ek
TG = Ek

TBk
−1. Since Bk are

nonsingular, Bk
−1 are nonsingular and each of its rows has a nonzero component and

so does each row of Ek
TBk

−1.
The classical comparison result for iterative methods may be stated as follows: If

A−1 ≥ 0 and A = B −C = B′ −C ′ are two regular splittings such that B−1 ≥ B′−1
,

then ρ(B′−1
C ′) ≥ ρ(B−1C). In Elsner [3], it was proved that if one of these splittings

is weak regular and the other is regular, then the conclusion will also be true. The
next theorem is for the MinJ MS algorithm in which two sets of MSs satisfy the
inequality Bk

−1 ≥ B′
k
−1
.

Theorem 6. Let A be a nonsingular M -matrix. Let A = Bk − Ck = B′
k − C ′

k

be weak regular splittings. Consider the two MinJ MS algorithms where A = B−C =
B′ − C ′ are the single splittings associated with the two MinJ MS algorithms and
assume either C or C ′ ≥ 0. If Bk

−1 ≥ B′
k
−1

, then
1. B−1 = G ≥ G′ = B′−1

, and
2. ρ(B′−1

C ′) ≥ ρ(B−1C).
Proof. The first conclusion follows directly from the Representation Lemma for

the MinJ MS algorithm. The second conclusion is just an application of Elsner’s
comparison result for weak regular splittings and of Theorem 5 of this paper. The
additional assumption that C or C ′ ≥ 0 implies that one of the splittings A = B−C =
B′ − C ′ is a regular splitting.
Corollary. Let A be a nonsingular M -matrix. Consider either the block di-

agonal or block incomplete Gauss–Seidel versions of the MinJ MS algorithm. If
Akk = Mk −Nk = M ′

k −N ′
k are regular splittings, then A = Bk − Ck = B′

k − C ′
k

are regular splittings. Also, if Mk
−1 ≥ M ′

k
−1

, then Bk
−1 ≥ B′

k
−1

and C,C ′ ≥ 0 so
that the conclusions of the theorem must be true.

MULTISPLITTING SCHEMES 565

Proof. Because of the special structure of these two cases, it is easy to see that
A = Bk −Ck = B′

k −C ′
k are regular splittings and that Bk

−1 ≥ B′
k
−1
. In order to

show C,C ′ ≥ 0, we consider C = −A+B for the two cases. The block diagonal case
follows from

C = −A+B = −

A00 A01 A02

A10 A11 A12

A20 A21 A22

+

A00 A01 A02

M1

M2

=

0 0 0

−A10 N1 −A12

−A20 −A21 N2

 .

By the assumptions, each of the blocks in C are nonnegative.
In order to show that C is nonnegative for the block incomplete Gauss–Seidel

case, we use the compact notation for A which was introduced before Theorem 4:

Z =
[
A01 . . . A0K

]
and W =

[
A10

T . . . AK0
T
]
,

C = −A+B

= −
[
A00 Z

WT M −N

]
+

[
A00

−1 +A00
−1ZM−1WTA00

−1 −A00
−1ZM−1

−M−1WTA00
−1 M−1

]−1

.

B−1 can be factored, and so one can compute its inverse:

B−1 =

[
A00

−1 +A00
−1ZM−1WTA00

−1 −A00
−1ZM−1

−M−1WTA00
−1 M−1

]

=

[
I −A00

−1Z

0 I

][
A00

−1 0

−M−1WTA00
−1 M−1

]
,

B =

[
A00

−1 0

−M−1WTA00
−1 M−1

]−1[
I −A00

−1Z

0 I

]−1

=

[
A00 0

WT M

][
I A00

−1Z

0 I

]

=

[
A00 Z

WT M +WTA00
−1Z

]
.

So, C is easily computed:

C =

[
0 0

0 N +WTA00
−1Z

]
≥ 0.

It must be nonnegative because N,−W,−Z, and A00
−1 are nonnegative.

5. Applications. We discuss two applications to partial differential equations.
The first is the elliptic problem mentioned in section 2. The second is the Stokes
problem associated with the driven cavity problem. For both applications, K = 2
and the implementations were done in Matlab so as to illustrate the qualitative
properties of these MS algorithms. No numerical studies are given that attempt to
optimize the algorithms for a particular computer architecture.

566 R. E. WHITE

Elliptic partial differential equation. Consider a steady state problem with
given boundary value and two variables

−∆u+ a1ux + a2uy + cu = f on (0, 1)× (0, 1).
Suppose there are N unknowns in the x-direction and 2N + 1 unknowns in the y-
direction. Thus, the total unknowns is n = N(2N+1). Use the classical order starting
with the bottom grid row and going from left to right and from the bottom to top.
Consider the following partition:

P0 = {N2 + 1, . . . , N2 +N},
P1 = {1, . . . , N2},

and

P2 = {N2 +N + 1, . . . , 2N2 +N}.
Use centered finite difference for second-order derivatives and upwind finite differences
for the first-order derivatives. This will generate an SPD coefficient matrix if there
are no first-order terms, or anM -matrix if there are first-order terms (see Proposition
2.4.14 in [6]).

In the computations in Table 1 we used c = 1, N = 5, and variables a1 and a2.
The calculation for the weighted MS used the Gauss–Seidel splitting Mk = tril(Akk)
= the lower triangular part of Akk with k = 0, 1, 2.

Table 1
Spectral radii and multisplittings.

Different MS methods Spectral radius of H Spectral radius of H

a1 = 10, a2 = 1 a1 = 0, a2 = 0

Weighted MS .6428 .7393

Block diagonal MinJ with Mk = tril(Akk) .5971 .7052

Block diagonal MinJ with Mk = Akk .2906 .4683

Block inc. G–S MinJ with Mk = tril(Akk) .5971 .7052

Block inc. G–S MinJ with Mk = Akk .2906 .4683

The first and second row computations indicates that the MinJ MS for this non-
symmetric matrix has better convergence properties than the weighted MS. In a single
weighted MS step there are two concurrentN2+N solves and an average overN nodes;
in the block diagonal G–S MinJ there are two concurrent N2 solves and one N solve.
The second and third row computation is an illustration of the comparison theorem,
Theorem 6. Computations in rows 2 and 4 and in rows 3 and 5 illustrate Theorem 4.

Driven cavity problem. Consider a two space variable driven cavity problem
with unknowns (u, v, P) at each point in space for u = x-direction velocity compo-
nent, v = y-direction velocity component, and P = pressure. A semi-implicit time
discretization of the Navier–Stokes equations for flow in two dimensions, which is
incompressible, is

u/∆t− 1/Re∆u+ a1ux + a2uy + Px = f, x-momentum,

v/∆t− 1/Re∆v + b1vx + b2vy + Py = g, y-momentum,

ux + vy = 0, incompressible.

Now discretize the space variables so that A1 is the y-momentum coefficient matrix,

MULTISPLITTING SCHEMES 567

m = 6
A1 is m xm ,
A2 is (m -m)x(m -m),
E is m x(2m -m) and
N AN is (m -m)x(m -m).

K = 2
P1 is associated with the left,
P2 is associated with the right,
P0 is associated with the center.

2 2

2

2

2

2

22T

Fig. 2. Driven cavity and partition of unknowns.

A2 is the x-momentum coefficient matrix, and E =
[
R1 R2

]
is the coefficient matrix

for the incompressible equation. Order all the y-velocity components, v, first and all
the x-velocity components, u, second. The above then becomes[

A1

A2

][
v

u

]
+

[
R1

T

R2
T

]
P =

[
f

g

]

and

[
R1 R2

] [v
u

]
= 0.

Or, Ax+ ET y = s, where x = [vu] and y = P , Ex = t.
The last two equations are known as the equilibrium equations, which also evolve
from other important applications such as structures and circuits. More details can
be found in Plemmons and White [7].

If the nodes are carefully ordered, then R1 in E will be nonsingular. Then the
nullspace of E will be given by a basis consisting of the columns of N . This enables
one to solve the equilibrium equations by the nullspace method:

Form N =
[
R1

−1R2

−I
]
,

Solve Exp = t,
Set x = Nx0 + xp and
Solve for x0, N

TANx0 = N
T (s−Axp).

The last equation is formed by inserting the nullspace representation of x into Ax+
ET = s and multiplying by NT . We solve this system via the restarted GMRES al-
gorithm.

In our calculations let m equal the number of grid points in both the x and y
directions. Then there will be m unknown v components in each vertical subset of
grid points, and there will be m− 1 unknown u components in each horizontal subset
of grid points. In Figure 2 the unknown v components are the vertical line segments,
and the unknown u components are the horizontal line segments. Here m = 6 and
K = 2.

The first set of calculations uses m = 12, the symmetric case, Re = 10, ∆t = 10,
and a restart after three inner iterations. The preconditioners are the block incomplete

568 R. E. WHITE

Gauss–Seidel MinJ and MinR MSs, where K = 2 and Mk = Akk. The error for the

MinJ was ((x1 − x)TA(x1 − x))1/2. These calculations are in Table 2.
Table 2

MinJ and MinR errors.

Outer GMRES MinJ MS error MinR MS error

Iteration = 1 m = 12, inner = 3 m = 12, inner = 3

1 1.0616 .1047

2 .3235 .0429

3 .1097 .0127

4 .0416 .0055

5 .0135 .0016

The second set of calculations is for the nonsymmetric case with coefficients of
the first order terms equal to 10. Here we used just the MinR MS as a preconditioner
for GMRES with variable m and (m/5 + 1) restarts. The error of the MinR was

(r(x1)
T
r(x1)/bT b)

1/2
. These calculations are in Table 3.

Table 3
MinR and variable unknowns.

Outer GMRES MinR MS error MinR MS error MinR MS error

Iteration=1 m = 10, inner = 3 m = 20, inner = 5 m = 30, inner = 7

1 .1059 .1125 .0864

2 .0174 .0277 .0175

3 .0036 .0024 .0038

4 .0009 .0008 .0016

5 .0001 .0002 .0001

REFERENCES

[1] M. Benassi and R. E. White, Parallel numerical solution of variational inequalities, SIAM
J. Numer. Anal., 31 (1994), pp. 813–830.

[2] G. Csordas and R. S. Varga, Comparison of regular splitting matrices, Numer. Math., 44
(1984), pp. 23–35.

[3] L. Elsner, Comparison of weak regular splittings and multisplitting methods, Numer. Math.,
56 (1989), pp. 283–289.

[4] I. Marek and D. Szyld, Comparison theorems for weak splittings of bounded operators, Nu-
mer. Math., 58 (1990), pp. 387–397.

[5] D. P. O’Leary and R. E. White, Multisplittings of matrices and parallel solution of linear
systems, SIAM J. Algebraic Discrete Methods, 6 (1985), pp. 630–640.

[6] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, NY, 1970.

[7] R. J. Plemmons and R. E. White, Substructuring methods for computing the nullspace for
equilibrium matrices, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 1–22.

[8] R. E. White, Multisplittings with different weighting schemes, SIAM J. Matrix Anal. Appl.,
10 (1989), pp. 481–493.

[9] R. E. White, Multisplittings of a symmetric positive definite matrix, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 69–82.

[10] Z. Woznicki, Two-Sweep Iterative Methods for Solving Large Linear Systems and Their Ap-
plication to the Numerical Solution of Multi-Group Multi-Dimensional Neutron Diffusion,
Ph.D. thesis, Institute of Nuclear Research, Swierk k/Otwocha, Poland, 1973.

SOME NORM INEQUALITIES FOR COMPLETELY MONOTONE
FUNCTIONS∗

JASPAL SINGH AUJLA†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 569–573

Abstract. Let A,B be n× n complex positive semidefinite matrices, and let f be a completely
monotone function on [0,∞). We prove that 2|||f(A + B)||| ≤ |||f(2A) + f(2B)||| for all unitarily
invariant norms ||| · |||. The corollary 21−r|||(A + B)r||| ≤ |||Ar + Br|||, r ≤ 0, supplements recent
results of Ando, Bhatia, Kittaneh, and Zhan.

Key words. positive definite matrix, unitarily invariant norm, completely monotone function

AMS subject classifications. 47A30, 47B15, 15A60

PII. S0895479800369761

1. Introduction. LetMn denote the set of n×n complex matrices. We denote
by Hn the set of all Hermitian matrices in Mn and by Sn the set of all positive
semidefinite matrices inMn. The set of all positive definite matrices inMn shall be
denoted by Pn.

A norm ||| · ||| onMn is called unitarily invariant or symmetric if

|||UAV ||| = |||A|||

for all A ∈Mn and for all unitaries U, V . A unitarily invariant norm is monotone in
the sense that 0 ≤ A ≤ B implies |||A||| ≤ |||B|||. The most basic unitarily invariant
norms are the Ky Fan norms ‖ · ‖(k), (k = 1, 2, . . . , n), defined as

‖ A ‖(k) =

k∑
j=1

σj(A), (k = 1, 2, . . . , n),

where σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) are the singular values of A.
The maximum principle of Ky Fan says that for k = 1, 2, . . . , n, we have

k∑
j=1

σj(A) = max

k∑
j=1

| 〈Auj , vj〉 |,

where the maximum is taken over all choices of orthonormal vectors {u1, u2, . . . , uk}
and {v1, v2, . . . , vk}. If A ∈ Hn, we can choose uj = vj . The Ky Fan dominance
principle says that

‖ A ‖(k) ≥ ‖ B ‖(k),

k = 1, 2, . . . , n if and only if

|||A||| ≥ |||B|||
∗Received by the editors March 15, 2000; accepted for publication (in revised form) by R. Bhatia

March 28, 2000; published electronically August 9, 2000.
http://www.siam.org/journals/simax/22-2/36976.html

†Department of Applied Mathematics, Regional Engineering College, Jalandhar-144011, Punjab,
India (jsaujla@hotmail.com).

569

570 JASPAL SINGH AUJLA

for all unitarily invariant norms ||| · |||.
A real valued function f on [0,∞) is said to be completely monotone if (−1)kf (k)(x)

≥ 0 for all k = 0, 1, . . ., and all x ∈ [0,∞). Here f (0) = f and f (k), k = 1, 2, . . ., de-
notes the kth derivative of f . There is a theorem of Bernstein (see [4]) that says that
a function f is completely monotone on [0,∞) if and only if there exists a positive
measure µ such that

f(x) =

∫ ∞

0

e−λxdµ(λ).(1)

Let f be a real valued function defined on an interval I, and let A ∈ Hn have its
spectrum in I. Then f(A) is defined by the familiar functional calculus. The function
f is called matrix monotone increasing if A ≥ B implies f(A) ≥ f(B) for A,B ∈ Hn
with spectrum in I. The function f is called matrix monotone decreasing if −f is
matrix monotone increasing. If f is a matrix monotone increasing function on [0,∞),
then f admits the integral representation

f(x) = α+ βx+

∫ ∞

0

(
λ

λ2 + 1
− 1

x+ λ

)
dµ(λ),(2)

where α is a real number, β ≥ 0, and µ is a positive measure (see [2]). From the inte-
gral representation (2) it follows that the derivative of a matrix monotone increasing
function is completely monotone.

Bhatia and Kittaneh [3] proved that for all A,B ∈ Pn and for all 1 ≤ r <∞,

‖ Ar +Br ‖ ≤ ‖ (A+B)r ‖,
where ‖ · ‖ is the operator norm. They further proved that for any positive integer
m,

|||Am +Bm||| ≤ |||(A+B)m|||
for all unitarily invariant norms ||| · |||, and they conjectured that this inequality
remains true when m is replaced by any real number r ≥ 1. Ando and Zhan [1]
affirmatively settled this question and proved that

|||(A+B)r||| ≤ |||Ar +Br|||
for 0 ≤ r ≤ 1 and

|||Ar +Br||| ≤ |||(A+B)r|||
for 1 ≤ r <∞, A,B ∈ Sn, and for all unitarily invariant norms ||| · |||. It is natural to
ask what happens for negative values of r. We settle this problem and prove a more
general result for completely monotone functions. We prove that if the function f is
completely monotone on [0,∞), then

2|||f(A+B)||| ≤ |||f(2A) + f(2B)|||
for all A,B ∈ Sn and all unitarily invariant norms ||| · |||. This in particular includes
the inequality

21−r|||(A+B)r||| ≤ |||Ar +Br|||
for all −∞ < r ≤ 0 and A,B ∈ Pn.

SOME NORM INEQUALITIES 571

2. Main results. The following lemmas will be used in what follows. The reader
may refer to [2, Theorem IX.3.7 and Theorem IX.4.5] for their proofs.
Lemma 2.1. Let A,B ∈ Hn. Then

|||eA+B ||| ≤ |||eAeB |||
for all unitarily invariant norms ||| · |||.
Lemma 2.2. Let A,B,X ∈Mn. Then

|||A∗XB||| ≤ 1

2
|||AA∗X +XBB∗|||

for all unitarily invariant norms ||| · |||.
Theorem 2.3. Let f be a completely monotone function on [0,∞), and let

A,B ∈ Sn. Then

2|||f(A+B)||| ≤ |||f(2A) + f(2B)|||
for all unitarily invariant norms ||| · |||.

Proof. First we prove the result for the function fλ(x) = e−λx, λ, x > 0. Using
Lemma 2.1 and Lemma 2.2, respectively, one gets

2|||fλ(A+B)||| = 2|||e−λ(A+B)|||
≤ 2|||e−λAe−λB |||
≤ |||e−λ2A + e−λ2B |||
= |||fλ(2A) + fλ(2B)|||.

Now let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A + B, and let u1, u2, . . . , un
be the corresponding orthonormal eigenvectors. Further, let µ1 ≥ µ2 ≥ · · · ≥ µn
be the eigenvalues of fλ(2A) + fλ(2B), and let v1, v2, . . . , vn be the corresponding
orthonormal eigenvectors. The above inequality for the Ky Fan norms gives

2 ‖ fλ(A+B) ‖(k) ≤ ‖ fλ(2A) + fλ(2B) ‖(k),
which implies

2
k∑
j=1

〈fλ(A+B)uj , uj〉 ≤
k∑
j=1

〈(fλ(2A) + fλ(2B))vj , vj〉,

since u1, u2, . . . , un are the eigenvectors of fλ(A+B) corresponding to the eigenvalues
fλ(λ1) ≥ fλ(λ2) ≥ · · · ≥ fλ(λn). Therefore via the integral representation (1) for
the completely monotone function f , we arrive at

2
k∑
j=1

〈f(A+B)uj , uj〉 ≤
k∑
j=1

〈(f(2A) + f(2B))vj , vj〉(3)

for k = 1, 2, . . . , n. Again, since u1, u2, . . . , un are the eigenvectors of f(A+B) corre-
sponding to the eigenvalues f(λ1) ≥ f(λ2) ≥ · · · ≥ f(λn), we have by definition

‖ f(A+B) ‖(k) =

k∑
j=1

〈f(A+B)uj , uj〉.

572 JASPAL SINGH AUJLA

On the other hand by the Ky Fan maximum principle, we have

k∑
j=1

〈(f(2A) + f(2B))vj , vj〉 ≤ ‖ f(2A) + f(2B) ‖(k) .

Therefore from inequality (3), we get the inequality

2 ‖ f(A+B) ‖(k) ≤ ‖ f(2A) + f(2B) ‖(k)
for k = 1, 2, . . . , n. Hence by the Ky Fan dominance principle, one gets

2|||f(A+B)||| ≤ |||f(2A) + f(2B)|||.

This completes the proof of the theorem.
Since the derivative of a matrix monotone increasing function on [0,∞) is com-

pletely monotone, we have the following corollary.
Corollary 2.4. Let f be a matrix monotone increasing function on [0,∞) and

A,B ∈ Sn. Then

2|||f (1)(A+B)||| ≤ |||f (1)(2A) + f (1)(2B)|||

for all unitarily invariant norms ||| · |||.
Corollary 2.5. Let A,B ∈ Pn and −∞ < r ≤ 0. Then

21−r|||(A+B)r||| ≤ |||Ar +Br|||

for all unitarily invariant norms ||| · |||.
Proof. Since the function f(x) = xr, −∞ < r ≤ 0 is completely monotone on

(0,∞), one has the desired inequality by Theorem 2.3.
Theorem 2.6. Let f be a nonnegative matrix monotone decreasing function on

[0,∞), and let A,B ∈ Sn. Then

2|||f(A+B)||| ≤ |||f(A) + f(B)|||

for all unitarily invariant norms ||| · |||.
Proof. Observe that

f(A+B) ≤ f(A)

and

f(A+B) ≤ f(B).

Consequently,

2f(A+B) ≤ f(A) + f(B).

Now the result follows, since a unitarily invariant norm is monotone.
Remark 2.7. If for a nonnegative function f on [0,∞) with f(0) = 0, the inequal-

ity

|||f(A+B)||| ≤ |||f(A) + f(B)|||

SOME NORM INEQUALITIES 573

holds, then f is midpoint concave. To see this one may take A = (x
√
xy√

xy y
) and

B = (x −√
xy

−√
xy y

). Then using the given inequality for the trace norm one gets

the inequality that shows the midpoint concavity of f . Further, if for a nonnegative
function f on [0,∞) the inequality

|||f(A+B)||| ≥ |||f(A) + f(B)|||

holds, then f is midpoint convex with f(0) = 0. This can be seen similarly.

REFERENCES

[1] T. Ando and X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann.,
315 (1999), pp. 771–780.

[2] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[3] R. Bhatia and F. Kittaneh, Norm inequalities for positive operators, Letters Math. Phys.,

43 (1998), pp. 225–231.
[4] D. V. Widder, Laplace Transforms, Princeton University Press, Princeton, NJ, 1968.

IMPROVED UPPER BOUNDS FOR THE REAL PART OF
NONMAXIMAL EIGENVALUES OF NONNEGATIVE MATRICES∗

REINHARD NABBEN†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 574–579

Abstract. In this note we improve two upper bounds for the real part of nonmaximal eigenvalues
of nonnegative irreducible matrices. We also improve an upper bound for the spectral radius of
principal submatrices of nonnegative matrices.

Key words. nonnegative matrices, doubly stochastic matrices, nonmaximal eigenvalues, Cheeger-
type bounds

AMS subject classifications. 15A18, 15A42, 15A48, 15A51

PII. S0895479899367755

1. Introduction. Let A = [ai,j] ∈ R
n,n be a nonnegative irreducible matrix

with positive right and left eigenvectors u and v. We arrange the eigenvalues of A as

ρ(A) = λn(A) > Re(λn−1(A)) ≥ · · · ≥ Re(λ1(A)).

In many applications of nonnegative matrices, such as finite Markov chains, algebraic
connectivity of graphs, and convergence rates of iterative methods, one needs bounds
for λn−1(A) or Re(λn−1(A)). Recently, some new bounds, so-called Cheeger-type
bounds, were established. These bounds use different Cheeger constants of nonnega-
tive matrices.

It is proved by Friedland and Gurvits in [4] that

Re(λn−1(A)) ≤ ρ(A)− 1

2

(
ρ(A)−max

i
aii

)
ε�n

2 �(A, u, v)2,(1.1)

where

εs(A, u, v) := min
∅�=V⊂〈n〉,|V |≤s

∑
i∈V,j∈〈n〉\V aijviuj + ajivjui∑

i∈V 2(ρ(A)− aii)viui
and ε�n

2 �(A, u, v) is a Cheeger constant of A.
In this note we improve (1.1). We show that

Re(λn−1(A)) ≤ ρ(A)−
(
ρ(A)−max

i
aii

)(
1−

√
1− i(A, u, v)2

)
,

where i(A, u, v) is another Cheeger constant (see (2.5)) that satisfies i(A, u, v) ≥
ε�n

2 �(A, u, v). Thus we obtain an improved upper bound.
A different Cheeger-type bound for Re(λn−1) is given by Berman and Zhang.

They proved in [1] that

Re(λn−1) ≤
√
ρ(A)2 − h(A, u, v)2

maxi(uivi)2
,(1.2)

∗Received by the editors December 29, 1999; accepted for publication (in revised form) by R.
Brualdi January 31, 2000; published electronically August 9, 2000.

http://www.siam.org/journals/simax/22-2/36775.html
†Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33 501 Bielefeld, Germany

(nabben@mathematik.uni-bielefeld.de).

574

UPPER BOUNDS FOR NONMAXIMAL EIGENVALUES 575

where

h(A, u, v) = min
∅�=U⊂〈n〉,|U |≤�n

2 �

∑
i∈U,j∈〈n〉\U aijviuj + ajivjui

2|U | .(1.3)

Here we establish that

Re(λn−1(A)) ≤ ρ(A)
√
1− l(A, u, v)2,

Re(λn−1(A)) ≤ miniaii +

√
(ρ(A)−miniaii)2 − h(A, u, v)2

maxi(uivi)2
,

where l(A, u, v) is defined similarly as i(A, u, v); see (2.6). We obtain that both upper
bounds above are smaller than the bound (1.2). Thus we also improve the bound
(1.2) due to Berman and Zhang.

The right-hand side of (1.1) can also be used to get an upper bound for the spectral
radius of principal submatrices of A. Let U be a nonempty subset of 〈n〉 = {1, . . . , n}
and define

ρs(A) = max
U⊂〈n〉,|U |=s

ρ(A(U)),

where A(U) is the submatrix of A whose rows and columns are in U . The values ρs(A)
are used to define a partition of the class of Z-matrices by Fiedler and Markham in
[2] (see also [7] for more details). Moreover, it is established in [5] that for any real
eigenvalue λ of A different from ρ(A) it holds that

λ ≤ ρ�n
2 �(A).

It is then proved in [5] that

ρs(A) ≤ ρ(A)− 1

2

(
ρ(A)−max

i
aii

)
εs(A, u, v)

2.(1.4)

Here we show that

ρs(A) ≤ ρ(A)−
(
ρ(A)−max

i
aii

)(
1−

√
1− εs(A, u, v)2

)

≤ ρ(A)− 1

2

(
ρ(A)−max

i
aii

)
εs(A, u, v)

2.

2. Improved bounds. Our results are mainly based on different Cheeger-type
lower bounds for the second smallest eigenvalue of the Laplacian matrix of a graph.
A comparison between different well-known bounds and some new bounds is given in
[6].

Let Gw = (V,E(Gw) be a connected, undirected weighted graph. Note that Gw
may have loops. Here wi,j denotes the positive weight wi,j of (i, j) = (j, i) ∈ E(Gw).
The Laplacian matrix Lw = [li,j] is defined as

li,j = −wi,j for i �= j,
li,i = δi − wi,i,

where

δi =
∑

(i,j)∈E(Gw)

wi,j

576 REINHARD NABBEN

are the weighted degrees. The established bounds use different Cheeger constants
h(Gw) and i(Gw):

h(Gw) = min
∅�=U⊂V

|E(U, Ū)|
min(|U |, |Ū |) = min

∅�=U⊂V

0�=|U|≤�n
2

�

|E(U, Ū)|
|U | ,

i(Gw) = min
∅�=U⊂V

|E(U, Ū)|
min(|E(U)|, |E(Ū)|) = min

∅�=U⊂V

|E(U)|≤ 1
2
|E(V)|

|E(U, Ū)|
|E(U)| ,

where

|E(U)| =
∑
i∈U

δi,

Ū = 〈n〉\U , and E(U, Ū) are the edges connecting vertices of U with vertices in Ū .
Now let D = diag(d1, . . . , dn) be a positive diagonal matrix. Then Theorem 2.1

of [6] gives

λ2(D
−1Lw) ≥ min

i

δi
di

(
1−

√
1− i(Gw)2

)
(2.1)

while Theorem 2.2 of [1] says

λ2(D
−1Lw) ≥ 1

maxi di

(
δ̄ −

√
δ̄2 − h(Gw)2

)
.(2.2)

Now it is worthwhile to mention that weighted loops do not influence the Lapla-
cian matrix. Thus we can think of Lw as a Laplacian matrix of a weighted graph with
loops or as the Laplacian matrix of a weighted graph without loops. The inequalities
(2.1) and (2.2) hold for both cases. (This is not mentioned in [1] for (2.2).) But of
course one gets different bounds since one has different weighted degrees and a dif-
ferent constant i(Gw). It is shown in [6] that for (2.1) loops can increase or decrease
the bound. However, since h(Gw) is independent of loops we obtain with v̄ = maxivi
for v = [vi] ∈ R

n.
Proposition 2.1. Let Gw be a weighted, undirected, connected graph and V =

〈n〉. Let D = diag(d1, . . . , dn) be a positive diagonal matrix. Then

λ2(D
−1Lw) ≥ 1

d̄

(
γ̄ −

√
γ̄2 − h(Gw)2

)
(2.3)

≥ 1

d̄

(
δ̄ −

√
δ̄2 − h(Gw)2

)
,(2.4)

where

γ = [γi]
n
i=1 with γi = δi − wi,i.

Proof. The proof of Theorem 2.2 in [1] works for both cases, loops or no loops.
Thus we only have to show the second inequality. But the function

f(t) =
1

d̄

(
t−
√
t2 − h(Gw)2

)

decreases for t ≥ h(Gw).

UPPER BOUNDS FOR NONMAXIMAL EIGENVALUES 577

We now consider nonnegative matrices A = [ai,j] ∈ R
n,n. Let U ⊂ 〈n〉 and define

for convenience

||U ||nl :=
∑

i∈U,j∈〈n〉
i�=j

aijuivj + ajiujvi =
∑
i∈U

2(ρ(A)− aii)viui,

||U ||l :=
∑

i∈U,j∈〈n〉
aijuivj + ajiujvi =

∑
i∈U

2ρ(A)viui.

Moreover, let

i(A, u, v) := min
∅�=U⊂〈n〉

∑
i∈U,j∈〈n〉\ U aijviuj + ajivjui

min(||U ||nl, ||Ū ||nl)(2.5)

= min
∅�=U⊂〈n〉

||U||nl≤ 1
2
||〈n〉||nl

∑
i∈U,j∈〈n〉\U aijviuj + ajivjui∑

i∈U 2(ρ(A)− aii)viui ,

l(A, u, v) := min
∅�=U⊂〈n〉

∑
i∈U,j∈〈n〉\ U aijviuj + ajivjui

min(||U ||l, ||Ū ||l)(2.6)

= min
∅�=U⊂〈n〉

||U||l≤ 1
2
||〈n〉||l

∑
i∈U,j∈〈n〉\U aijviuj + ajivjui∑

i∈U 2ρ(A)viui
,

ε(A,U, u, v) := min
∅�=W⊂U

∑
i∈W,j∈〈n〉\W aijviuj + ajivjui∑

i∈W 2(ρ(A)− aii)viui .

We easily obtain

ε�n
2 �(A, u, v) ≤ i(A, u, v),(2.7)

h(A, u, v) ≤ maxiuivi ρ(A)l(A, u, v).(2.8)

Then we get the following theorem.
Theorem 2.2. Let A = [ai,j] ∈ R

n,n be a nonnegative irreducible matrix with
positive right and left eigenvectors u and v. Then

Re(λn−1(A)) ≤ ρ(A)−
(
ρ(A)−max

i
aii

)(
1−

√
1− i(A, u, v)2

)
(2.9)

≤ ρ(A)−
(
ρ(A)−max

i
aii

)(
1−

√
1− ε�n

2 �(A, u, v)2
)

(2.10)

≤ ρ(A)− 1

2

(
ρ(A)−max

i
aii

)
ε�n

2 �(A, u, v)2,(2.11)

and

Re(λn−1(A)) ≤ ρ(A)
√
1− l(A, u, v)2(2.12)

≤
√
ρ(A)2 − h(A, u, v)2

maxi(uivi)2
.(2.13)

Moreover,

Re(λn−1(A)) ≤ miniaii +

√
(ρ(A)−miniaii)2 − h(A, u, v)2

maxi(uivi)2
(2.14)

≤
√
ρ(A)2 − h(A, u, v)2

maxi(uivi)2
.(2.15)

578 REINHARD NABBEN

For s = 1, . . . , n− 1,

ρs(A) ≤ ρ(A)−
(
ρ(A)−max

i
aii

)(
1−

√
1− εs(A, u, v)2

)
(2.16)

≤ ρ(A)− 1

2

(
ρ(A)−max

i
aii

)
εs(A, u, v)

2.(2.17)

Proof. First assume that A = AT and u = v. We consider the weighted graph
Gw, without loops, whose weighted Laplacian matrix is

Lw = Q(ρ(A)I −A)Q,
where Q = diag(u1, . . . , un). The weighted degrees δi are given by

δi =
∑

1≤j≤n,j �=i
aijuiuj = (ρ(A)− aii)u2

i .

We get for the second smallest eigenvalue of Q−2Lw

λ2(Q
−2Lw) = λ2(Q

−1(ρ(A)−A)Q) = λ2(ρ(A)−A)
= ρ(A)− λn−1(A).

Now let U be a subset of 〈n〉 with |U | = s. Similarly we obtain for the smallest
eigenvalue of Q−2Lw(U)

λ1(Q
−2Lw(U)) = ρ(A)− ρ(A(U)).

Now we apply (2.1) and Lemma 2.3 of [6] with D = Q2 and get

ρ(A)− λn−1(A) ≥ min
i

δi
di

(
1−

√
1− i(A, u, v)2

)
,

ρ(A)− ρ(A(U)) ≥ min
i

δi
di

(
1−

√
1− εs(A, u, v)2

)
.

Thus (2.9) and (2.16) hold for symmetric matrices.
Now assume that A is not symmetric. Let F be the unique positive diagonal ma-

trix such that Fu = F−1v = x and consider Ã = FAF−1. Note that the spectrum of A
and Ã are the same. Moreover, i(A, u, v) = i(Ã, x, x) and ε(A,U, u, v) = ε(Ã, U, x, x)
for any U ⊂ 〈n〉.

Next consider B = (Ã+ ÃT)/2. The arguments of [4] yield

λn−1(B) ≥ Re(λn−1(Ã)).

We also have ρ(B) = ρ(Ã). Moreover, i(B, x, x) = i(Ã, x, x) and ε(B,U, x, x) =
ε(Ã, U, x, x) for all U ⊂ 〈n〉. The maximal characterization of ρ(B(U)) implies the
inequality ρ(B(U)) ≥ ρ(Ã(U)). In particular, ρs(B) ≥ ρs(A). Thus (2.9) and (2.16)
also hold for nonsymmetric matrices. With (2.7) we get the inequality (2.10). Since

1−
√
1− εs(A, u, v)2 ≥ 1

2
εs(A, u, v)

2,

we obtain (2.11) and (2.17). To prove (2.12) and (2.14) we consider just the weighted
graph Gw with loops and use arguments similar to those above. The inequality (2.13)
follows from (2.8). Moreover, (2.15) follows from Proposition 2.1.

UPPER BOUNDS FOR NONMAXIMAL EIGENVALUES 579

Theorem 2.2 is also true for reducible matrices. But then we have to consider
eigenvalues different from ρ(A).

Next we consider doubly stochastic matrices, i.e., nonnegative matrices A for
which Ae = e and eTA = eT , where e = (1, . . . , 1)T .

Note that we have ||〈n〉||nl = 2 (n−∑n
i aii) and ||〈n〉||l = 2n. We obtain the

following corollary.
Corollary 2.3. Let A be a doubly stochastic matrix. Then for any eigenvalue

λ of A different from 1 we obtain

Re(λ) ≤ max
i
aii +

(
1−max

i
aii

)√
1− i(A, e, e)2

and

Re(λ) ≤
√
1− l(A, e, e)2

≤
√
1− h(A, e, e)2.

Moreover,

Re(λ) ≤ miniaii +
√
(1−miniaii)2 − h(A, e, e)2

≤
√
1− h(A, e, e)2.

Proof. For doubly stochastic matrices we have

∑
i∈U,j∈Ū

aij =
∑

i∈U,j∈Ū
aji.

Thus, all inequalities follow from Theorem 2.2.

REFERENCES

[1] A. Berman, X.-D.Zhang, Lower bounds for the eigenvalues of Laplacian matrices, Linear Al-
gebra Appl., to appear.

[2] M. Fiedler and T.L. Markham, A classification of matrices of class Z, Linear Algebra Appl.,
173 (1992), pp. 115–124.

[3] S. Friedland, Lower bounds for the first eigenvalue of certain M-matrices associated with
graphs, Linear Algebra Appl., 172 (1992), pp. 71–84.

[4] S. Friedland and L. Gurvits, An upper bound for the real part of nonmaximal eigenvalues of
nonnegative irreducible matrices, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1015–1017.

[5] S. Friedland and R. Nabben, On the second real eigenvalue of nonnegative and Z-matrices,
Linear Algebra Appl., 255 (1997), pp. 303–313.

[6] S. Friedland and R. Nabben, On Cheeger-Type Inequalities for Weighted Graphs, submitted.
[7] R. Nabben, Z–matrices and inverse Z–matrices, Linear Algebra Appl., 256 (1997), pp. 31–48.

ON THE COMPUTATION OF THE RESTRICTED SINGULAR
VALUE DECOMPOSITION VIA THE COSINE-SINE

DECOMPOSITION∗

DELIN CHU† , LIEVEN DE LATHAUWER‡ , AND BART DE MOOR‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 580–601

Abstract. In this paper, we show that the restricted singular value decomposition of a matrix
triplet A ∈ Rn×m, B ∈ Rn×l, C ∈ Rp×m can be computed by means of the cosine-sine decomposi-
tion. In the first step, the matrices A,B,C are reduced to a lower-dimensional matrix triplet A,B, C,
in which B and C are nonsingular, using orthogonal transformations such as the QR-factorization
with column pivoting and the URV decomposition. In the second step, the components of the re-
stricted singular value decomposition of A,B,C are derived from the singular value decomposition
of B−1AC−1. Instead of explicitly forming the latter product, a link with the cosine-sine decompo-
sition, which can be computed by Van Loan’s method, is exploited. Some numerical examples are
given to show the performance of the presented method.

Key words. singular value decomposition, restricted singular value decomposition, cosine-sine
decomposition, QR-factorization, URV decomposition

AMS subject classifications. 65F15, 65H15

PII. S0895479898346983

1. Introduction. In past years, several generalizations of the singular value de-
composition (SVD), related to a sequence of matrices in product/quotient form, have
been proposed and their properties analyzed. These generalized SVDs (GSVDs) are
essential numerical linear algebraic tools in signal processing and identification. Possi-
ble applications include source separation, stochastic realization, generalized Gauss–
Markov estimation problems, generalized total linear least squares problems, open
and closed loop balancing, etc. [7, 6].

Most well known are the product SVD (PSVD) (discussed in [11, 13]), the quotient
SVD (QSVD) (introduced in [17] and refined in [14, 21]), and the restricted SVD
(RSVD) (introduced in its explicit form in [19] and further developed and discussed
in [4, 5]). The PSVD of a pair of matrices A,B is related to the SVD of ATB, the
QSVD of a pair of matrices A,C corresponds to the SVD of AC−1 if C is nonsingular,
and the RSVD of a matrix triplet A,B,C shows the SVD of B−1AC−1 if B and C
are nonsingular.

∗Received by the editors November 6, 1998; accepted for publication (in revised form) by L. Eldén
May 30, 2000; published electronically September 7, 2000. This research was partially supported by
the Flemish Government through (1) the Research Council K.U. Leuven: Concerted Research Actions
GOA-MIPS (Model-Based Information Processing Systems) and GOA-MEFISTO-666 (Mathemati-
cal Engineering for Information and Communication Systems Technology), (2) the Fund for Scientific
Research–Flanders (F.W.O.) project G.0256.97 (Numerical Algorithms for Subspace System Identi-
fication, Extension to Special Cases), (3) the F.W.O. Research Communities ICCoS (Identification
and Control of Complex Systems) and ANMMM (Advanced Numerical Methods for Mathematical
Modelling); and by the Belgian State, Prime Minister’s Office—Federal Office for Scientific, Tech-
nical and Cultural Affairs through the Interuniversity Poles of Attraction Programmes IUAP P4-02
(Modeling, Identification, Simulation and Control of Complex Systems) and IUAP P4-24 (Intelligent
Mechatronic Systems (IMechS)). The scientific responsibility is assumed by the authors.

http://www.siam.org/journals/simax/22-2/34698.html
†Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore

117543 (matchudl@math.nus.edu.sg). This author was a visiting researcher with the K.U. Leuven
during part of this research.

‡Department of Electrical Engineering, Research Group SISTA, Katholieke Universiteit Leu-
ven, Kardinaal Mercierlaan 94, B-3001 Leuven, Belgium (lieven.delathauwer@esat.kuleuven.ac.be,
bart.demoor@esat.kuleuven.ac.be)

580

ON THE COMPUTATION OF RSVD 581

As far as the GSVDs related to a matrix inverse is concerned, the calculation of
the QSVD has been extensively studied. A key idea, which is also exploited in this
paper, is the link between the cosine-sine decomposition (CSD) [12] of a partitioned
column-orthogonal matrix

[
A
C

]
and the QSVD of the couple (A,C): if the CSD of a

column-orthogonal matrix
[
A
C

]
, with A ∈ Rn×m and C ∈ Rp×m, where we assume

that n ≥ m, is given by

[
A
C

]
=

[
U 0
0 V

]
 In−p 0

0 C
0 −S

W,

in which U,W ∈ Rn×n and V ∈ Rp×p are orthogonal and

C = diag(c1, . . . , cp) ∈ Rp×p, ci = cos θi,

S = diag(s1, . . . , sp) ∈ Rp×p, si = sin θi,

with 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θj ≤ π/2, then we have that the SVD of AC† is given by

AC† = −UCS†WT .

(An analogous link can be derived for the case n ≤ m.) This idea forms the basis
for two backward stable algorithms proposed by Stewart [16] and Van Loan [18]. Re-
cently, Zha has studied the computation of the QSVD via the CSD and the Lanczos
bidiagonalization process. The Kogbetliantz algorithm has been generalized for the
computation of the QSVD by Paige [15]; his elegant implementation initially trans-
forms A and C into a pair of triangular matrices and preserves the triangular form in
the iterative phase by using suitable plane rotations. A variation of Paige’s algorithm,
also backward stable, is given by Bai and Demmel [2]. This technique is implemented
as the LAPACK procedure STGSJA() [1]. High relative accuracy Jacobi-type algo-
rithms for the PSVD and the QSVD are developed in Drmač [8, 9, 10].

For the computation of the RSVD, the Kogbetliantz algorithm has been gener-
alized by Zha [20]. However, it is well known that Jacobi-type algorithms, which use
Jacobi transformations, typically have a higher complexity than QR-type algorithms,
which are based on QR-factorizations [3, 12, 15]. So far, nobody has proposed a QR-
type algorithm for the RSVD based on the CSD. In this paper, we show that such an
algorithm can in fact be derived in an easy way.

The paper is organized as follows. In section 2 the RSVD theorem is recalled. In
section 3 we present our numerical method for computing the RSVD. Some numerical
examples are given in section 4. Conclusions are drawn in section 5.

2. The RSVD theorem. The RSVD is a simultaneous decomposition of three
matrices with compatible dimensions to quasi-diagonal forms, i.e., to matrices con-
sisting of diagonal and zero blocks with at most one nonvanishing diagonal block per
block row and column. In this section we briefly recall its definition and importance.

Given matrices A,B,C with compatible size, we denote

ra = rank(A), rb = rank(B), rc = rank(C),

rab = rank
[
A B

]
, rac = rank

[
A
C

]
, rabc = rank

[
A B
C 0

]
,

k1 = rabc − rb − rc, k2 = rac + rb − rabc, k3 = rab + rc − rabc,

µ = rabc − rab, ν = rabc − rac, η = rabc + ra − rab − rac.

582 DELIN CHU, LIEVEN DE LATHAUWER, AND BART DE MOOR

The RSVD is now described in the following theorem.
Theorem 2.1 (RSVD theorem). Given A ∈ Rn×m, B ∈ Rn×l, C ∈ Rp×m,

there exist nonsingular matrices X ∈ Rn×n, Y ∈ Rm×m and orthogonal matrices
U ∈ Rl×l, V ∈ Rp×p such that

XAY =

k1 k2 k3 µ m− rac

k1 I 0 0 0 0
k2 0 I 0 0 0
k3 0 0 I 0 0
ν 0 0 0 SA 0
n− rab 0 0 0 0 0

,

XBU =

l − rb k2 ν

k1 0 0 0
k2 0 I 0
k3 0 0 0
ν 0 0 I
n− rab 0 0 0

,(2.1)

V CY =

k1 k2 k3 µ m− rac

p− rc 0 0 0 0 0
k3 0 0 I 0 0
µ 0 0 0 I 0

,

in which SA=[Σ 0
0 0

], with Σ ∈ Rη×η positive diagonal.

Equation (2.1) can be interpreted as a decomposition of A, relative to the column
space of B and the row space of C. With an appropriate partitioning of X−1 and Y −1

it can be written as

A = (X−1)1(Y −1)1 + (X−1)2(Y −1)2 + (X−1)3(Y −1)3 + (X−1)4Σ(Y −1)4,

in which the four terms can geometrically be classified as follows:

In column space B Not in column space B

In row space C (X−1)4Σ(Y −1)4 (X−1)3(Y −1)3

Not in row space C (X−1)2(Y −1)2 (X−1)1(Y −1)1

Obviously, the term (X−1)4Σ(Y −1)4 represents the restriction of the linear operator
represented by the matrix A to the column space of B and the row space of C; the
term (X−1)1(Y −1)1 is the restriction of A to the orthogonal complements of these
spaces, and so on.

The decomposition can also be seen as an ordinary SVD with different inner
products in row and column space. Consider the maximization of the bilinear form
φ(x, y) = xTAy over all vectors x, y subject to xTBBTx = 1 and yTCTCy = 1.
Assuming η �= 0, one can show that the maximum is equal to the largest diagonal
element of Σ and the optimizing vectors are x = x1 (first column vector of X) and
y = y1 (first column vector of Y). (η = 0 is a special case, in which either the
maximum is 0 or the norm constraints cannot be satisfied.) Other extrema of the
objective function, constrained to lie in subspaces that are orthogonal to x1 with
respect to the inner product defined by BBT and orthogonal to y1 with respect to the

ON THE COMPUTATION OF RSVD 583

inner product defined by CTC, can be found in an obvious recursive manner. These
extrema correspond to the columns of X and Y .

Considering the fact that knowledge of the column space of B and the row space
of C is present in (2.1), it comes as no surprise that the RSVD plays a crucial role in
a basic problem such as the analysis of the rank of A + BDC for varying D ∈ Rl×p;
also the influence of changing D on the rank of

M =

[
A B
C DT

]

can be examined by means of the RSVD. Another application is the minimization of
‖y‖2 + ‖x‖2 over all vectors x, y, z satisfying

b = Ax + By, z = Cx,

where A, B, C, b are given. In this variant of the conventional linear least squares
problem the matrix B allows us to take into account the geometrical distribution of
the noise. For example, the error term By is restricted to the column space of B;
other components of the observation vector b are considered as error-free. The matrix
C represents a weighting of the components of x, e.g., due to a priori information that
some components are more likely or less costly than others.

The RSVD was introduced in [19]. A discussion of its properties and applications
can be found in [5].

3. Computation of the RSVD via the CSD. [19] contained a constructive
proof of Theorem 2.1. However, as pointed out in [19], this procedure is not useful
from a numerical point of view, since in this constructive proof nonorthogonal trans-
formations are used to scale nonsingular matrices to identity matrices and to eliminate
certain submatrices in some intermediate steps during the decomposition. This will
cause numerical instability if the underlying matrices or the pivoting matrices are
ill-conditioned. In [20], Zha generalized the Kogbetliantz algorithm to compute the
RSVD. In this section we show that the RSVD can be computed via the CSD.

Our method consists of three different stages. Given an arbitrary matrix triplet
A,B,C, the first stage is a preprocessing QR reduction step which produces a possibly
lower-dimensional triplet A, B, and C with B and C nonsingular (section 3.1). This
preprocessing indicates very clearly how we can get the nonsingular matrices X and
Y in the RSVD (2.1). The second stage is the actual calculation of the SVD of matrix
B−1AC−1 via the CSD (section 3.2). The third stage consists of the backtransforma-
tion of the results to the original matrix spaces (section 3.3). An outline of the overall
algorithm is presented in section 3.4.

3.1. Preprocessing reduction. Before we give our preprocessing reduction for
the RSVD, we need to recall the QR-factorization with column pivoting and URV
decomposition [12], which will be the building blocks of our constructive proof of
Lemmas 3.1 and 3.2 below.

It is well known that any matrix A ∈ Rm×n can be factorized as

UA =

[
R1 R2

0 0

]
Π,(3.1)

where U and Π are orthogonal matrix and permutation matrix, respectively, R1 is non-
singular and upper triangular. The factorization (3.1) is called the QR-factorization

584 DELIN CHU, LIEVEN DE LATHAUWER, AND BART DE MOOR

of A with column pivoting. Note that we do not need memory to store the matrix Π
during the computation of (3.1). Moreover, if we denote

R :=
[
R1 R2

]
Π,

then R is of full row rank and

UA =

[
R
0

]
.

If we continue to squeeze
[
R1 R2

]
into upper triangular form by applying a

sequence of Householder transformations, then we have the following URV decompo-
sition of A, i.e., we get an orthogonal matrix V such that

UAV =

[R 0
0 0

]
(3.2)

with R nonsingular and upper triangular.
To compute the RSVD (2.1) of the triplet A, B, and C, first we reduce A, B,

and C to lower dimensional submatrices A, B, and C with B and C nonsingular,
applying orthogonal transformations to compress the rows and/or columns of certain
matrices in such a way that the RSVD of A,B,C can easily be derived from the
SVD of B−1AC−1. The idea is that a compression of the rows and/or columns of the
matrices that are involved allows for a more efficient formulation of the actual core
computations.

Preprocessing reduction step is necessary for computing QSVD and RSVD; see
[2, 3, 15, 20]. In all of the above-cited papers and in our paper, the QR-factorization
with column pivoting and the URV decomposition are used to compress the rows
and/or columns of a matrix [12]. (Of course, the SVD method can also be used to
compress rows and/or columns of a matrix, but it is much more expensive.) The
rank determination of a matrix is an ill-conditioned problem, which always arises
in the computation of the QSVD and RSVD. The common and effective tools are
QR-factorization with column pivoting, URV decomposition, and SVD.

We will now state two lemmas and one theorem on which our preprocessing step
is based. These three results describe how the given matrices can be brought in a
desired form by means of orthogonal transformations. Lemma 3.1 deals with two
matrices; it is a tool to prove Lemma 3.2, which discusses the actual situation of three
matrices. Theorem 3.4 is a refinement of Lemma 3.2.

Lemma 3.1. Given matrices A ∈ Rn×m, C ∈ Rp×m, there exist three orthogonal
matrices U ∈ Rn×n,W ∈ Rm×m, V ∈ Rp×p such that

UAW =

[rac − rc rc m− rac

rac − rc A11 A12 0
n + rc − rac 0 A22 0

]
,

V CW =

[rac − rc rc m− rac

p− rc 0 0 0
rc 0 C22 0

]
,(3.3)

where A11 and C22 are nonsingular.
Proof. We prove Lemma 3.1 constructively by the following algorithm.

ON THE COMPUTATION OF RSVD 585

Algorithm 1.
Input: A ∈ Rn×m, C ∈ Rp×m.
Output: Orthogonal matrices U ∈ Rn×n, V ∈ Rp×p,W ∈ Rm×m and the form (3.3).

Step 1. Perform a URV decomposition of C to get orthogonal matrices V and W
such that

V CW =:

[m− rc rc

p− rc 0 0
rc 0 C22

]

with C22 nonsingular. Set

AW =:
[m− rc rc

A1 A2

]
.

Step 2. Perform a URV decomposition of A1 (note that rank(A1) = rac − rc) to
get orthogonal matrices U and W2 such that

UA1W2 =:

[rac − rc m− rac

rac − rc A11 0
n + rc − rac 0 0

]

with A11 nonsingular. Set

UA2 =:

[
rac − rc A12

n + rc − rac A22

]
, W := W

[
W2

Irc

]
 I

0 Im−rac

Irc

 .

Step 3. Output U, V,W and UAW,V CW .
It is easy to see that (UTAW,V TCW) are in the form (3.3).
Based on Lemma 3.1, we have the following lemma.
Lemma 3.2. Given A ∈ Rn×m, B ∈ Rn×l, C ∈ Rp×m, there exist orthogonal

matrices P ∈ Rn×n, Q ∈ Rm×m, Ub ∈ Rl×l, Vc ∈ Rp×p such that

PAQ =

k1 k2 k3 µ m− rac

k1 A11 A12 A13 A14 0
k2 0 A22 A23 A24 0
k3 0 0 A33 0 0
ν 0 0 A43 A44 0
n− rab 0 0 0 0 0

,

PBUb =

l − rb k2 ν

k1 0 0 B13

k2 0 B22 B23

k3 0 0 0
ν 0 0 B43

n− rab 0 0 0

,(3.4)

VcCQ =

k1 k2 k3 µ m− rac

p− rc 0 0 0 0 0
k3 0 0 C23 0 0
µ 0 0 C33 C34 0

,

where A11, A22, A33, B22, B43, C23, and C34 are nonsingular.

586 DELIN CHU, LIEVEN DE LATHAUWER, AND BART DE MOOR

Proof. Similarly to the proof of Lemma 3.1, we prove Lemma 3.2 constructively
by the following algorithm.

Algorithm 2.
Input: A ∈ Rn×m, B ∈ Rn×l, C ∈ Rp×m.
Output: Orthogonal matrices P ∈ Rn×n, Q ∈ Rm×m, Ub ∈ Rl×l, Vc ∈ Rp×p and the
form (3.4).

Step 1. Apply Algorithm 1 to (A,C) to get orthogonal matrices P , Vc, and Q
such that

PAQ =:

[rac − rc rc m− rac

rac − rc A11 A13 0
n + rc − rac 0 A33 0

]
,

VcCQ =:

[rac − rc rc m− rac

p− rc 0 0 0
rc 0 C23

]
,

where A11 and C23 are nonsingular. Denote

PB =:

[
rac − rc B1

n + rc − rac B3

]
.

Then we have that rank
[
A33 B3

]
= rab + rc − rac =: t.

Step 2. Apply Algorithm 1 to (AT33, B
T
3) to get orthogonal matrices Ub, P2, and

Q2 such that

P2A33Q2 =:

t− x rc + x− t

t− x A33 0
x A43 A44

n− rab 0 0

, P2B3Ub =:

l − x x

t− x 0 0
x 0 B43

n− rab 0 0

with A33 and B43 nonsingular. Set

B1Ub =:
[l − x x

B11 B13

]
, A13Q2 =:

[t− x rc + x− t

A13 A14

]
, C23Q2 =:

[t− x x

C23 C24

]
,

P :=

[
Irac−rc

P2

]
P, Q := Q

 Irac−rc

Q2

Im−rac

 .

We have that
[
C23 C24

]
is nonsingular.

Step 3. Perform a QR-factorization of C24 with column pivoting to get orthogonal
matrix V3 such that

V3C24 =:

[
t− x 0
rc + x− t C34

]

with C34 nonsingular. Set

V3C23 =:

[
t− x C23

rc + x− t C33

]
, Vc :=

[
Ip−rc

V3

]
Vc.

Here, C23 is nonsingular.

ON THE COMPUTATION OF RSVD 587

Step 4. Perform a URV decomposition of B11 (note that rank(B11) = rb − x) to
get orthogonal matrices P4 and U4 such that

P4B11U4 =:

[l − rb rb − x

rac + x− rb − rc 0 0
rb − x 0 B22

]

with B22 nonsingular. Set

P4B13 =:

[
rac + x− rb − rc B13

rb − x B23

]
,

P4

[
A11 A13 A14

]

=:

[rac + x− rb − rc rb − x t− x rc + x− t

rac + x− rb − rc A11 A12 A13 A14

rb − x A21 A22 A23 A24

]
,

P :=

[
P4

In+rc−rac

]
, Ub := Ub

[
U4

Ix

]
.

We know that [A11 A12

A21 A22
] is nonsingular.

Step 5. Perform a QR-factorization of
[
A21 A22

]T
with column pivoting to

get orthogonal matrix Q5 such that

[
A21 A22

]
Q5 =:

[rac + x− rb − rc rb − x

0 A22

]

with A22 nonsingular. Set

[
A11 A12

]
Q5 =:

[rac + x− rb − rc rb − x

A11 A12

]
, Q := Q

[
Q5

Im+rc−rac

]
.

It is easy to see that A11 is nonsingular.
Step 6. Output P,Q,Ub, Vc, PAQ,PBUb, and VcCQ.
A simple calculation yields that rabc = rac+x, i.e., x = rabc−rac. Hence, matrices

PAQ,PBUb, and VcCQ are in the form (3.4).
Algorithm 2 is implemented using only orthogonal transformations; hence, it is

numerically stable.
The reduction procedure above is similar to the one proposed in Zha [20], but it

is more convenient for the computation of the RSVD, because the condensed form
(3.4) gives an explicit way to get the nonsingular matrix X and Y in the RSVD (2.1).
Note that in Algorithm 2

P2 ∈ R(n+rc−rac)×(n+rc−rac), Q2, V3 ∈ Rrc×rc ,

U4 ∈ R(l+rac−rabc)×(l+rac−rabc), P4, Q5 ∈ R(rac−rc)×(rac−rc),

n + rc − rac ≤ n, rac − rc ≤ ra ≤ n, rc ≤ m, l + rac − rabc ≤ l,

588 DELIN CHU, LIEVEN DE LATHAUWER, AND BART DE MOOR

so, besides the necessary arrays for matrices A, B, C, P , Q, Ub, and Vc, two extra
arrays of at most n×n and max(l,m)×max(l,m) orders are enough for the temporal
storage of the “temporal” matrices Q2, P2, V3, P4, U4, and Q5. So, the memory
requirement of Algorithm 2 is the same as that in the reduction procedure of [20];
hence, it is acceptable.

In order to get the nonsingular matrices X and Y in the RSVD (2.1) we have
to eliminate submatrices A12, A13, A14, A23, A24, A43, B13, B23, and C33 in (3.4).
Similar to Zha [20], these submatrices can be eliminated using nonsingular matrices
A11, A22, A33, B43, and C34 by solving some coupled linear matrix equations as
follows:

X1B43 =

[
B13

B23

]
,(3.5)

A11Y1 = A12,

[
A11 0
0 A22

]
Y2 =

[
A13 A14

A23 A24

]
−X1

[
A43 A44

]
,(3.6)

C34Y3 = C33, X2A33 = A43 −A44Y3.(3.7)

However, if some of matrices A11, A22, A33, B43, and C34 are highly ill-conditioned,
the numerical computations of linear matrix equations (3.5), (3.6), and (3.7) will en-
counter numerical difficulties and lead to large computational errors. Fortunately, we
will show that we can refine (3.4) and eliminate submatrices A12, A13, A14, A23, A24,
B13, B23, and C33 using only orthogonal transformations such as QR-factorization
with column pivoting.

Lemma 3.3. Given matrices

A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 , A21 ∈ Rñ2×n1 , A22 ∈ Rñ2×n2

with A11 nonsingular, let P21 ∈ Rñ2×n1 and P22 ∈ Rñ2×ñ2 satisfy

[P21 P22

] [A11

A21

]
= 0,

[P21 P22

] [P21 P22

]T
= Iñ2

.

Denote

[P21 P22

] [A12

A22

]
= Ã22.

Then P22 is nonsingular,
[

I 0
P21 P22

] [A11

A21

]
=

[A11

0

]
,

[
I 0
P21 P22

] [A12

A22

]
=

[A12

Ã22

]
,(3.8)

and, furthermore,

A22 −A21A−1
11 A12 = (PT22 − PT12P−T

11 PT21)Ã22 = P−1
22 Ã22.(3.9)

Consequently, if A12 = 0, ñ2 = n2, and A22 is nonsingular, then Ã22 is also nonsin-
gular.

Proof. Equation (3.8) is obvious. Let P=[P11 P12

P21 P22
] be orthogonal and denote

[P11 P12

] [A12

A22

]
= Ã12.

ON THE COMPUTATION OF RSVD 589

Then we have

A11 = PT
11Ã11.

Hence, P11 and Ã11 are nonsingular. Note that P is orthogonal, so P22 is also non-
singular. Moreover,

P21PT11 + P22PT12 = 0, P21PT21 + P22PT22 = I,

which, with the nonsingularity of P11 and P22, gives

PT22 − PT12P−T
11 PT21 = P−1

22 (P22PT22 − P22PT12P−T
11 PT21)

= P−1
22 (P22PT22 + P21PT21)

= P−1
22 .(3.10)

On other hand, we also have

A21 = PT12Ã11, A22 = PT12Ã12 + PT22Ã22, A12 = PT11Ã12 + PT21Ã22.

Hence, we have

A22 −A21A−1
11 A12 = (PT22 − PT12P−T

11 PT21)Ã22 = P−1
22 Ã22,

i.e., (3.9) is true. Moreover, if A12 = 0, ñ2 = n2 and A22 is nonsingular, then,
Ã22 = P22A22 is nonsingular.

In general, for matrix Aij(i, j = 1, 2) with suitable sizes, if A11 is nonsingular
but very ill-conditioned, the computation of A22 − A21A−1

11 A12 will not be numeri-
cally stable. Fortunately, (3.9) in the proof of Lemma 3.3 gives that we can cancel
“the instability factor” of A22 − A21A−1

11 A12 by multiplying P22. Now, although

[I 0
P21 P22

] is not orthogonal, it and the form (3.8) are computed by only orthogonal

transformations, for example, the QR-factorization of [A11

A21
] with column pivoting.

If we apply Lemma 3.3 to the form (3.4), we have the following result.
Theorem 3.4. Given A ∈ Rn×m, B ∈ Rn×l, and C ∈ Rp×m, there exist

nonsingular matrices X ∈ Rn×n, Y ∈ Rm×m and orthogonal matrices Ub ∈ Rl×l and
Vc ∈ Rp×p such that

XAY =

k1 k2 k3 µ m− rac

k1 A11 0 0 0 0
k2 0 A22 0 0 0
k3 0 0 A33 0 0
ν 0 0 0 A 0
n− rab 0 0 0 0 0

,

XBUb =

l − rb k2 ν

k1 0 0 0
k2 0 B22 0
k3 0 0 0
ν 0 0 B
n− rab 0 0 0

,(3.11)

VcCY =

k1 k2 k3 µ m− rac

p− rc 0 0 0 0 0
k3 0 0 C23 0 0
µ 0 0 0 C 0

,

590 DELIN CHU, LIEVEN DE LATHAUWER, AND BART DE MOOR

where A11,A22,A33, B22, C23, B, and C are all nonsingular. Moreover, X , Y, and
the condensed form (3.11) are computed using only orthogonal transformations which
are numerically stable.

Proof. We prove Theorem 3.4 constructively by the following algorithm.
Algorithm 3.

Input: A ∈ Rn×m, B ∈ Rn×l, and C ∈ Rp×m.
Output: Nonsingular matrices X ∈ Rn×n and Y ∈ Rm×m, orthogonal matrices
Ub ∈ Rl×l and Vc ∈ Rp×p, and the form (3.11).

Step 1. Perform Algorithm 2 to get orthogonal matrices P,Q,Ub, and Vc and the
form (3.4). Set

X := P, Y =: Q.

Step 2. Perform the QR-factorization of [B13

B43
] with column pivoting to get U (2)

11 ∈
Rk1×k1 and U (2)

12 ∈ Rk1×ν such that

[
U (2)

11 U (2)
12

] [
B13

B43

]
=: 0,

[
U (2)

11 U (2)
12

] [
U (2)

11 U (2)
12

]T
= Ik1 .

Set

A11 := U (2)
11 A11, A12 := U (2)

11 A12,
[k3 µ

A13 A14

]
:=
[
U (2)

11 U (2)
12

] [
A13 A14

A43 A44

]
,

and

X :=

U (2)

11 0 U (2)
12 0

0 Ik2+k3 0 0
0 0 Iν 0
0 0 0 In−rab

X .

Since A11 is nonsingular, Lemma 3.3 gives that A11 is also nonsingular.

Step 3. Perform the QR-factorization of [B23

B43
] with column pivoting to get U (3)

11 ∈
Rk2×k2 and U (3)

12 ∈ Rk2×ν such that

[
U (3)

11 U (3)
12

] [B23

B43

]
=: 0,

[
U (3)

11 U (3)
12

] [
U (3)

11 U (3)
12

]T
= Ik2 .

Set

[k3 µ

A23 A24

]
:=
[
U (3)

11 U (3)
12

] [A23 A24

A43 A44

]
, Ã22 := U (3)

11 A22, B22 := U (3)
11 B22,

and

X :=

Ik1 0 0 0 0

0 U (3)
11 0 U (3)

12 0
0 0 Ik3 0 0
0 0 0 Iν 0
0 0 0 0 In−rab

X .

ON THE COMPUTATION OF RSVD 591

Since A22 and B22 are nonsingular, Lemma 3.3 gives that Ã22 and B22 are also
nonsingular.

Step 4. Perform the QR-factorization of
[
C33 C34

]T
with column pivoting to

get V(4)
11 ∈ Rk3×k3 and V(4)

21 ∈ Rµ×k3 such that

[
C33 C34

] [V(4)
11

V(4)
21

]
= 0,

[
V(4)

11

V(4)
21

]T [
V(4)

11

V(4)
21

]
= Ik3 .

Denote

k3 µ

k1 A13 A14

k2 A23 A24

ν A43 A44

 :=

 A13 A14

A23 A24

A43 A44

[
V(4)

11

V(4)
21

]
, Ã33 := A33V(4)

11 , C̃23 := C23V(4)
11 ,

and

Y := Y

Ik1+k2 0 0 0

0 V(4)
11 0 0

0 V(4)
21 Iµ 0

0 0 0 Im−rac

 .

A33 and C23 are nonsingular, so we have from Lemma 3.3 that Ã33 and C̃23 are
nonsingular.

Step 5. Perform the QR-factorization of [A11 A12 A14

0 Ã22 A24
]T with column pivoting

to get V(5)
12 ∈ R(k1+k2)×µ and V(5)

22 ∈ Rµ×µ such that

[A11 A12 A14

0 Ã22 A24

][V(5
12)

V(5)
22

]
= 0,

[
V(5)

12

V(5)
22

]T [
V(5)

12

V(5)
22

]
= Iµ.

Denote

Ã44 := A44V(5)
22 , C := C34V(5)

22 ,

and

Y := Y

Ik1+k2 0 V(5)
12 0

0 Ik3 0 0

0 0 V(5)
22 0

0 0 0 Im−rac

 .

Since C34 is nonsingular, by Lemma 3.3, C is nonsingular.

Step 6. Perform the QR-factorization of [A11 A12 A13

0 Ã22 A23
]T with column pivoting

to get V(6)
12 ∈ R(k1+k2)×k3 and V(6)

22 ∈ Rk3×k3 such that

[A11 A12 A13

0 Ã22 A23

][V(6
12)

V(6)
22

]
= 0,

[
V(6)

12

V(6)
22

]T [
V(6)

12

V(6)
22

]
= Ik3 .

Denote

A33 := Ã33V(6)
22 , A43 := A43V(6)

22 , C23 := C̃23V(6)
22 ,

592 DELIN CHU, LIEVEN DE LATHAUWER, AND BART DE MOOR

and

Y := Y

Ik1+k2 V(6)
12 0

0 V(6)
22 0

0 0 Iµ+m−rac

 .

Since Ã33 and C̃23 are nonsingular, by Lemma 3.3, A33 and C23 are nonsingular.

Step 7. Perform the QR-factorization of
[A11 A12

]T
with column pivoting to

get V(7)
12 ∈ Rk1×k2 and V(7)

22 Rk2×k2 such that

[A11 A12

] [V(7)
12

V(7)
22

]
= 0,

[
V(7)

12

V(7)
22

]T [
V(7)

12

V(7)
22

]
= Ik2 .

Denote

A22 := Ã22V(7)
22 , Y := Y

Ik1 V(7)
12 0

0 V(7)
22 0

0 0 Ik3+µ+m−rac

 .

Note that Ã22 is nonsingular, so Lemma 3.3 implies that A22 is nonsingular.
Step 8. Perform the QR factorization of [A33

A43
] with column pivoting to get

U (8)
21 ∈ Rν×k3 and U (8)

22 ∈ Rν×ν such that

[
U (8)

21 U (8)
22

] [A33

A43

]
= 0,

[
U (8)

21 U (8)
22

] [
U (8)

21 U (8)
22

]T
= Iν .

Denote

A := U (8)
22 Ã44, B := U (8)

22 B43, X :=

Ik1+k2 0 0 0
0 Ik3 0 0

0 U (8)
21 U (8)

22 0
0 0 0 In−rab

 .

Since B43 is nonsingular, so by Lemma 3.3, B is nonsingular.
Step 9. Output X ,Y, Ub, Vc, XAY, XBUb, and VcCY.
A simple calculation using Lemma 3.3 yields that (XAY,XBUb, VcCY) are in the

form (3.11).
It should be pointed out that Algorithm 3 is also implemented using only orthog-

onal transformations, so it is numerically stable.
It is easy to see that[

U (2)
11 U (2)

12

]
∈ Rk1×(k1+ν),

[
U (3)

11 U (3)
12

]
∈ Rk2×(k2+ν),[

U (8)
21 U (8)

22

]
∈ Rν×(k3+ν),(3.12) [

V(4)
11

V(4)
21

]
∈ R(k3+µ)×k3 ,

[
V(5)

11

V(5)
21

]
∈ R(k1+k2+µ)×µ,(3.13)

[
V(6)

12

V(6)
22

]
∈ R(k1+k2+k3)×k3 ,

[
V(7)

12

V(7)
22

]
∈ R(k1+k2)×k2 ,(3.14)

max(k1, k2, k3, ν, k1 + ν, k2 + ν, k3 + ν, k1 + k2, k1 + k2 + k3) ≤ n,(3.15)

max(k3, µ, k3 + µ, k1 + k2 + µ) ≤ m.

ON THE COMPUTATION OF RSVD 593

Thus, the arrays for P and Q in Algorithm 2 can be used for X and Y in Algorithm
3, and the two arrays for the “temporal” matrices Q2, P2, V3, P4, U4, and Q5 in
Algorithm 2 can be used for the temporal storage of the “temporal” matrices in (3.12),
(3.13), and (3.14) in Algorithm 3. Hence, the memory requirements for Algorithm 2
and Algorithm 3 are the same, i.e., when we refine the form (3.4) to get the refined
form (3.11), we do not need extra memory.

Obviously, we can scale A11,A22,A33, B22, B, C23, and C in (3.11) to identity
matrices by SVD or QR-factorization. As with Zha [20], this step cannot be avoided
since the complete RSVD is computed, just like the computation of the complete
QSVD [15]. Therefore, now the main problem for the RSVD (3.3) is how to compute
the SVD of B−1AC−1, which is the main work of the next subsection.

3.2. CSD stage. An obvious way to compute the SVD of B−1AC−1 is first
forming Z = B−1AC−1 explicitly and then computing the SVD of Z. As is well known,
this approach is not numerically stable and will lead to large numerical errors when
B or C is ill-conditioned, so generally it is not reliable, and hence not recommended.

In the following we show how the SVD of B−1AC−1 can be computed without
forming B−1AC−1 explicitly by solving a CSD problem.

Lemma 3.5. Let A ∈ Rν×µ,B ∈ Rν×ν , C ∈ Rµ×µ with B and C nonsingular. Let
P1 ∈ Rν×ν , P2 ∈ Rµ×ν , Q̃1 ∈ Rν×µ, Q̃2 ∈ Rµ×µ satisfy

PT1 P1 + PT2 P2 = Iν ,
[PT1 PT2

] [A
C
]

= 0,

Q̃T1 Q̃1 + Q̃T2 Q̃2 = Iµ,
[Q̃T1 Q̃T2

] [BTP1

P2

]
= 0;

then we have that

B−1AC−1 = Q̃1Q̃−1
2 .

Proof. Let P̃1, P̃2 ∈ Rµ×µ be such that [P̃1 P1

P̃2 P2
] is an orthogonal matrix; then

[A
C
]

=

[P̃1 P1

P̃2 P2

] [R1

0

]

for some matrix R1 ∈ Rµ×µ. As C is nonsingular, P̃2 and R1 are nonsingular as well.
Since

[PT1 PT2
] [BQ̃1

Q̃2

]
= 0,

we have that

[BQ̃1

Q̃2

]
=

[P̃1 P1

P̃2 P2

] [R2

0

]
for some matrix R2 ∈ Rµ×µ.

Because B is nonsingular, thus

rank

[BQ̃1

Q̃2

]
= rank

[Q̃1

Q̃2

]
= µ.

594 DELIN CHU, LIEVEN DE LATHAUWER, AND BART DE MOOR

Consequently, R2 is nonsingular, which, along with the nonsingularity of P̃2, also
yields that Q̃2 is nonsingular. Hence,[BQ̃1

Q̃2

]
=

[A
C
]
R−1

1 R2,

that is, [Q̃1

Q̃2

]
R−1

2 R1 =

[B−1A
C

]
.

Therefore, we have that

B−1AC−1 = Q̃1Q̃−1
2 .

According to Lemma 3.5, the CSD of [Q̃1

Q̃2
] reveals the SVD of B−1AC−1. On

the other hand, it is also possible to obtain the SVD of B−1AC−1 from the orthogonal

complement of [Q̃1

Q̃2
]. To explain this, let us consider Q1 ∈ Rν×ν , Q2 ∈ Rµ×ν such

that

QT1Q1 +QT2Q2 = Iν ,

[BTP1

P2

]
=

[Q1

Q2

]
R,

in which R is nonsingular. Since Q̃2 is nonsingular, Q1 is nonsingular as well. If the
CSD of [Q1

Q2
] is given by

[Q1

Q2

]
=

[U
V
] [

Σ1

Σ2

]
W,

where U ,W ∈ Rν×ν , V ∈ Rµ×µ are orthogonal, UΣ1W and VΣ2W are the SVDs of
Q1 and Q2, respectively, then we have that

Q̃1Q̃−1
2 = (−U)(Σ2Σ−1

1)VT ,
that is,

B−1AC−1 = (−U)(Σ2Σ−1
1)VT .(3.16)

Equivalently, the SVD of B−1AC−1 is given by (−U)(Σ2Σ−1
1)VT .

Depending on the dimensions µ and ν, we choose to base the RSVD algorithm
on either Q1 and Q2, or Q̃1 and Q̃2. If µ < ν, we use Q̃1 and Q̃2. If µ > ν, we use

Q1 and Q2. Since the computation of [Q1

Q2
] itself is cheaper than that of [Q̃1

Q̃2
], we

also resort to Q1 and Q2 in the case µ = ν.

3.3. The RSVD components. After the computation of the SVD of B−1AC−1,
the only thing that remains to be done is the backtransformation of the results to the
original matrix spaces of A, B, and C.

Assume that orthogonal matrices Ub, Vc and nonsingular matrices X ,Y satisfy
(3.11), the SVD of B−1AC−1 is given by (3.16), and set

X = diag{A−1
11 ,B−1

22 , C23A−1
33 ,−UTB−1, In−rab

}X ,

Y = Y diag{Ik1 ,A−1
22 B22, C−1

23 , C−1VT , Im−rac},
U = Ub diag{Il−rb , Ik2 ,−U}, V = Vc diag{Ip−rc , Ik3 ,V};(3.17)

then it is easy to verify that the RSVD (2.1) of (A,B,C) is given by (XAY,XBU, V CY).

ON THE COMPUTATION OF RSVD 595

3.4. A numerical algorithm for the RSVD. We have now the following over-
all numerical method1 for the computation of the RSVD of a matrix triplet A,B,C.

Algorithm 4.
Input: Matrices A ∈ Rn×m, B ∈ Rn×l, C ∈ Rp×m.
Output: RSVD (2.1) of the matrix triplet (A,B,C).

Step 1: Compute the condensed form (3.11).

Step 2: Perform the QR-factorization of [A
C] with column pivoting to get an

orthonormal basis of the following null space:

I = PT1 P1 + PT2 P2, P1 ∈ Rν×ν ,P2 ∈ Rµ×ν ,

0 =
[PT1 PT2

] [A
C
]
.

Step 3: Perform the QR-factorization of [BTP1

P2
] to get an orthonormal basis of

the following range space:

I = QT1Q1 +QT2Q2, Q1 ∈ Rν×ν ,Q2 ∈ Rµ×ν ,[Q1

Q2

]
R =

[BTP1

P2

]
,

where R ∈ Rµ×µ is a nonsingular triangular matrix.

Step 4: Compute the CSD of [Q1

Q2
]:

[Q1

Q2

]
=

[U
V
] [

Σ1

Σ2

]
W.

Step 5: Compute matrices X, Y , U , and V using (3.17), in which A−1
ii , i = 1, 2, 3,

B−1
22 , B−1, C−1

23 , and C−1 are computed using their SVDs or QR-factorizations, such
that (XAY,XBU, V CY) are in the form (2.1).

Output XAY , XBU , V CY , X, Y , U , and V .
In Algorithm 4, Steps 1, 2, and 3 amount to the QR-factorizations with column

pivoting and URV decomposition, which can be implemented in a stable and efficient
way (see [1]); Step 5 can be carried out by SVD or QR-factorization; Step 4 is the
critical stage in Algorithm 4; one can make use of Van Loan’s CSD algorithm here
[18].

4. Numerical examples. We will verify only the numerical performance of the
core part of Algorithm 4 formed by Steps 2, 3, and 4, which computes the SVD of
B−1AC−1. Steps 2 and 3 are implemented using QR-factorization with column piv-
oting and URV decomposition. Step 4 is implemented as Van Loan’s CSD algorithm
[18], in which we set the parameter τ = 1√

2
, which minimizes a backward error bound

[3]. All calculations were carried out in MATLAB 5.0 on an HP 712/80 workstation
with IEEE standard (machine accuracy ε ∼= 10−16).

We assume that A,B, C ∈ Rµ×µ are square. To quantify the accuracy of the
results, we define the residuals

resSV D =
‖Σ̂− Σ‖2
µ‖Σ̂‖2

,

1MATLAB code is available upon request.

596 DELIN CHU, LIEVEN DE LATHAUWER, AND BART DE MOOR

in which

Σ̂ = diag{σ̂1, σ̂2, . . . , σ̂µ}, Σ = diag{σ1, σ2, . . . , σµ},

where σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂µ and σ1 ≥ σ2 ≥ · · · ≥ σµ are the exact and the computed
singular values of B−1AC−1, respectively.

In a first setup, consisting of eight examples, the triplet (A,B, C) is of the form

A = R1Σ1R2, B = R1Σ2W1, C = W2Σ3R2,

in which R1, R2, W1, and W2 are randomly chosen orthogonal matrices (obtained
from a QR-factorization of a matrix of which the entries are drawn from a uniform
distribution over [0, 1)); the way in which the entries of

Σi = diag{σi1, . . . , σiµ}, i = 1, 2, 3,

are chosen is specific for each example. Obviously, the exact SVD of B−1AC−1 is
given by

B−1AC−1 = WT
1 ΣWT

2 with Σ = Σ−1
2 Σ1Σ−1

3 .

We will choose the diagonal elements of Σ1, Σ2, and Σ3 in such a way that different
situations in terms of the condition numbers of A, B, C and B−1AC−1 are to be dealt
with. In the description below, we use the symbol η to denote a value drawn from a
uniform distribution over [0, 1); κ(M) is the 2-norm condition number of matrix M .

Example 1.

σij = (j + i) + ηij , i = 1, 2, 3, j = 1, . . . , µ.

This is a situation in which A,B, C and B−1AC−1 are well-conditioned.
Example 2.

σ1j = (1 + η1j) ∗ 10−
9
µ j , σij = (j + i) + ηij , i = 2, 3, j = 1, . . . , µ.

This means that B and C are well-conditioned, but, on the other hand, A and B−1AC−1

are ill-conditioned, with

κ(A) = O(109), κ(B−1AC−1) = O(109).

Example 3.

σ2j = (2 + η2j) ∗ 10
3
µ j , σij = (j + i) + ηij , i = 1, 3, j = 1, . . . , µ.

A and C are well-conditioned; B and B−1AC−1 have a moderate condition number.
Example 4.

σ3j = (3 + η3j) ∗ 10
4
µ j , σij = (j + i) + ηij , i = 1, 2, j = 1, . . . , µ.

A and B are well-conditioned; C and B−1AC−1 have a moderate condition number.
Example 5.

σ3j = (j+3)+η3j , σ1j = (1+η1j)∗10−
9
µ j , σ2j = (2+η2j)∗10−

3
µ j , j = 1, . . . , µ.

ON THE COMPUTATION OF RSVD 597

C is well-conditioned; B has a moderate condition number; A and B−1AC−1 are ill-
conditioned, with

κ(A) = O(109), κ(B−1AC−1) = O(106).

Example 6.

σ2j = (j+2)+η2j , σ1j = (1+η1j)∗10−
9
µ j , σ3j = (3+η3j)∗10−

3
µ j , j = 1, . . . , µ.

B is well-conditioned; C has a moderate condition number; A and B−1AC−1 are ill-
conditioned, with

κ(A) = O(109), κ(B−1AC−1) = O(106).

Example 7.

σ1j = (j + 1) + η1j , σ2j = (2 + η2j) ∗ 10
3
µ j , σ3j = (3 + η3j) ∗ 10

3
µ j , j = 1, . . . , µ.

A is well-conditioned; B and C have a moderate condition number; B−1AC−1 is ill-
conditioned, with κ(B−1AC−1) = O(106).

Example 8.

σ1j = (1+η1j)∗10−
9
µ j , σ2j = (2+η2j)∗10

4
µ j , σ3j = (3+η3j)∗10−

3
µ j , j = 1, . . . , µ.

B and C have a moderate condition number; A and B−1AC−1 are ill-conditioned, with

κ(A) = O(109), κ(B−1AC−1) = O(1010).

In each of these examples above, the dimension µ was varied between 51 and
100. The values of resSV D that were obtained in Examples 1–4 are plotted in Figure
4.1 and Examples 5–8 are plotted in Figure 4.2. From these figures, we see that our
results are satisfactory.

In a second setup, we choose

B = (wilkinson(µ)− µ ∗ Iµ) ∗ V (µ), A = (wilkinson(µ)− µ ∗ Iµ) ∗ hilb(µ),

C = U(µ) ∗ hilb(µ),

in which U(µ), V (µ) ∈ Rµ×µ are randomly chosen orthogonal matrices and
wilkinson(µ) and hilb(µ) are the µth-order Wilkinson matrix and Hilbert matrix,
respectively (which can be generated by the “wilkinson” and “hilb” command in
MATLAB). The exact singular values of B−1AC−1 are obviously equal to 1. They are
estimated in 4 different ways:

• By using the algorithm developed in this paper.
• By means of the MATLAB command

svd(inv(B) ∗ A ∗ inv(C)),

in which B−1AC−1 is formed explicitly. This technique is referred to as “direct
method 1.”
• By means of the MATLAB commands

[U1, S1, V 1] = svd(B), B̃ = V 1 ∗ inv(S1) ∗ U1′,

598 DELIN CHU, LIEVEN DE LATHAUWER, AND BART DE MOOR

Fig. 4.1. (a)–(d) depict Examples 1–4, respectively.

[U2, S2, V 2] = svd(C), C̃ = V 2 ∗ inv(S2) ∗ U2′,

and

svd(B̃ ∗ A ∗ C̃).

This technique is referred to as “direct method 2.”
• By means of the MATLAB command

gsvd(Ã, C),

in which

Ã = hilb(µ).

It is easy to see that with this particular definition of Ã, the singular values
of B−1AC−1 and ÃC−1 are the same. The “gsvd” routine in MATLAB is an
implementation of the QSVD algorithm by Van Loan [18]. This technique is
referred to as the “GSVD method.”

In the following table, we list the values of the residue resSV D obtained by these
4 methods, for µ = 8, 9, . . . , 12.

ON THE COMPUTATION OF RSVD 599

Fig. 4.2. (a)–(d) depict Examples 5–8, respectively.

Our method GSVD method Direct method 1 Direct method 2

µ = 8 2.446643637e− 08 1.106089772e− 08 1.591006943e− 07 2.241213379e− 07

µ = 9 4.635656435e− 07 3.593259342e− 07 1.009544058e− 05 4.035071152e− 06

µ = 10 1.328935076e− 05 2.534763366e− 06 2.875451264e− 04 1.094955938e− 04

µ = 11 2.659354824e− 04 3.018865472e− 04 2.008595385e− 02 2.639692842e− 03

µ = 12 1.686164914e− 02 1.683184121e− 02 2.138542385e+ 00 1.189748962e− 01
Matrix is close to singular!

when µ = 12

These results clearly show that our method is comparable with the GSVD method
and performs better than the direct method 1 and the direct method 2. One of the
main reasons for the differences in performance is that Hilbert matrix is very ill-
conditioned. For example, for a Hilbert matrix of order µ we have

µ 8 9 10 11 12
Condition number 1.5258e+ 10 4.9315e+ 11 1.6025e+ 13 5.2196e+ 14 1.712120390592042e+ 16

5. Conclusions. We explained how the RSVD of an arbitrary matrix triplet A ∈
Rn×m, B ∈ Rn×l, C ∈ Rp×m can be computed using a CSD-based QR-type method.

600 DELIN CHU, LIEVEN DE LATHAUWER, AND BART DE MOOR

First, the matrices A,B,C are reduced to a lower-dimensional triplet A,B, C, with
B and C nonsingular, using orthogonal transformations such as the QR-factorization
with column pivoting and the URV decomposition. Next, the restricted singular values
and vectors, defined by the SVD of B−1AC−1, are computed using Van Loan’s CSD
algorithm, without having to form B−1AC−1 explicitly. Some numerical examples
were given to illustrate the performance of the presented method.

Our algorithm is of the QR-type. It is well known that, in general, QR-type
algorithms do not have a high relative accuracy. On the other hand, the Jacobi-type
QSVD algorithm proposed by Drmač [8, 9, 10] does have a high relative accuracy.
How this procedure can be generalized for the RSVD is an important topic of further
research.

Acknowledgments. We would like to thank Prof. Lars Eldén and the anony-
mous referees for their kind and detailed comments on an early version of the text.
This paper benefited a lot from their valuable suggestions.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammerling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK User’s
Guide, SIAM, Philadelphia, 1992.

[2] Z.J. Bai and J.W. Demmel, Computing the generalized singular value decomposition, SIAM
J. Sci. Comput., 14 (1993), pp. 1464–1486.

[3] Z. Bai, The CSD, GSVD, their Applications and Computations, IMA Preprint 958, University
of Minnesota, Minneapolis, 1992.

[4] B. De Moor and G.H. Golub, Generalized Singular Value Decompositions: A Proposal for a
Standardized Nomenclature, Tech. Report 89-10, SISTA, E.E. Dept. (ESAT), K.U. Leuven,
Leuven, Belgium, 1989.

[5] B.L.R. De Moor and G.H. Golub, The restricted singular value decomposition: Properties
and applications, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 401–425.

[6] B. De Moor and P. Van Dooren, Generalizations of the singular value and QR decomposi-
tion, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 993–1014.

[7] B. De Moor, On the structure of generalized singular value and QR decompositions, SIAM J.
Matrix Anal. Appl., 15 (1994), pp. 347–358.

[8] Z. Drmač, Fast and accurate algorithms for PSVD and GSVD, in SIAM Annual Meeting,
Stanford University, Stanford, CA, 1997.

[9] Z. Drmač, Accurate computation of the product-induced singular value decomposition with
applications, SIAM J. Numer. Anal., 35 (1998), pp. 1969–1994.

[10] Z. Drmač, A tangent algorithm for computing the generalized singular value decomposition,
SIAM J. Numer. Anal., 35 (1998), pp. 1804–1832.

[11] K.V. Fernando and S. Hammarling, A product induced singular value decomposition for two
matrices and balanced realization, in Linear Algebra in Signals, Systems, and Control, B.N.
Datta et al., eds., SIAM, Philadelphia, 1988, pp. 128–140.

[12] G.H. Golub and C.F. Van Loan,Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, 1996.

[13] M.T. Heath, A.J. Laub, C.C. Paige, and R.C. Ward, Computing the singular value de-
composition of a product of two matrices, SIAM J. Sci. Statist. Comput., 7 (1986), pp.
1147–1159.

[14] C.C. Paige and M.A. Saunders, Towards a generalized singular value decomposition, SIAM
J. Numer. Anal., 18 (1981), pp. 398–405.

[15] C.C. Paige, Computing the generalized singular value decomposition, SIAM J. Sci. Statist.
Comput., 7 (1986), pp. 1126–1146.

[16] G.W. Stewart, Computing the CS-decomposition of a partitioned orthogonal matrix, Numer.
Math., 40 (1982), pp. 297–306.

[17] C.F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal., 13
(1976), pp. 76–83.

[18] C.F. Van Loan, Computing the CS and the generalized singular value decomposition, Numer.
Math., 46 (1985), pp. 479–491.

ON THE COMPUTATION OF RSVD 601

[19] H. Zha, The restricted singular value decomposition of matrix triplets, SIAM J. Matrix Anal.
Appl., 12 (1991), pp. 172–194.

[20] H. Zha, A numerical algorithm for computing the restricted singular value decomposition of
matrix triplets, Linear Algebra Appl., 168 (1992), pp. 1–25.

[21] H. Zha, Computing the generalized singular values/vectors of large sparse or structured matrix
pairs, Numer. Math., 72 (1996), pp. 391–417.

THICK-RESTART LANCZOS METHOD FOR LARGE SYMMETRIC
EIGENVALUE PROBLEMS∗

KESHENG WU† AND HORST SIMON†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 602–616

Abstract. In this paper, we propose a restarted variant of the Lanczos method for symmetric
eigenvalue problems named the thick-restart Lanczos method. This new variant is able to retain an
arbitrary number of Ritz vectors from the previous iterations with a minimal restarting cost. Since
it restarts with Ritz vectors, it is simpler than similar methods, such as the implicitly restarted
Lanczos method. We carefully examine the effects of the floating-point round-off errors on stability
of the new algorithm and present an implementation of the partial reorthogonalization scheme that
guarantees accurate Ritz values with a minimal amount of reorthogonalization. We also show a
number of heuristics on deciding which Ritz pairs to save during restart in order to maximize the
overall performance of the thick-restart Lanczos method.

Key words. thick-restart, Lanczos eigenvalue method, partial reorthogonalization

AMS subject classifications. 65F15, 65F25

PII. S0895479898334605

1. Introduction. Given an n×n matrix A, its eigenvalue λ and the correspond-
ing eigenvector x are defined by Ax = λx. If the matrix size is large and only a smaller
number of eigenvalues are wanted, a projection-based method is usually used [16, 18].
These types of methods usually build orthogonal bases first and then perform the
Rayleigh–Ritz projection to extract approximate solutions. There are some alterna-
tive projection methods, such as the harmonic Ritz value method [14], but the most
significant difference among the projection eigenvalue methods is how they generate
their bases. For this reason, most of the eigenvalue methods are named after their
basis generation procedures.

When the matrix is symmetric, the Lanczos method (see Algorithm 1, [11, 16,
20]) is the most commonly used method. Other frequently used methods include
the Arnoldi method (see Algorithm 2, [1, 20, 24]) and the Davidson method [6, 7,
23]. The Arnoldi method and the Lanczos method are mathematically equivalent
on symmetric eigenvalue problems. The Lanczos method is used more frequently
because it takes advantage of the fact that most coefficients hj,i computed in step (c)
of Algorithm 2 are zero (hj,i = 0, j = 1, . . . , i − 2), and the matrix formed from hj,i
is symmetric (βi−1 ≡ hi−1,i = hi,i−1, αi ≡ hi,i). This allows the Lanczos method
to avoid a significant amount of arithmetic operations. The Davidson method offers
more functionality, such as preconditioning, flexible restarting options, etc., but it
also uses more arithmetic operations per iteration and more computer memory.

There are many different variations of the Lanczos method depending on factors
such as restarting, reorthogonalization, storage schemes for the Lanczos vectors qi, and

∗Received by the editors February 26, 1998; accepted for publication (in revised form) by A.
Greenbaum April 30, 2000; published electronically September 15, 2000. This work was supported
by the Director, Office of Science, Office of Laboratory Policy and Infrastructure Management, of
the U.S. Department of Energy under contract DE-AC03-76SF00098. This research used resources
of the National Energy Research Scientific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy. The U.S. Government retains a nonexclusive, royalty-free
license to publish or reproduce the published form of this contribution, or allow others to do so, for
U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by these rights.

http://www.siam.org/journals/simax/22-2/33460.html
†Lawrence Berkeley National Laboratory/NERSC, Berkeley, CA 94720 (kwu@lbl.gov, hdsimon@

lbl.gov).

602

THICK-RESTART LANCZOS METHOD 603

Algorithm 1. The Lanczos iter-
ations starting with r0. Let β0 =
‖r0‖, and q0 = 0.

For i = 1, 2, . . .,
(a) qi = ri−1/‖ri−1‖,
(b) p = Aqi,
(c) αi = qTi p,
(d) ri = p− αiqi − βi−1qi−1,
(e) βi = ‖ri‖.

Algorithm 2. The Arnoldi iter-
ations starting with r0.

For i = 1, 2, . . . ,
(a) qi = ri−1/‖ri−1‖,
(b) p = Aqi,
(c) hj,i = qTj p, j = 1, . . . , i,

(d) ri = p−∑i
j=1 hj,iqj ,

(e) hi,i+1 = ‖ri‖.

so on. This paper will discuss a restarted Lanczos method, and in the remainder of this
section we will discuss the motivations for restarting and briefly review the commonly
used restarting schemes. We plan to store the Lanczos vectors in a computer’s main
memory. This significantly reduces the scope of the discussion. The issues related to
reorthogonalization and details of how to restart are discussed later in the paper.

In both Algorithms 1 and 2 a new vector qi is generated in each iteration. These
vectors are needed when performing reorthogonalization and computing the Ritz vec-
tors. Often a large number of iterations are needed to compute an eigenvalue. On
most machines, there is not enough computer memory to store the Lanczos vectors.
In addition, the number of arithmetic operations associated with the reorthogonali-
zation and the Rayleigh–Ritz projection grows as the number of vectors increases. A
restarted method avoids these difficulties by limiting the maximum number of vectors
it generates at any time. When the maximum number is reached, a set of new start-
ing vectors is computed and the method is restarted. Typically the restarted Lanczos
method stores the Lanczos vectors in core, which allows fast access. Because the
maximum number of vectors is usually modest, the arithmetic operations required by
reorthogonalizations and the Rayleigh–Ritz projection are reasonably small. These
features allow a restarted method to execute efficiently.

There are a number of ways to restart the Lanczos method. Since Algorithm 1
can start with only one vector, the most straightforward way is to use the Ritz vec-
tor if one eigenvalue is wanted. If more than one eigenvalue is wanted, we can lock
the converged ones and combine the rest into one starting vector [18]. Typically, a
restarted Lanczos method with one of these restarting schemes needs significantly
more iterations to compute a solution than the nonrestarted version. Recently, there
has been a number of significant developments in restarted methods. The implicit
restarting scheme is a successful strategy that has been applied to both the Arnoldi
method [24] and the Lanczos method [2]. Another successful technique is the dynamic
thick-restart scheme [7, 10, 15, 25]. Because the thick-restart scheme uses Ritz pairs
directly, it is also known as an explicit restarting scheme. The most commonly used
thick-restart method is the thick-restart Davidson method. When used with identity
preconditioner, this method is mathematically equivalent to the implicitly restarted
Arnoldi method with exact shifts [25]. Since the implicit restart scheme does not
restart with Ritz vectors, a separate postprocessing step is required to compute the
final Ritz vectors when the users need eigenvectors. This postprocessing step is not
needed with an explicit restarting scheme that keeps the latest Ritz vectors in the cur-
rent Krylov subspace. The thick-restart procedure is only slightly different from the
Rayleigh–Ritz projection, whereas the implicit restarting procedure is more complex.
The implicitly restarted Arnoldi method is known to have stability concerns [13]; ex-

604 KESHENG WU AND HORST SIMON

plicitly restarted methods do not have the same concerns. For these reasons, we set
out to develop and study a thick-restart Lanczos method for eigenvalue problems in
this paper.

2. Thick-restart Lanczos algorithm. We have briefly reviewed the features
of the thick-restart procedure and the Lanczos method. In this section we will show
how the two may be combined to form an eigenvalue method.

Before any restarting takes place, the restarted Lanczos method proceeds as de-
scribed in Algorithm 1. Assume that m iterations are allowed before restarting. After
m iterations, the vectors qi satisfy the Lanczos recurrence

AQm = QmTm + βmqm+1e
T
m,(2.1)

where Qm = [q1, . . . , qm], em is the last column of the identity matrix with m columns,
and Tm ≡ QT

mAQm is an m×m symmetric tridiagonal matrix constructed from αi and
βi, ti,i = αi, ti,i+1 = ti+1,i = βi. Using the Rayleigh–Ritz projection, we can produce
approximate solutions to the eigenvalue problem. Let (λ, y) be a pair of eigenvalue
and eigenvector, i.e., an eigenpair, of Tm; then λ is an approximate eigenvalue of A
and x = Qmy is the corresponding approximate eigenvector. They are also known
as the Ritz value and the Ritz vector. The residual of this approximate solution is
defined to be Ax− λx. For symmetric eigenvalue problems, the norm of this residual
is a good indicator of the solution quality.

When restarting, we first determine an appropriate number of Ritz vectors to
save, say, k, then choose k eigenvectors of Tm, say, Y , and compute k Ritz vectors,
Q̂k = QmY . The following derivation can be carried out by assuming Y to be any
orthonormal basis of a k-dimensional invariant subspace of Tm. Since the matrix
Tm is symmetric, there is no apparent advantage to use any basis set other than
the eigenvectors. If Y are eigenvectors of Tm, the vectors saved during restart Q̂k

are Ritz vectors. To distinguish the quantities before and after restart, we denote the
quantities after restart with a hat. For example, the projected matrix Tm after restart
is T̂k ≡ Y TTmY . Since we have chosen to restart with Ritz vectors, the matrix T̂k
is diagonal and the diagonal elements are the Ritz values. Immediately after restart,
the new basis vectors satisfy the relation

AQ̂k = Q̂kT̂k + βmq̂k+1s
T ,(2.2)

where q̂k+1 ≡ qm+1 and s ≡ Y T em. We recognize that this equation is an extension
of (2.1) because the residual vector of every Ritz vector in Q̂k is parallel to q̂k+1. In
Algorithm 1, the Lanczos recurrence is extended one column at a time by augmenting
the current basis with qi+1. In the same spirit, we can augment the basis Q̂k with
q̂k+1.

To continue extending the basis, we follow the augment Krylov subspace method
[3, 19] and use the Gram–Schmidt procedure to enforce the orthogonality of the whole
basis. The expression for q̂k+2 is

β̂k+1q̂k+2 = r̂k+1 ≡ (I − Q̂k+1Q̂
T
k+1)Aq̂k+1(2.3)

= (I − q̂k+1q̂
T
k+1 − Q̂kQ̂

T
k)Aq̂k+1

= (I − q̂k+1q̂
T
k+1)Aq̂k+1 − Q̂kβms.

The scalar β̂k+1 in the above equation is equal to the norm of the right-hand side so
that q̂k+2 has unit norm. Since the vector Q̂T

kAq̂k+1 is known (= s), we only need to

THICK-RESTART LANCZOS METHOD 605

compute α̂k+1 as in step (c) of Algorithm 1. The vector q̂k+2 can be computed by

replacing step (d) with r̂k+1 = p̂− α̂k+1q̂k+1−
∑k
j=1 βmsj q̂j , where p̂ = Aq̂k+1. While

computing q̂k+2, we also extended the matrix T̂k by one column and one row, which
produces an arrowhead matrix T̂k+1. The Lanczos recurrence relation (see (2.1)) is

maintained after this step, more specifically, AQ̂k+1 = Q̂k+1T̂k+1 + β̂k+1q̂k+2e
T
k+1,

where β̂k+1 = ‖r̂k+1‖. Even though T̂k+1 is not tridiagonal as in the original Lanczos
method, further steps of the restarted Lanczos algorithm can be carried out using
three-term recurrence, as shown next.

After we have computed q̂k+i (i > 1), to compute the next vector q̂k+i+1, we
again go back to the Gram–Schmidt procedure,

β̂k+iq̂k+i+1 = (I − Q̂k+iQ̂
T
k+i)Aq̂k+i

= (I − q̂k+iq̂
T
k+i − q̂k+i−1q̂

T
k+i−1)Aq̂k+i − Q̂k+i−2(AQ̂k+i−2)T q̂k+i

= Aq̂k+i − α̂k+iq̂k+i − β̂k+i−1q̂k+i−1,(2.4)

where by definition α̂k+i is q̂Tk+iAq̂k+i and β̂k+i is the norm of the right-hand side.
The above equation is true for any i greater than 1. From this equation we see that
computing q̂k+i (i > 2) requires the same amount of arithmetic work as in the original
Lanczos algorithm; see Algorithm 1. The matrix T̂k+i ≡ Q̂T

k+iAQ̂k+i can be written
as follows:

T̂k+i =

T̂k βms

βmsT α̂k+1 β̂k+1

β̂k+1 α̂k+2 β̂k+2

. . .
. . .

. . .

 .

The above formulas show how to continue the Lanczos iterations after the first
restart. The derivation is based on the facts that the Lanczos vectors are orthogo-
nal and that they satisfy the Lanczos recurrence. Since the vectors resulting from
the above formulas also satisfy the same conditions, the procedure can be repeatedly
restarted. It is clear that this restarted algorithm is cheaper than the straightfor-
ward versions of the augmented Krylov methods. If k vectors (Q̂k) are saved, the
augmented Krylov subspace method needs the projection matrix Q̂T

kAQ̂k in order to

proceed. The crucial step here is determining how to generate AQ̂k. Usually one
either explicitly multiplies A and Q̂k or computes AQ̂k from stored AQm of previous
iterations. However, because of (2.2), Q̂T

kAQ̂k is available without performing any
matrix-vector multiplication with A or storing AQm in computer memory. Similar
to the nonrestarted Lanczos method, using the Lanczos recurrence relation we can
compute the residual norms of the approximate eigenpairs without explicitly com-
puting the residual vectors. This allows us to measure the quality of the solutions
efficiently.

The matrix Tm is no longer tridiagonal after the first restart but can still be
stored in an efficient manner. As mentioned before, the matrix T̂k is diagonal, and
its nonzero values can be stored as α̂1, . . . , α̂k. The array (βms) is of size k and can

be stored as β̂1, . . . , β̂k. In short, the arrays α̂i and β̂i are

α̂i = λi, β̂i = βmym,i, i = 1, . . . , k,(2.5)

606 KESHENG WU AND HORST SIMON

where λi is the ith saved eigenvalue of Tm, the corresponding eigenvector is the ith
column of Y , and ym,i is the mth element of the ith column. After restart the first k
basis vectors satisfy the following relation:

Aq̂i = α̂iq̂i + β̂iq̂k+1, i = 1, . . . , k.

It is easy to arrange the algorithm so that q̂i and qi are stored in the same memory
location. The hat symbol is dropped in the following description of the algorithm.

Algorithm 3.
The thick-restart Lanczos iterations starting with k Ritz vectors and a residual

vector rk such that Aqi = αiqi + βiqk+1, i = 1, . . . , k, and qk+1 = rk/‖rk‖. The value
k may be zero, in which case αi and βi are uninitialized and r0 is the initial guess.

1. Initialization.
(a) qk+1 = rk/‖rk‖,
(b) p = Aqk+1,
(c) αk+1 = qTk+1p,

(d) rk+1 = p−αk+1qk+1−
∑k
i=1 βiqi,

(e) βk+1 = ‖rk+1‖,

2. Iterate. For i = k + 2, k + 3, . . .,
(a) qi = ri−1/βi−1,
(b) p = Aqi,
(c) αi = qTi p,
(d) ri = p− αiqi − βi−1qi−1,
(e) βi = ‖ri‖.

The difference between Algorithms 1 and 3 is in the initialization step. When k
is zero, the initialization step of the two algorithms are the same. Algorithm 3 can
take on an arbitrary number of starting vectors, but Algorithm 1 cannot. When k
is greater than zero, the initialization step orthogonalizes Aqk+1 against all existing
k+1 vectors. In all subsequent steps, the same three-term recurrence is used for both
Algorithms 1 and 3.

It is easy to see how an existing restarted Lanczos program can be converted to
generate orthogonal bases using the above algorithm. To convert a complete eigen-
value program, the Rayleigh–Ritz projection step needs to be modified because the
matrix Tm is not tridiagonal in the new method. Our options include treating it as
a full matrix, treating it as a banded matrix, and using Givens rotations to reduce
it to a tridiagonal matrix. After deciding what to do, we can use an appropriate
routine from LAPACK or EISPACK to find all eigenvalues and eigenvectors of Tm.
At this point, as in any other version of the Lanczos method, we can evaluate the
residual norms of the approximate solutions and perform a convergence test [9, 18].
In addition, based on Ritz values and their residual norms, we can also decide which
Ritz pairs to save. This allows us to compute only those Ritz vectors that are needed
for restarting.

Following the same argument used to show that the implicitly restarted Arnoldi
method is equivalent to the thick-restart Davidson method, it is easy to show that the
thick-restart Lanczos method is mathematically equivalent to the implicitly restarted
Lanczos method [27]. We derived the thick-restart Lanczos method by using the
augmented Krylov subspace concept which may lead to bases that do not span Krylov
subspaces. This equivalence property indicates that the bases built by this method in
fact span Krylov subspaces, though the starting vectors for the Krylov sequences are
not explicitly known. A corollary of this equivalence property is that the new method
is a Krylov subspace method. Because of the equivalence relation, we expect the new
method to be as effective as the implicitly restarted Lanczos method. One advantage
of the new method is that it is simpler to implement as a computer program.

This concludes the description of the new algorithm. In the remainder of this
paper, we will focus on two issues related to implementing the eigenvalue method
on computers: how to maintain orthogonality among the Lanczos vectors, and which
Ritz pairs to save when restarting.

THICK-RESTART LANCZOS METHOD 607

Table 3.1
Information about the test matrices used.

Name N NNZ Description
NASASRB 54870 2677324 shuttle rocket booster structure from NASA
S3DKT3M2 90449 3753461 cylindrical shell, uniform triangular mesh
S3DKQ4M2 90449 4820891 cylindrical shell, quadratic elements

3. Orthogonality of the basis. The above description of the thick-restart
Lanczos method is accurate only when carried out in exact arithmetic. When imple-
mented as a computer program, the round-off errors of floating-point arithmetic will
cause the Lanczos vectors to lose orthogonality. A similar issue also exists for other
variants of the Lanczos method and has been extensively studied before. The typical
cure for loss of orthogonality is reorthogonalization through the Gram–Schmidt pro-
cedure. The commonly used reorthogonalization schemes are no reorthogonalization
[4, 26], the selective reorthogonalization [17], the partial reorthogonalization [22], and
the full reorthogonalization. In this section we will exam three of the four schemes,
i.e., no reorthogonalization, full reorthogonalization, and partial reorthogonalization.
We leave out the selective reorthogonalization because it has similar objectives to the
partial reorthogonalization scheme, and the latter one was shown to be more effective
[21].

If no reorthogonalization is performed, we avoid the arithmetic operations as-
sociated with reorthogonalization, and we need to access only the two most recent
Lanczos vectors when building the basis. If eigenvectors aren’t needed, there is no
need to access the earlier Lanczos vectors. Not performing reorthogonalization may
reduce both operation count and memory requirement of a nonrestarted Lanczos pro-
gram. The same is not true for the thick-restart Lanczos method. The thick-restart
Lanczos method cannot be implemented without storing the Lanczos vectors since
they are an integral part of the restarting process. Not performing reorthogonaliza-
tion in the thick-restart Lanczos method reduces only the arithmetic operations. In
the nonrestarted Lanczos method, loss of orthogonality among the Lanczos vectors
leads to spurious solutions, even though the spurious solutions are duplicate copies of
the correct eigenvalues [9, 16]. To illustrate the issues related to loss of orthogonality
in the thick-restart Lanczos method, we conduct some tests using three symmetric
matrices listed in Table 3.1. These matrices are the largest symmetric matrices from
the MatrixMarket web site1 when the tests were conducted.

Figure 3.1 shows the orthogonality level of the bases built by the thick-restart
Lanczos method without reorthogonalization. The horizontal axis indicates how many
times the Lanczos method restarted, and the vertical axis is the Frobenius norm of
QTQ − I, where Q contains 20 Lanczos vectors. When vectors in Q are orthogonal
to machine precision, we would expect ‖QTQ − I‖F to be on order of 10−15. As
‖QTQ − I‖F becomes close to one, Q is no longer a set of linearly independent vec-
tors. Data in Figure 3.1 show that the loss of orthogonality progressively becomes
worse after the first few restarts. Similar loss of orthogonality has been observed in
the nonrestarted Lanczos method. Despite the loss of orthogonality, the nonrestarted
Lanczos method can still compute the eigenvalues accurately. To see whether the
thick-restarted Lanczos method behaves similarly, we conduct further tests. For con-

1MatrixMarket URL is http://math.nist.gov/MatrixMarket.

608 KESHENG WU AND HORST SIMON

0 10 20 30 40 50 60 70 80 90 100

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

restarts

or
th

og
on

al
ity

 le
ve

l

NASASRB
S3DKT3M2
S3DKQ4M2

Fig. 3.1. The orthogonality level (‖QTQ− I‖F) of the bases built by the thick-restart Lanczos
method without reorthogonalization (m = 20).

venience of discussion, we define δλ and δr to measure the errors caused by the loss
of orthogonality:

δλ ≡ |λ− xTAx/xTx|, δr ≡ ‖Ax− λx‖ − |βmeTmy|.
These two quantities together will be called the floating-point errors in this paper.
If the Rayleigh–Ritz projection is carried out using exact arithmetic on an exactly
orthogonal basis, both δλ and δr are zero. If the Lanczos vectors are orthogonal to
the machine precision (ε), then the floating-point errors are on the order of ε‖A‖.

Table 3.2 shows the five largest Ritz values and their corresponding δλ and δr
computed by the thick-restart Lanczos method without reorthogonalization (m = 20).
Since all values of δλ are close to ε‖A‖(= ελmax), these Ritz values are close to their
exact values. Given that the Ritz values are accurate, δr indicates errors in the Ritz
vectors. If the Ritz vectors are accurate, δr is expected to be close to ε‖A‖. The values
of δr in Table 3.2 are several orders of magnitude larger than ε‖A‖, which indicates
that the eigenvectors are not computed accurately. Similar characteristics are also
present in the nonrestarted Lanczos method. What is also similar is that they both
generate the same kind of spurious solutions. For example, the largest eigenvalue of
S3DKQ4M2 is a simple eigenvalue; however, from Table 3.2, we see it is computed
twice.

The most straightforward way to cure the loss of orthogonality problem is to per-
form full reorthogonalization. Since the full reorthogonalization maintains the orthog-

Table 3.2
The five largest eigenvalues computed by the thick-restart Lanczos method without reorthogon-

alization.

NASASRB S3DKT3M2 S3DKQ4M2
λ δλ δr λ δλ δr λ δλ δr

2648056755 1E-6 2E2 8798.436369 3E-11 7E-6 4601.653436 6E-11 2E-6
2647979344 1E-6 2E2 8796.715998 1E-11 7E-5 4601.653436 3E-11 7E-7
2634048615 4E-6 7E2 8794.143789 4E-11 1E-3 4600.851648 4E-11 3E-6
2633679289 1E-6 9E2 8793.936155 4E-11 7E-3 4599.515718 3E-12 2E-6
2606151408 3E-6 1E3 8792.317911 9E-12 8E-3 4598.281889 6E-11 2E-5

THICK-RESTART LANCZOS METHOD 609

onality to the machine precision, reorthogonalization is necessary only if rTk+1rk+1 <

α2
k+1 +

∑k
i=1 β2

i after step (1.d) or rTi ri < α2
i + β2

i−1 after step (2.d) [28]. Usually it
is necessary only to orthogonalize ri against Qi once [16]. If the norm of ri reduced
significantly after the Gram–Schmidt procedure, it indicates that ri is almost a linear
combination of the current basis Qi. In other words, an invariant subspace has been
found. The algorithm can be continued with any unit vector that is orthogonal to
Qi. This is a different form of restarting which happens very infrequently. In this
case, βi should be set to zero. There are many different ways to implement the full
reorthogonalization procedure, for example, always performing the Gram–Schmidt
procedure once or twice, using a different criteria to determine when to invoke the
Gram–Schmidt procedure [5], etc. The scheme we have selected above appears to be
inexpensive and works well in tests.

The third reorthogonalization scheme is the partial reorthogonalization scheme
which simulates loss of orthogonality using the ω-recurrence and performs reortho-
gonalization only if the loss of orthogonality exceeds the user-specified limit. It is
relatively easy to adopt the ω-recurrence to the thick-restart Lanczos method [28].
Using the ω-recurrence, we can monitor the loss of orthogonality and maintain the
orthogonality to any reasonable level desired. Similar to the nonrestarted Lanczos
method, it is easy to show that the thick-restart Lanczos method can generate ac-
curate eigenvalues if the actual orthogonality level of the basis is no worse than

√
ε

[28]. The partial reorthogonalization procedure for the thick-restart Lanczos method
is very similar to that of the nonrestarted Lanczos method. One important caveat is
that the last residual vector before restarting, rm or equivalently qm+1 ≡ rm/‖rm‖,
must be orthogonal to the existing basis vectors to the machine precision. This does
not mean that the all earlier vectors need to be orthogonal to machine precision; it
merely means that the reorthogonalization process must be invoked in the last iter-
ation before restarting [28]. More details on the partial reorthogonalization can be
found in the appendix.

Figure 3.2 plots the orthogonality level of the Lanczos bases built by the thick-
restart Lanczos method with the partial reorthogonalization (m = 20). The difference
between the two curves is that the solid curve is generated with the modification
that always reorthogonalizes r20 while the dashed curve is generated without this
modification. This extra reorthogonalization ensures that r20 has no significant error
in the directions of the vectors to be discarded during restarting. Since errors in those
directions cannot be recovered in the future iterations, avoiding them improves the
overall quality of the bases. The two tests shown in Figure 3.2 clearly demonstrate
the importance of maintaining orthogonality of the last residual vector of a restarted
loop. The figure also demonstrates that when the last residual vector is orthogonal,
the orthogonality level of the whole basis can be maintained at a reasonable level.

The next set of tests will demonstrate that the thick-restart Lanczos method
with partial reorthogonalization generates accurate solutions [28]. To do this, we
compare the floating-point errors generated by the thick-restart Lanczos method with
partial reorthogonalization and with full reorthogonalization. To verify the results, we
also conduct the same test on an implementation of the implicitly restarted Lanczos
method with full reorthogonalization (ARPACK [12]). Table 3.3 shows the results
of this set of tests. The five largest eigenvalues of the three matrices are computed.
Corresponding to each eigenvalue, there is a pair of δλ and δr. The errors reported
in the table are the maximum errors of the five pairs. In these tests, we have used
a relatively small basis size (m = 10). The rationale for using a smaller basis size
is that the floating-point errors might be larger because more iterations are needed.

610 KESHENG WU AND HORST SIMON

0 20 40 60 80 100
10

15

10
10

10
5

10
0

10
5

10
10

S3DKT3M2

or
th

og
on

al
ity

 o
f b

as
is

restarts
0 2 4 6 8

10
14

10
12

10
10

10
8

10
6

10
4

10
2

NASASRB

or
th

og
on

al
ity

 o
f b

as
is

restarts

semiorthognal residual
orthogonal residual

Fig. 3.2. The orthogonality level (‖QTQ− I‖F) of the bases prior to each restart.

Indeed the floating-point errors are slightly larger than when the basis size is 20. The
important point to note is that the errors of different methods are roughly the same.
Most of the quantities in Table 3.3 are about 10 ∼ 100ε‖A‖, which confirms that the
partial reorthogonalization scheme can maintain a very good orthogonality level (see
Figure 3.2) and generate accurate solutions.

It is possible for the orthogonality level in the Lanczos method with partial re-
orthogonalization to rise to the user-specified limit, typically

√
ε, in which case δr

would be on the order of
√
ε‖A‖, though δλ remains on the order of ε‖A‖. Table 3.4

shows an example where δr is significantly larger than ε‖A‖. In this example, the
smallest eigenvalues of NASASRB are computed. They are nine orders of magnitude
smaller than the largest one, and the relative gap ratio is on the order of 10−10. It
takes about 50,000 iterations for the thick-restart Lanczos method to reduce the resid-
ual norms of the five smallest Ritz values to 10−4. ARPACK reduces these residual
norms to about 104 using similar number of iterations and the same basis size. The
performance difference is mainly due to the differences in the restarting strategies
which will be discussed in next section. The size of ‖r‖ does not affect the value of

Table 3.3
The maximum floating-point errors of the five largest Ritz values computed using basis size (m)

10, where method I is the thick Lanczos method with partial reorthogonalization, method II is the
thick-restart Lanczos method with full reorthogonalization, and method III is ARPACK.

NASASRB S3DKT3M2 S3DKQ4M2
I II III I II III I II III

max δλ 7E-6 2E-5 6E-6 1E-10 4E-11 2E-10 5E-10 4E-10 3E-11
max δr 1E-5 2E-6 3E-6 5E-11 2E-10 7E-11 6E-10 3E-10 4E-10
MATVEC 185 185 184 2269 2269 4459 5119 5119 3646
restarts 46 46 39 465 465 1310 1516 1516 1516
time 11.5 12.0 14.6 200 213 577 533 555 504

THICK-RESTART LANCZOS METHOD 611

Table 3.4
The maximum floating-point errors of NASASRB’s five smallest Ritz values computed using

basis size 1000.

I II III
max δλ 9E-7 2E-6 5E-7
max δr 7E-4 3E-6 4E-6
MATVEC 50471 50467 46761
restarts 51 51 61
time 9798(8PE) 8546(8PE) 8547(16PE)

δr. When full orthogonality is maintained, δr is on the order of 10−6 (∼ 10ε‖A‖); see
column II and III of Table 3.4. Because the smallest eigenvalues are much harder to
compute than the largest ones, many large eigenvalues reach convergence before the
smallest ones do. This provides ample opportunities for serious loss of orthogonality
to occur. The actual orthogonality level is near

√
ε in this case.

Tables 3.3 and 3.4 also contain some performance information about the different
methods. The CPU time reported is from a Cray T3E-900 at the National Energy
Research Supercomputer Center.2 The time in Table 3.3 is measured on two pro-
cessors. The numbers of processors used for Table 3.4 are next to the time values.
Since the two versions of the thick-restart Lanczos method use the same restart-
ing strategy, the time differences are mainly due to the different reorthogonalization
strategies. The results shown in Table 3.3 are representative of the typical case where
using partial reorthogonalization saves execution time. With full reorthogonalization,
the global reorthogonalization, i.e., the Gram–Schmidt procedure, is often invoked
once per matrix-vector multiplication. With partial reorthogonalization, the Gram–
Schmidt procedure is invoked only infrequently. The percentage of time saved is
relatively small because the Gram–Schmidt procedure can be performed much faster
than the parallel matrix-vector multiplications.

Table 3.4 shows an extreme case where using the partial reorthogonalization actu-
ally takes more time than using the full reorthogonalization. In this case, the partial
reorthogonalization algorithm invokes the global reorthogonalization frequently, about
once every three matrix-vector multiplications. Each time the global reorthogonali-
zation is invoked, the Gram–Schmidt procedure is applied on the two most recent
Lanczos vectors to make sure both vectors are orthogonal to the proceeding vectors
to machine precision. Since there are some Lanczos vectors that are not orthogonal
to machine precision against others, the Gram–Schmidt procedure might have to be
repeated more times than in the case where all Lanczos vectors are orthogonal to ma-
chine precision [28]. All these make the partial reorthogonalization more expensive
for solving this test problem.

In short, the loss of orthogonality among the Lanczos vectors has very similar ef-
fects on the thick-restart Lanczos method as on other variants of the Lanczos method.
Using the partial reorthogonalization, the thick-restart Lanczos method can generate
accurate eigenvalues but not always accurate eigenvectors. In most cases, using partial
reorthogonalization reduces the CPU time compared to using full reorthogonalization.
When implementing a general purpose Lanczos method, we would suggest using full
reorthogonalization. The tests performed in the next section use only the thick-restart
Lanczos method with full reorthogonalization.

2More information about the National Energy Research Supercomputer Center can be found at
http://www.nersc.gov.

612 KESHENG WU AND HORST SIMON

4. Restarting strategies. The thick-restart Lanczos method offers the flexi-
bility of saving an arbitrary portion of the current basis during restarting. Given
this capability, a crucial problem is determining how to take full advantage of it.
A number of theoretical tools are available for analyzing restarting strategies used
in the implicitly restarted Arnoldi method and the thick-restart Davidson method
[2, 8, 15, 24]; however, the most successful strategies for deciding what to save are
based on heuristics. For example, ARPACK uses a heuristic strategy based on basis
size, number of eigenvalues converged, and so on. This section will briefly summarize
our experiences of using three such heuristics.

The first restarting strategy attempts to maximize the reduction of residual norms
at every step. This strategy is based on the one used in the dynamic thick-restart
Davidson method [25]. It is implemented using a parameter called the effective gap
ratio γ. In each step of the restarted Lanczos method, the residual norm is expected
to reduce by a factor proportional to e−

√
γ [15]. To maximize the residual norm

reduction, we need to maximize γ. If the eigenvalues of the matrix A are λ1 ≤ λ2 ≤
· · · ≤ λn, the gap ratio for λ1 is (λ2 − λ1)/(λn − λ1). When restarting to compute
the smallest eigenvalue while saving the eigenvectors corresponding to λ2, . . . , λk, the
effective gap ratio is [15, 25]

γ = (λk+1 − λ1)/(λn − λ1).

When used in the Davidson method or the Lanczos method, the eigenvalues in the
above definition are replaced with the computed Ritz values. Because the Ritz values
may not be good approximations to their corresponding eigenvalues and because there
are far fewer Ritz values than the eigenvalues m
 n, the computed gap ratio γ may
be quite different from the actual gap ratio. Typically, when k is large, say, k ≥ 2m/3,
the computed gap ratio γ is significantly larger than the actual gap ratio. Another
problem with maximizing γ is that it is a monotonic function of k. The maximum
value for k is m − 1. If this maximum value is used, m − 1 Ritz pairs are saved
during restarting, and the restarting procedure is invoked after every matrix-vector
multiplication. Computing m−1 Ritz pairs takes a considerable number of arithmetic
operations. Since the computed γ is larger than its actual value, the reduction in
residual norm is much less than expected. To reduce the number of Ritz pairs saved,
the developers of the dynamic thick-restart Davidson method [25] enforce a limit on
k, k ≤ m− 3. In our experiences, we found that reducing the size of k often reduces
the overall execution time. The following formula is found to be a reasonable choice,
k ≤ max(neig, (3m+2nc)/5), where neig is the number of eigenvalues to be computed
and nc is the number of eigenvalues converged so far.

In the dynamic thick-restart Davidson method, instead of maximizing the residual
norm reduction of each iteration, we choose to maximize the residual norm reduction
of the whole restarted loop, i.e., maximize ξ ≡ (m− k)

√
γ. Alternatively, we can also

choose to maximize µ ≡ (m − k)γ. Both ξ and µ are not monotonic functions of k;
we actually need to search through all possible values of k to find their maximums.
Typically these strategies yield a smaller k than maximizing γ. However, to avoid
potentially choosing exceedingly large k, we also use the same restriction on k as in
the previous case.

Table 4.1 shows some examples of how the three restarting strategies work and
compares them to a simple restarted Lanczos method (LANSO-locking) and the im-
plicitly restarted Lanczos method implemented in ARPACK. It shows both iteration
counts and time used to compute the five largest eigenvalues of the three test matrices.

THICK-RESTART LANCZOS METHOD 613

Table 4.1
Time and iterations needed to compute five largest eigenvalues of the test matrices (m = 20).

NASASRB S3DKT3M2 S3DKQ4M2
Iter. Time Iter. Time Iter. Time

LANSO-locking 2170 266 2678 464 > 5000 > 1000
ARPACK 145 23.0 973 233 961 257
TRLAN max γ 88 14.0 693 195 784 232
TRLAN max µ 96 14.4 684 167 741 196
TRLAN max ξ 92 12.9 691 165 757 191

The time reported is the number of seconds on a DEC alpha processor running at
450MHz. The simple restarted Lanczos method always restarts with the Ritz vector
corresponding to the largest Ritz value that is not converged yet, and it locks the
converged Ritz pairs. The program is implemented on top of the LANSO package
maintained by Beresford Parlett of UC Berkeley. Table 4.1 shows that the three
versions of the thick-restart Lanczos method use less time than the simple restarted
Lanczos method and ARPACK on the test problems. The differences among the three
versions of the thick-restart Lanczos method are relatively small.

This set of examples clearly demonstrates that the restarting strategy is important
to the overall effectiveness of the eigenvalue methods. The strategies suggested here
give reasonable performances compared to the existing strategies used in ARPACK.
Some of the known techniques not discussed here include saving Ritz pairs from the
opposite end of the spectrum and taking into account the residual norms when com-
puting gap ratio. Our tests indicate that there are some advantages to using these
techniques in combination with those described earlier in this section [29]. However,
the modified strategies do not consistently outperform the simple ones shown in Ta-
ble 4.1.

5. Summary. In this paper, we described an explicitly restarted Lanczos method
for symmetric eigenvalue problems called the thick-restart Lanczos method. It is the-
oretically equivalent to the implicitly restarted Lanczos method. The main advantage
of the new method is that it is simpler to use. We studied three different reortho-
gonalization schemes and found that the loss of orthogonality has similar effects on
this restarted Lanczos method as on the original nonrestarted Lanczos method. In
other words, without reorthogonalization, it usually generates accurate eigenvalues;
with the partial reorthogonalization, it is guaranteed to generate accurate eigenvalues;
only with the full reorthogonalization can it generate both accurate eigenvalues and
accurate eigenvectors.

Through some examples, we also demonstrated the importance of employing an
effective restarting strategy and suggested a number of restarting heuristics. Tests
showed that these strategies are as effective as the best-known strategies.

Appendix. Partial reorthogonalization. This appendix gives more details on
how to implement the partial reorthogonalization scheme in the thick-restart Lanczos
method. We address three issues in three subsections: ω-recurrence for the thick-
restart Lanczos method, global reorthogonalization, and local reorthogonalization.

A.1. Monitoring loss of orthogonality. An important ingredient of the par-
tial reorthogonalization is the ω-recurrence for monitoring loss of orthogonality [22].
This subsection extends the ω-recurrence for the thick-restart Lanczos method. The
derivation of the recurrence is relatively straightforward. To start with, we will rewrite

614 KESHENG WU AND HORST SIMON

(2.1), (2.3), and (2.4) to accommodate round-off errors during the actual computa-
tions:

Aqi = αiqi + βiqk+1 + di (i ≤ k),

Aqk+1 = αk+1qk+1 +

k∑
j=1

βjqj + βk+1qk+2 + dk+1,

Aqi = αiqi + βi−1qi−1 + βiqi+1 + di (i > k + 1).

In the above equations, di represents the error associated with expressing Aqi in terms
of other quantities (‖di‖ ≤ ε‖Aqi‖).

The ω-recurrence uses ωi,j ≡ qTi qj as the measure of loss of orthogonality. For
symmetric matrices, we can use the relation qTj Aqi = qTi Aqj and the above three
equations to generate a recursion for ωi,j :

βiωi+1,j = (αj − αi)ωi,j + βjωi,k+1 − βi−1ωi−1,j + dTj qi − qTj di (j ≤ k),

βiωi+1,k+1 = (αi − αk+1)ωi,k+1 +

k∑
j=1

βjωi,j + βk+1ωi,k+2 − βi−1ωi−1,k+1

+ dTk+1qi − qTk+1di,

βiωi+1,j = (αj − αi)ωi,j + βjωi,j+1 + βj−1ωi,j−1 − βi−1ωi−1,j + dTj qi − qTj di

(k + 1 < j ≤ i− 1),

βiωi+1,i = αi(1− ωi,i)− βi−1ωi,i−1 + qTi di.

To use the recursion, we need to evaluate the quantities ±dTj qi. In our implemen-

tation of the ω recurrence, we simply replace ±dTj qi with ε‖Aqi‖. The above set of
equations can be used only when i is greater than k + 1. Among the first k + 2 Lanc-
zos vectors, q1, . . . , qk+1 are not generated by the current Lanczos iterations, and only
qk+2 is computed in the current Lanczos iterations; see (2.3). Since the computation
of qk+2 explicitly involved all previous vectors, the decision of whether to perform
reorthogonalization has been studied [5]. We need only apply the ω-recurrence when
computing qi, i > k + 2.

Let W denote the matrix formed from ωi,j . One important point to note here is
that the (i + 1)st row of W depends only on the two previous rows. This indicates
that if the orthogonality levels of qk+1 and qk+2 are known, the above recurrence can
be carried forward. In practice, we try to make qk+1 and qk+2 orthogonal to previous
vectors to machine precision. This can prevent the loss of orthogonality among the
first k vectors from significantly affecting the orthogonality level of the new vectors
computed later. Since qk+1 after restarting is qm+1 before restarting, this also explains
why qm+1, i.e., rm, has to be computed accurately; see Figure 3.2. For similar reasons,
when qi needs global reorthogonalization, we should orthogonalize both qi and qi−1

[21].

A.2. Global reorthogonalization. The global reorthogonalization here refers
to the process of applying the Gram–Schmidt procedure to explicitly orthogonalize qi
against all previous vectors. This is necessary when qi has exceeded the user-specified
limit on loss of orthogonality, say, ‖(ωi,1, . . . , ωi,i)‖ ≥

√
ε. Using the ω-recurrence

to simulate the loss of orthogonality, when to invoke the global reorthogonalization
procedure can be easily determined. Typically, if the Gram–Schmidt procedure is
invoked, it may be repeated to ensure the desired orthogonality level is achieved. The

THICK-RESTART LANCZOS METHOD 615

remainder of this subsection will briefly examine the decision of how many repetitions
to use. To answer this question, we need to find out how effective the Gram–Schmidt
procedure is and when to stop.

Let z be an arbitrary vector and Q be a set of Lanczos vectors that are nearly
orthogonal; the process of repeatedly applying the Gram–Schmidt procedure can be
written as z(i) = (I −QQT)z(i−1), where z(0) ≡ z. Define w(i) ≡ QT z(i); the orthog-
onality level between z(i) and Q can be measured by ‖w(i)‖. It is easy to see that
QT z(i) = (I − QTQ)QT z(i−1) and ‖w(i)‖ ≤ ‖I − QTQ‖‖w(i−1)‖. If ‖I − QTQ‖ < 1,
repeating the Gram–Schmidt procedure will eventually reduce ‖w(i)‖ to a very small
number. When the Gram–Schmidt procedure is carried out in exact arithmetic, z(∞)

is exactly the same as orthogonalizing z against an exactly orthonormal basis of Q.
When the Gram–Schmidt procedure is carried out in finite-precision arithmetic, it is
likely to produce a z(∞) that is orthogonal to Q to machine precision. However, the
solution may not be the same as in the exact arithmetic case.

Previously, it was argued that when qi needs reorthogonalization, it should be
orthogonalized to machine precision [21]. We adopt the same stopping criteria for our
global reorthogonalization. Orthogonalizing to machine precision can be expressed as
requiring ‖w(i)‖ < ε‖z(∞)‖. Since z(∞) is not computed, the above condition can be
rewritten as ‖w(i)‖ < ε‖z(i)‖. In the process of computing z(i), w(i−1) is computed.
The above equation can be expressed in known quantities as

‖I −QTQ‖‖w(i−1)‖ < ε‖z(i)‖.
Using the relation between ‖w(i)‖ and ‖w(i−1)‖, we can estimate ‖I − QTQ‖. The
above stopping criteria can be implemented efficiently. This stopping test differs
from earlier ones in that it takes into account of the orthogonality of Q [5, 12]. This
characteristic is important to the partial reorthogonalization since Q may be of varying
orthogonality level.

A.3. Local reorthogonalization. To implement a robust Lanczos method, the
local orthogonality should always be maintained. When the global reorthogonalization
is not necessary, we apply an explicit local reorthogonalization. This local reortho-
gonalization uses the Gram–Schmidt procedure to orthogonalize qi+1 against qi and
qi−1. It needs to be done only once, but doing so has two important consequences.
It ensures that ωi+1,i and ωi+1,i−1 are on the order of ε and that αi and βi are ac-
curate to the machine precision. Both of these conditions are crucial ingredients in
guaranteeing the accuracies of eigenvalues computed by the thick-restarted Lanczos
method [28].

Acknowledgments. The authors would like to thank the referees for invaluable
suggestions and comments.

REFERENCES

[1] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue
problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[2] D. Calvetti, L. Reichel, and D. Sorensen, An implicitly restarted Lanczos method for large
symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 2 (1994), pp. 1–21.

[3] A. Chapman and Y. Saad, Deflated and Augmented Krylov Subspace Techniques, Tech. Rep.
UMSI 95/181, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis,
MN, 1995.

[4] J. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue
Computations: Theory, Progress in Scientific Computing 3, Birkhäuser Boston, Boston,
MA, 1985.

616 KESHENG WU AND HORST SIMON

[5] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonalization and sta-
ble algorithms for updating the Gram-Schmidt QR factorization, Math. Comp., 30 (1976),
pp. 772–795.

[6] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding
eigenvectors of large real-symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87–94.

[7] E. R. Davidson, Super-matrix methods, Comput. Phys. Comm., 53 (1989), pp. 49–60.
[8] G. de Samblanx, Filtering And Restarting Projection Methods for Eigenvalue Problems, Ph.D.

thesis, Katholieke Universiteit Leuven, Heverlee, Belgium, 1998.
[9] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.
[10] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Jacobi-Davidson style QR

and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1999),
pp. 94–125.

[11] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[12] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User’s Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadel-
phia, PA, 1998. ARPACK Software is available at http://www.caam.rice.edu/software/
ARPACK/.

[13] R. B. Lehoucq and D. Sorensen, Deflation techniques for an implicitly restarted Arnoldi
iteration, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 789–821.

[14] R. B. Morgan, Computing interior eigenvalues of large matrices, Linear Algebra Appl., 156
(1991), pp. 289–309.

[15] R. B. Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue problems,
Math. Comp., 65 (1996), pp. 1213–1230.

[16] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics Appl. Math. 20, SIAM, Philadel-
phia, PA, 1998.

[17] B. N. Parlett and D. Scott, The Lanczos algorithm with selective orthogonalization,
Math. Comp., 33 (1979), pp. 217–238.

[18] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press,
Manchester, UK, 1993.

[19] Y. Saad, Analysis of Augmented Krylov Subspace Techniques, Tech. Rep. UMSI 95/175, Min-
nesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 1995.

[20] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, MA, 1996.
[21] H. D. Simon, The Lanczos Algorithm for Solving Symmetric Linear Systems, Ph.D. thesis,

University of California, Berkeley, CA, 1982.
[22] H. D. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comp., 42 (1984),

pp. 115–136.
[23] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi–Davidson iteration method for linear

eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.
[24] D. S. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM

J. Matrix Anal. Appl., 13 (1992), pp. 357–385.
[25] A. Stathopoulos, Y. Saad, and K. Wu, Dynamic thick restarting of the Davidson, and the

implicitly restarted Arnoldi methods, SIAM J. Sci. Comput., 19 (1998), pp. 227–245.
[26] L.-W. Wang and A. Zunger, Large scale electronic structure calculations using the Lanczos

method, Computational Materials Science, 2 (1994), pp. 326–340.
[27] K. Wu, Preconditioned Techniques for Large Eigenvalue Problems, Ph.D. thesis, University

of Minnesota, Minneapolis, MN, 1997. An updated version also appears as Tech. Rep.
TR97-038 at the Computer Science Department, University of Minnesota, Minneapolis,
MN.

[28] K. Wu and H. Simon, Thick-Restart Lanczos Method for Symmetric Eigenvalue Problems,
Tech. Rep. 41412, Lawrence Berkeley National Laboratory, Berkeley, CA, 1998.

[29] K. Wu and H. D. Simon, Dynamic Restarting Schemes for Eigenvalue Problems, Tech. Rep.
LBNL-42982, Lawrence Berkeley National Laboratory, Berkeley, CA, 1999.

MOORE–PENROSE INVERSE OF MATRICES ON IDEMPOTENT
SEMIRINGS∗

S. PATI†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 617–626

Abstract. We characterize matrices over an idempotent semiring satisfying some additional
necessary conditions for which the Moore–Penrose inverse exists. The “(max,×) semiring,” defined as
the set of nonnegative real numbers R+, equipped with the operations a⊕b = max{a, b} and a⊗b = ab
is an example of such a semiring. The “(max,+) semiring”, defined as the set of real numbers
including −∞, equipped with the operations a⊕ b = max{a, b} and a⊗ b = a+ b is another example.
Some of our results generalize known results in the case of the binary boolean algebra (a trivial
idempotent semiring). We give an algorithm to compute the Moore–Penrose inverse, when it exists.
We also make comparisons with similar results over the conventional algebra.

Key words. Moore–Penrose inverse, (max,×) semiring, (max,+) semiring, boolean algebra

AMS subject classification. 15A09

PII. S0895479899355517

1. Introduction. A commutative semiring is a set D with two associative, com-
mutative operations⊕ and⊗ (called the sum and the product, respectively), satisfying
the following properties:
(1) there exists an element 0 (called the “zero” element) such that a⊕0 = a, ∀ a ∈ D;
(2) there exists an element 1 (called the “identity” element) such that a⊗1 = a, ∀ a ∈

D;
(3) ⊗ is distributive over ⊕, that is, a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c), ∀ a, b, c ∈ D; and
(4) the zero element absorbs every other element with respect to the product, that

is, a⊗ 0 = 0, ∀ a ∈ D.
We shall consider only commutative semirings in which the operation ⊕ is idempotent,
that is, a⊕a = a, ∀ a ∈ D. The operation ⊕ induces a partial ordering ≤ on the set D
according to the rule a ≤ b if and only if a⊕ b = b. So, 0 is the smallest element in D.
All other elements of D shall be called positive. It can be easily seen that ∀ a, b, c ∈ D,
(1) a ≤ b⇒ a⊕ c ≤ b⊕ c, and
(2) a ≤ b⇒ a⊗ c ≤ b⊗ c.
The semiring is called total if the induced partial order is a total order, in which case
a⊕ b is max{a, b}.

Example 1. The following are some important examples of semirings. A good
overview of other semirings in which ⊕ is idempotent can be found in [11].
(1) The set of nonnegative real numbers with the operations a⊕ b = max{a, b} and

a ⊗ b = a × b (the usual product). The partial order ≤ induced by ⊕ is a
total order here. This semiring shall be referred as Rmax,×.

(2) The set of real numbers, including−∞, with the operations a⊕b = max{a, b} and a⊗
b = a+b. This is called the “(max,+) semiring,” denoted by Rmax. Note that
the function f(x) = ex is an isomorphism from Rmax to Rmax,×.

(3) The “boole algebra” in which the set is {0, 1} and the operations are a ⊕ b =
max{a, b} and a⊗ b = a× b (the usual product).

∗Received by the editors May 4, 1999; accepted for publication (in revised form) by R. Bhatia
May 17, 2000; published electronically September 15, 2000.

http://www.siam.org/journals/simax/22-2/35551.html
†Department of Mathematics, University of Regina, Regina, Saskatchewan, Canada, S4S 0A2

(pati@math.uregina.ca).

617

618 S. PATI

We note that given any semiring D, the subset {0, 1} of D with the operations ⊕ and
⊗ behaves like the boole algebra.

Condition 1 (cancellation). A semiring D is said to satisfy the cancellation
condition if the relations a⊗ b = a⊗ c and a = 0 imply b = c. Note that if D satisfies
the cancellation condition and a, b ∈ D, a = 0, a ⊗ b = 0, then b = 0. Thus in D the
product of two nonzero numbers is nonzero. Let an denote the product a⊗a⊗· · ·⊗a
(n factors). The following observation can be found in [7].

Proposition 1.1. Suppose D satisfies the cancellation condition. Suppose n is
a natural number and a ∈ D. If there exists a solution λ to the equation xn = a, then
it is unique.

Condition 2 (algebraic completeness). A semiring D is called algebraically
complete if the equation xn = a has a solution x for every natural number n and every
a ∈ D. It follows from Proposition 1.1 that if an algebraically complete semiring D
satisfies the cancellation condition, then the equation xn = a has a unique solution in
D.

Condition 3 (stabilization). A semiring is said to satisfy the stabilization con-
dition if ∀ λ, µ, a, b ∈ D (a = 0, b = 0) there exists an element c ∈ D and a positive
integer m such that for every n ≥ m we have

a⊗ λn ⊕ b⊗ µn = c⊗ (λ⊕ µ)n.
Definition 1.2. Let D be a semiring. A set M is called a semimodule over D,

if the following conditions are satisfied.
(1) There is an operation ⊕ defined on M which is associative and commutative,

and there exists a zero element 0 with respect to this operation.
(2) There is a multiplication ⊗ of elements ofM by the elements of D which satisfies

λ⊗m ∈M ∀ λ ∈ D, m ∈M,

(λ⊗ µ)⊗m = λ⊗ (µ⊗m) ∀ λ, µ ∈ D, m ∈M,

λ⊗ (m1 ⊕m2) = λ⊗m1 ⊕ λ⊗m2 ∀ λ ∈ D, m1,m1 ∈M,

0⊗m = λ⊗ 0 = 0 ∀ λ ∈ D, m ∈M,

⊕
α

λα ∈ D, m ∈M ⇒
(⊕

α

λα

)
⊗m =

⊕
α

(λα ⊗m).

Henceforth, by D we will denote a commutative, algebraically complete semiring in
which the cancellation and stabilization conditions hold, the operation ⊕ is idempotent,
and the partial ordering “≤” induced by ⊕ is total.

Example 2. Let D be a semiring. Consider the set Dn of n-tuples (column
vectors) of elements of D. This set is a semimodule over D with respect to the following
operations: If (ai) and (bi) are in Dn and λ ∈ D, then

(ai)⊕ (bi) = (ai ⊕ bi) and λ⊗ (ai) = (λ⊗ ai).

Note also that for any (ai) ∈ Dn, (ai)⊕ (ai) = (ai).

MOORE–PENROSE INVERSE ON SEMIRINGS 619

Definition 1.3. IfM and N are semimodules over the same semiring K, then
a mapping f :M→N satisfying

f(λ⊗m1 ⊕ µ⊗m2) = λ⊗ f(m1)⊕ µ⊗ f(m2) ∀ m1,m2 ∈M, λ, µ ∈ K

is called a homomorphism. A homomorphism from a semimoduleM to itself is called
an endomorphism.

Let D be a semiring. An m×n matrix A can be viewed as a homomorphism from
Dn to Dm, f(x) = A ⊗ x, where A ⊗ x ∈ Dm whose ith entry is

⊕n
k=1 aik ⊗ xk, i =

1, . . . ,m.We shall write ab to mean a⊗ b. The (i, j)th entry of a matrix A is denoted
by aij or A(i, j). A matrix with each entry positive is called positive. We define
A ⊕ B= C, where cij = aij ⊕ bij , when A,B are of the same order. When A is of
order m×n and B is of order n×k, we define A⊗B=C, where cij =

⊕
r airbrj . The

product of two matrices can be viewed as the composition of two homomorphisms. In
case there is no ambiguity, AB means A ⊗ B. For matrices A,B of the same order,
A ≥ B means aij ≥ bij ∀ i, j. The identity matrix of an appropriate order is denoted
by I. The transpose of A, denoted by At, is defined in the usual way.

Definition 1.4. Let A be of order m × n. The Moore–Penrose inverse of A,
denoted by A+, is defined to be an n×m matrix G such that

AGA = A, GAG = G, (AG)t = AG, and (GA)t = GA.

It is easy to see that the Moore–Penrose inverse of a matrix A, if it exists, is
unique. In fact, given A, if G1 and G2 are two matrices satisfying all of the four
conditions given above, then

G1 = G1

︷︸︸︷
A G1 =

︷︸︸︷
G1A

︷︸︸︷
G2AG1 =

︷ ︸︸ ︷
AtGt1A

tGt2G1 =
︷ ︸︸ ︷
AtGt2G1

= G2

︷︸︸︷
AG1 = G2G

t
1

︷︸︸︷
At = G2

︷ ︸︸ ︷
Gt1A

t
︷ ︸︸ ︷
Gt2A

t = G2

︷ ︸︸ ︷
AG1AG2 = G2AG2 = G2.

The Moore–Penrose inverse over the boole algebra has been well studied (see, for
example, [13] for some interesting results). It is well known that a matrix A over
the boole algebra admits a Moore–Penrose inverse if and only if AAtA = A. The
boole algebra being the trivial subsemiring of the semiring Rmax,× it is interesting to
determine necessary and sufficient conditions for a matrix over the semiring Rmax,×,
which admits a Moore–Penrose inverse. In general we ask the following question.

Question. Let D be a commutative, algebraically complete semiring in which
the cancellation and stabilization condition holds and in which ⊕ is idempotent and
the partial ordering “≤” induced by ⊕ is total. Let A be a matrix over D. What
are the necessary and sufficient conditions on A so that A admits a Moore–Penrose
inverse?

Another motivation for studying the Moore–Penrose inverse over idempotent
semirings is the fact that the idempotent semiring Rmax,× has applications in areas
like optimal control and discrete event systems (see, for example, [6],[8],[10],[11]).

In this paper we present a solution to the question asked above. We also provide
a program which is a MATLAB .m function that helps to find the Moore–Penrose
inverse of a matrix A, if it exists. We compare some of the results here with similar
results on nonnegative matrices over the real numbers.

2. The main result. Henceforth, unless otherwise stated, all matrices consid-
ered are over D. For any matrix A, p(A) will mean the pattern matrix of A, i.e., the

620 S. PATI

matrix whose (i, j)th entry is 1 if and only if the (i, j)th entry of A is not 0; otherwise
it is 0. Thus p(A) can be treated as a binary boolean matrix.

Proposition 2.1. Suppose A+ exists for the matrix A. Then (p(A))+ exists and
(p(A))+ = p(A+). Thus (p(A))+ exists over the boole algebra.

Proof. First we show that if A,B are two matrices over D, then p(AB) =
p(A)p(B). To see this let the (i, j)th entry p(AB)ij = 1. Then (AB)ij = 0. That
is
⊕

k AikBkj = 0. So there exists s such that AisBsj = 0. It follows that Ais = 0
and Bsj = 0. Thus p(A)is = 1 and p(B)sj = 1. Thus (p(A)p(B))ij = 1.

Conversely, let (p(A)p(B))ij = 1. So there exists s such that p(A)is = 1 and
p(B)sj = 1. Thus Ais = 0, Bsj = 0, and so the product AisBsj = 0 (because of the
cancellation condition). Hence

⊕
k AikBkj = 0.

Now, p(A)p(A+)p(A) = p(AA+A) = p(A), since AA+A = A. Similar arguments
show that p(A+) satisfies the other three conditions for being the Moore–Penrose
inverse of p(A).

Proposition 2.2. Let A be of order m × n and suppose A+ exists. Then there
exist permutation matrices P,Q such that

PAQ =

F1 0 · · · 0 0
0 F2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Fk 0
0 0 · · · 0 0

,

where the blocks Fi are positive but not necessarily square.
Proof. Consider the matrix p(A). By Proposition 2.1, p(A)+ exists over the boole

algebra. It is well known (see, for example, [14], [4]) that there exist permutation
matrices P,Q such that Pp(A)Q is a direct sum of some “all ones” matrices and a
“zero” matrix. The desired result now follows easily.

It is known (see, for example, Theorem 3.4.3 of [13] or Theorem 1.1(v) of [4]) that
if A is a matrix over the boole algebra and A+ exists, then any two rows of A are
either equal or have disjoint sets of 1s. Keeping this in mind it is easy to compute
the matrices P,Q, mentioned in Proposition 2.2, for a matrix A over D for which A+

exists. We present a MATLAB program to compute P,Q.
Given: A is an m× n binary boolean matrix and A+ exists.
function [p,q]=temp(a)

echo off
[m,n]=size(a); p=eye(m); q=eye(n); s=1; c=0;
while s<m, k=s; j=k;
if a(k,:)==0, ult=m+1;
for v=k+1:m,
if sum(a(v,:))>0, ult=v; end; end; j=ult; end;
if j<=m, b=a(k,:); a(k,:)=a(j,:); a(j,:)=b; b=a(k,:);
pl=eye(m); pl(k,k)=0; pl(j,j)=0; pl(j,k)=1; pl(k,j)=1; p=pl*p; c1=c+1;
for l=c1:n,
if b(l)==1, c=c+1; qc=eye(n); qc(l,l)=0; qc(c,c)=0; qc(c,l)=1; qc(l,c)=1;
q=q*qc; a=a*qc; end; end;
for i=k+1:m,
if a(i,:)==a(k,:), s=s+1; pl=eye(m); pl(i,i)=0; pl(s,s)=0; pl(i,s)=1; pl(s,i)=1;
p=pl*p;
a=pl*a; end; end; s=s+1; end;

MOORE–PENROSE INVERSE ON SEMIRINGS 621

if j>m, s=m; end; end
The following is an easy observation which is stated without proof.

Proposition 2.3. Let A, B be two matrices. Then the Moore–Penrose inverse

of the matrix [
A 0
0 B

] exists if and only if A+, B+ exist and, in this case,

[
A 0
0 B

]+
=

[
A+ 0
0 B+

]
.

We note two simple facts here.
(i) If A has Moore–Penrose inverse A+, then for any permutation matrices P,Q

(PAQ)+ exists and is QtA+P t.
(ii) For a permutation matrix P , the Moore–Penrose inverse is P t. In view of

Propositions 2.2 and 2.3, it is clear that we need to discuss the Moore–Penrose inverse
of a positive matrix. The next lemma is an easy observation.

Lemma 2.4. Suppose the element k ∈ D is invertible (denote the inverse of k by
k−1). If A+ exists, then (kA)+ = k−1A+, where kA(i, j)= kaij .

We know that to any square matrix A there corresponds a directed graph G(A)
whose weighted adjacency matrix is A. (The edge from the vertex i to the vertex j
bears weight w if aij = w; if aij = 0, then there is no edge starting from i and ending
at j. The existence of a loop is allowed.) The matrix A is called irreducible (the corre-
sponding endomorphism is called indecomposable) if there is a directed path between
every pair of distinct vertices in the graph G(A). Suppose A is an irreducible matrix
of order n. Let φ(n) denote the least common multiple of the numbers 1, 2, . . . , n. Let
λ be the root of the equation

λφ(n) =
⊕

k=1,2,...,n
(i1,i2,...,ik)

[ai1i2ai2i3 . . . aiki1]
φ(n)

k ,(1)

where the summation is over k and for each k, over all k-tuples of indices (i1, i2, . . . , ik).
We note that if D = Rmax and A is irreducible, then the root of the above equa-

tion is nothing but the only eigenvalue of the matrix A, which is also equal to the
maximum cycle arithmetic mean. (In the case of Rmax,× it corresponds to the max-
imum cycle geometric mean.) For some discussions on eigenvalues and eigenvectors
of a matrix over Rmax,× or Rmax, refer to [2], [3], [9], [11], [15]. Karp [12] has sup-
plied an effective algorithm for computing the minimum cycle arithmetic mean in a
strongly connected edge-weighted digraph. Given an irreducible matrix A over Rmax,
the minimum cycle arithmetic mean of the digraph corresponding to the matrix −A is
simply the maximum cycle arithmetic mean of the digraph corresponding to A. Thus
using Karp’s algorithm one can compute the root of (1) for an irreducible matrix over
Rmax.

The following result can be found in [7].
Proposition 2.5. Let A be an irreducible matrix and let λ be the root of (1).

Then there exist natural numbers m1 and m2 such that m1 > m2 and

Am1 = λm1−m2Am2 .

The next corollary follows easily from Proposition 2.5.
Corollary 2.6. Let A be a symmetric irreducible matrix and let λ be the root

of (1). Suppose A+ exists. Then there exists a natural number m > 1 such that

Am = λm−1A.

622 S. PATI

Proof. By Proposition 2.5, there exist natural numbers m1 and m2 such that
m1 > m2 and

Am1 = λm1−m2Am2 .

Let r be the smallest natural number such that

Am1 = λm1−rAr.(2)

If r = 1, then we have nothing to prove. So, let r > 1. It follows from (2) that
Am1A+ = λm1−rArA+. Since A+A and A are both symmetric and (A+)t = (At)+,
it follows that Am1−1A+A = λm1−rAr−1A+A. Since AA+A = A, we have Am1−1 =
λm1−rAr−1, a contradiction to the minimality of r.

The following result is crucial for further developments.
Lemma 2.7. Let An×n > 0 be a symmetric matrix and assume that a11 = 1 is

the largest entry in A. Assume that the entries of A satisfy the following condition:
aij = 1 ⇒ aii = ajj = 1. Then there exists a natural number m such that Am =
Am+1.

Proof. It suffices to show that for any given i, j there exists a natural number
m such that Amij = A

m+r
ij , r ∈ N. To this extent note that Amij is the maximum of

the weights of walks of length m from i to j in G(A), where the length of a walk is
the number of edges contained in it and the weight of a walk is the product of the
weights of the edges in it. Let Wij be a walk of length t0 from i to j passing through
the vertex v such that avv = 1. (The existence of such a walk is guaranteed by the
hypothesis.) Then

∀t ∈ N, t ≥ t0, Atij ≥ weight(Wij),(3)

where weight(Wij) is the weight of the walk Wij . Let b be the second maximal entry
(b = 1) in A. By the stability condition

∃k ∈ N such that bk+r < weight(Wij) ∀ r ∈ N.(4)

Let m = max{t0, kn}. Let Wm be the walk of length m from i to j such that amij =
weight(Wm). The walk Wm passes through a vertex v such that avv = 1, since
otherwise amij = weight(W

m) ≤ bm < weight(Wij), by (4), which contradicts (3). It

follows that Am+1
ij ≥ Amij .

On the other hand, since Wm+1 can contain at most k edges of weight less than
1, it follows from the pigeonhole principle that Wm+1 contains a walk W of length at
least n+1 such that weight(W) = 1. ThusW contains a cycle Γ ≡ [u1, u2, . . . , u1]. By
the hypothesis, au1u1 = 1. Thus, without loss we can assume Γ = [u1, u1, . . . , u1]. Let
W ′ be the walk obtained from Wm+1 by deleting a single loop at u1. Clearly W

′ is a
walk of length m from i to j and weight(W ′) = weight(Wm+1). Thus Amij ≥ Am+1

ij ,

and hence, Amij = A
m+1
ij .

We note that in the above lemma λ = 1 is the root of (1) for A, and thus the
lemma discloses a relationship among m1,m2 and λ beyond what was observed in
Proposition 2.5, under some additional assumptions. An immediate corollary to the
above lemma is the following.

Corollary 2.8. Let An×n > 0 be a symmetric matrix. Then the following are
equivalent.

MOORE–PENROSE INVERSE ON SEMIRINGS 623

(i) The largest entry in A is 1, the entries of A satisfy the condition aij = 1 ⇒
aii = ajj = 1, and A+ exists.

(ii) A is idempotent.
Proof. (i) ⇒ (ii) follows from Lemma 2.7, by using the technique used in the

proof of Corollary 2.6.
To see (ii)⇒ (i) it is easy to check that A+ = A. Let aij be the maximum among

the entries of A. Note that aij ≥ 1. Because if aij < 1, then the (i, j)th entry of A2 is

⊕
k

aikakj <
⊕
k

aik1 = aij ,

which is a contradiction to the fact that A2 = A. Now, from A2 = A we get that

aii =
⊕
k

aikaik = aijaij ≥ aij ,

since aij ≥ 1. Thus aii ≥ 1 is the maximum entry. Now it is easy to see that aii =
1.

The following is another crucial observation.
Lemma 2.9. Let A > 0 and suppose A+ exists. Let k be the maximum among

the entries of A. Then k is invertible in D.
Proof. Note that A+ exists if and only if (PAQ)+ exists, where P,Q are permu-

tation matrices of suitable orders. Thus, we may assume that a11 is the maximum
entry of A.

Let B = AA+ and C = A+A. Since B and C are idempotent, by Corollary 2.8,
the largest entry in B is 1 and the largest entry in C is 1. Suppose that b1s < 1, ∀ s.
Since BA = A, we have

a11 =
⊕
s

b1sas1 <
⊕
s

as1 ≤ a11,

a contradiction.
So, let b1r = 1. By Corollary 2.8, b11 = 1. Thus for some l, a1la

+
l1 = 1.

Now,

1 ≥ cl1 =
⊕
s

a+lsas1 ≥ a+l1a11 ≥ a+l1a1l = 1.

So we have a+l1a11 = 1 and a11 is invertible.
The following is one of our main results.
Theorem 2.10. Suppose A > 0 and the largest entry of A is 1. Then A+ exists

if and only if A = AAtA. In this case A+ = At.
Proof. Suppose A+ exists. Let B = AAt. Note that B+ exists and B+ =

(A+)tA+. Thus, by Corollary 2.8, B2 = B. That is, AAtAAt = AAt. Thus, A+AAtAAt

= A+AAt. Since A+A is symmetric, we have At(A+)tAtAAt = At(A+)tAt. Since
(A+)t = (At)+ and AA+A = A, it follows that AtAAt = At. Thus, AAtA = A.
Now observe that A+AAtAA+ = A+AA+ (by multiplying A+ on both sides). The
left-hand side is equal to At(A+)tAt(A+)tAt = At and the right-hand side is equal to
A+.

Conversely, given A = AAtA, it is easy to check that At satisfies all conditions
for A+.

624 S. PATI

Remark. Let Dn be the set of n×n doubly stochastic matrices in the conventional
algebra (that is, (R,+,×)). An element A ∈ Dn is called regular in Dn if there exists
some G ∈ Dn such that AGA = A. It is known (see Theorem 5.5 of Chapter 3 in [5])
that if A ∈ Dn is regular in Dn, then A+ = At. Theorem 2.10 may be thought of as

a weaker version of this. Considering the matrix [
1 1
0 1

] we observe that a similar

statement to that of Theorem 5.5 of Chapter 3 in [5] is not possible.
Corollary 2.11. Suppose A > 0 and let k be the largest entry of A. Then A+

exists if and only if k−2AAtA = A, in which case A+ = k−2At.
Proof. Suppose A+ exists. By Lemma 2.9, k is invertible. Let B ≡ k−1A. Then

by Lemma 2.4, B+ exists and by Theorem 2.10 we have B+ = Bt = k−1At. Thus,
BB+B = B, that is, k−1Ak−1Atk−1A = k−1A, or k−2AAtA = A.

Conversely, given k−2AAtA = A, it is easy to see that k−2At satisfies all condi-
tions to be the Moore–Penrose inverse of A.

Now we combine all our discussions to state one of the main results.
Theorem 2.12. Let A be a matrix on D. The following are equivalent.
(i) A+ exists.
(ii) There exist permutation matrices P,Q such that

PAQ =

F1 0 · · · 0 0
0 F2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Fk 0
0 0 · · · 0 0

,

where Fi > 0 are not necessarily square. Let mi be the maximal entry in Fi, i =
1, 2, . . . , k, respectively. Then

FiF
t
i Fi = m

2
iFi ∀i = 1, 2, . . . , k.

In this case,

QtA+P t =

F t
1

m2
1

0 · · · 0 0

0
F t

2

m2
2
· · · 0 0

...
...

. . .
...

...

0 0 · · · F t
k

m2
k

0

0 0 · · · 0 0

.

(iii) There exists an invertible diagonal matrix D such that A+ = DAt.
Proof. Suppose A+ exists. From Proposition 2.2, it follows that there exist

permutation matrices P,Q such that PAQ is the direct sum of some positive matrices
Fi and a zero matrix (not necessarily square). Using Proposition 2.3, we see that
each of these positive matrices has a Moore–Penrose inverse and an application of
Corollary 2.11 completes the proof of (i)⇒ (ii).

To see (ii)⇒ (iii) note that

QtA+P t = D(PAQ)t = DQtAtP t = QtD′AtP t,(5)

where D is the diagonal matrix defined as dii =
1
m2

j

, if a nonzero entry of the ith row of

PAQ is in Fj and dii = 1 otherwise. The last equality in the above equation follows,

MOORE–PENROSE INVERSE ON SEMIRINGS 625

since DQt can be viewed as QtD′ for some diagonal matrix D′. Now multiplying by
Q on the left and by P on the right in the above equation completes the proof.

Remark. It is known (see [5, Chapter 5, Theorem 5.2]) in the conventional algebra
that if A is a nonnegative matrix, then A+ ≥ 0 if and only if A+ = DAt for some
positive diagonal matrix D. It may be noted here that in Theorem 2.12 we have a
similar statement. Here, since all the matrices are nonnegative, A+ exists if and only
if A+ = DAt for some positive diagonal matrix. Because of (iii), we can now use the
program given earlier in this paper to compute the Moore–Penrose inverse of a matrix
over D, if it exists. After computing the permutation matrices we only have to look at
the diagonal blocks and find the maximums. Then we can compute positive diagonal
matrix D as specified in (iii).

Before stating the next result we need some discussion. Let A > 0 have the largest
entry 1 and suppose that A+ exists. Consider the matrix B defined as bij = aij if
aij = 1, otherwise bij = 0. Considering B as a binary boolean matrix it is easy to see
that B+ exists. Thus, by Theorem 2.12, there exist permutation matrices P,Q such
that

PBQ =

J1 0 · · · 0 0
0 J2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Jk 0
0 0 · · · 0 0

,

where Ji are not necessarily square. Let C = PAQ. So,

C =

J1 C12 · · · C1k C1k+1

C21 J2 · · · C2k C2k+1

...
...

. . .
...

...
Ck1 Ck2 · · · Jk Ckk+1

Ck+1,1 Ck+1,2 · · · Ck+1,k Ck+1,k+1

,(6)

where the blocks other than J1, J2, . . . , Jk have entries less than 1. From the hypothesis
that A+ exists it follows that C+ exists, and by Theorem 2.10 C+ = Ct. Thus,
CCtC = C, and hence,

Cij = CijJ
t
jJj if j = k + 1, i = j,

Cij = JiJ
t
iCij if i = k + 1, i = j.

Thus we conclude that all the off-diagonal blocks in C are constant blocks.
Let us write C in the following block form:

C =

[
L Y
Xt Ck+1,k+1

]
,

where Xt = [Ck+1,1, Ck+1,2, . . . , Ck+1,k] and Y
t = [C1,k+1, C2,k+1, . . . , Ck,k+1].

Since CCtC = C, we get

Ck+1,k+1 = XL
tY ⊕Ck+1,k+1Y

tY ⊕XXtCk+1,k+1⊕Ck+1,k+1C
t
k+1,k+1Ck+1,k+1.(7)

Noting that the entries X,Y,Ck+1,k+1 are all less than 1, it follows from (7) that
Ck+1,k+1 = X

tLtY. It is easy to see that LtY = Y and XLt = X. This discussion is

626 S. PATI

summarized in the following theorem which gives the structure of A > 0, when A+

exists.
Theorem 2.13. Suppose A > 0 has largest entry 1 and A+ exists. Then there

exist permutation matrices P,Q such that

PAQ =

[
L LtY
XtLt XtLtY

]
=

[
L Y
Xt XtY

]
,

where the blocks in L are produced according to the J-blocks in PAQ. Each diagonal
block of L is a J-block. The entries in an off-diagonal block are all equal to a number
less than 1, and X,Y are two matrices whose largest entry is less than 1.

As an immediate consequence we get a description of A, if A > 0 and A+ exists
(by considering A

k where k is the maximal entry in A). Hence the structure of the

matrices Fi

mi
, where Fi, i = 1, 2, . . . , k are as in Theorem 2.12 and mi is the largest

element of Fi, is the same as that of the matrix PAQ in Theorem 2.13.

3. Conclusions. We have given (in Theorem 2.12) necessary and sufficient con-
ditions for the existence of the Moore–Penrose inverse A+ of a matrix A over any
idempotent semiring. In case A+ exists, we have given a description of it so that it
can be easily computed.

Acknowledgments. The author sincerely thanks an anonymous referee for many
helpful comments and suggestions. The author also thanks Prof. R. B. Bapat for
suggesting the problem and for many helpful comments.

REFERENCES

[1] F. Bacceli, G. Cohen, G. J. Olsder, and J. P. Quadrat, Synchronization and Linearity,
John Wiley and Sons, New York, 1992.

[2] R. B. Bapat, A max version of the Perron-Frobenius theorem, Linear Algebra Appl., 275/276
(1998), pp. 3–18.

[3] R. B. Bapat, D. P. Stanford, and P. van den Driessche, Pattern properties and spectral
inequalities in max algebra, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 964–976.

[4] R. B. Bapat, S. K. Jain, and S. Pati, Weighted Moore–Penrose inverse of a boolean matrix,
Linear Algebra Appl., 255 (1997), pp. 267–279.

[5] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM,
Philadelphia, 1994.

[6] R. A. Cuninghame-Green, Minimax Algebra, Lecture Notes in Econom. and Math. Systems
166, Springer-Verlag, Berlin, Germany, 1979.

[7] P. I. Dudinikov and S. N. Samborskii, Endomorphisms of finitely generated free semirings,
Advances in Soviet Mathematics, 13 (1992), pp. 65–85.

[8] S. Gaubert, Methods and Applications of (max,+) Linear Algebra, Lecture Notes in Comput.
Sci. 1200, Springer, Berlin, 1997.

[9] S. Gaubert, Théorie des Systémes Linéaires dans des Dioïdes, Ph.D. Thesis, L’Ecole des
Mines de Paris, Paris, France, 1992.

[10] M. Gondran and M. Minoux, Graphs and Algorithms, John Wiley and Sons, Chichester, UK,
1984.

[11] M. Gondran and M. Minoux, Linear algebra in dioids: A survey of recent results, Ann. of
Discrete Math., 19 (1984), pp. 147–163.

[12] R. M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Math., 23
(1978), pp. 309–311.

[13] K. H. Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York, 1982.
[14] P.S.S.N.V.P. Rao and K.P.S.B. Rao, On generalized inverses of boolean matrices, Linear

Algebra Appl., 11 (1975), pp. 135–153.
[15] W. Chen, X. Qi, and S. Deng, The eigen problem and period analysis of the discrete event

system, Systems Sci. Math. Sci., 3 (1990), pp. 243–260.

SPECTRAL STRUCTURES OF IRREDUCIBLE TOTALLY
NONNEGATIVE MATRICES∗

SHAUN M. FALLAT† , MICHAEL I. GEKHTMAN‡ , AND CHARLES R. JOHNSON§

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 627–645

Abstract. An n-by-n matrix is called totally nonnegative if every minor of A is nonnegative.
The problem of interest is to characterize all possible Jordan canonical forms (Jordan structures) of
irreducible totally nonnegative matrices. We show that the positive eigenvalues of such matrices have
algebraic multiplicity one, and also demonstrate key relationships between the number and sizes of
the Jordan blocks corresponding to zero. These notions yield a complete description of all Jordan
forms through n = 7, as well as numerous general results. We also define a notion of “principal rank”
and employ this idea throughout.

Key words. totally nonnegative matrices, spectral structure, irreducible, principal rank, Jordan
blocks, Jordan forms and structures

AMS subject classifications. 15A18, 15A48

PII. S0895479800367014

1. Introduction. An n-by-n matrix A is called totally positive (TP) (totally
nonnegative (TN)) if every minor of A is positive (nonnegative). Such matrices arise
in a variety of applications [11], have been studied most of the twentieth century, and
have received increasing attention of late.

It has long been known [10, 1] that any TP matrix has only positive eigenvalues
that are each of algebraic multiplicity one (“distinct positive eigenvalues”); these
distinct positive eigenvalues may be any positive numbers [2]. One proof of the fact
that any TP matrix has distinct positive eigenvalues offers a nice application of the
so-called Perron–Frobenius theory of entrywise nonnegative matrices. If TP is relaxed
to TN (which is the closure of TP [1]), then the eigenvalues are nonnegative, but any
multiplicities, and in fact any Jordan structure (i.e., any Jordan canonical form),
may occur (because a basic Jordan block associated with a nonnegative eigenvalue
is TN and direct summation preserves TN). This naturally leaves a question about
irreducible TN matrices. Are they spectrally more like TP matrices or more like
general TN matrices? We say that an n-by-n (n ≥ 2) matrix A is reducible if there
exists a permutation matrix P so that

PAPT =

[
B C
0 D

]
,

where the matrix 0 is an (n − r)-by-r zero matrix (n − 1 ≥ r ≥ 1). Otherwise we
say A is an irreducible matrix. A hint comes from prior work. A TN matrix is called
oscillatory if some power of it is TP. It is known [10] that an invertible irreducible

∗Received by the editors February 4, 2000; accepted for publication (in revised form) by R. Brualdi
May 16, 2000; published electronically October 6, 2000.

http://www.siam.org/journals/simax/22-2/36701.html
†Department of Mathematics and Statistics, University of Regina, Regina, SK, Canada, S4S 0A2

(sfallat@math.uregina.ca). Most of this work has been taken from this author’s Ph.D. dissertation
while at the College of William and Mary. This research of this author is currently supported by an
NSERC research grant.

‡Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-5683 (Michael.
Gekhtman.1@nd.edu).

§Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795
(crjohnso@math.wm.edu). The research of this author was supported in part by the Office of Naval
Research contract N00014-90-J-1739 and NSF grant 92-00899.

627

628 S. M. FALLAT, M. I. GEKHTMAN, AND C. R. JOHNSON

TN matrix is oscillatory (the converse is also true). Since an oscillatory matrix must
also have distinct positive eigenvalues (obviously), then an invertible irreducible TN
matrix is spectrally like a TP matrix.

However, an irreducible TN matrix may easily be singular (in which case the
eigenvalue zero occurs), and it is not immediately clear how significant the effect of
this singularity may be. Our purpose, then, is to study the possible spectral structure
of (singular) irreducible TN matrices. Interestingly, the effect of singularity is, in
part, substantial. Our paper will follow two major lines. The eigenvalue zero may
not only be multiple but may have very elaborate, but restricted, Jordan structure.
On the other hand, the positive eigenvalues must still have multiplicity one. In the
process of developing our results some necessary facts of possible independent interest
are proven.

2. Preliminaries. For an m-by-n matrix A = [aij], α ⊆ {1, 2, . . . , m}, and
β ⊆ {1, 2, . . . , n}, the submatrix of A lying in rows indexed by α and the columns
indexed by β will be denoted by A[α|β]. Similarly, A(α|β) is the submatrix obtained
from A by deleting the rows indexed by α and the columns indexed by β. If A is
an n-by-n matrix and α = β, then the principal submatrix A[α|α] is abbreviated to
A[α], and the complementary principal submatrix is A(α). If x = [xi] is an n-vector,
then we let diag(xi) denote the n-by-n diagonal matrix with main diagonal entries
xi. Recall that the rank of a given m-by-n matrix A, denoted by rank(A), is the size
of the largest invertible square submatrix of A. Naturally, the principal rank of an
n-by-n matrix A, denoted by p-rank(A), is the size of the largest invertible principal
submatrix of A. Note that the inequality 0 ≤ p-rank(A) ≤ rank(A) ≤ min(m, n)
follows directly from the definitions above. One topic of interest is characterizing all
the triples (n, rank(A), p-rank(A)), where n is the size of a TN square matrix A.

It is not difficult to show that if A is a TN matrix (in fact, this result holds as
long as A has nonnegative principal minors, i.e., A is a P0-matrix), then p-rank(A)
is equal to the number of nonzero (or in this case positive) eigenvalues of A. Hence
if A is an n-by-n TN matrix, then n − p-rank(A) is equal to the sum of the sizes
of the Jordan blocks corresponding to the eigenvalue zero (i.e., the algebraic multi-
plicity of the eigenvalue zero), and n − rank(A) is equal to the number of Jordan
blocks corresponding to zero (i.e., the geometric multiplicity of the eigenvalue zero).
Another well-known notion is how to determine the size of the largest Jordan block
corresponding to the eigenvalue zero (in fact, it is known for any eigenvalue). In the
case of irreducible TN matrices this reduces to the following: if k is the smallest posi-
tive integer such that rank(Ak) = p-rank(A), then k is equal to the size of the largest
Jordan block corresponding to the eigenvalue zero. Observe that k, as defined above,
satisfies k ≤ rank(A)− p-rank(A) + 1.

The next notion is needed for our reduction-type results in the next section and
is useful for many problems dealing with TN matrices (see [6]). In the following
definition and throughout this paper the symbol ∗ in a matrix means the corresponding
entry is nonzero.

Definition 2.1. An m-by-n matrix A with no zero rows or columns is said to
be in double echelon form if

(i) each row of A has one of the following forms:
(1) (∗, ∗, · · · , ∗),
(2) (∗, · · · , ∗, 0, · · · , 0),
(3) (0, · · · , 0, ∗, · · · , ∗), or
(4) (0, · · · , 0, ∗, · · · , ∗, 0, · · · , 0);

SPECTRAL STRUCTURES OF TN MATRICES 629

(ii) the first and last nonzero entries in row i + 1 are not to the left of the first
and last nonzero entries in row i, respectively (i = 1, 2, . . . , m− 1).

Thus a matrix in double echelon form appears as follows:

∗ ∗ 0 · · · 0

∗ . . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . ∗

0 · · · 0 ∗ ∗

.

It is not difficult to see that any TN matrix with no zero rows or columns must
be in double echelon form (see also [17]). This implies the following result that was
originally observed in [10], and can also be found in [17], stated slightly differently.
We present a different proof here for completeness.

Lemma 2.2. Suppose A = [aij] is an n-by-n TN matrix. Then A is irreducible if
and only if aij > 0 for all i, j such that |i− j| ≤ 1.

Proof. The sufficiency of the condition that aij > 0 for all i, j with |i− j| ≤ 1 is
trivial. On the other hand, suppose A is irreducible. Thus A has no zero lines, and
hence it must be in double echelon form. Suppose aii = 0 for some i. Then ast = 0
for 1 ≤ s ≤ i and i ≤ t ≤ n, or ast = 0 for i ≤ s ≤ n and 1 ≤ t ≤ i, from which
it follows that A is reducible, and hence we have a contradiction. Therefore we may
assume aii > 0 for all i. Similarly, if ai,i+1 = 0 for some i = 1, 2, . . . , n − 1, then
ast = 0 for all 1 ≤ s ≤ i and i ≤ t ≤ n. Again A is reducible, another contradiction.
This completes the proof.

We call an n-by-n matrix A = [aij] tridiagonal if aij = 0 for all i, j with |i−j| ≥ 2.
Hence tridiagonal matrices and irreducible TN matrices are somewhat related (see
Lemma 2.2 above). The following result is well known.

Lemma 2.3. Let T be an n-by-n irreducible entrywise nonnegative tridiagonal
matrix. Then the eigenvalues of T are real and distinct.

Before we come to our reduction-type results we wish to make some brief remarks
concerning row operations involving TN matrices. For simplicity of notation (see also
[4]), we let G2 =

[
0 1
0 1

]
,and let Fr(c), c ≥ 0 denote the r-by-r matrix,

Fr(c) =

1 0 0
0 0r−2 0
c 0 1

 .

Observe that both of the above matrices are TN. We also note that the property
TN is not in general preserved under row and column operations. However (see, for
example, [19]), if A = [aij] is TN and say a1j , a1,j+1 > 0, and a1k = 0 for k > j + 1,
then the matrix A∗ obtained from A by subtracting a1,j+1/a1j times column j from
column j + 1 is TN. That is, A = A∗U , where U is the upper triangular TN matrix
given by U = Ij−1 ⊕ FT

2 (a1,j+1/a1j) ⊕ In−j−1. This fact was generalized in [4].
Suppose A = [aij] is TN, a1j > 0, and for some t > j, a1t > 0, but a1k = 0 for all
j < k < t and k > t. Then, since A is TN it follows that aik = 0 for 1 ≤ i ≤ n
and j < k < t. Let A∗ be obtained from A by subtracting a1t/a1j times column j
from column t. Thus A = A∗U , where U is the upper triangular TN matrix given by
U = Ij−1 ⊕ FT

t−j+1(a1t/a1j)⊕ In−t. It is shown in [4] that the matrix A∗ is TN.
Consider the following examples which demonstrate that there do exist nontrivial

(larger than one) Jordan blocks corresponding to zero for irreducible TN matrices.

630 S. M. FALLAT, M. I. GEKHTMAN, AND C. R. JOHNSON

Example 2.4. Let

A =

3 2 1
2 3 2
1 2 3

 .

Then A is a 3-by-3 TP matrix.
Consider the 4-by-4 irreducible TN matrix,

B =

3 3 2 1
2 2 3 2
1 1 2 3
1 1 2 3

 .

Then rank(B) = rank(A) = 3 and p-rank(B) = p-rank(A) − 1 = 2, from which it
follows that B has one 2-by-2 Jordan block corresponding to zero and two distinct
positive eigenvalues.

We note here that in general this “asymmetric” bordering of a TN matrix pre-
serves the rank but may change the principal rank. Observe that if we border the
matrix B above in a similar manner, then the resulting TN matrix has the same rank
and principal rank as B. We will come back to this asymmetric bordering later.

Example 2.5. A matrix B = [bij] is said to be a lower Hessenberg matrix if bij = 0
for all i, j with i + 1 < j. Consider the n-by-n lower Hessenberg (0,1)-matrix

H =

1 1 0 · · · 0

1 1 1
. . .

...
...

...
. . .

. . . 0
1 1 · · · 1 1
1 1 · · · 1 1

.

It is not difficult to verify that H is an irreducible TN matrix with rank n−1. (Observe
that H is singular and that H[{1, 2, . . . , n − 1}|{2, 3, . . . , n}] is a nonsingular lower
triangular matrix.) A more challenging exercise is to prove that p-rank(H) = �n2 �. To
see this observe that if n is odd (even), then H[{1, 3, 5, . . . , n}] (H[{2, 4, 6, . . . , n}]) is a
nonsingular lower triangular matrix. Hence p-rank(H) ≥ �n2 �. To show p-rank(H) ≤
�n2 �, suppose there exists an index set α such that |α| > �n2 � and detH[α] > 0. Then
α must contain at least one consecutive pair of indices, say i and i+1 are in α, where
1 < i < n − 1. Since H is lower Hessenberg and detH[α] > 0, it follows that index
i + 2 ∈ α. Applying the same reasoning to the pair i + 1 and i + 2, we may conclude
i + 3 ∈ α. However, continuing in this manner will show that H[α] is singular, since
either both indices n − 1 and n will be in α, or the maximum of α is less than n, in
which case there will exist a pair of indices k, k + 1 in α and k + 2 not in α. Thus
p-rank(H) = �n2 �. Finally, we conclude this section with the following definition.

Definition 2.6. Let A and B be two square matrices, not necessarily of the
same size. Then we say that A and B have the same nonzero Jordan structure if the
distinct nonzero eigenvalues of A and B can be put into 1-1 correspondence so that
each corresponding pair has the same number and sizes of Jordan blocks. Further, if
A and B are the same size, we say that A and B have the same qualitative Jordan
structure, if they have the same nonzero Jordan structure and if the number and sizes
of the Jordan blocks corresponding to zero coincide.

SPECTRAL STRUCTURES OF TN MATRICES 631

For example, suppose A has eigenvalues two (with one 2-by-2 Jordan block) and
three (with one 3-by-3 Jordan block). Then any 5-by-5 matrix with two distinct
nonzero eigenvalues, one of which has a 2-by-2 Jordan block and the other with a
3-by-3 Jordan block, has the same nonzero and qualitative Jordan structure as A.
Recall that if A is an n-by-m matrix and B is a m-by-n matrix, then AB and BA
have the same nonzero Jordan structure [13, Thm. 1.3.20], and two matrices that are
similar have the same qualitative Jordan structure (since they both have the same
Jordan canonical form [13]).

3. Positive eigenvalues of TN matrices. As noted earlier, the nonzero eigen-
values of a TN matrix are positive. However, more can be said about other properties
that they might possess. We note here that for the matrix B in Example 2.4 the
two eigenvalues are distinct. In fact, as we shall see, the positive eigenvalues of an
irreducible TN matrix are always distinct.

We begin our analysis with a basic lemma, from which the main result may be
obtained by a sequential application of this lemma. In [18] a similar “reduction”-type
basic lemma was used to prove the following result. If A is an n-by-n nonsingular TN
matrix, then there exists a nonsingular TN matrix S and a tridiagonal TN matrix T
such that TS = SA, and the matrices A and T have the same eigenvalues. Later Cryer
[4] extended this result to general (singular and nonsingular) TN matrices. Since the
auxiliary assumption of irreducibility is necessary for our analysis (and was not in
[18]), we are required to prove a different reduction-type lemma that can be stated as
follows.

Lemma 3.1 (basic lemma). Suppose that A = [aij] is an n-by-n irreducible TN
matrix such that for some fixed i < j < n, alm = 0 for all l < i, m ≥ j, ai,j+1 > 0,
and ait = 0 for all t > j +1. Then there exists an irreducible TN matrix A′ such that

(i) (A′)lm = 0 for all l < i, m ≥ j, (A′)i,j+1 = 0, and
(ii) A′ is either n-by-n and similar to A or is (n−1)-by-(n−1) and has the same

nonzero Jordan structure as A.
Proof. By our assumptions, alj = al,j+1 = 0 for l < i. Also, since A is irreducible

and ai,j+1 > 0, aij is also positive. Use column j to eliminate ai,j+1 via the elementary
upper triangular bidiagonal nonsingular matrix S = I−αeje

T
j+1. Consider the matrix

A′ = S−1AS. It is shown in [19] that AS is TN, and since S−1 is TN, we have
A′ = S−1AS is TN. Clearly the (i, j + 1) entry of A′ is zero. Observe that A′ will
be in double echelon form, unless A′ contains a zero column, which necessarily must
be column j + 1. Assume for now that column j + 1 of A′ is nonzero. Then we
must show that A′ is irreducible. Note that, by construction, and the irreducibility
of A, (A′)k,k+1 = ak,k+1 > 0 for k �= j, (A′)k,k−1 = ak,k−1 > 0 for k �= j, j + 1, and
(A′)j,j−1 = aj,j−1 + αaj+1,j−1 > 0 for k �= j. Thus, by Lemma 2.2, we only need to
show that (A′)j,j+1 > 0 and (A′)j+2,j+1 > 0. Since (A′)j,j+2 = aj,j+2 + αaj+1,j+2

is positive, so is (A′)j,j+1 (recall that A′ is in double echelon form). Now consider
(A′)j+2,j+1 = aj+2,j+1−αaj+2,j . Then either aj+2,j = 0, and therefore (A′)j+2,j+1 >
0, or both (A′)j+2,j = aj+2,j and (A′)j+2,j+2 = aj+2,j+2 are positive, from which
the positivity of (A′)j+2,j+1 follows from the double echelon form of A′. Thus, A′ is
irreducible. Finally, suppose the (j + 1)th column of A′ is zero. Then (as in [18] and
[4]) consider the matrix obtained by deleting the (j +1)th row and column of A′, and
denote it by A′′. It is not hard to see that A′ is similar to a matrix

[
A′′ 0∗ 0

]
. Therefore,

the nonzero Jordan structure of A′′ is the same as A′, which in turn is the same as A.
Moreover, since A′′ is a submatrix of A′, A′′ is TN. The only point remaining to prove
is that A′′ is irreducible. To this end, it suffices to show that (A′)j+2,j and (A′)j,j+2

632 S. M. FALLAT, M. I. GEKHTMAN, AND C. R. JOHNSON

are positive. But, (A′)j,j+2 = aj,j+2+αaj+1,j+2 > 0, as A is irreducible. For the same
reason, since (A′)j+2,j+1 = aj+2,j+1 − αaj+2,j = 0, we have (A′)j+2,j = aj+2,j > 0
and the proof is complete.

We are now in a position to state our main results concerning the eigenvalues of
an irreducible TN matrix.

Theorem 3.2. Let A be an irreducible TN matrix. Then there exists an ir-
reducible tridiagonal TN matrix T (not necessarily of the same size as A) with the
same nonzero Jordan structure as A. Moreover, T is obtained from A by a sequence
of similarity transformations and projections.

Proof. Successive application of the basic lemma (Lemma 3.1) results in a k-by-
k (k ≤ n) irreducible lower Hessenberg TN matrix L, which has the same nonzero
Jordan structure as A. Consider the matrix U = LT . Clearly, U is upper Hessenberg.
Since this property is preserved under similarity transformations by upper triangular
matrices, if a zero column is produced via application of the procedure described in
the proof of Lemma 3.1, it must be the last column. In this case, deleting the last
column and row then produces an upper Hessenberg matrix of smaller dimension
with the same nonzero Jordan structure as U . Applying Lemma 3.2 repeatedly, we
finally obtain an irreducible TN tridiagonal matrix TT with the same nonzero Jordan
structure as A. Then, clearly, T satisfies all the conditions of the theorem.

Theorem 3.3. Let A be an n-by-n irreducible TN matrix. Then the positive
eigenvalues of A are distinct.

Proof. By the previous theorem there exists an irreducible TN tridiagonal ma-
trix T , with the same nonzero Jordan structure as A. By Lemma 2.3 the positive
eigenvalues of T are distinct, hence the positive eigenvalues of A are distinct.

Corollary 3.4 (see [10]). The eigenvalues of a TP matrix are real positive and
distinct.

We note here that the size of the tridiagonal matrix obtained in Theorem 3.2 is
either the same as the number of nonzero eigenvalues of A or is this number plus one.
In the next section we will see that this quantity (namely, the number of nonzero
eigenvalues of A) will play a central role in our analysis of the qualitative Jordan
structures of TN matrices.

4. Jordan structures of TN matrices. There has been a considerable amount
of work accomplished on factorizations of TN matrices particularly into upper and
lower elementary bidiagonal matrices (see [4, 12]). By definition, an elementary bidi-
agonal matrix is an n-by-n matrix whose main diagonal entries are all equal to one,
and there is at most one nonzero off-diagonal entry and this entry must occur on the
super- or subdiagonal. To this end, we denote by Ek(µ) = [cij] (2 ≤ k ≤ n) the lower
elementary bidiagonal matrix whose elements are given by

cij =

1 if i = j,

µ if i = k, j = k − 1,

0 otherwise,

that is, Ek(µ) =

1 0 · · · 0

0
. . .

. . .
...

... µ
. . . 0

0 · · · 0 1

 .

The next result may be found in many places (see, for example, [4] where a bidiagonal
factorization is proven for general (i.e., singular and nonsingular) TN matrices, or see
[19] for a statement of the key lemma used to prove the next theorem), but see [12]
for the version stated here.

SPECTRAL STRUCTURES OF TN MATRICES 633

Theorem 4.1. Let A be an n-by-n nonsingular TN matrix. Then A can be writ-
ten as

A = (E2(lk))(E3(lk−1)E2(lk−2)) · · · (En(ln−1) · · ·E3(l2)E2(l1))D

(ET
2 (u1)E

T
3 (u2) · · ·ET

n (un−1)) · · · (ET
2 (uk−2)E

T
3 (uk−1))(E

T
2 (uk)),(4.1)

where k =
(
n
2

)
, li, uj ≥ 0 for all i, j ∈ {1, 2, . . . , k}, and D is a positive diagonal

matrix.
An excellent treatment of the combinatorial and algebraic aspects of bidiagonal

factorizations of TN matrices along with generalizations for TP elements is reductive
Lie groups as given in [3] and [7]. One of the main tools used in these papers is a
graphical representation of the bidiagonal factorization in terms of planar diagrams
that can be described as follows.

An n-by-n diagonal matrix diag(d1, d2, . . . , dn) is represented by the diagram in
Figure 4.1. Associated with an elementary lower bidiagonal matrix Ek(l) is the dia-
gram in Figure 4.2, while an elementary upper bidiagonal matrix ET

j (u) is represented
by the diagram in Figure 4.3.

d

d

d

d

.

.

.

.

.

.

n

n-1 n-1

n

1

2 2

11

2

n

n-1

Fig. 4.1. Diagram for a diagonal matrix.

n n

k k

k-1 k-1

l

1 1

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 4.2. Diagram for a lower bidiagonal matrix.

Each horizontal edge in Figures 4.2 and 4.3 has a weight of 1. It is not hard to ver-
ify that if A is a matrix represented by any of the diagrams in Figures 4.1, 4.2, and 4.3,
then detA[{i1, i2, . . . , ik}|{j1, j2, . . . , jk}] is nonzero if and only if in the corresponding
diagram there is a family of k vertex-disjoint paths joining the vertices {i1, i2, . . . , ik}
on the left side of the diagram with the vertices {j1, j2, . . . , jk} on the right side. More-
over, in this case this family of paths is unique and detA[{i1, i2, . . . , ik}|{j1, j2, . . . , jk}]
is equal to the product of all the weights assigned to the edges that form this family.

634 S. M. FALLAT, M. I. GEKHTMAN, AND C. R. JOHNSON

n n

j j

j-1 j-1

u

1 1

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 4.3. Diagram for a upper bidiagonal matrix.

Now, given a product A = A1A2 · · ·Ak in which each matrix Ai is either a diagonal
matrix or an elementary (upper or lower) bidiagonal matrix, a corresponding diagram
is obtained by concatenation left to right of the diagrams associated with the matrices
A1, A2, . . . , Ak. For a given collection of vertex-disjoint paths joining the vertices
{i1, i2, . . . , ik} on the left side of the diagram with the vertices {j1, j2, . . . , jk} on
the right side we define the weight of such a collection to be the product of all the
weights assigned to the edges of the paths that form this collection. Then, by the
Cauchy–Binet identity (see [13]), the detA[{i1, i2, . . . , ik}|{j1, j2, . . . , jk}] is equal to
the sum of all the weights of all collections of vertex-disjoint paths joining the vertices
{i1, i2, . . . , ik} with the vertices {j1, j2, . . . , jk}.

As the most important example, consider the bidiagonal factorization of an arbi-
trary nonsingular TN matrix A from Theorem 4.1. This factorization translates into
the following diagram (see Figure 4.4).

d
1

d
2

d
n

l
k

l
k-2

l
k-1

l
1

l
2

u
k-2

u
k

u
k-1

u
1

u
2

u
n+1

l
n

l
n+1

u
n

d
n-1

1

2

3

n

n-1

1

2

3

n-1

n
l u

n-1 n-1

Fig. 4.4. General n-by-n diagram.

In the 3-by-3 case, for example, this diagram can be represented as in Figure 4.5.

d 1

d 2

d
3

1

2

3

1

2

3

l3

l2

l
1

2
u

u3
u

1

Fig. 4.5. General 3-by-3 diagram.

Then, for example, detA[{2, 3}|{1, 2}] = (l2d2)(l3d1), while the principal minor
detA[{2, 3}] = d2d3 + (l2d2u2)(l3d1u3).

The fact that any TN matrix has a bidiagonal factorization (see [4]) can also

SPECTRAL STRUCTURES OF TN MATRICES 635

be employed to tackle certain problems concerning Jordan structures. In particular,
the quantities rank and principal rank of a given matrix and irreducibility can all
be interpreted via the diagram associated with a particular bidiagonal factorization
of a TN matrix. For example, from a given diagram we can verify whether or not
the associated TN matrix is irreducible by determining if there exists a path in this
diagram from any index i to each of i − 1, i, and i + 1 (ignoring i − 1 when i = 1,
and i + 1 when i = n). If such a path exists, then for each i, ai,i−1, aii, and
ai,i+1 are all positive, which implies by Lemma 2.2, that the associated TN matrix
is irreducible. Since rank and principal rank are defined in terms of nonsingular
submatrices, it follows that rank and principal rank can be interpreted as the largest
collection of vertex disjoint paths beginning on the left and terminating on the right,
in the diagram, and the largest collection of vertex disjoint paths which begin and
terminate in the same index set, respectively.

We begin our analysis by considering the triple (n, rank, p-rank) among the class of
irreducible TN matrices. First, observe that the triples (n, 1, 1) and (n, n, n) certainly
exist, for all n ≥ 1, by considering the matrix J of all ones, and any n-by-n TP
matrix, respectively. Thus for n ≤ 2, we have completely characterized all possible
triples. However, for n = 3, the triples (3, 2, 2) and (3, 2, 1) have not been shown to be
realizable. First, consider the triple (3, 2, 2), and suppose that A =

[
a b
c d

]
is a 2-by-2

TP matrix. Then the matrix

B =

a b | b

c d | d
c d | d

is a 3-by-3 irreducible TN matrix with rank(B) = p-rank(B) = 2. Hence the triple
(3, 2, 2) is realizable. What about the triple (3, 2, 1)? Suppose there exists an irre-
ducible TN matrix A = [aij] with rank(A) = 2 and p-rank(A) = 1. Then aij > 0, for
all i, j with |i−j| ≤ 1. Observe that multiplying A by a positive diagonal matrix does
not affect rank or principal rank. Hence we may assume that a11 = a22 = a33 = 1
and a12 = a21, a23 = a32. Thus

A =

 1 a12 a13

a12 1 a23

a31 a23 1

 .

Since p-rank(A) = 1, it follows that a12 = a23 = 1 and a13a31 = 1. It is not difficult to
determine, in this case, that if a13a31 = 1, then a13 = a31 = 1, as A is TN. However,
in this case A = J , which is a contradiction since rank(A) = 2. Thus the triple (3, 2, 1)
is not realizable. This leads us to our first result on these triples, with fixed principal
rank. Recall that the equation li = 0 (or uj = 0) means that the corresponding edge
does not appear in a diagram.

Proposition 4.2. The triple (n, k, 1) is realizable by an n-by-n irreducible TN
matrix if and only if k = 1.

Proof. We have already seen that the triple (n, 1, 1) is realizable for all n. Now
assume the triple (n, k, 1) is realizable by an n-by-n irreducible TN matrix A. Then
A has a bidiagonal factorization, which can be represented by an associated diagram.
Since A is irreducible there exists a path from index n to n. Let P denote a shortest
such path from n to n. Then we claim that P must intersect the bottom row of this
diagram. If not, then since there always exists a path from index 1 to 1 by going along
this bottom row, it follows that the principal rank of A would be at least 2, which

636 S. M. FALLAT, M. I. GEKHTMAN, AND C. R. JOHNSON

is a contradiction (see diagram on the left in Figure 4.6). Otherwise, P intersects
the bottom row (see diagram on the right in Figure 4.6). Then since P is a shortest
path, it follows that any maximal collection of vertex disjoint paths must intersect P .
Hence the rank of A is at most one. Since {P} is one such maximal collection the
rank of A is one.

n

P P
...

...

nn n

11

P P.
..

...

1 1

Fig. 4.6. Fixed principal rank one.

We note here that the above proposition could also have been proved in a similar
manner as proving that the triple (3, 2, 1) is not realizable.

Observe that if rank(A) = p-rank(A), then A has n − p-rank(A), 1-by-1 Jordan
blocks corresponding to zero, and if rank(A) = p-rank(A) + 1, then A has exactly
one 2-by-2 Jordan block and n − p-rank(A)− 1, 1-by-1 Jordan blocks corresponding
to zero.

We now move on to the case when the principal rank is two.

Proposition 4.3. Suppose the triple (n, k, 2) is realizable by an n-by-n irreducible
TN matrix. Then 2 ≤ k ≤ �n+1

2 �. Moreover, each such k is realizable.

Proof. First observe that k ≥ 2 is obvious. As before we may assume that the
given matrix has a bidiagonal factorization and an associated diagram. Choose a
shortest path P from n to n. Since p-rank(A) = 2, this path cannot intersect the
bottom row. Suppose the path P uses the edge with weight di. Since p-rank(A) = 2,
it follows that any path beginning at i− 1 which is disjoint from P must intersect the
bottom row. Hence any maximal collection of vertex-disjoint paths from the indices
{1, 2, . . . , i − 1} that are disjoint from P contains at most one path. In this case it
follows that rank(A) = k ≤ max2≤i≤n{min(i, n − i + 2)}. Hence k ≤ �n+1

2 �. To
show that every such triple (n, k, 2) with 2 ≤ k ≤ �n+1

2 � can be realized, consider the
diagram in Figure 4.7 for i = 2, 3, . . . , n.

1

2 2

1

n

i

n

i

1

1 1

1
...

...

...
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

n-

i-

n-

i-

Fig. 4.7. Fixed principal rank two.

We can also apply similar techniques to prove the next result. Recall that the
(0,1) lower Hessenberg matrix in Example 2.5 has rank equal to n − 1 and principal

SPECTRAL STRUCTURES OF TN MATRICES 637

rank equal to �n2 �. The next result shows that �n2 � is the smallest possible value for
principal rank in the case when rank is n− 1.

Proposition 4.4. Suppose the triple (n, n − 1, k) (n ≥ 2) is realizable by an
n-by-n irreducible TN matrix. Then �n2 � ≤ k ≤ n− 1. Moreover, for each such k, the
triple is realizable.

Proof. First observe that the inequality k ≤ n − 1 is obvious. The proof is
by induction on n. The claim has already been verified for n ≤ 3. Let A be an
n-by-n irreducible TN matrix with rank equal to n − 1. As before we assume A
has a bidiagonal factorization and an associated diagram, and suppose P denotes
the shortest path from n to n. Then there are three cases to consider: (1) P uses
the edge with weight di with i ≤ n − 2; (2) P uses the edge with weight dn−1; or
(3) P uses the edge with weight dn.

Case 1: If P uses the edge with weight di with i ≤ n − 2, then it is not difficult
to check that, since P was a shortest such path, the rank of A is at most n − 2, a
contradiction.

Case 2: If P uses the edge with weight dn−1, then since A has rank n − 1 the
shortest path from each index j to itself (1 ≤ j ≤ n− 2) can drop at most one level.
Moreover, the shortest path from index n− 2 to itself cannot intersect P (otherwise
rank(A) < n − 1). Consider the diagram induced by the vertices {1, 2, . . . , n − 2}.
Observe that for this diagram the associated TN matrix A′ (which is not a submatrix
of A), satisfies n − 3 ≤ rank(A′) ≤ n − 2. If rank(A′) = n − 2, then since the vertex
disjoint paths that constitute rank(A′) do not intersect P we have p-rank(A) = n−1.
If rank(A′) = n − 3, then by induction �n−2

2 � ≤ p-rank(A′) ≤ n − 3, and every
such value is achievable. Hence �n−2

2 � + 1 ≤ p-rank(A) ≤ n − 3 + 1 or �n2 � ≤ p-
rank(A) ≤ n− 2, and every such value is realizable.

Case 3: Suppose P uses the edge with weight dn (i.e., P goes straight across
the diagram). Consider the diagram induced by the indices {1, 2, . . . , n − 1}. By
induction, the associated TN matrix A′ is (n− 1)-by-(n− 1) with rank(A′) = n− 2;
hence �n−1

2 � ≤ p-rank(A′) ≤ n − 2, and every such value is achievable. Thus it
follows that �n−1

2 �+1 ≤ p-rank(A) ≤ n− 1, and every such value is achievable. This
completes the proof.

We are now in a position to classify all possible triples for n = 4.

Example 4.5. Suppose the triple (4, k, p) is realizable by a 4-by-4 irreducible TN
matrix. The triples (4,4,4) and (4,1,1) are certainly realizable. (By Proposition 4.2,
the triple (4,1,1) is the only possible triple with principal rank equal to one.) If the
rank (k) is fixed to be three, then, by Proposition 4.4, the only realizable triples are
(4,3,3) and (4,3,2). Similarly, if the rank is fixed at two, then by Proposition 4.3
the triple (4,2,2) is the only realizable triple. Hence all possible triples have been
determined.

We now move on to a more general result on the Jordan structure of TN matrices.
Recall that if A is an n-by-n matrix and D is a positive diagonal matrix, then the
Jordan structure of A and AD can be vastly different. (For example, it is known that
if A is a matrix with positive principal minors, then there exists a positive diagonal
matrix D so that the eigenvalues of AD are positive and distinct, even though A may
not even be diagonalizable.) However, in the case of irreducible TN matrices it turns
out that the Jordan structure of A and AD (D a positive diagonal matrix) coincide.
We first state some necessary notation for compound matrices. Given an m-by-n
matrix A we define the kth compound of A, which we denote by Ck(A), to be the(
m
k

)
-by-

(
n
k

)
matrix whose (i, j)th entry is detA[αi|βj], where αi and βj are k-subsets,

638 S. M. FALLAT, M. I. GEKHTMAN, AND C. R. JOHNSON

order lexicographically, of {1, 2, . . . , m} and {1, 2, . . . , n}, respectively (see also [13]).
We begin with the following lemma.

Lemma 4.6. Let A be an n-by-n TN matrix and suppose D is an n-by-n positive
diagonal matrix. Then rank((AD)k) = rank(Ak) and p-rank((AD)k) = p-rank(Ak),
where k ≥ 1.

Proof. Let Cj(A) denote the jth compound of A. Since D is a positive di-
agonal matrix, it follows that Cj(D) = D′ is a positive diagonal matrix for all j.
Hence Cj(AD) = Cj(A)Cj(D) = Cj(A)D′ where the first equality follows from the
Cauchy–Binet identity for determinants. Since D′ is a positive diagonal matrix the
zero/nonzero patterns of Cj(AD) and Cj(A) are the same. Moreover, since Cj(A)
and Cj(AD) are entrywise nonnegative matrices and Cj(A

k) = (Cj(A))k, it follows
that the zero/nonzero pattern of each Cj(A

k) is completely determined by Cj(A).
Since the zero/nonzero patterns of Cj(AD) and Cj(A) are the same, it follows that
the zero/nonzero patterns of Cj(A

k) and Cj((AD)k) are the same. Observe that
the rank and the principal rank of a given matrix are given by the largest j, such
that jth compound is nonzero, and the largest j, such that the jth compound has a
nonzero diagonal, respectively. Hence it follows that rank((AD)k) = rank(Ak) and
p-rank((AD)k) = p-rank(Ak), where k ≥ 1. This completes the proof.

We are now in a position to prove that the Jordan structure of A and AD are the
same, whenever A is TN and irreducible.

Theorem 4.7. Suppose A is an n-by-n irreducible TN matrix and D is a positive
diagonal matrix. Then A and AD have the same qualitative Jordan structure.

Proof. Since A is irreducible (and hence AD is) and since p-rank(AD) = p-
rank(A), we have that the number of distinct positive eigenvalues of A and AD are
equal. Moreover, since the number and sizes of the Jordan blocks corresponding to
zero are completely determined by the ranks of powers, it follows that A and AD have
the same qualitative Jordan structure, since rank((AD)k) = rank(Ak), for k ≥ 1 (by
Lemma 4.6).

The assumption of irreducibility in the above result is necessary as seen by the
following example. Let

A =

1 1 0
0 1 1
0 0 1

 .

Then A is TN and is itself a Jordan block, and hence is not diagonalizable. However,
if D = diag(1, 2, 3), then

AD =

1 2 0
0 2 3
0 0 3

 ,

which has distinct eigenvalues and hence is diagonalizable. Thus A and AD do not
have the same qualitative Jordan structure.

We now present of couple of interesting consequences to the above theorem.
Corollary 4.8. Suppose A is an n-by-n irreducible TN matrix partitioned as

follows: A =
[
A11 a12
a21 a22

]
, where A11 is (n − 1)-by-(n − 1), and a22 is a scalar. Define

the (n + 1)-by-(n + 1) matrix B as follows:

B =

 A11 a12 a12

a21 a22 a22

a21 a22 a22

 .

SPECTRAL STRUCTURES OF TN MATRICES 639

Then B is an irreducible TN matrix with rank(B) = rank(A) and p-rank(B) = p-
rank(A), and the Jordan structure of B is the same as A, except B has one more
1-by-1 Jordan block associated with the eigenvalue zero.

Proof. The fact that B is TN is trivial, and since a22 > 0 (because A is irre-
ducible), B is irreducible. Also by the symmetry of the bordering scheme, it follows
that rank(B) = rank(A) and p-rank(B) = p-rank(A). Let S = En(−1), the n-by-
n elementary bidiagonal matrix with a −1 in the (n, n − 1) entry. Then an easy
calculation reveals that

SBS−1 =

A11 2a12 a12

a21 2a22 a22

0 0 0

 =

AD

[
a12

a22

]

0 0

 ,

where D = I ⊕ [2]. Observe that rank(Bk) = rank(SBkS−1) = rank((SBS−1)k).
Since

(SBS−1)k =

(AD)k (AD)k−1

[
a12

a22

]

0 0

 ,

and [a12
a22

] is in the span of AD, it follows that

rank

(AD)k (AD)k−1

[
a12

a22

]

0 0

 = rank((AD)k).

By Theorem 4.7, we have rank(Bk) = rank((AD)k) = rank(Ak). The result now
follows easily.

Corollary 4.9. If the triple (n, k, p) is realizable by an irreducible TN matrix,
then the triple (n + 1, k, p) is also realizable by an irreducible TN matrix.

Using the above results we can now classify all possible triples for n = 5 and 6.
Example 4.10. Suppose the triple (5, k, p) is realizable by a 5-by-5 irreducible TN

matrix. The triples (5,5,5) and (5,1,1) are certainly realizable. (By Proposition 4.2,
the triple (5,1,1) is the only possible triple with a principal rank equal one realization.)
If the rank (k) is fixed to be four, then, by Proposition 4.4, the only realizable triples
are (5,4,4) and (5,4,3). Similarly, if the rank is fixed at two, then by Proposition 4.3
the triple (5,2,2) is the only realizable triple. Finally, suppose the rank is fixed to be
three. Then there are only two possible values for the principal rank: two or three.
Recall from Example 4.5 that the triples (4,3,2) and (4,3,3) were both realizable.
Hence by Corollary 4.9, the triples (5,3,2) and (5,3,3) are both realizable.

For the case n = 6, the arguments are much the same as above and are omitted
here. Following is the list of all the triples that are realizable by 6-by-6 irreducible
TN matrices: (6,6,6); (6,5,5), (6,5,4), (6,5,3); (6,4,4), (6,4,3), (6,4,2); (6,3,3), (6,3,2);
(6,2,2); (6,1,1). Hence all possible triples for n = 5 and 6 have been determined.

We now turn our attention to proving some general results on the triples,
(n, rank,p− rank).

Proposition 4.11. For n ≥ 1 and r ≤ n, the triple (n, r, r) is realizable by an
irreducible n-by-n TN matrix.

Proof. Let A be an r-by-r TP matrix. Then the triple (r, r, r) is realizable by
an irreducible TN matrix (namely, A). Hence, by Corollary 4.9, the triple (n, r, r) is
realizable, since r ≤ n.

640 S. M. FALLAT, M. I. GEKHTMAN, AND C. R. JOHNSON

Recall that any matrix with the triple (n, r, r), has n − r, 1-by-1 Jordan blocks
corresponding to zero.

The asymmetric bordering notion used in Example 2.4 may also be used to prove
the existence of a general class of triples.

Proposition 4.12. For r ≥ 3 and r < n, the triple (n, r, r − 1) is realizable by
an irreducible n-by-n TN matrix.

Proof. We first prove the following claim: The triple (r + 1, r, r − 1) is realizable
for r ≥ 3. To prove this claim let A be an r-by-r TP matrix partitioned as follows:

A =

[
a11 A12

a21 a22

]
,

where A12 is (r − 1)-by-(r − 1). Define the (r + 1)-by-(r + 1) matrix A′ as

A′ =

 a11 a11 A12

a21 a21 a22

a21 a21 a22

 .

Then A′ is an irreducible TN matrix, and it is clear that rank(A′) = rank(A) = r.
What about the p-rank(A′)? First observe that

detA′[{2, 3, . . . , r}] = detA[{2, 3, . . . , r}|{1, 2, . . . , r − 1}] > 0,

since A is TP. Thus r ≥ p-rank(A′) ≥ r − 1. Suppose p-rank(A′) = r, and let α ⊆
{1, 2, . . . , r+1}, with |α| = r and detA[α] > 0. There are two cases to consider: 1 ∈ α,
or 1 �∈ α. Suppose 1 ∈ α. Then 2 �∈ α since detA[α] > 0, so α = {1, 3, 4 . . . , r + 1}.
But since rows r and r + 1 of A′ are the same, it follows that detA[α] = 0, which is
a contradiction. Otherwise, suppose 1 �∈ α. Then α = {2, 3, . . . , r + 1}, and again
detA[α] = 0, which is also a contradiction. Hence p-rank(A′) = r− 1. Thus the triple
(r+1, r, r−1) is realizable. Then, by Corollary 4.9, the triple (n, r, r−1) is realizable
for all n > r. This completes the proof.

We note that the requirement that r ≥ 3 is necessary since if the principal rank
is equal to one, then the rank is necessarily equal to one. Similarly, r < n is also
necessary. Recall that any matrix with the triple (n, r, r − 1) has one 2-by-2 and
n−r−1 1-by-1 Jordan blocks corresponding to zero. We now consider a more general
result whose proof follows slightly the proof of the previous result.

Theorem 4.13. For k ≥ 0, r ≥ k + 2, and n ≥ r + k, the triple (n, r, r − k) is
realizable by an irreducible n-by-n TN matrix.

Proof. We first prove that the triple (r + k, r, r − k) is realizable, from which
the general result will follow by Corollary 4.9. Let A be an r-by-r TP matrix.
Let A(k) be the (r + k)-by-(r + k) irreducible TN matrix obtained from A by k
successive applications of the asymmetric bordering scheme used in the proof of
the previous result. Then rank(A(k)) = r. Moreover, detA(k)[{k + 1, . . . , r}] =
detA[{k+1, . . . , r}|{1, 2, . . . , r−k}] > 0, since A is TP. Hence r ≥ p-rank(A(k)) ≥ r−k.
Finally, suppose α ⊆ {1, 2, . . . , r+k} with det(A(k)[α]) > 0. Then by the construction
of A(k) it follows that α can contain at most one index from {1, 2, . . . , k+1} and at most
one index from {r, r+1, . . . , r+k}. In other words |α| ≤ |{k+2, . . . , r−1}|+2 = r−k.
Hence p-rank(A(k)) = r − k. This completes the proof.

It is worth mentioning that while this asymmetric bordering scheme has proved
useful for determining certain triples, it is not clear how this bordering scheme affects
the Jordan structure of an irreducible TN matrix. We are currently making progress
on this issue.

SPECTRAL STRUCTURES OF TN MATRICES 641

1 1

i -1

n

s

n

s

r

...

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

t P

Q

R

T

Fig. 4.8. Principal rank two.

We are now in a position to prove the next result for the case when the principal
rank is fixed to be two.

Theorem 4.14. Let A be an irreducible TN matrix with principal rank equal to
two. Then the size of the largest Jordan block corresponding to zero is at most two.

Proof. As before we assume that A has a bidiagonal factorization and an associ-
ated diagram. Let P be a shortest path from index n on the left to index n on the
right. Since p-rank(A) = 2, it follows that this path P does not intersect the bottom
of this diagram. Suppose P drops to level i, that is, does not use any edges of the
diagram induced by the set {1, 2, . . . , i − 1}, then (as in the case of Proposition 4.3)
any path from any index 2, 3, . . . , i − 1, disjoint from P , must intersect the bottom
row, otherwise p-rank(A) > 2. To show that the size of the largest Jordan block is
at most two we will show rank(A2) = 2. To prove this it is enough to show that any
path from any of the indices {i, i+ 1, . . . , n− 1} to {1, 2, . . . , n} must either intersect
P , or the bottom row, or terminate among the indices {1, 2, . . . , i−1}. Suppose there
exists a path Q originating at some index t ∈ {i, i + 1, . . . , n− 1} and terminating at
s ∈ {i, i + 1, . . . , n− 1} without intersecting P or the bottom row. Since Q does not
intersect P it must drop below level i, as P was a shortest path. Assume t ≥ s (the
argument for s ≤ t is similar). Since A is irreducible there exists a path from s to
s + 1, but in this case such a path must intersect Q. We claim that any path from s,
disjoint from P , must intersect the bottom level. To see this suppose there exists a
path R from s that does not intersect the bottom level (see also Figure 4.8). Recall
that any path T from s to s, disjoint from P , must intersect the bottom level (since
p-rank(A) = 2), and hence any such path must intersect R. Thus there exists a path
from s to s that does not intersect P and is disjoint from the bottom level: Take R
until the intersection of R and T , then follow T until it intersects Q (which may be
at s), and then proceed to s. This contradicts that fact that p-rank(A) = 2. There-
fore any path originating from {i, i + 1, . . . , n− 1} must satisfy one of the following:
(1) intersects P ; (2) intersects the bottom row; (3) terminates in {1, 2, . . . , i− 1}; or
(4) if it terminates at s ≥ i, then any path beginning at s that is disjoint from P
must intersect the bottom row. (We note that these cases are not mutually exclu-
sive.) It now follows that the rank of A2 is two. Certainly, the rank(A2) ≥ 2, as
p-rank(A) = 2. Suppose there exists at least three vertex disjoint paths constituting
the rank of A2. Since P was chosen to be a shortest such path, at most one of these
paths can intersect P . Moreover, since these paths are vertex-disjoint, at most one
can terminate among the vertices {1, 2, . . . , i− 1} (which also includes that case of a

642 S. M. FALLAT, M. I. GEKHTMAN, AND C. R. JOHNSON

path intersecting the bottom level). Thus the only possibility left is case (4). But in
this case, any path beginning from s that is disjoint from P must intersect the bottom
level. Hence these paths cannot be disjoint for the diagram representing A2 (which is
obtained simply by concatenating two diagrams associated with A). This completes
the proof.

Corollary 4.15. Let A be an n-by-n irreducible TN matrix with p-rank(A) = 2.
Then rank(A2) = 2.

Through n = 6 it is not difficult to show that given a complete description of all
the triples (n, rank, p-rank), and using Theorem 4.14, we can completely characterize
all possible Jordan structures (or all possible Jordan canonical forms) for every n-by-
n irreducible TN matrix with n ≤ 6. For example, when n = 6 and rank is fixed
at four, the triples (6,4,4), (6,4,3), and (6,4,2) are the only realizable triples. Since
n− rank(A) = 2, we know that there must exist two Jordan blocks corresponding to
zero. By the remarks following Propositions 4.11 and 4.12, it follows that for (6,4,4)
there are two 1-by-1 Jordan blocks corresponding to zero, and for (6,4,3) there is
one 2-by-2 and one 1-by-1 Jordan block corresponding to zero. For the case (6,4,2)
there are two possible Jordan structures: (1) one 3-by-3 and one 1-by-1 Jordan block
corresponding to zero, or (2) two 2-by-2 Jordan blocks corresponding to zero. By
Theorem 4.14 it follows that case (1) cannot occur, hence any 6-by-6 irreducible TN
matrix with rank equal to four and principal rank equal to two (which do exist) must
have two 2-by-2 Jordan blocks corresponding to zero.

In the following list we use JB to mean Jordan block corresponding to zero. Also
in this list we do not include the cases when rank(A) = 1 or n. This list represents a
complete classification of all possible Jordan structures through n = 6:

(1) n = 3:
(a) rank(A) = 2

(i) p-rank(A) = 2 ⇒ one 1-by-1 JB;
(2) n = 4:

(a) rank(A) = 3
(i) p-rank(A) = 3 ⇒ one 1-by-1 JB;
(ii) p-rank(A) = 2 ⇒ one 2-by-2 JB;

(b) rank(A) = 2
(i) p-rank(A) = 2 ⇒ two 1-by-1 JBs;

(3) n = 5:
(a) rank(A) = 4

(i) p-rank(A) = 4 ⇒ one 1-by-1 JB;
(ii) p-rank(A) = 3 ⇒ one 2-by-2 JB;

(b) rank(A) = 3
(i) p-rank(A) = 3 ⇒ two 1-by-1 JBs;
(ii) p-rank(A) = 2 ⇒ one 2-by-2 JB and one 1-by-1 JB;

(c) rank(A) = 2
(i) p-rank(A) = 2 ⇒ three 1-by-1 JBs;

(4) n = 6:
(a) rank(A) = 5

(i) p-rank(A) = 5 ⇒ one 1-by-1 JB;
(ii) p-rank(A) = 4 ⇒ one 2-by-2 JB;
(iii) p-rank(A) = 3 ⇒ one 3-by-3 JB;

(b) rank(A) = 4
(i) p-rank(A) = 4 ⇒ two 1-by-1 JBs;

SPECTRAL STRUCTURES OF TN MATRICES 643

(ii) p-rank(A) = 3 ⇒ one 2-by-2 JB and one 1-by-1 JB;
(iii) p-rank(A) = 2 ⇒ two 2-by-2 JBs;

(c) rank(A) = 3
(i) p-rank(A) = 3 ⇒ three 1-by-1 JBs;
(ii) p-rank(A) = 2 ⇒ one 2-by-2 JB and two 1-by-1 JBs;

(d) rank(A) = 2
(i) p-rank(A) = 2 ⇒ four 1-by-1 JBs.

For the case n = 7, we can use the previous results to classify all possible triples.
(We ignore the trivial triples (7,7,7) and (7,1,1) in this discussion.) For instance, by
Proposition 4.4 the triples (7,6,6), (7,6,5), and (7,6,4) are the only realizable triples
when the rank is fixed at six. All of the remaining realizable triples (which are listed
below) follow from the list for n = 6 and Corollary 4.9, and also by Proposition 4.3.
The realizable triples for n = 7, are (7,6,6), (7,6,5), (7,6,4); (7,5,5), (7,5,4), (7,5,3);
(7,4,4), (7,4,3), (7,4,2); (7,3,3), (7,3,2); (7,2,2). In the case when n = 7, using the
complete list of triples above and Theorem 4.14 it follows that all possible Jordan
structures can be characterized (see list to follow) with the exception of one case,
namely the triple (7,5,3). For this particular triple there are two possible Jordan
structures: (1) one 3-by-3 JB and one 1-by-1 JB, or (2) two 2-by-2 JBs. The Jordan
structure in case (1) is possible by considering a matrix which realizes the triple
(6,5,3) (which exists), and then using Corollary 4.8 to construct a 7-by-7 irreducible
TN matrix with the desired Jordan structure. For case (2), we do not know of a general
technique to rule out or guarantee such a Jordan structure. However, consider the
following matrix:

A =

1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

.

Then A is a 7-by-7 irreducible TN matrix with rank(A) = 5 and p-rank(A) = 3, and
has Jordan structure

∗
∗
∗

0 1
0 0

0 1
0 0

.

Hence the second possible Jordan structure does indeed occur for some 7-by-7 irre-
ducible TN matrices. The complete list of all possible Jordan structures for n = 7 is
given below.

• n = 7:
(1) rank(A) = 6

(a) p-rank(A) = 6 ⇒ one 1-by-1 JB;
(b) p-rank(A) = 5 ⇒ one 2-by-2 JB;
(c) p-rank(A) = 4 ⇒ one 3-by-3 JB;

644 S. M. FALLAT, M. I. GEKHTMAN, AND C. R. JOHNSON

(2) rank(A) = 5
(a) p-rank(A) = 5 ⇒ two 1-by-1 JBs;
(b) p-rank(A) = 4 ⇒ one 2-by-2 JB and one 1-by-1 JB;
(c) p-rank(A) = 3 ⇒ one 3-by-3 JB and one 1-by-1 JB, or two 2-by-2

JBs;
(3) rank(A) = 4

(a) p-rank(A) = 4 ⇒ three 1-by-1 JBs;
(b) p-rank(A) = 3 ⇒ one 2-by-2 JB and two 1-by-1 JBs;
(c) p-rank(A) = 2 ⇒ two 2-by-2 JBs and one 1-by-1 JB;

(4) rank(A) = 3
(a) p-rank(A) = 3 ⇒ four 1-by-1 JBs;
(b) p-rank(A) = 2 ⇒ one 2-by-2 JB and three 1-by-1 JBs;

(5) rank(A) = 2
(a) p-rank(A) = 2 ⇒ five 1-by-1 JBs.

We conclude this section with a discussion about some future work along these
lines and a couple of open problems, which we feel are not only interesting but are
important for continuing progress in this area.

First, and the most important issue, is classifying all possible Jordan structures for
n-by-n irreducible TN matrices. By the results presented thus far we have completed
this classification through n = 7. (In fact, we are now close to completing this
classification through n = 8.) We are in the process of working on many new and
worthwhile ideas to continue this classification.

A related, but apparently less difficult (although by no means easy), problem
is determining which triples (n, rank, p-rank) are realizable by the class of n-by-n
irreducible TN matrices. Again it follows from the analysis in this section that this
issue has been completely settled through n = 7, along with some general existence
results. (Applying arguments similar to those throughout this section we can extend
this to n = 8.) It seems that, at least thus far, a general result for all realizable triples
is very possible, and we continue to develop new techniques and ideas in hopes of
obtaining such a general result.

There are two problems that we wish to touch upon here for a couple of reasons.
First, answering these questions will definitely shed some light onto the previous two
unresolved issues, and second, they were both unexpected and still (for the most part)
remain unexplained. The first problem is concerned with the size of the largest Jordan
block corresponding to zero for an n-by-n irreducible TN matrix. Through n = 7 (and
nearly for n = 8) the size of the largest Jordan block corresponding to zero is at most
the principal rank. Moreover, in general this result holds when p-rank(A) ≥ �n2 �,
or when p-rank(A) ≥ rank(A) − 1, or also when p-rank(A) = 1 or 2 (by Theorem
4.14). Recall that the size of the largest Jordan block corresponding to zero is at

most rank(A) − p-rank(A)+ 1. Thus if p-rank(A) ≥ rank(A)+1
2 , then the result holds.

At this point this question is still unresolved in general, and we do not know of a
good reason why such a result should hold. As a final note on this problem, this
claim for the size of the largest Jordan block is equivalent to the following equality:
rank(Ap−rank(A)) = p-rank(A).

The next and final problem we discuss here is concerned with the existence of the
triple, (n, rank, p-rank). Consider the triple (6,4,2), which was shown to be a realizable
triple. (Observe that the Jordan structure associated with such a triple must consist
of 2 positive distinct eigenvalues, and two, 2-by-2 Jordan blocks corresponding to
zero.) Then note that the triple (6, 6− 2+ 1, 6− 4+ 1) = (6, 5, 3) is also a realizable

SPECTRAL STRUCTURES OF TN MATRICES 645

triple. Moreover, this particular rearrangement gives rise to realizable triples for every
known realizable triple (compare Propositions 4.3 and 4.4). If the triple (n, k, p) can
be realized, then it seems that the triple (n, n− p + 1, n− k + 1) can also be realized
by an n-by-n irreducible TN matrix. Again we have little to offer about why such a
result should be true, but nevertheless, it is an interesting property that these triples
seem to possess.

REFERENCES

[1] T. Ando, Totally positive matrices, Linear Algebra Appl., 90 (1987), pp. 165–219.
[2] W. W. Barrett and C. R. Johnson, Possible spectra of totally positive matrices, Linear

Algebra Appl., 62 (1984), pp. 231–233.
[3] A. Berenstein, S. Fomin, and A. Zelevinsky, Parameterizations of canonical bases and

totally positive matrices, Adv. Math., 122 (1996), pp. 49–149.
[4] C. W. Cryer, Some properties of totally positive matrices, Linear Algebra Appl., 15 (1976),

pp. 1–25.
[5] S. P. Eveson, The eigenvalue distribution of oscillatory and strictly sign-regular matrices,

Linear Algebra Appl., 246 (1996), pp. 17–21.
[6] S. M. Fallat, Totally Nonnegative Matrices, Ph.D. dissertation, Department of Mathematics,

College of William and Mary, Williamsburg, VA, 1999.
[7] S. Fomin and A. Zelevinsky, Double bruhat cells and total positivity, J. Amer. Math. Soc.,

12 (1999), pp. 335–380.
[8] S. Friedland, Weak interlacing properties of totally positive matrices, Linear Algebra Appl.,

71 (1985), pp. 247–266.
[9] F. R. Gantmacher and M. G. Krein, Sur les matrices complement non-negatives et oscilla-

tories, Compositio Math., 4 (1937), pp. 445–476.
[10] F. R. Gantmacher and M. G. Krein, Oszillationsmatrizen, Oszillationskerne und kleine

Schwingungen Mechanischer Systeme, Akademie-Verlag, Berlin, 1960.
[11] M. Gasca and C. A. Micchelli, Total Positivity and its Applications, Math. Appl. 359,

Kluwer Academic, Dordrecht, The Netherlands, 1996.
[12] M. Gasca and J. M. Peña, On factorizations of totally positive matrices, in Total Positivity

and Its Applications, Math. Appl. 359, Kluwer Academic, Dordrecht, The Netherlands,
1996, pp. 109–130.

[13] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York,
1985.

[14] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New
York, 1991.

[15] S. Karlin, Total Positivity I, Stanford University Press, Stanford, 1968.
[16] A. Pinkus, An interlacing property of eigenvalues of strictly totally positive matrices, Linear

Algebra Appl., 279 (1998), pp. 201–206.
[17] C. E. Radke, Classes of matrices with distinct, real characteristic values, SIAM J. Appl.

Math., 16 (1968), pp. 1192–1207.
[18] J. W. Rainey and G. J. Halbetler, Tridiagonalization of completely nonnegative matrices,

Math. Comp., 26 (1972), pp. 121–128.
[19] A. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math., 2 (1952),

pp. 88–92.

PRECONDITIONERS FOR NONDEFINITE HERMITIAN
TOEPLITZ SYSTEMS∗

RAYMOND H. CHAN† , DANIEL POTTS‡ , AND GABRIELE STEIDL§

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 647–665

Abstract. This paper is concerned with the construction of circulant preconditioners for Toeplitz
systems arising from a piecewise continuous generating function with sign changes.

If the generating function is given, we prove that for any ε > 0, only O(logN) eigenvalues of our
preconditioned Toeplitz systems of size N×N are not contained in [−1−ε,−1+ε]∪ [1−ε, 1+ε]. The
result can be modified for trigonometric preconditioners. We also suggest circulant preconditioners
for the case that the generating function is not explicitly known and show that only O(logN)
absolute values of the eigenvalues of the preconditioned Toeplitz systems are not contained in a
positive interval on the real axis.

Using the above results, we conclude that the preconditioned minimal residual method requires
only O(N log2 N) arithmetical operations to achieve a solution of prescribed precision if the spectral
condition numbers of the Toeplitz systems increase at most polynomial in N . We present various
numerical tests.

Key words. nondefinite Toeplitz matrices, circulant matrices, Krylov space methods, precon-
ditioners

AMS subject classifications. 65F10, 65F15, 65T50

PII. S0895479899362521

1. Introduction. Let L2π be the space of 2π-periodic Lebesgue integrable real-
valued functions and let C2π be the subspace of 2π-periodic real-valued continuous
functions with norm

‖f‖∞ := max
t∈[−π,π]

|f(t)|(f ∈ C2π).

The Fourier coefficients of f ∈ L2π are given by

ak = ak(f) :=
1

2π

∫ π

−π
f(t)e−ikt dt(k ∈ Z),

and the sequence {AN (f)}∞N=1 of (N,N)-Toeplitz matrices generated by f is defined
by

AN = AN (f) := (aj−k(f))N−1
j,k=0.

Since f ∈ L2π is real-valued, the matrices AN (f) are Hermitian.
We are interested in the iterative solution of Toeplitz systems

AN (f) x = b,(1.1)

∗Received by the editors October 25, 1999; accepted for publication (in revised form) by L. Reichel
April 30, 2000; published electronically October 25, 2000. This research was supported in part
by the Hong Kong–German Joint Research Collaboration grant from the Deutscher Akademischer
Austauschdienst and Hong Kong Research Grants Council grant CUHK4212/99P.

http://www.siam.org/journals/simax/22-3/36252.html
†Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

(rchan@math.cuhk.edu.hk).
‡Medizinische Universität Lübeck, Institut für Mathematik, Wallstraße 40, D-23560 Lübeck, Ger-

many (potts@math.mu-luebeck.de).
§Universität Mannheim, Fakultät für Mathematik und Informatik, D-68131 Mannheim, Germany

(steidl@math.uni-mannheim.de).

647

648 RAYMOND H. CHAN, DANIEL POTTS, AND GABRIELE STEIDL

where the generating function f ∈ L2π. To be more precise, we are looking for good
preconditioning strategies so that Krylov space methods applied to the preconditioned
system converge in a small number of iteration steps. Note that by the Toeplitz
structure of AN each iteration step requires only O(N logN) arithmetical operations
by using fast Fourier transforms.

Preconditioning techniques for Toeplitz systems have been well studied in the
past 10 years. However, most of the papers in this area are concerned with the case
where the generating function f is either positive or nonnegative; see, for instance,
[5, 3, 20, 7, 17, 10] and the references therein. In this paper, we consider f that has
sign changes. The method we propose here will also work for generating functions
that are positive or nonnegative.

Up to now iterative methods for Toeplitz systems with generating functions having
different signs were only considered in [20, 19, 22, 24] and in connection with non-
Hermitian systems in [8, 6]. In [8], we have constructed circulant preconditioners for
non-Hermitian Toeplitz matrices with known generating function of the form

f = p h,

where p is an arbitrary trigonometric polynomial and h is a function from the Wiener
class with |h| > 0. We proved that the preconditioned matrices have singular values
properly clustered at 1. Then, if the spectral condition number of AN (f) fulfills
κ2(AN (f)) = O(Nα), the conjugate gradient (CG) method applied to the normal
equation requires onlyO(logN) iteration steps to produce a solution of fixed precision.
However, in general, nothing can be said about the eigenvalues of the preconditioned
matrix.

In this paper, we consider real-valued functions f ∈ L2π of the form

f = psh,(1.2)

where

ps(t) :=

µ∏
j=1

(2− 2 cos(t− tj))
sj , s :=

µ∑
j=1

sj(1.3)

is a trigonometric polynomial with a finite number of zeros tj ∈ [−π, π) (j = 1, . . . , µ)
of even order 2sj and where h ∈ L2π is a piecewise continuous function with simple
discontinuities at ξj (j = 1, . . . , ν), i.e., there exist h(ξj±0) and h(ξj+0)−h(ξj−0) =
αj
= 0. For simplicity let h(ξj) = (h(ξj − 0) + h(ξj + 0))/2. Further, we assume that

{|h(t)| : t ∈ [−π, π); |h(t)| > 0} ⊆ [h−, h+],(1.4)

where 0 < h− ≤ h+ < ∞. In particular, we are interested in the Heaviside function
h.

A similar setting was also considered in [20]. Serra Capizzano suggested the
application of band-Toeplitz preconditioners AN (ps) in combination with CG applied
to the normal equation. He proved, beyond a more general result which cannot directly
be used for preconditioning, that at most o(N) eigenvalues of the preconditioned
matrix AN (ps)

−1AN (f) have absolute values not contained in a positive interval on
the real axis.

The same author suggested in [19] a preconditioning method based on the Sherman–
Morrison–Woodbery formula and some kind of normal equation for generating func-
tions with zeros of odd order.

PRECONDITIONER FOR TOEPLITZ SYSTEMS 649

A result with o(N) outliers was also obtained in [23], where the application of
preconditioned GMRES was examined.

In the following, we construct circulant preconditioners for the minimal residual
method (MINRES). Note that preconditioned MINRES avoids the transformation of
the original system to the normal equation but requires Hermitian positive definite
preconditioners. Then, the preconditioned matrices are again Hermitian, so that
the absolute values of their eigenvalues coincide with their singular values. If the
generating function is given, we prove that for any ε > 0, only O(logN) singular
values of the preconditioned matrices are not contained in [1 − ε, 1 + ε]. We also
construct circulant preconditioners for the case that the generating function of the
Toeplitz matrices is not explicitly known. For this, we use positive reproducing kernels
with special properties previously applied by the authors in [17, 10] and show that
O(logN) singular values of the preconditioned matrices are not contained in a positive
interval on the real axis. Then, if in addition κ2(AN (f)) = O(Nα), preconditioned
MINRES converges in at most O(logN) iteration steps. In summary, the proposed
algorithm requires only O(N log2 N) arithmetical operations.

Note that the theoretical verification of the above assumption on the condition
number of AN (f) is not straightforward. See [4] for examples of banded indefinite
Toeplitz matrices with exponentially (or even faster) growing condition numbers.

This paper is organized as follows. In section 2, we introduce circulant precondi-
tioners for (1.1) under the assumption that the generating function of the sequence
of Toeplitz matrices is known and prove clustering results for the eigenvalues of the
preconditioned matrices. Section 3 deals with the construction of preconditioners if
the generating function of the Toeplitz matrices is not explicitly known. In section 4,
we modify the results of section 2 with respect to trigonometric preconditioners. The
convergence of MINRES applied to our preconditioned Toeplitz systems is considered
in section 5. Finally, we present numerical results in section 6.

2. Circulant preconditioners involving generating functions. First we
introduce some basic notation. By RN (M) we denote arbitrary (N,N)-matrices of
rank at most M . Let MN (g) be the circulant (N,N)-matrix

MN (g) := FN diag

(
g

(
2πl

N

))N−1

l=0

F ∗
N ,

where FN denotes the Nth Fourier matrix

FN :=
1√
N

(
e−2πijk/N

)N−1

j,k=0

and where F ∗ is the transposed complex conjugate matrix of F . For a trigonometric
polynomial q(t) :=

∑n2

k=−n1
qke

ikt, the matrices AN (q) and MN (q) are related by

AN (q) = MN (q) + RN (n1 + n2)(2.1)

(see [15]). For a function g with a finite number of zeros we define the set IN (g) by

IN (g) :=

{
l = 0, . . . , N − 1 : g

(
2πl

N

)

= 0

}

and the points xN,l(g) (l = 0, . . . , N − 1) by

xN,l(g) :=

{
2lπ
N if l ∈ IN (g) ,

2l̃π
N otherwise,

650 RAYMOND H. CHAN, DANIEL POTTS, AND GABRIELE STEIDL

where l̃ ∈ {0, . . . , N − 1} is the next higher index to l so that l̃ ∈ IN (g). For N large
enough we can simply choose l̃ = l+1 mod N . By MN,g(f) we denote the circulant
matrix

MN,g(f) := FN diag (f(xN,l(g)))
N−1
l=0 F ∗

N .(2.2)

If g has m zeros, then we have by construction that

MN (f) = MN,g(f) + RN (m).(2.3)

Now assume that the sequence {AN (f)}∞N=1 of nonsingular Toeplitz matrices
is generated by a known piecewise continuous function f ∈ L2π of the form (1.2)–
(1.4). Then we suggest the Hermitian positive definite circulant matrix MN,f (|f |) as
preconditioner for MINRES.

We examine the distribution of the eigenvalues of MN,f (|f |)− 1
2 AN (f)MN,f (|f |)− 1

2 .
The following theorem is Lemma 10 of [26] written with respect to our notation.
Theorem 2.1. Let h ∈ L2π be a piecewise continuous function having only simple

discontinuities at ξj ∈ [−π, π) (j = 1, . . . , ν). By FN we denote the Fejér kernel

FN (t) :=
N−1∑

k=−(N−1)

(
1−

∣∣∣∣ kN
∣∣∣∣
)
eikt = 1 + 2

N−1∑
k=1

(
1− k

N

)
cos kt(2.4)

=

{
1
N

(
sin
(
Nt
2

)
/ sin

(
t
2

))2
, t
= 0,

1
N , t = 0,

(2.5)

and by FN ∗ h we denote the cyclic convolution of FN and h. Then, for any ε > 0,
there exist constants 0 < c1 ≤ c2 <∞ independent of N so that the number ν(ε;AN)
of eigenvalues of AN (h)−MN (FN∗h) with absolute value exceeding ε can be estimated
by

c1 log (N) ≤ ν(ε;AN) ≤ c2 log (N).

In other words, we have by Theorem 2.1 that

AN (h) = MN (FN ∗ h) + V N + UN ,(2.6)

where V N is a matrix of spectral norm ≤ ε and where

c1 logN ≤ rank (UN) ≤ c2 logN.

Using Theorem 2.1, we can prove the following lemma.
Lemma 2.2. Let f = psh ∈ L2π be given by (1.2)–(1.4). Then, for any ε > 0 and

sufficiently large N , the number of singular values ofMN,f (|h|)− 1
2 AN (h)MN,f (|h|)− 1

2

which are not contained in the interval [1− ε, 1 + ε] is O(logN).
Proof. By (2.6) and since the eigenvalues of MN,f (|h|) are restricted from below

by h−, it remains to show that for any ε > 0 and sufficiently large N , except for
O(logN) eigenvalues, all eigenvalues of MN,f (|h|)−1MN (FN ∗h) have absolute values
in [1− ε, 1 + ε]. Indeed we will prove that there are only O(1) outliers.

For this we mainly follow the lines of proof of Gibb’s phenomenon. Without loss
of generality we assume that h ∈ L2π has only one jump at ξ1 = 0 of height α1.

PRECONDITIONER FOR TOEPLITZ SYSTEMS 651

First we examine FN ∗ g, where g is given by

g(x) :=

1
2 (π − x), x ∈ (0, π),
1
2 (−x− π), x ∈ (−π, 0),
0, x = 0.

By (2.4) and since g has Fourier series

g(x) ∼
∞∑
k=1

1

k
sin kx,

we obtain

∫ x

0

FN (t) dt = x+ 2

N−1∑
k=1

(
1

k
− 1

N

)
sin kx = x+ 2 (FN ∗ g)(x),

and further by (2.5)

(FN ∗ g)(x) = 1

2N

∫ x

0

(
sin Nt

2

sin t
2

)2

dt− x

2

=
1

2N

∫ x

0

(
sin Nt

2
t
2

)2

dt+
1

2N

∫ x

0

(
1

(sin t
2)

2
− 1

(t2)
2

)(
sin

Nt

2

)2

dt− x

2

=

∫ Nx
2

0

(
sin t

t

)2

dt+O(N−1)− x

2
,

and by partial integration and definition of g

(FN ∗ g)(x)− g(x) =
−(sin Nx

2)2

Nx
2

+ si (Nx)− π

2
+O(N−1) (x ∈ (0, π)),

where si (y) :=
∫ y
0

sin t
t dt. We are interested in the behavior of

(FN ∗ g)
(
2πl

N

)
− g

(
2πl

N

)
= si (2πl)− π

2
+O(N−1)

(
l = 0, . . . ,

⌈
N

2

⌉
− 1

)
.

Here �x� denotes the smallest integer ≥ x. It is well known that limx→∞ si (x) = π
2 .

Thus, if l = l(N) → ∞ for N → ∞, then, for any ε > 0, there exists N0 = N0(ε) so
that ∣∣∣∣(FN ∗ g)

(
2πl

N

)
− g

(
2πl

N

)∣∣∣∣ < πh−
2α1

ε for all N ≥ N0.(2.7)

The same holds if we approach 0 from the left, i.e., if we consider 2πl/N for l =⌈
N
2

⌉
, . . . , N − 1.
Next we have by definition of g and h that

h̃(x) := h(x)− α1

π
g(x)

652 RAYMOND H. CHAN, DANIEL POTTS, AND GABRIELE STEIDL

is a continuous function. Since FN is a reproducing kernel, for any ε > 0, there exists
Ñ0 = Ñ0(ε) so that for all l ∈ {0, . . . , N − 1}

∣∣∣∣(FN ∗ h̃)
(
2πl

N

)
− h̃

(
2πl

N

)∣∣∣∣ < ε

2
h− for all N ≥ Ñ0.(2.8)

Assume that l = l(N) → ∞ for N → ∞ (l ∈ {0, . . . , �N2 � − 1}). Then we obtain

by (2.7) and (2.8) that for any ε > 0 there exists N(ε) = max (N0, Ñ0) so that
∣∣∣∣(FN ∗ h)

(
2πl

N

)
− h

(
2πl

N

)∣∣∣∣ ≤
∣∣∣∣(FN ∗ h̃)

(
2πl

N

)
− h̃

(
2πl

N

)∣∣∣∣
+

α1

π

∣∣∣∣(FN ∗ g)
(
2πl

N

)
− g

(
2πl

N

)∣∣∣∣ ,∣∣∣∣(FN ∗ h)
(
2πl

N

)
− h

(
2πl

N

)∣∣∣∣ ≤ ε h− for all N ≥ N(ε),

and consequently, since |h (2πl
N

) | ≥ h− (l ∈ IN (f)),

1− ε ≤
∣∣(FN ∗ h) (2πl

N

)∣∣∣∣h (2πl
N

)∣∣ ≤ 1 + ε (l ∈ IN (f)).(2.9)

Let m ≤ µ+ ν denote the number of zeros of f which are equal to one of the points
2πl/N (l = 0, . . . , N − 1). Then the set

{∣∣(FN ∗ h) (2πl
N

)∣∣∣∣h (2πl
N

)∣∣ : l ∈ IN (f)

}

contains at least N −m absolute values of eigenvalues of MN,f (|h|)−1MN (FN ∗ h)
and we conclude by (2.9) that except for O(1) eigenvalues and sufficiently large N , all
eigenvalues of MN,f (|h|)−1MN (FN ∗h) have absolute values contained in [1−ε, 1+ε].
This completes the proof.

Remark 2.3. In a similar way as above we can prove that for any ε > 0 and N
sufficiently large, the number of eigenvalues of AN (h) with absolute values not in the
interval [h− − ε, h+] is O(logN).

Note that the property that at most o(N) eigenvalues of AN (h) have absolute
values not contained in [h− − ε, h+] follows simply from the fact that the singular
values of AN (h) are distributed as |h| [14, 23].

Theorem 2.4. Let f = psh ∈ L2π be given by (1.2)–(1.4). Then, for any ε > 0
and sufficiently large N , except for O(logN) singular values, all singular values of

MN,f (|f |)− 1
2 AN (f)MN,f (|f |)− 1

2

are contained in [1− ε, 1 + ε].
Proof. The polynomial ps in (1.3) can be rewritten as

ps = pp̄,

where

p(t) :=

µ∏
j=1

(1− e−itj eit)sj ,

µ∑
j=1

sj = s,

PRECONDITIONER FOR TOEPLITZ SYSTEMS 653

and p̄(t) is the complex conjugate of p(t). By straightforward computation it is easy
to check that

AN (f) = AN (ps h) = AN (p h p̄)

= AN (p h)AN (p̄) + Rc
N (s)

= AN (p)AN (h)AN (p̄) + Rr
N (s)AN (p̄) + Rc

N (s)

= AN (p)AN (h)AN (p̄) + RN (2s),(2.10)

where only the first s columns (rows) of R
c (r)
N (s) are nonzero columns (rows).

Since |f | = p p̄ |h| the eigenvalues of MN,f (|f |)−1AN (f) coincide with the eigen-
values of

BN (f) := MN,f (|h|)−1/2 MN,f (p)
−1 AN (f)MN,f (p̄)

−1 MN,f (|h|)−1/2.(2.11)

Now we obtain by (2.10), (2.1), and (2.3) that

BN (f) = MN,f (|h|)− 1
2 MN,f (p)

−1AN (p)AN (h)AN (p̄)MN,f (p̄)
−1MN,f (|h|)− 1

2

+RN (2s)

=MN,f (|h|)− 1
2 MN,f (p)

−1(MN,f (p) + RN (s+m))AN (h)

· (MN,f (p̄) + RN (s+m))MN,f (p̄)
−1MN,f (|h|)− 1

2 + RN (2s)

= MN,f (|h|)− 1
2 AN (h)MN,f (|h|)− 1

2 + RN (4s+ 2m).(2.12)

By Lemma 2.2, for any ε > 0 and N sufficiently large, except for O(logN) singular

values, all singular values of MN,f (|h|)− 1
2 AN (h)MN,f (|h|)− 1

2 are contained in [1 −
ε, 1 + ε]. Now the assertion follows by (2.12) and Weyl’s interlacing theorem [13,
p. 184].

3. Circulant preconditioners involving positive kernels. In many appli-
cations we know only the entries ak(f) of the Toeplitz matrices AN (f) and not the
generating function itself. In this case, we use even positive reproducing kernels
KN ∈ C2π. These are trigonometric polynomials of the form

KN (t) := cN,0 + 2

N−1∑
k=1

cN,k cos kt, cN,k = ak(KN) ∈ R

satisfying KN ≥ 0,

1

2π

∫ π

−π
KN (t) dt = 1,(3.1)

and the reproducing property

lim
N→∞

‖f −KN ∗ f‖∞ = 0 for all f ∈ C2π.

Since

(KN ∗ f)(x) = 1

2π

∫ π

−π
f(t)KN (x− t) dt =

N−1∑
k=−(N−1)

ak(f) cN,k e
ikx,

654 RAYMOND H. CHAN, DANIEL POTTS, AND GABRIELE STEIDL

the cyclic convolution of KN and f is determined by the first N Fourier coefficients of
f . As a preconditioner which can be constructed from the entries of AN (f) without
explicit knowledge of f we suggest the circulant matrix MN,KN∗f (|KN ∗ f |).

In order to obtain a suitable distribution of the eigenvalues of the preconditioned
matrices, we need kernels with a special property which is related to the order

σ := max
j=1,... ,µ

sj

of the zeros of ps.
The generalized Jackson kernels Jm,N of degree ≤ N − 1 are defined by

Km,N (t) = Jm,N (t) := λm,N

(
sin(nt/2)

sin(t/2)

)2m

(m ∈ N),(3.2)

where n := �N−1
m �+ 1 and where λm,N is determined by (3.1). Here �t� denotes the

largest integer ≤ t. In particular, we have that

λm,N ∼ N1−2m,

i.e., there exist positive constants c1, c2 so that c1 N1−2m ≤ λm,N ≤ c2 N1−2m. See
[11, pp. 203–204]. A possibility for the construction of the Fourier coefficients of Jm,N

is prescribed in [10].
The B-spline kernels Bm,N of degree ≤ N − 1 are defined by

Km,N (t) = Bm,N (t) :=
N

m

1

M2m(0)

∑
r∈Z

(
sinc

(
N

m

(
t+ 2πr

2

)))2m

,(3.3)

where Mm denotes the centered cardinal B-spline of order m and

sinc t :=

{
sin t
t , t
= 0 ,

1, t = 0.

See [17, 9]. Since

Bm,N (t) := 1 +
2

M2m(0)

N−1∑
k=1

M2m

(
mk

N

)
cos kt,

the Fourier coefficients of Bm,N are given by values of centered cardinal B-splines.
Note that J1,N = B1,N is just the Fejér kernel FN .

The above kernels have the following important property.
Theorem 3.1. Let f = psh ∈ L2π be given by (1.2)–(1.4). Assume that for all tj

(j ∈ {1, . . . , µ}) with tj = ξk for some k ∈ {1, . . . , ν} and sgnh(ξk+0)
= sgnh(ξk−0)
there exists a neighborhood [tj − εj , tj + εj] (εj > 0) of tj so that f is a monotone
function in this neighborhood and moreover f(tj − t) = −f(tj + t) (0 ≤ t ≤ εj). Let
KN = Km,N be given by (3.2) or (3.3), where

m ≥ σ + 1.

Then there exist 0 < α ≤ β < ∞ so that for N → ∞, except for O(1) points, all
points of the set {2πl/N : l ∈ IN (f)} fulfill

1

β
≤ |(KN ∗ f)(2πl

N)|
|f(2πl

N)| ≤ 1

α
.(3.4)

PRECONDITIONER FOR TOEPLITZ SYSTEMS 655

Proof. (1) First we consider the upper bound. Since ps and KN are nonnegative,
we obtain

|(KN ∗ f)(x)| ≤ 1

2π

∫ π

−π
|h(t)| ps(t)KN (x− t) dt

≤ h+
1

2π

∫ π

−π
ps(t)KN (x− t) dt = h+ (KN ∗ ps)(x).

In [17, 10], we proved that m ≥ σ + 1 implies that for all x ∈ IN (ps) ⊇ IN (f), there
exists a constant 0 < c <∞ so that

(KN ∗ ps)(x)
ps(x)

≤ c.

Thus, since |h(x)| ≥ h− for (x ∈ IN (f)), we obtain

|(KN ∗ f)(x)|
|f(x)| ≤ h+

h−
(KN ∗ ps)(x)

ps(x)
≤ h+

h−
c (x ∈ IN (f)).

(2) Next we deal with the lower bound.
(2.1) Let x ∈ IN (f) be not in the neighborhood of tj (j = 1, . . . , µ), i.e., there

exist bj > 0 independent of N so that |x − tj | ≥ bj > 0 (j = 1, . . . , µ). Then
|f(x)| ≥ c > 0 for all x ∈ IN (f). Further, since KN is a reproducing kernel and by
using the same arguments as in the proof of Lemma 2.2 if x is in the neighborhood of
some ξk (k = 1, . . . , ν), we obtain that, for any ε > 0 there exists N(ε), so that except
for at most a constant number of points, all considered points x ∈ IN (f) satisfy

|(KN ∗ f)(x) − f(x)| ≤ c ε (N ≥ N(ε)),

and thus

|(KN ∗ f)(x)|
|f(x)| ≥ 1− c ε

|f(x)| ≥ 1− ε.

(2.2) It remains to consider the points x = x(N) ∈ IN (f) with limN→∞ x(N) = tj
(j = 1, . . . , µ).

For simplicity we assume that

ps(t) = (2− 2 cos t)s = (2 sin(t/2))2s,

i.e., ps has only a zero of order 2s at t1 = 0. Let x = x(N) ∈ IN (f) with

lim
N→∞

x(N) = 0.

For any fixed 0 < b < π we obtain

(KN ∗ f)(x) = 1

2π

(∫ b

−b
f(t)KN (x− t) dt +

∫ −b

−π
f(t)KN (x− t) dt

+

∫ π

b

f(t)KN (x− t) dt

)

=
1

2π

(∫ b

−b
f(t)KN (x− t) dt +

∫ π+x

b+x

f(x− t)KN (t) dt

+

∫ π−x

b−x
f(x+ t)KN (t) dt

)
,

656 RAYMOND H. CHAN, DANIEL POTTS, AND GABRIELE STEIDL

and since f is bounded

(KN ∗ f)(x)− 1

2π

∫ b

−b
f(t)KN (x− t) dt ∼

(∫ π+x

b+x

+

∫ π−x

b−x

)
KN (t) dt.

By definition of KN we see that for any fixed 0 < b̃ ≤ π∫ π

b̃

KN (t) dt ≤ const N−2m+1,(3.5)

so that we get for small x (e.g., x < b/2)

(KN ∗ f)(x) = 1

2π

∫ b

−b
f(t)KN (x− t) dt + O(N−2m+1).(3.6)

(2.2.1) Assume that h has no jump at t1 = 0 with sign change. Then there exists
ε > 0 so that h(t) ≥ h− or h(t) ≤ −h− for t ∈ [−ε, ε]. We restrict our attention to the
case h ≥ h−. Since 0 < h− ps(t) ≤ f(t) ≤ h+ ps(t) (t ∈ [−ε, ε]) and ps is monotone
increasing on (0, π), we obtain for x(N) ∈ (0, ε)∩ IN (f) and N sufficiently large that∫ ε

−ε

f(t)

f(x(N))
KN (t− x(N)) dt ≥

∫ ε

x(N)

f(t)

f(x(N))
KN (t− x(N)) dt

≥ h−
h+

∫ ε

x(N)

ps(t)

ps(x(N))
KN (t− x(N)) dt

≥ h−
h+

∫ ε−x(N)

0

ps(t)

ps(x(N))
KN (t) dt ≥ c(3.7)

with a positive constant c independent of N . On the other hand, we have by definition
of ps and by assumption s ≤ m− 1 that f(x(N)) ≥ h− c̃ N−2s ≥ h− c̃ N−2m+2. Then
we obtain by (3.6) with b = ε and (3.7) that for N large enough

(KN ∗ f)(x(N))

f(x(N))
≥ const

with a positive constant const independent of N .
The proof for x(N) ∈ (−ε, 0) ∩ IN (f) follows the same lines.
(2.2.2) Finally, we assume that h has a jump at t1 = 0 with sgnh(0 + 0)
=

sgnh(0− 0). Without loss of generality let h(0 + 0) > 0. Then, by assumption on f ,
there exists ε1 > 0 so that h(t) = −h(−t) for t ∈ [0, ε1]. Thus,∫ ε1

−ε1
f(t)KN (x− t) dt =

∫ ε1

0

f(t)(KN (t− x)−KN (t+ x)) dt.(3.8)

We consider points of the form

y = yk(N) :=
2πm

N γ
k (k ∈ N)

with limN→∞ yk(N) = 0, where γ := mn/N in case of Jackson kernels and γ := 1 in
case of B-spline kernels. Then we have for t ∈ [0, ε1] that

Jm,N (t− y)− Jm,N (t+ y) = λm,N

((
sin(nt/2)

sin((t− y)/2)

)2m

−
(

sin(nt/2)

sin((t+ y)/2)

)2m
)

,

(3.9)

PRECONDITIONER FOR TOEPLITZ SYSTEMS 657

and consequently, for sufficiently small ε1 and y, since sin is odd and monotone in-
creasing on (0, π/2) we have that

Jm,N (t− y)− Jm,N (t+ y) > 0 for all t ∈ (0, ε1).

Further, by definition of the B-spline kernels

Bm,N (t− y)− Bm,N (t+ y) = B0
m,N (t− y)− B0

m,N (t+ y) + O(N−2m+1),

where B0
m,N (t) :=

N
m

1
M2m(0)

(
sinc

(
N
m

t
2

))2m
, and similarly as in (3.9) we see that

B0
m,N (t− y)− B0

m,N (t+ y) > 0 for all t ∈ (0, ε1).

By assumption h does not change the sign in (0, ε1). Then we obtain by (3.8), mono-
tonicity of ps in (0, π) and m ≥ s+ 1 that

∫ ε1

−ε1

f(t)

f(y)
KN (y − t) dt ≥ h−

h+

∫ ε1

y

K0
N (t− y)−K0

N (t+ y) dt + O(N−1),(3.10)

where K0
N ∈ {Jm,N ,B0

m,N}. Set w = w(N) := 2πm
Nγ . Then yk = yk(N) = w k and

there exist r = r(N) ∈ N (r > k) so that ε1 = w r + ε̃1, where 0 ≤ ε̃1 = ε̃1(N) < w.
Now it follows that

∫ wr

yk

K0
N (t− yk)−K0

N (t+ yk) dt =

r−k−1∑
l=0

∫ yk+w(l+1)

yk+wl

K0
N (t− yk)−K0

N (t+ yk) dt

=

2k−1∑
l=0

∫ w(l+1)

wl

K0
N (t) dt −

r+k−1∑
l=r−k

∫ w(l+1)

wl

K0
N (t) dt

≥
∫ w

0

K0
N (t) dt −

∫ ε1+yk

ε1+yk−w
K0
N (t) dt,

and further by (3.5) and since limN→∞ yk = 0,

∫ ε1

yk

K0
N (t− yk)−K0

N (t+ yk) dt ≥
∫ w

0

K0
N (t) dt + O(N−2m+1).

Straightforward computation yields

∫ 2πm/(Nγ)

0

K0
N (t) dt ≥ const

∫ π

0

(
sinu

u

)2m

du ≥ const.

Hence we get for N large enough that

∫ ε1

yk

K0
N (t− yk)−K0

N (t+ yk) dt ≥ const

and by (3.10) that

∫ ε1

−ε1

f(t)

f(yk)
KN (yk − t) dt ≥ const(3.11)

with positive constants const independent of N .

658 RAYMOND H. CHAN, DANIEL POTTS, AND GABRIELE STEIDL

Now we consider x(N) ∈ IN (f) with yk(N) ≤ x(N) < yk+1(N).
Let z(N) := x(N)− yk(N) > 0. Then

∫ ε1

−ε1
f(t)KN (t− x(N)) dt =

∫ ε1−z(N)

−ε1−z(N)

f(t+ z(N))KN (t− yk(N)) dt

=

∫ ε1−z(N)

−ε1
f(t+ z(N))KN (t− yk(N)) dt

+

∫ −ε1

−ε1−z(N)

f(t+ z(N))KN (t− yk(N)) dt,

and since f is by assumption monotone increasing on [−ε1, ε1]

∫ ε1

−ε1
f(t)KN (t− x(N)) dt ≥

∫ ε1−z(N)

−ε1
f(t)KN (t− yk(N)) dt

+

∫ −ε1+z(N)

−ε1
f(t)KN (t− x(N)) dt

=

∫ ε1

−ε1
f(t)KN (t− yk(N)) dt

+

∫ −ε1+z(N)

−ε1
f(t)KN (t− x(N)) dt

−
∫ ε1

ε1−z(N)

f(t)KN (t− yk(N)) dt,

and by (3.5) and since f is bounded

∫ ε1

−ε1
f(t)KN (t− x(N)) dt ≥

∫ ε1

−ε1
f(t)KN (t− yk(N)) dt + O(N−2m+1).(3.12)

By assumption x(N) = ζ yk(N) (0 < ζ < 2). Thus

∫ ε1
−ε1 f(t)KN (t− x(N)) dt

f(x(N))
≥ const

∫ ε1
−ε1 f(t)KN (t− yk(N)) dt

f(yk(N))
,

and since f(yk(N) ≥ constN−2s and m ≥ s + 1 we obtain by (3.12), (3.11) that for
N large enough

∫ ε1

−ε1
f(t)KN (t− x(N)) dt / f(x(N)) ≥ const

with a nonnegative constant const independent of N . Finally, we use (3.6) with b = ε1

and again m ≥ s+ 1 to finish the proof.
To show our main result we also need the following lemma.
Lemma 3.2. Let A ∈ C

N,N be a Hermitian positive definite matrix having N−n1

eigenvalues in [a−, a+], where 0 < a− ≤ a+ < ∞. Let B ∈ C
N,N be a Hermitian

matrix with N−n2 singular values in [b−, b+], where 0 < b− ≤ b+ <∞. Then at least
N − 4n1 − n2 eigenvalues of A B are contained in [−a+b+,−a−b−] ∪ [a−b−, a+b+].

Proof. (1) Assume first that n1 = 0, i.e., A has only eigenvalues in [a−, a+]. Let
λj(B) denote the jth eigenvalue of the matrix B. We consider the eigenvalues of

PRECONDITIONER FOR TOEPLITZ SYSTEMS 659

B − tA−1 with respect to t ∈ R. By Weyl’s interlacing theorem (see [13, p. 184]) we
obtain for t ≥ 0 that

λj(B)− t

a−
≤ λj

(
B − tA−1

) ≤ λj(B)− t

a+
(3.13)

and for t < 0 that

λj(B)− t

a+
≤ λj

(
B − tA−1

) ≤ λj(B)− t

a−
.(3.14)

Let λj(B) ∈ [−b+,−b−]. Then we obtain by (3.13) and (3.14) that λj
(
B − tA−1

)
< 0

for all t > −a−b−. On the other hand, we see by (3.13) and (3.14) that λj
(
B − tA−1

)
> 0 for all t < −a+b+. Thus, since λj

(
B − tA−1

)
= λj(t) is a continuous function in

t ∈ R, there exists tj ∈ [−a+b+,−a−b−] such that λj
(
B − tjA

−1
)
= 0. This implies

that tj ∈ [−a+b+,−a−b−] is an eigenvalue of AB. Consequently, every λj(B) ∈
[−b+,−b−] corresponds to an eigenvalue tj ∈ [−a+b+,−a−b−] of AB. (Eigenvalues
are called with multiplicities.)

The examination of λj(B) ∈ [a−b−, a+b+] follows the same lines.

In summary, N − n2 eigenvalues of AB are contained in [−a+b+,−a−b−] ∪
[a−b−, a+b+].

(2) Let n1 eigenvalues of A be outside [a−, a+]. Then, since A is positive definite,
the matrix can be split as

A1/2 = Ã
1/2

+ R(n1) ,(3.15)

where Ã
1/2

is Hermitian with all eigenvalues in [a
1/2
− , a

1/2
+] and R(n1) is a Hermi-

tian matrix of rank n1. The eigenvalues of AB coincide with the eigenvalues of
A1/2BA1/2. Hence it remains to show that at most 4n1 + n2 singular values of
A1/2BA1/2 are not contained in [a−b−, a+b+]. By (3.15) we have

A1/2BA1/2 = Ã
1/2

BÃ
1/2

+ R(2n1) ,(
A1/2BA1/2

)2

=
(
Ã

1/2
BÃ

1/2
)2

+ R(4n1).(3.16)

By (1) all but n2 singular values of Ã
1/2

BÃ
1/2

are contained in [a−b−, a+b+]. Then
(3.16) and Weyl’s interlacing theorem yield the assertion.

Theorem 3.3. Let f = psh ∈ L2π be given by (1.2)–(1.4). Assume that for all tj
(j ∈ {1, . . . , µ}) with tj = ξk for some k ∈ {1, . . . , ν} and sgnh(ξk+0)
= sgnh(ξk−0)
there exists a neighborhood [tj − εj , tj + εj] (εj > 0) of tj so that f is a monotone
function in this neighborhood and moreover f(tj − t) = −f(tj + t) (0 ≤ t ≤ εj). Let
KN = Km,N be given by (3.2) or (3.3), where

m ≥ σ + 1.

By α, β we denote the constants from Theorem 3.1.

Then, for any ε > 0 and sufficiently large N , except for O(logN) singular values,

all singular values of MN (|KN ∗ f |)− 1
2 AN (f)MN (|KN ∗ f |)− 1

2 are contained in [α−
ε, β + ε].

660 RAYMOND H. CHAN, DANIEL POTTS, AND GABRIELE STEIDL

Proof. Let BN (f) be defined by (2.11). Then we obtain by (2.12) that

MN,KN∗f (|KN ∗ f |)− 1
2 AN (f)MN,KN∗f (|KN ∗ f |)− 1

2(3.17)

= MN,KN∗f (|KN ∗ f |)− 1
2 MN,f (p)MN,f (|h|) 1

2 BN (f)

·MN,f (|h|) 1
2 MN,f (p̄) MN,KN∗f (|KN ∗ f |)− 1

2

= MN,KN∗f (|KN ∗ f |)− 1
2 MN,f (p)MN,f (|h|) 1

2

·MN,f (|h|)− 1
2 AN (h)MN,f (|h|)− 1

2

·MN,f (|h|) 1
2 MN,f (p̄) MN,KN∗f (|KN ∗ f |)− 1

2 + R(4s+ 2m).(3.18)

The distribution of the eigenvalues of MN,f (|h|)− 1
2 AN (h)MN,f (|h|)− 1

2 is known by
Lemma 2.2. It remains to examine the eigenvalues of the Hermitian positive definite
matrix

MN,f (|h|) 1
2 MN,f (p̄)MN,KN∗f (|KN ∗ f |)−1 MN,f (p)MN,f (|h|) 1

2 .

These eigenvalues coincide with the reciprocal eigenvalues of MN,f (|f |)−1 MN,KN∗f
(|KN ∗ f |). By definition of MN,g and since KN is a reproducing kernel, except
for O(1) eigenvalues, all eigenvalues of MN,f (|f |)−1 MN,KN∗f (|KN ∗ f |) are given
by |(KN ∗ f)(2πl/N)|/|f(2πl/N)| (l ∈ IN (f)). Thus, by Theorem 3.1, for N → ∞
only O(1) eigenvalues of MN,f (|f |)MN,KN∗f (|KN ∗f |)−1 are not contained in [α, β].
Consequently, by (3.18), Lemma 2.2, Lemma 3.2, and Weyl’s interlacing theorem at

most O(logN) singular values of MN,KN∗f (|KN ∗f |)− 1
2 AN (f)MN,KN∗f (|KN ∗f |)− 1

2

are not contained in [α− ε, β + ε].

4. Trigonometric preconditioners. In addition to section 2, we suppose that
the Toeplitz matrices AN ∈ R

N,N are symmetric, i.e., the generating function f ∈ L2π

is even. This suggests the application of so-called trigonometric preconditioners. Note
that in the symmetric case the multiplication of a vector with AN can be realized
using fast trigonometric transforms instead of fast Fourier transforms (see [15]). In
this way complex arithmetic can be completely avoided in the iterative solution of
(1.1). This is one of the reasons to look for preconditioners which can be diagonalized
by trigonometric matrices corresponding to fast trigonometric transforms instead of
the Fourier matrix FN .

In practice, four discrete sine transforms (DST I–IV) and four discrete cosine
transforms (DCT I–IV) were used (see [25]). Any of these eight trigonometric trans-
forms can be realized with O(N logN) arithmetical operations. Likewise, we can
define preconditioners with respect to any of these transforms.

In this paper, we restrict our attention to the so-called discrete cosine transform of
type II (DCT-II) and discrete sine transform of type II (DST-II), which are determined
by the following transform matrices:

DCT–II : CII
N :=

(
2

N

)1/2 (
εNj cos

j(2k + 1)π

2N

)N−1

j,k=0

∈ R
N,N ,

DST–II : SII
N :=

(
2

N

)1/2 (
εNj+1 sin

(j + 1)(2k + 1)π

2N

)N−1

j,k=0

∈ R
N,N ,

where εNk := 2−1/2(k = 0, N) and εNk := 1 (k = 1, . . . , N − 1). We propose the

PRECONDITIONER FOR TOEPLITZ SYSTEMS 661

preconditioners

DCT− II : MN,f (|f |,CII
N) := (CII

N)′ diag (|f(x̃N,l)|)N−1
l=0 CII

N ,

DST− II : MN,f (|f |,SII
N) := (SII

N)′ diag (|f(x̃N,l)|)Nl=1 SII
N ,

where

x̃N,l :=

{
lπ
N if f

(
lπ
N

)
= 0,

l̃π
N otherwise

and where l̃ ∈ {0, . . . , N − 1} is the next higher index to l such that |f(x̃N,l)| > 0.
(See [16].)

Then we can prove in a completely similar way as in section 2 that for any ε > 0
and sufficiently large N except for O(logN) singular values, all singular values of

MN,f (|f |,O)−
1
2 AN (f)MN,f (|f |,O)−

1
2 (O ∈ {SII

N ,CII
N })

are contained in [1− ε, 1 + ε].

5. Convergence of preconditioned MINRES. In order to prescribe the con-
vergence behavior of preconditioned MINRES with our preconditioners of the previous
sections, we have to estimate the smaller outliers for increasing N .

Lemma 5.1. Let f ∈ L2π be defined by (1.2)–(1.4). Assume that κ2(AN (f)) =
O(Nα) (α > 0). Then the smallest absolute values of the eigenvalues of

MN,f (|f |)−1 AN (f)

and

MN,KN∗f (|KN ∗ f |)−1 AN (f)

behave for N →∞ as O(N−α).
Proof. Since

‖AN (f)
−1MN,f (|f |)‖2 ≤ ‖MN,f (|f |)‖2

‖AN (f)‖2 κ2(AN (f)),

‖AN (f)
−1MN,KN∗f (|KN ∗ f |)‖2 ≤ ‖MN,KN∗f (|KN ∗ f |)‖2

‖AN (f)‖2 κ2(AN (f)),

and both ‖MN,f (|f |)‖2 and ‖MN,KN∗f (|KN ∗ f |)‖2 are restricted from above, it
remains to show that there exists a constant c > 0 independent of N so that

‖AN (f)‖2 > c.

The above inequality follows immediately from the fact that the singular values of
AN (f) are distributed as |f | (see [14, 23]).

We want to combine our knowledge of the distribution of the eigenvalues of our
preconditioned matrices with results concerning the convergence of MINRES.

662 RAYMOND H. CHAN, DANIEL POTTS, AND GABRIELE STEIDL

Theorem 5.2. Let A ∈ C
N,N be a Hermitian matrix with p and q isolated large

and small singular values, respectively:

0 < σ1 ≤ σ2 ≤ · · · ≤ σq < a ≤ σq+1 ≤ · · ·σN−p ≤ b

< σN−p+1 ≤ σN−p+2 ≤ · · · ≤ σN (0 < a ≤ b <∞).

Let ν(k) := 0 if k− p− q ≡ 0mod 2 and ν(k) := 1 otherwise. Then MINRES requires
for the solution of Ax = b

k ≤ 2

(
ln

2

τ
+

q∑
k=1

ln

(
1 +

b

σk

)
+ p ln 2

)
/

(
ln

1 + (ab)

1− (ab)

)
+ p+ q + ν(k)

iteration steps to achieve precision τ , i.e., ||r(k)||2
||r(0)||2 ≤ τ, where r(k) := b−A x(k) and

x(k) is the kth iterate.
The theorem can be proved by using the same technique as in [1, pp. 569–573].

Namely, based on the known estimate

||r(k)||2
||r(0)||2 ≤ min

pk∈Π0
k

max
λj

|pk(λj)|,

where Π0
k denotes the space of polynomials of degree ≤ k with pk(0) = 1 and λj are

the eigenvalues of A, we choose pk as the product of the linear polynomials passing
through the p+ q outliers and the modified Chebyshev polynomials

T	(k−p−q)/2

(
1 + 2

a2 − x2

b2 − a2

)
/ T	(k−p−q)/2

(
1 + 2

a2

b2 − a2

)
.

The above summand p ln 2 can be further reduced if we use polynomials of higher
degree for the larger outliers.

Note that a similar estimate can be given for the CG method applied to the
normal equation A∗Ax = A∗b. Here we need

k ≤
(
ln

2

τ
+

q∑
k=1

ln

(
b

σ2
k

))
/

(
ln

1 + (ab)

1− (ab)

)
+ p+ q

iteration steps to achieve precision ‖e(k)‖A

||e(0)||A
≤ τ , where e(k) := x∗ − x(k). Note that

the latter method requires two matrix-vector multiplications in each iteration step.
By Theorem 2.4, Theorem 3.3, and Lemma 5.1 our preconditioned MINRES with

both preconditioners MN,f (|f |) and MN,KN∗f (|KN ∗ f |) produces a solution of (1.1)
of prescribed precision in O(logN) iteration steps and with O(N log2 N) arithmetical
operations. The same holds for preconditioned CG applied to the normal equation.

6. Numerical results. In this section, we test our circulant and trigonometric
preconditioners in connection with different iterative methods on a SGI O2 work
station. As transform length we use N = 2n, as right-hand side b of (1.1) we use the
vector consisting of N entries “1,” and as start vector we use the zero vector.

We begin with a comparison of MINRES applied to

MN,f (|f |,O)−1 AN (f)x = MN,f (|f |,O)−1 b,(6.1)

PRECONDITIONER FOR TOEPLITZ SYSTEMS 663

Table 1
f(t) = h1(t) t2 h1(t) = (t2 + 1) sgn (t) (t ∈ [−π, π)).

Method MN,f 4 5 6 7 8 9 10

MINRES IN 23 71 277 * * * *

MINRES MN,f (|f |,FN) 15 17 17 19 21 23 23

MINRES MN,FN∗f (|FN ∗ f |,FN) 19 31 35 41 43 47 51

MINRES MN,B2,N∗f (|B2,N ∗ f |,FN) 19 23 23 25 25 27 29

CGNE IN 11 37 164 * * * *

CGNE MN,f (|f |,FN) 8 8 9 9 9 10 10

where O ∈ {FN , CII
N , SII

N } and CGNE (Craig’s method) (cf. [18, p. 239]) applied to

(MN,f (|f |,O)−
1
2 AN (f)MN,f (|f |,O)−

1
2) (MN,f (|f |,O)

1
2 x) = MN,f (|f |,O)−

1
2 b.

(6.2)

For both algorithms we have used Matlab implementations of Fischer (see also
[12]). In particular, his implementation of preconditioned MINRES avoids the split-
ting (6.2).

In order to make the following computations with MINRES and CGNE compa-
rable, we have stopped both computations if

||b−ANx(k)||2 / ||b||2 < 10−7.

Example 1. We begin with Hermitian Toeplitz matrices AN (f) arising from the
generating function

f1(t) = h1(t) t
2 with h1(t) = (t2 + 1) sgn (t) (t ∈ [−π, π)).

Table 1 presents the number of iterations for circulant preconditioners. The first row
of the table contains the exponent n of the transform length N = 2n. According to
Theorem 2.4 and Theorem 5.2, the preconditioners MN (|f |,FN) lead to very good
results. As expected, the preconditioners MN,KN∗f (|KN ∗ f |,FN) with the Fejér
kernels KN = FN are not suitable for (1.1) (cf. also [17]), while the preconditioners
with KN = B2,N do their job.

Further, CGNE needs half the number of iterations but twice the number of
matrix-vector multiplications per iteration as MINRES needs. See also section 5.

Example 2. Next, we consider the symmetric Toeplitz matrices AN (f) arising
from the generating function

f2(t) = h2(t) (cos(t+ 2) + 1) (cos(t− 2) + 1)

with

h2(t) = sgn(t− π + 2) sgn(t+ π − 2).

Table 2 presents the number of iterations for trigonometric preconditioners. The
results are similar to those of Example 1, except that CGNE requires nearly the same
number of iterations as MINRES.

664 RAYMOND H. CHAN, DANIEL POTTS, AND GABRIELE STEIDL

Table 2
f2(t) = h2(t) (cos(t + 2) + 1) (cos(t− 2) + 1) (t ∈ [−π, π)).

Method MN 4 5 6 7 8 9 10

MINRES IN 9 17 45 142 401 * *

MINRES MN,f (|f |,CII
N) 8 9 10 11 14 13 16

MINRES MN,f (|f |,SII
N) 9 10 11 12 14 13 16

MINRES MN,FN∗f (|FN ∗ f |,CII
N) 10 15 20 26 30 39 53

MINRES MN,FN∗f (|FN ∗ f |,SII
N) 10 15 19 25 30 39 53

MINRES MN,B2,N∗f (|B2,N ∗ f |,CII
N) 9 15 17 16 20 18 18

MINRES MN,B2,N∗f (|B2,N ∗ f |,SII
N) 9 14 16 18 19 18 18

CGNE IN 10 29 99 413 * * *

CGNE MN,f (|f |,CII
N) 7 9 11 11 17 16 17

CGNE MN,f (|f |,SII
N) 7 7 10 10 12 14 15

Table 3
f3(t) = ((t

π
)2 − 1)2 − 0.9 (t ∈ [−π, π)).

Method MN 4 5 6 7 8 9 10

MINRES IN 9 17 33 66 133 * *

MINRES MN,f (|f |,CII
N) 6 7 7 8 7 7 7

MINRES MN,f (|f |,SII
N) 7 8 8 7 9 8 8

MINRES MN,FN∗f (|FN ∗ f |,CII
N) 8 11 15 17 16 17 17

MINRES MN,FN∗f (|FN ∗ f |,SII
N) 8 11 15 16 15 15 15

MINRES MN,B2,N∗f (|B2,N ∗ f |,CII
N) 8 10 10 11 9 7 7

MINRES MN,B2,N∗f (|B2,N ∗ f |,SII
N) 8 10 10 10 9 9 8

CGNE IN 8 22 65 164 378 * *

CGNE MN,f (|f |,CII
N) 5 6 6 8 6 5 6

CGNE MN,f (|f |,SII
N) 6 6 6 6 7 7 7

Example 3. Finally, we consider an example from [21, Table 4.9]:

f3(t) =

((
t

π
)2 − 1

)2

− 0.9 (t ∈ [−π, π)
)

.

This generating function doesn’t fit into our setting (1.2). However, our precondi-
tioning technique leads to very good practical results; see Table 3. For N = 512 the
preconditioned MINRES with our preconditioner MN,B2,N∗f (|B2,N ∗f |,CII

N) requires
only 7 iterations. For comparison, PCG with the banded Toeplitz preconditioner of
bandwidth 37 suggested in [21] requires 2 iterations. The theoretical justification of
these numerical results is part of further research.

Acknowledgments. We wish to thank B. Fischer for the Matlab implemen-
tations of MINRES and CGNE. Many thanks to the referees for their valuable com-

PRECONDITIONER FOR TOEPLITZ SYSTEMS 665

ments, in particular for pointing out various references to us.

REFERENCES

[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1996.
[2] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM, Philadelphia, PA,
1994.

[3] F. Di Benedetto, G. Fiorentino, and S. Serra, C. G. preconditioning for Toeplitz matrices,
Comput. Math. Appl., 25 (1993), pp. 35–45.

[4] A. Böttcher and S. M. Grudsky, Toeplitz band matrices with exponentially growing condi-
tion numbers, Electron. J. Linear Algebra, 5 (1999), pp. 104–125.

[5] R. Chan, Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions,
IMA J. Numer. Anal., 11 (1991), pp. 333–345.

[6] R. H. Chan and W.-K. Ching, Toeplitz–circulant preconditioners for Toeplitz systems and
their applications to queueing networks with batch arrivals, SIAM J. Sci. Comput., 17
(1996), pp. 762–772.

[7] R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38
(1996), pp. 427–482.

[8] R. H. Chan, D. Potts, and G. Steidl, Preconditioners for Non-Hermitian Toeplitz Systems,
Numer. Linear Algebra Appl., to appear.

[9] R. H. Chan, T. Tso, and H. Sun, Circulant preconditioners from B-splines, in Proceedings
of the SPIE Symposium, Advanced Signal Processing: Algorithms, Architectures, and
Implementations VII, Vol. 3162, San Diego, CA, 1997, F. Luk, ed., Society of Photo-optical
Instrumentation Engineers, 1997, pp. 338–347.

[10] R. H. Chan, M. Yip, and M. Ng, The Best Circulant Preconditioners for Hermitian Toeplitz
Matrices, SIAM J. Numer. Anal., 38 (2000), pp. 876–896.

[11] R. DeVore and G. Lorentz, Constructive Approximation, Springer–Verlag, Berlin, Germany,
1993.

[12] B. Fischer, Polynomial Based Iteration Methods for Symmetric Linear Systems, Wiley–
Teubner, New York, 1996.

[13] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

[14] S. V. Parter, On the distribution of singular values of Toeplitz matrices, Linear Algebra
Appl., 80 (1986), pp. 115–130.

[15] D. Potts and G. Steidl, Optimal trigonometric preconditioners for nonsymmetric Toeplitz
systems, Linear Algebra Appl., 281 (1998), pp. 265–292.

[16] D. Potts and G. Steidl, Preconditioners for ill–conditioned Toeplitz matrices, BIT, 39
(1999), pp. 513–533.

[17] D. Potts and G. Steidl, Preconditioners for Ill–Conditioned Toeplitz Matrices Constructed
from Positive Kernels, SIAM J. Sci. Comput., to appear.

[18] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishers, Boston, MA, 1996.
[19] S. Serra, New PCG based algorithms for the solution of Hermitian Toeplitz systems, Calcolo,

32 (1995), pp. 153–176.
[20] S. Serra, Preconditioning strategies for Hermitian Toeplitz systems with nondefinite generat-

ing functions, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 1007–1019.
[21] S. Serra Capizzano, Toeplitz preconditioners constructed from linear approximation pro-

cesses, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 446–465.
[22] S. Serra, How to choose the best iterative strategy for symmetric Toeplitz systems, SIAM J.

Numer. Anal., 36 (1999), pp. 1078–1103.
[23] E. E. Tyrtyshnikov, A unifying approach to some old and new theorems on distribution and

clustering, Linear Algebra Appl., 232 (1996), pp. 1–43.
[24] E. E. Tyrtyshnikov, A. Yeremin, and N. Zamarashkin, Clusters – preconditioners – con-

vergence, Linear Algebra Appl., 263 (1997), pp. 25–48.
[25] Z. Wang, Fast algorithms for the discrete W transform and for the discrete Fourier transform,

IEEE Trans. Acoust. Speech Signal Process, 32 (1984), pp. 803–816.
[26] M.-C. Yeung and R. H. Chan, Circulant preconditioners for Toeplitz matrices with piecewise

continuous generating functions, Math. Comp., 61 (1993), pp. 701–718.

AN ORTHOGONALLY BASED PIVOTING TRANSFORMATION
OF MATRICES AND SOME APPLICATIONS∗

ENRIQUE CASTILLO† , ANGEL COBO† , FRANCISCO JUBETE† , ROSA EVA PRUNEDA† ,
AND CARMEN CASTILLO†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 666–681

Abstract. In this paper we discuss the power of a pivoting transformation introduced by
Castillo, Cobo, Jubete, and Pruneda [Orthogonal Sets and Polar Methods in Linear Algebra: Ap-
plications to Matrix Calculations, Systems of Equations and Inequalities, and Linear Programming,
John Wiley, New York, 1999] and its multiple applications. The meaning of each sequential tableau
appearing during the pivoting process is interpreted. It is shown that each tableau of the process
corresponds to the inverse of a row modified matrix and contains the generators of the linear sub-
space orthogonal to a set of vectors and its complement. This transformation, which is based on the
orthogonality concept, allows us to solve many problems of linear algebra, such as calculating the
inverse and the determinant of a matrix, updating the inverse or the determinant of a matrix after
changing a row (column), determining the rank of a matrix, determining whether or not a set of
vectors is linearly independent, obtaining the intersection of two linear subspaces, solving systems of
linear equations, etc. When the process is applied to inverting a matrix and calculating its determi-
nant, not only is the inverse of the final matrix obtained, but also the inverses and the determinants
of all its block main diagonal matrices, all without extra computations.

Key words. compatibility, determinant, intersection of linear subspaces, linear systems of
equations, rank of a matrix, updating inverses

AMS subject classifications. 15A03, 15A06, 15A09, 15A15

PII. S0895479898349720

1. Introduction. Castillo, Cobo, Fernández-Canteli, Jubete, and Pruneda [2]
and Castillo, Cobo, Jubete, and Pruneda [3] have recently introduced a pivoting
transformation of a matrix that has important properties and has been shown to
be very useful to solve a long list of problems in linear algebra. The aim of this
paper is to show the power of this transformation, clarify the meaning of the partial
results obtained during the computationl process, and illustrate the wide range of
applications of this transformation to solve common problems in linear algebra, such
as calculating inverses of matrices, determinants or ranks, solving systems of linear
equations, etc.

The reader interested in a classical treatment of these problems can, for example,
consult the works of Burden and Faires [1], Golub and Van Loan [5], Gill et al. [6],
and Press et al. [8].

The new methods arising from this transformation have complexity identical to
that associated with the Gauss elimination method (see Castillo, Cobo, Jubete, and
Pruneda [3]). However, they are specially suitable for updating solutions when changes
in rows, columns, or variables are done. In fact, when changing a row, column, or
variable, a single step of the process allows one to obtain (update) the new solution
without the need to start again from scratch. For example, updating the inverse of

∗Received by the editors December 22, 1998; accepted for publication (in revised form) by M. Chu
May 30, 2000; published electronically October 25, 2000. This work was partially supported by
Iberdrola, the Leonardo Torres Quevedo Foundation of the University of Cantabria, and Dirección
General de Investigación Cient́ıfica y Técnica (DGICYT) (project TIC96-0580).

http://www.siam.org/journals/simax/22-3/34972.html
†Department of Applied Mathematics and Computational Sciences, University of Cantabria,

39005 Santander, Spain (castie@unican.es, acobo@besaya.unican.es, rpruneda@ccp-cr.uclm.es,
mcastill@platon.ugr.es).

666

ORTHOGONALLY BASED PIVOTING TRANSFORMATION 667

an n × n matrix when a row is changed requires one instead of n steps, a drastic
reduction in computational power.

In this paper we introduce the pivoting transformation and its applications only
from the algebraic point of view. Discussing the numerical properties and performance
of this method with respect to stability, ill conditioning, etc., which must be done
carefully and taking into account its applications (see Demmel [4] and Higham [7]),
will be the aim of another paper.

The paper is structured as follows. In section 2 the pivoting transformation is
introduced. In section 3 its main properties are discussed. In section 4 an orthogonal-
ization algorithm is derived. In section 5 some applications are given and illustrated
with examples. Finally, some conclusions are given in section 6.

2. Pivoting transformation. The main tool to be used in this paper consists
of the so-called pivoting transformation, which transforms a set of vectors Vj =
{vj1, . . . ,vjn} into another set of vectors Vj+1 = {vj+1

1 , . . . ,vj+1
n } by

vj+1
k =

vjk/t
j
j if k = j,

vjk −
tjk
tjj
vjj if k �= j,(2.1)

where tjj �= 0 and tjk, k �= j, are arbitrary real numbers. In what follows we consider
that the vectors above are the columns of a matrix Vj .

This transformation can be formulated in matrix form as follows. Given a matrix
Vj = [vj1, . . . ,v

j
n], where v

j
i , i = 1, . . . , n, are column vectors, a new matrix V

j+1 is
defined via

Vj+1 = VjM−1
j ,(2.2)

where M−1
j is the inverse of the matrix

Mj = (e1, . . . , ej−1, tj , ej+1, . . . , en)
T
,(2.3)

where ei is the ith column of the identity matrix, the transpose of tj being defined
by

tTj = uTj V
j(2.4)

for some predestined vector uj .

Since tjj �= 0, the matrix Mj is invertible. It can be proved that M
−1
j is the

identity matrix with its jth row replaced by

t∗j =
1

tjj

(
−tj1, . . . ,−tjj−1, 1,−tjj+1, . . . ,−tjn

)
.

This transformation is used in well-known methods, such as the Gaussian elimina-
tion method. However, different selections of the t-values lead to completely different
results. In this paper we base this selection on the concept of orthogonality, and as-
sume a sequence of m transformations associated with a set of vectors {u1, . . . ,um}.

668 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

3. Main properties of the pivoting transformation. As we shall see, the
pivoting transformation has very important and useful properties that are illustrated
in the following theorems.

The first theorem proves that given a matrix V, the pivoting transformation
transforms its columns without changing the linear subspace they generate.

Theorem 3.1. Let L(Vj) = L{vj1, . . . ,vjn} be the linear subspace generated or

spanned by the set of vectors {vj1, . . . ,vjn}. Consider the pivoting transformation (2.1)

or (2.2) and let L(Vj+1) = L{vj+1
1 , . . . ,vj+1

n }; then L(Vj) = L(Vj+1).
Proof. The relationship (2.2) implies immediately that L(Vj+1) ⊂ L(Vj). Con-

versely, the relationship

Vj+1Mj = Vj

implies the other way. In fact, this theorem is true by merely looking at (2.2).
The following theorem shows that the pivoting process (2.2) with the pivoting

strategy (2.4) leads to the orthogonal decomposition of the linear subspace generated
by the columns of Vj with respect to vector u.

Theorem 3.2 (orthogonal decomposition with respect to a given vector). As-
sume now a vector uj �= 0 and let tjk = uTj v

j
k, k = 1, . . . , n. If tjj �= 0, then

uTj V
j+1 = eTj .(3.1)

In addition, the linear subspace orthogonal to uj in L(Vj) is

{v ∈ L(Vj)|uTj v = 0} = L
(
vj+1

1 , . . . ,vj+1
j−1,v

j+1
j+1, . . . ,v

j+1
n

)
,

and its complement is L(vj+1
j).

In other words, the transformation (2.2) gives the generators of the linear subspace
orthogonal to uj and the generators of its complement.

Proof. This theorem follows quickly from (2.4) and (2.2) because

uTVj+1 = uTVjM−1
j = tTj M

−1
j = eTj .

Finally, Theorem 3.1 guarantees that L(vj+1
j) is the complement.

Remark 1. Note that Theorem 3.2 allows us to obtain the linear subspace orthog-
onal to a given vector uj in any case. If t

j
j = 0, we can reorder the v vectors until we

satisfy the condition tjj �= 0 or we find that tjj = 0 ∀j = 1, . . . , n, in which case the
orthogonal set to uj in L(Vj) is all L(Vj).

The following two theorems show that the pivoting transformation (2.2) allows
obtaining the linear space orthogonal to a given linear space, in another linear space.

Theorem 3.3. If we sequentially apply the transformation in Theorem 3.1 based
on a set of linearly independent vectors {u1, . . . ,uj}, the orthogonalization and nor-
malization properties in (3.1) are kept. In other words, we have

uTr v
j+1
k = δrk ∀r ≤ j ∀j,(3.2)

where δrk are the Kronecker deltas.
Proof. We prove this by induction over j.
Step 1. The theorem is true for j = 1, because from (3.1) we have uT1 v

2
k = δ1k.

ORTHOGONALLY BASED PIVOTING TRANSFORMATION 669

Step j. We assume that the theorem is true for j, that is,

uTr v
j+1
k = δrk ∀r ≤ j ∀j.

Step j + 1. We prove that it is true for j + 1. In fact, we have

uTVj+2 = uTrV
j+1M−1

j+1 =

{
eTr if r = j + 1,
eTrM

−1
j+1 = eTr if r ≤ j.

Theorem 3.4 (orthogonal decomposition with respect to a given linear sub-
space). Assume the linear subspace L{u1, . . . ,un}. We can sequentially use Theorem
3.2 to obtain the orthogonal set to L{u1, . . . ,un} in a given subspace L(V1). Let
tji be the dot product of uj and vji . Then assuming, without loss of generality, that
tq−1
q �= 0, we obtain

L(Vq−1) = L
(
vq−1

1 − t
q−1
1

tq−1
q

vq−1
q , . . . ,vq−1

q , . . . ,vq−1
n − t

q−1
n

tq−1
q

vq−1
q

)

= L (vq1, . . . ,vqn) = L(Vq)

and

{v ∈ L(V1)|uT1 v = 0, . . . ,uTq v = 0} = L
(
vqq+1, . . . ,v

q
n

)
.

In addition, we have

uT1 v
q
1 = 1, uT1 v

q
i = 0 ∀i �= 1, . . . ,uTq vqq = 1,uTq vqi = 0 ∀i �= q.

The proof can easily be obtained using Theorem 3.3.
The following remarks point out the practical significance of the above four the-

orems.
Remark 2. The linear subspace orthogonal to the linear subspace generated by

vector uj is the linear space generated by the columns of V
k for any k ≥ j + 1 with

the exception of its pivot column, and its complement is the linear space generated
by this pivot column of Vk for any k ≥ j + 1.

Remark 3. The linear subspace, in the linear subspace generated by the columns
of V1, orthogonal to the linear subspace generated by any subset W = {uk|k ∈ K}
is the linear subspace generated by the columns of V	, � ≥ maxk∈K k + 1, with the
exception of all pivot columns associated with the vectors in W , and its complement
is the linear subspace generated by the columns of V	, � ≥ maxk∈K k + 1, which are
their pivot columns.

4. The orthogonalization algorithm. In this section we describe an algorithm
for obtaining orthogonal decompositions, which is based on Theorem 3.4.

Algorithm 1.
• Input: Two linear subspaces L(V1) = L (v1, . . . ,vs) ⊆ R

n and L(U) =
L (u1, . . . ,um) ⊆ R

n.
• Output: The orthogonal linear subspace L(W2) to L(U) in L(V1) and its
complement L(W1).

Step 1: SetW = V1 (the matrix with vj , j = 1, . . . , s, as columns).
Step 2: Let i = 1 and � = 0.
Step 3: Calculate the dot products t	j = uTi wj , j = 1, . . . , s.

670 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

Table 4.1
Iterations for obtaining the orthogonal decomposition of L(V1) with respect to L(U). Pivot

columns are boldfaced.

Iteration 1 Iteration 2

1 1 0 0 0 0 3 1 1 –1 0 0
–1 0 1 0 0 0 –3 0 1 0 0 0
1 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

1 –1 1 0 0 3 0 –3 1 0

Modified second table Iteration 3

3 1 –1 1 0 0 0 0 1/3 1 –1/3 0
–3 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 –1 1 –1/3 0 1/3 0
1 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0 0 1

3 –3 0 1 0 –1 1/3 0 –1/3 1

Output

1 0 1 1 –1
0 0 0 1 0
0 0 –1 0 1

–3 1 –3 0 3
0 0 0 0 1

Step 4: For j = �+1 to s locate the pivot column r	 as the first column not orthogonal
to ui, that is, t

	
r�
�= 0. If there is no such a column go to Step 7. Otherwise,

continue with Step 5.
Step 5: Increase � in one unit, divide the r	 column by t

	
r�
, and if r	 �= �, switch

columns � and r	 and associated dot products t
	
r�
and t		.

Step 6: For j = 1 to s and j �= r	 do the following: If t	j �= 0, do wkj = wkj − t	jwki
for k = 1, . . . , n.

Step 7: If i = m, go to Step 8. Otherwise, increase i in one unit and go to Step 3.
Step 8: Return L(W2) = L (w	, . . . ,ws) as the orthogonal subspace of L(U) in

L(V1) and L(W1) = L (w1, . . . ,w	−1) as its complement.

Remark 4. If the pivoting process were used taking into account numerical consid-
erations, Step 4 should be adequately modified by the corresponding pivot selecting
strategy (maximum pivot strategy, for example). In this case, the corresponding per-
mutation in Step 8 is required. Note that in this paper only algebraic considerations
are used.

The process described in Algorithm 1 can be organized in a tabular form. A
detailed description is given in the following example.

Example 1 (orthogonal decomposition). Consider the linear subspace of L(V1) =
R

5:

L(U) = L{(1,−1, 1, 0, 0)T , (3,−3, 0, 1, 0)T , (0, 0,−1, 0, 1)T} .
We organize the procedure in a tabular form (see Table 4.1).

First, to obtain the orthogonal decomposition of L(V1) with respect to L(U), we
construct the initial tableau (see Iteration 1 in Table 4.1), starting with the identity
matrix V1. The first column of this table is the first generator of L(U) and the
generators of the subspace to be decomposed are in the other columns. The last row
contains the inner products of the vector in the first column by the corresponding
column vectors.

Next, the first nonnull element in the last row is identified and the corresponding
column is selected as the pivot column, which is boldfaced in Iteration 1.

ORTHOGONALLY BASED PIVOTING TRANSFORMATION 671

Finally, it is necessary to perform the pivoting process and to update the first
column and the last row of the table with the next generator of L(U) and the new
inner products. Then, we get the second table (see Iteration 2 in Table 4.1). In order
to select the pivot column, we have to look for the first nonnull element in the last
row starting with its second element because we are in the second iteration. Then,
the selected column is the third one, and before performing the pivoting process,
interchange of second and third columns must be done.

We repeat the pivoting process, incorporate the last generators of L(U), and
obtain the new dot products. We select the pivot column, starting at column three,
and look for a nonnull dot product, obtaining the fourth column as the pivot. Next,
we repeat the normalization and pivoting processes and, finally, we get the Output
tableau in Table 4.1, where the first three vectors are the generators of the complement
subspace and the last two are the generators of the orthogonal subspace. Italicized
columns are used in all iterations to refer to the complementary subspace.

Thus, the orthogonal decomposition becomes

R
5 = L{(1, 0, 0,−3, 0)T , (0, 0, 0, 1, 0)T , (1, 0,−1,−3, 0)T}

⊕ L{(1, 1, 0, 0, 0)T , (−1, 0, 1, 3, 1)T} .
Note that, from the Output tableau, we can obtain the linear subspace orthogonal

to the linear subspace generated by any subset of the initial set of vectors. For
example, the orthogonal complement of the linear subspace generated by the set
{(1,−1, 1, 0, 0)T , (3,−3, 0, 1, 0)T } is (see Output in Table 4.1)

L({(1,−1, 1, 0, 0)T,(3,−3, 0, 1, 0)T })⊥=L{(1, 0,−1,−3, 0)T,(1, 1, 0, 0, 0)T,(−1, 0, 1, 3, 1)T },

which can also be written as (see Iteration 3 in Table 4.1)

L({(1,−1, 1, 0, 0)T , (3,−3, 0, 1, 0)T })⊥=L{(1, 1, 0, 0, 0), (−1/3, 0, 1/3, 1, 0), (0, 0, 0, 0, 1)}.

Similarly,

L({(0, 0,−1, 0, 1)T })⊥=L{(1, 0, 0,−3, 0)T ,(0, 0, 0, 1, 0)T ,(1, 1, 0, 0, 0)T ,(−1, 0, 1, 3, 1)T }.

5. Applications. In addition to obtaining the linear subspace orthogonal to
a linear space generated by one or several vectors in a given linear subspace, the
proposed orthogonal pivoting transformation allows solving the following problems:

1. calculating the inverse of a matrix,
2. updating the inverse of a matrix after changing a row,
3. determining the rank of a matrix,
4. calculating the determinant of a matrix,
5. updating the determinant of a matrix after changing a row,
6. determining whether or not a set of vectors is linearly independent,
7. obtaining the intersection of two linear subspaces,
8. solving a homogeneous system of linear equations,
9. solving a complete system of linear equations,
10. deciding whether or not a linear system of equations is compatible.

5.1. Calculating the inverse of a matrix. The following theorem shows that
Algorithm 1 can be used for obtaining the inverse of a matrix.

Theorem 5.1. Assume that Algorithm 1 is applied to the rows of matrix A =
(a1, . . . ,an)

T using a nonsingular initial matrix V1. Then the matrix whose columns

672 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

are in the last tableau Vn+1 is the inverse of matrix A. In addition, if we start with
V1 being the identity matrix, in the process we obtain the inverses of all block main
diagonal matrices.

Proof. Matrices Vj for j = 2, . . . , n+ 1 are obtained, using the transformations

Vj+1 = VjM−1
j , j = 1, . . . , n,(5.1)

where Mj is defined in (2.3) with t
T
j = aTj V

j . Then it satisfies

aTj V
n = aTj V

jM−1
j · · ·M−1

n = tTj M
−1
j · · ·M−1

n = eTj M
−1
j+1 · · ·M−1

n = eTj .(5.2)

This proves that A−1 = Vn; that is, the inverse of A is the matrix whose columns
are in the final tableau obtained using Algorithm 1.

The second part of the theorem is obvious because the lower triangular part of
the identity matrix is null and does not affect the dot products and the pivoting
transformations involved in the process.

Example 2 (matrix inverses). Consider the following matrix A, where the block
main diagonal matrices are shown, and its inverse A−1:

A =

1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1
0 0 0 1 2
0 1 0 −1 1

 ; A−1 =

2/7 −5/7 −5/7 1/7 3/7
3/7 3/7 3/7 −2/7 1/7
1/7 1/7 8/7 −3/7 −2/7
2/7 2/7 2/7 1/7 −4/7
−1/7 −1/7 −1/7 3/7 2/7

 .

(5.3)
Table 5.1 shows the iterations for inverting A using Algorithm 1. The inverse

matrix A−1 is obtained in the last iteration (see Table 5.1). In addition, Table 5.1
also contains the inverses of the block main diagonal matrices indicated below (see
the marked matrices in Iterations 2 to 5 in Table 5.1). The important result is that
this is obtained with no extra computation.

Finally, we mention that the 5×5 matrices we obtain in Iterations 2 to 5 in Table
5.1 are the inverses of the matrices that result from replacing in the unit matrix its
rows by the rows of matrix A. For example, the matrix in Iteration 4 is such that

H=

1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 ; H

−1=

1/2 −1/2 −1/2 −1/2 1/2
1/2 1/2 1/2 −1/2 −1/2
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 1

 .(5.4)

Example 3 (inversion of a matrix starting from a regular matrix). The proposed
pivoting process can be done starting with an arbitrary nonsingular matrix. For
example, if we start with the matrix

B =

1 0 1 1 0
2 1 0 0 0
−1 −1 1 0 −1
0 1 1 2 2
0 2 1 0 1

 ,(5.5)

we get the results in Table 5.2, i.e., the same inverse.

ORTHOGONALLY BASED PIVOTING TRANSFORMATION 673

Table 5.1
Iterations for inverting the matrix in Example 2. Pivot columns are boldfaced. The inverses of

all block main diagonal matrices are indicated in Iterations 2 to 5.

Iteration 1 Iteration 2

1 1 0 0 0 0 –1 1 –1 0 –1 0
1 0 1 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 –1 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

1 1 0 1 0 –1 2 –1 1 0

Iteration 3 Iteration 4

0 1/2 –1/2 –1/2 –1/2 0 0 1/2 –1/2 –1/2 –1/2 1/2
0 1/2 1/2 1/2 –1/2 0 0 1/2 1/2 1/2 –1/2 –1/2
1 0 0 1 0 0 0 0 0 1 0 –1
0 0 0 0 1 0 1 0 0 0 1 0
1 0 0 0 0 1 2 0 0 0 0 1

0 0 1 0 1 0 0 0 1 2

Iteration 5 Output

0 1/2 –1/2 –1/2 –1/2 3/2 2/7 –5/7 –5/7 1/7 3/7
1 1/2 1/2 1/2 –1/2 1/2 3/7 3/7 3/7 –2/7 1/7
0 0 0 1 0 –1 1/7 1/7 8/7 –3/7 –2/7
–1 0 0 0 1 –2 2/7 2/7 2/7 1/7 –4/7
1 0 0 0 0 1 –1/7 –1/7 –1/7 3/7 2/7

1/2 1/2 1/2 –3/2 7/2

5.2. Updating the inverse of a matrix after changing a row. In this
section we start by giving an interpretation to each tableau obtained in the inversion
process of a matrix.

Since, according to Theorem 3.3, the pivoting transformation does not alter the
orthogonal properties of previous vectors, we can update the inverse of a matrix after
changing a row by an additional pivoting transformation in which the new row vector
is used.

To illustrate this, we use the results in Table 5.2. Note that the matrices in
Iterations 2 to 5 correspond to the matrices obtained from B−1 after sequentially
replacing the row which number coincides with the number of the pivot column by
their associated u-vectors. In other words, matrices in Table 5.2, Iterations 2 to 5,
are the inverses of the following matrices:

A1 =

1 1 0 1 0
−8 7 6 4 −2
6 −5 −4 −3 2
−9 8 7 5 −3
10 −9 −8 −5 3

 ; A2 =

1 1 0 1 0
−1 1 −1 0 0
6 −5 −4 −3 2
−9 8 7 5 −3
10 −9 −8 −5 3

 ;

A3 =

1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1
−9 8 7 5 −3
10 −9 −8 −5 3

 ; A4 =

1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1
0 0 0 1 2
10 −9 −8 −5 3

 .

5.3. Determining the rank of a matrix. In this section we see that Algorithm
1 also allows one to determine the rank of a matrix.

674 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

Table 5.2
Iterations for inverting the matrix in Example 2 when we start with matrix A in (5.5). Pivot

columns are boldfaced.

Iteration 1 Iteration 2

1 1 0 1 1 0 –1 1/3 –2/3 1/3 0 –2/3
1 2 1 0 0 0 1 2/3 –1/3 –4/3 –2 –4/3
0 –1 –1 1 0 –1 –1 –1/3 –1/3 5/3 1 –1/3
1 0 1 1 2 2 0 0 1 1 2 2
0 0 2 1 0 1 0 0 2 1 0 1

3 2 2 3 2 2/3 2/3 –10/3 –3 –1/3

Iteration 3 Iteration 4

0 1 –1 –3 –3 –1 0 5/11 –7/22 –3/11 –15/22 –13/22
0 1 –1/2 –3 –7/2 –3/2 0 5/11 2/11 –3/11 –13/11 –12/11
1 0 –1/2 0 –1/2 –1/2 0 0 –1/2 0 –1/2 –1/2
0 –1 3/2 6 13/2 5/2 1 1/11 3/22 6/11 41/22 37/22
1 –2 3 11 9 2 2 0 1/2 1 1/2 1/2

–2 5/2 11 17/2 3/2 1/11 25/22 28/11 63/22 59/22

Iteration 5 Output

0 10/21 –1/21 1/3 –5/21 1/21 2/7 –5/7 -5/7 1/7 3/7
1 31/63 41/63 7/9 –26/63 1/63 3/7 3/7 3/7 -2/7 1/7
0 1/63 –19/63 4/9 –11/63 –2/63 1/7 1/7 8/7 –3/7 –2/7
–1 2/63 –38/63 –10/9 41/63 –4/63 2/7 2/7 2/7 1/7 –4/7
1 –1/63 19/63 5/9 11/63 2/63 –1/7 –1/7 –1/7 3/7 2/7

4/9 14/9 22/9 –8/9 1/9

In an n-dimensional linear space, the rank of a matrix U coincides with n minus
the dimension of its orthogonal complement. Thus, if during the orthogonalization
process we start with a nonsingular matrix as columns and we can find a pivot in all
iterations, then the corresponding matrix is full rank. Otherwise, the rank is equal to
the number of pivot columns we can find.

Example 4 (rank of a matrix). Assume that we are interested in calculating the
rank of the matrix

A =

1 0 1 1 1
0 1 1 0 1
1 1 2 1 2
1 1 0 0 0
1 −1 0 1 0

 .

In Table 5.3 we show the iterations for obtaining its rank. We can see that the rank
of A is 3, since the third and fifth iterations have no pivots.

5.4. Calculating the determinant of a matrix. The following theorem shows
that the determinant of a matrix can be calculated by means of Algorithm 1.

Theorem 5.2 (determinant of a matrix). The determinant of a matrix A can
be calculated by Algorithm 1 by multiplying the normalizing constants t	r� , l = 1, . . . , n,
used in Step 5 and (−1)p, where p is the number of interchanges of columns that have
occurred when executing the algorithm. If we start the algorithm with the identity
matrix, the determinants of the block main diagonal matrices referred to in section
5.1 are the partial products.

Proof. Assume that we start in Step 1 with an identity matrix, W = In, which
has a determinant of one. In the inverting process, we transform this matrix using
two different transformations: the pivoting step, which does not alter the determinant

ORTHOGONALLY BASED PIVOTING TRANSFORMATION 675

Table 5.3
Iterations for calculating the rank of the matrix in Example 4. Pivot columns are boldfaced.

Iteration 1 Iteration 2 Iteration 3

1 1 0 0 0 0 0 1 0 –1 –1 –1 1 1 0 –1 –1 –1
0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 –1 0 –1
1 0 0 1 0 0 1 0 0 1 0 0 2 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0
1 0 0 0 0 1 1 0 0 0 0 1 2 0 0 0 0 1

1 0 1 1 1 0 1 1 0 1 1 1 0 0 0

Iteration 4 Iteration 5

1 1 0 –1 –1 –1 1 1/2 –1/2 1/2 –1/2 0
1 0 1 –1 0 –1 –1 –1/2 1/2 1/2 1/2 0
0 0 0 1 0 0 0 1/2 1/2 –1/2 –1/2 –1
0 0 0 0 1 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

1 1 –2 –1 –2 1 –1 0 0 0

value of the matrix, and the normalization step, which divides its determinant by t	r�
(see (2.1)). In addition, we multiply it by −1 each time we switch columns. Since
|A−1| = |A|−1, we have

|A| =
n∏
i=1

(−1)ptiri .(5.6)

If we start with an identity matrix, the lower triangular part of the identity matrix
is null and does not affect the dot products and the pivoting transformations involved
in the process. Thus, the result holds.

Example 5 (determinant of a matrix). The determinant of the matrix in Example
2 is obtained by multiplying the normalizing constants, that is, the last values in the
boldfaced columns in Table 5.1. Thus, we have

1× 2× 1× 1× 7/2 = 7.
The determinants of the block main diagonal matrices in (5.3) are 1, 2, 2, 2, and 7,
respectively.

Remark 5. If instead of starting with the identity matrix In, we start with a
nonsingular matrix B with determinant |B|, expression (5.6) becomes

|A| = |B|−1
n∏
i=1

(−1)ptiri .(5.7)

5.5. Updating the determinant of a matrix after changing a row. Ac-
cording to (5.6) or (5.7), the determinant is updated by multiplying the previous
determinant by the dot product of the new row by the associated pivot column.

Example 6 (updating the determinant after changing a row). Consider the matrix
A and its inverse A−1,

A =

1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1
0 0 0 1 2
0 1 0 −1 1

 , A

−1 =

2/7 −5/7 −5/7 1/7 3/7
3/7 3/7 3/7 −2/7 1/7
1/7 1/7 8/7 −3/7 −2/7
2/7 2/7 2/7 1/7 −4/7
−1/7 −1/7 −1/7 3/7 2/7

 ,(5.8)

676 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

Table 5.4
Pivoting process to determine whether or not a set of vectors is linearly dependent.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

1 1 0 0 0 2 1 0 –1 –1 1 1 0 –1 –1 –1 1/4 1/4 1/4 0
0 0 1 0 0 –1 0 1 0 0 1 2 –1 –3 –2 1 –1/4 –1/4 3/4 1
1 0 0 1 0 –1 0 0 1 0 0 0 0 1 0 2 3/4 –1/4 –1/4 –1
1 0 0 0 1 0 0 0 0 1 –1 0 0 0 1 1 0 0 0 1

t1 1 0 1 1 t2 2 –1 –3 –2 t3 3 –1 –4 –4 t4 1 –1 0 0

and assume that we want to calculate the determinant of the matrix

B =

1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1
a b c d e
0 1 0 −1 1

 .

Since |A| = 7, we have

|B| = 7× (a, b, c, d, e)(1/7,−2/7,−3/7, 1/7, 3/7)T = a− 2b− 3c+ d+ 3e.

5.6. Determining whether or not a set of vectors is linearly dependent.
To know whether or not a set of vectors is linearly independent, we use the property

{u1, . . . ,un} are linearly dependent ⇔ un ∈ L{u1, . . . ,un−1}

which can be written as

{u1, . . . ,un} are linearly dependent ⇔ un ⊥ L{u1, . . . ,un−1}⊥.

Thus, the problem reduces to obtaining a set of generators of the orthogonal
complement of L{u1, . . . ,un−1} and checking that the dot products of each of its
generators by un are null.

Note that this problem is the same as determining whether or not a vector belongs
to a linear subspace.

Example 7 (linear dependence of a set of vectors). Consider the set of vectors

{(1, 0, 1, 1), (2,−1,−1, 0), (1, 1, 0,−1), (−1, 1, 2, 1)}.

If we use the pivoting process (see Table 5.4), we have no problem finding a pivot
column for the first three vectors, but there is no pivot column for the fourth vector.
This means that the fourth vector is a linear combination of the first three.

5.7. Obtaining the intersection of two linear subspaces. Theorem 3.4
allows us to obtain the intersection of two linear subspaces S1 and S2 by noting that

S1 ∩ S2 = S1 ∩ (S⊥
2)

⊥ = S2 ∩ (S⊥
1)

⊥.(5.9)

In fact, we can obtain first S⊥
2 , the orthogonal to S2, by letting L(V1) = R

n in The-
orem 3.4 and then find the orthogonal to S⊥

2 in S1, using S1 as L(V1). Alternatively,
we can obtain first S⊥

1 , the orthogonal to S1, by letting L(V1) = Rn in Theorem 3.4
and then find the orthogonal to S⊥

1 in S2, using S2 as L(V1).

ORTHOGONALLY BASED PIVOTING TRANSFORMATION 677

Example 8 (intersection of moving subspaces). Consider the linear subspaces
S1 = L{v1,v2,v3,v4} and S⊥

2 = L{v1,v4}, where
v1 = (1, sin 2t, −1, cos t)T ,
v2 = (cos t, 1, sin 2t, −1)T ,
v3 = (−1, cos t, 1, sin 2t)T ,
v4 = (sin 2t, −1, cos t, 1)T ,

and assume that we wish to
1. determine the intersection Q1 = S1 ∩ S2 for all values of the time parameter
0 ≤ t ≤ 2π;

2. find the t-values for which we have Q1 = Q2, where Q2 = S1 ∩ S3 and
S⊥

3 = L{v1,v2}.
Then we have the following:
1. By definition we can write

Q1 = {v ∈ S1|v ∈ S2} ;v ∈ S2 ⇔ vTv1 = 0 and v
Tv4 = 0.

Using the procedure in Theorem 3.4 and starting with v1, we get

p = vT1 v1 = sin
2 2t+ cos2 t+ 2,

q = vT1 v3 = 2 sin 2t cos t− 2,
vT1 v2 = vT1 v4 = 0.

(5.10)

Since p �= 0 ∀t, using the orthogonalization procedure in Theorem 3.4, we
obtain {

v ∈ S1|vTv1 = 0
}
= L{u1 = pv3 − qv1,v2,v4)},

and proceeding with v4 and taking into account that

vT4 v2 = q;v
T
4 v4 = p;v

T
4 u1 = 0,

we have

Q1 = L{pv3 − qv1, pv2 − qv4} = L{u1,u2} .
2. By a similar process we get

Q2 = L{pv3 − qv1, pv4 − qv2} = L{u1,u3} .
Since Q2 is orthogonal to v2 and Q1 = Q2, then Q1 is orthogonal to v2 and,
in particular, u2 is orthogonal to v2. Similarly, since Q1 is orthogonal to v4

and Q1 = Q2, then Q2 is orthogonal to v4 and, in particular, u3 is orthogonal
to v4; that is,

Q1 = Q2 ⇒ uT2 v2 = 0,u
T
3 v4 = 0⇒ p2 − q2 = 0

⇒ p = −q ⇒ cos t(2 sin t+ 1) = 0⇒ t ∈ A =
{
π

2
,
3π

2
,
7π

6
,
11π

6

}

and, conversely,

p = −q ⇒ u2 = u3 ⇒ Q1 = Q2.

Thus, we get

Q1 = Q2 ⇔ t ∈ A =
{
π

2
,
3π

2
,
7π

6
,
11π

6

}
.

678 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

Table 5.5
Pivoting transformations corresponding to Example 9.

Iteration 1

a1 v11 v12 v13 v14 v15

1 1 0 0 0 0
1 0 1 0 0 0
–1 0 0 1 0 0
1 0 0 0 1 0
–2 0 0 0 0 1

t1 1 1 –1 1 –2

Iteration 2

a2 v21 v22 v23 v24

0 –1 1 –1 2
1 1 0 0 0
0 0 1 0 0
1 0 0 1 0
–2 0 0 0 1

t2 1 0 1 –2

Iteration 3

a3 v31 v32 v33

0 1 0 0
0 0 –1 2
1 1 0 0
–1 0 1 0
0 0 0 1

t3 1 –1 0

Final

v1 v2

1 0
–1 2
1 0
1 0
0 1

5.8. Solving a homogeneous system of linear equations. Consider the
homogeneous system of equations

a11x1 +a12x2 + · · · +a1nxn = 0,
a21x1 +a22x2 + · · · +a2nxn = 0,
· ·
am1x1 +am2x2 + · · · +amnxn = 0

(5.11)

which can be written as

(a11, . . . , a1n)(x1, . . . , xn)
T = 0,

(a21, . . . , a2n)(x1, . . . , xn)
T = 0,

· ·
(am1, . . . , amn)(x1, . . . , xn)

T = 0.

(5.12)

Expression (5.12) shows that (x1, . . . , xn) is orthogonal to the set of vectors

{(a11, . . . , a1n), (a21, . . . , a2n), . . . , (am1, . . . , amn)}.
Then, obtaining the solution to system (5.11) reduces to determining the orthog-

onal complement of the linear subspace generated by the rows of matrix A.
Example 9 (a homogeneous system of linear equations). Consider the system of

equations

x1 +x2 −x3 +x4 −2x5 = 0,
x2 +x4 −2x5 = 0,

x3 −x4 = 0.
(5.13)

To solve this system, we obtain the orthogonal complement of the linear subspace
generated by the rows of the system matrix, as shown in Table 5.5. Thus, the solution
is

(x1, x2, x3, x4, x5) = ρ1 (1,−1, 1, 1, 0) + ρ2 (0, 2, 0, 0, 1) ,(5.14)

where ρ1 and ρ2 are arbitrary real numbers.

5.9. Solving a complete system of linear equations. Now consider the
complete system of linear equations:

a11x1 +a12x2 + · · · +a1nxn = b1,
a21x1 +a22x2 + · · · +a2nxn = b2,
· · · · · · · · · · · · · · ·
am1x1 +am2x2 + · · · +amnxn = bm.

(5.15)

ORTHOGONALLY BASED PIVOTING TRANSFORMATION 679

Adding the artificial variable xn+1, it can be written as

a11x1 +a12x2 + · · · +a1nxn −b1xn+1 = 0,
a21x1 +a22x2 + · · · +a2nxn −b2xn+1 = 0,
· · · · · · · · · · · · · · · · · ·
am1x1 +am2x2 + · · · +amnxn −bmxn+1 = 0,
am1x1 +am2x2 + · · · +amnxn −bmxn+1 = 0,

(5.16)

xn+1 = 1.(5.17)

System (5.16) can be written as

(a11, . . . , a1n,−b1)(x1, . . . , xn, xn+1)
T = 0,

(a21, . . . , a2n,−b2)(x1, . . . , xn, xn+1)
T = 0,

· ·
(am1, . . . , amn,−bm)(x1, . . . , xn, xn+1)

T = 0.

(5.18)

Expression (5.18) shows that (x1, . . . , xn, xn+1) is orthogonal to the set of vectors

{(a11, . . . , a1n,−b1), (a21, . . . , a2n,−b2), . . . , (am1, . . . , amn,−bm)}.
Then, it is clear that the solution of (5.16) is the orthogonal complement of the

linear subspace generated by the rows of matrix A:

L{(a11, . . . , a1n,−b1), (a21, . . . , a2n,−b2), . . . , (am1, . . . , amn,−bm)}⊥.
Thus, the solution of (5.15) is the projection on X1× · · · ×Xn of the intersection

of the orthogonal complement of the linear subspace generated by

{(a11, . . . , a1n,−b1), (a21, . . . , a2n,−b2), . . . , (am1, . . . , amn,−bm)}
and the set {x|xn+1 = 1}.

Example 10 (a complete system of linear equations). Consider the system of
equations

x1 +x2 −x3 +x4 = 2,
x2 +x4 = 2,

x3 −x4 = 0
(5.19)

which, using the auxiliary variable x5, can be written as (5.13). Since the solution
of the homogeneous system (5.13) was already obtained, now we only need to force
x5 = 1 and return to the initial set of variables. Thus, the solution is

(x1, x2, x3, x4) = (0, 2, 0, 0) + ρ1 (1,−1, 1, 1) ,(5.20)

where ρ1 is an arbitrary real number.
Assume that now we add to system (5.19) the equation

x2 −x4 = 0.(5.21)

The new solution

(x1, x2, x3, x4) = (1, 1, 1, 1)(5.22)

is obtained by an extra pivoting step using the new vector (0, 1, 0,−1, 0) (see Table
5.6).

Finally if in the system (5.19) we eliminate variable x4, the new solution

(x1, x2, x3) = (0, 2, 0)(5.23)

can be obtained by introducing the new equation x4 = 0, which is equivalent to this
elimination. Using a new pivoting step with the vector (0, 0, 0, 1, 0), we get the results
in Table 5.6, and the solution in (5.23).

680 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

Table 5.6
New pivoting transformation after adding (5.21) and after removing variable x4 in system (5.19).

Iteration 4 Final

a4 v41 v42 v1

0 1 0 1
1 –1 2 1
0 1 0 1
–1 1 0 1
0 0 1 1

t4 –2 2

Iteration 4 Final

a4 v41 v42 v1

0 1 0 0
0 –1 2 2
0 1 0 0
1 1 0 0
0 0 1 1

t4 1 0

5.10. Deciding whether or not a linear system of equations is compat-
ible. In this section we show how to apply the orthogonal methods to analyze the
compatibility of a given system of equations.

System (5.15) can be written as

x1

a11
a21
...
am1

+ x2

a12
a22
...
am2

+ · · ·+ xn

a1n
a2n
...
amn

 =

b1
b2
...
bm

 .(5.24)

Expression (5.24) shows that the vector (b1, . . . , bm)
T is a linear combination of

the set of column vectors

{(a11, . . . , am1)
T , (a12, . . . , am2)

T , . . . , (a1n, . . . , amn)
T }

of the system matrix A. Thus, the compatibility problem reduces to that of sec-
tion 5.6.

Thus, analyzing the compatibility of the system of equations (5.15) reduces to
finding the orthogonal complement L{w1, . . . ,wp} of L{a1, . . . ,an} and checking
whether or not bWT = 0.

The computational process arising from this procedure has a complexity which
coincides exactly with that for the Gauss elimination procedure. However, it has one
important advantage: W is independent of b and so we can analyze the compatibility
of any symbolic vector un+1 without extra computations.

Example 11 (compatibility of a linear system of equations). Suppose that we are
interested in determining the conditions under which the system of equations

2x1 − x2 + x3 = a,
x1 − x3 = 3a,

x2 − 3x3 = b
(5.25)

is compatible. Then, using Algorithm 1, we get (see Table 5.7)

W = L{(1,−2, 1)T} ,(5.26)

which implies the following compatibility condition:

w1(a, 3a, b)
T = (1,−2, 1)(a, 3a, b)T = 0⇒ b− 5a = 0.(5.27)

ORTHOGONALLY BASED PIVOTING TRANSFORMATION 681

Table 5.7
Pivoting process to determine the orthogonal complement of the linear subspace generated by

the columns of A.

Iteration 1 Iteration 2 Iteration 3

2 1 0 0 –1 1/2 –1/2 0 1 0 –1 1
1 0 1 0 0 0 1 0 –1 1 2 –2
0 0 0 1 1 0 0 1 –3 0 0 1

t1 2 1 0 t2 –1/2 1/2 1 t3 –1 –3 0

6. Conclusions. A pivoting transformation, based on the orthogonality con-
cept, has been discussed and some of its applications to solve common linear algebra
problems have been given. The main advantage of the suggested method with respect
to the Gauss elimination method is that the intermediate results arising in the solution
process are easily interpretable. This leads to immediate methods to update solutions
of several problems, such as calculating the inverse or the determinant of a matrix,
solving system of linear equations, etc., when small changes are done (changes in rows,
columns, and/or variables). When the method is applied to inverting a matrix and
calculating its determinant, not only is the inverse of the final matrix obtained, but
also the inverses and determinants of all its block main diagonal matrices, without
extra computations.

Acknowledgment. We thank the referee for the constructive comments that
allowed an important improvement of the paper.

REFERENCES

[1] R. I. Burden and J. D. Faires, Numerical Analysis, PWS, Boston, 1985.
[2] E. Castillo, A. Cobo, A. Fernandez-Canteli, F. Jubete, and R. E. Pruneda, Updating

inverses in matrix analysis of structures, Internat. J. Numer. Methods Engrg., 43 (1998),
pp. 1479–1504.

[3] E. Castillo, A. Cobo, F. Jubete, and R. E. Pruneda, Orthogonal Sets and Polar Methods in
Linear Algebra: Applications to Matrix Calculations, Systems of Equations and Inequalities,
and Linear Programming, John Wiley, New York, 1999.

[4] J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[5] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,

Baltimore, 1996.
[6] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix

factorizations, Math. Comp., 28 (1974), pp. 505–535.
[7] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes

in C. The Art of Scientific Computing, Cambridge University Press, Cambridge, UK, 1985.

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD
FOR THE SYMPLECTIC EIGENVALUE PROBLEM∗

PETER BENNER† AND HEIKE FAßBENDER‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 682–713

Abstract. An implicitly restarted symplectic Lanczos method for the symplectic eigenvalue
problem is presented. The Lanczos vectors are constructed to form a symplectic basis. The inherent
numerical difficulties of the symplectic Lanczos method are addressed by inexpensive implicit restarts.
The method is used to compute some eigenvalues and eigenvectors of large and sparse symplectic
operators.

Key words. eigenvalues, symplectic Lanczos method, implicit restarting, symplectic matrix

AMS subject classifications. 65F15, 65F50, 15A18

PII. S0895479898343115

1. Introduction. We consider the numerical solution of the real symplectic
eigenvalue problem

Mx = λx,(1.1)

where M ∈ R
2n×2n is large and possibly sparse. A matrix M is called symplectic iff

MJMT = J,(1.2)

or equivalently, MTJM = J, where

J2n,2n =

[
0 In,n

−In,n 0

]
(1.3)

and In,n is the n× n identity matrix. If the dimension of J2n,2n or In,n is clear from
the context, we leave off the superscript. The symplectic matrices form a group under
multiplication. The eigenvalues of symplectic matrices occur in reciprocal pairs: If
λ is an eigenvalue of M with right eigenvector x, then λ−1 is an eigenvalue of M
with left eigenvector (Jx)T . The computation of eigenvalues and eigenvectors of
such matrices is an important task in applications like the discrete linear-quadratic
regulator problem, discrete Kalman filtering, the solution of discrete-time algebraic
Riccati equations, and certain large, sparse quadratic eigenvalue problems. See, e.g.,
[23, 24, 32, 33] for applications and further references. Symplectic matrices also occur
when solving linear Hamiltonian difference systems [7].

In order to develop fast and efficient methods, the symplectic structure of the
problem should be preserved and exploited. Then the method will be reliable in the
sense that the computed solution will have a physical meaning, as important prop-
erties of symplectic matrices (e.g., the symmetry of the spectrum) will be preserved
and not destroyed by rounding errors. Different structure-preserving methods for

∗Received by the editors August 5, 1998; accepted for publication (in revised form) by D. Calvetti
May 15, 2000; published electronically October 25, 2000.

http://www.siam.org/journals/simax/22-3/34311.html
†Universität Bremen, Fachbereich 3 – Mathematik und Informatik, Zentrum für Technomathe-

matik, 28334 Bremen, FRG (benner@math.uni-bremen.de).
‡Technische Universität München, Zentrum Mathematik, 80290 München, FRG (fassbend

@ma.tum.de).

682

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 683

solving (1.1) have been proposed. In [28] Lin introduces the S + S−1-transformation
which can be used to compute the eigenvalues of a symplectic matrix by a structure-
preserving method similar to Van Loan’s square-reduced method for the Hamiltonian
eigenvalue problem [42]. Flaschka, Mehrmann, and Zywietz show in [16] how to con-
struct structure-preserving methods based on the SR method [11, 12, 30]. Patel
[38, 37] and Mehrmann [31] developed structure-preserving algorithms for the sym-
plectic generalized eigenproblem L− λN where L,N ∈ R

2n×2n and LJLT = NJNT .
Recently, research by Banse [2] and by Banse and Bunse-Gerstner [3] presented

a new condensed form for symplectic matrices. The 2n × 2n condensed matrix is
symplectic, contains 8n− 4 nonzero entries, and is determined by 4n− 1 parameters.
This condensed form, called symplectic butterfly form, can be depicted as a symplectic
matrix of the following form:

 ❅ ❅❅❅

❅ ❅❅❅

 .

Once the reduction of a symplectic matrix to butterfly form is achieved, the SR
algorithm [11, 12, 30] is a suitable tool for computing the eigenvalues/eigenvectors of a
symplectic matrix. The SR algorithm preserves the butterfly form in its iterations and
can be rewritten in a parameterized form that works with the 4n−1 parameters instead
of the (2n)2 matrix elements in each iteration. Hence, the symplectic structure, which
will be destroyed in the numerical process due to roundoff errors, can be restored in
each iteration for this condensed form. An analysis of the butterfly SR algorithm can
be found in [2, 5, 6].

In [2, 3] an elimination process for computing the butterfly form of a symplectic
matrix is given which uses elementary unitary symplectic transformations as well as
nonunitary symplectic transformations. Unfortunately, this approach is not suitable
when dealing with large and sparse symplectic matrices, as an elimination process
cannot make full use of the sparsity. Hence, symplectic Lanczos methods which create
the symplectic butterfly form if no breakdown occurs are derived in [2, 5]. Given
v1 ∈ R

2n and a symplectic matrix M ∈ R
2n×2n, these Lanczos algorithms produce a

matrix S2n,2k = [v1, v2, . . . , vk, w1, w2, . . . , wk] ∈ R
2n×2k which satisfies a recursion of

the form

MS2n,2k = S2n,2kB2k,2k + rk+1e
T
2k,(1.4)

where B2k,2k is a butterfly matrix of order 2k × 2k, and the columns of S2n,2k are
orthogonal with respect to the indefinite inner product defined by J (1.3). The lat-
ter property will be called J-orthogonality throughout this paper. The residual rk+1

depends on vk+1 and wk+1; hence, (S
2n,2k)TJrk+1 = 0. Such a symplectic Lanczos

method will suffer from the well-known numerical difficulties inherent to any Lanczos
method for unsymmetric matrices. In [2], a symplectic look-ahead Lanczos algorithm
is presented which overcomes breakdown by giving up the strict butterfly form. Un-
fortunately, so far there do not exist eigenvalue methods that can make use of that
special reduced form. Standard eigenvalue methods such as QR or SR algorithms
have to be employed, resulting in a full symplectic matrix after only a few iteration
steps.

A different approach to deal with the numerical difficulties of the Lanczos pro-
cess is to modify the starting vectors by an implicitly restarted Lanczos process (see

684 PETER BENNER AND HEIKE FAßBENDER

the fundamental work in [10, 39]); for the unsymmetric eigenproblem the implic-
itly restarted Arnoldi method has been implemented very successfully; see [26]. The
problems are addressed by fixing the number of steps in the Lanczos process at a
prescribed value k which depends upon the required number of approximate eigenval-
ues. J-orthogonality of the k Lanczos vectors is secured by re-J-orthogonalizing these
vectors when necessary. The purpose of the implicit restart is to determine initial
vectors such that the associated residual vectors are tiny. Given (1.4), an implicit
Lanczos restart computes the Lanczos factorization

MS̆2k = S̆2kB̆2k,2k + r̆k+1e
T
2k,

which corresponds to the starting vector

v̆1 = p(M)v1

(where p(M) ∈ R
2n×2n is a polynomial) without having to explicitly restart the

Lanczos process with the vector v̆1. Such an implicit restarting mechanism is derived
here analogous to the technique introduced in [20, 39].

Such an implicitly restarted symplectic Lanczos method has been developed by
the authors for the Hamiltonian eigenproblem in [4], that is for the eigenproblem
Hx = λx, where H ∈ R

2n×2n and (HJ)T = HJ . While in [4] the focus was on
deriving the method and on discussing its possible application to compute a low-
rank-approximation to the solution of continuous-time algebraic Riccati equations,
here we derive a theory for the implicitly restarted symplectic Lanczos method for the
symplectic eigenvalue problem similar to the one derived in [39, 10] for the implicitly
restarted Arnoldi and Lanczos methods. Unfortunately, the Hamiltonian and the
symplectic eigenproblems are (despite common belief) quite different. The symplectic
eigenproblem is much more difficult than the Hamiltonian one. The relation between
the two eigenproblems is best described by comparing it with the relation between
symmetric and orthogonal eigenproblems or the Hermitian and unitary eigenproblems.
In all these cases, the underlying algebraic structures are an algebra and a group acting
on this algebra. For the algebra (Hamiltonian, symmetric, Hermitian matrices), the
structure is explicit, i.e., can be read off the matrix by viewing it. In contrast, the
structure of a matrix contained in a group (symplectic, orthogonal, unitary matrices)
is given only implicitly. It is very difficult to make this structure explicit. (For unitary
matrices, this can be done using Schur parameter pencils; for symplectic matrices, this
can be achieved using the symplectic butterfly pencils.) If the “group” eigenproblem
is to be solved using a method that exploits the given structure, then this is relatively
easy for orthogonal or unitary matrices as one works with the standard scalar product.
Additional difficulties for the symplectic problem arise from the fact that one has to
work with an indefinite inner product. Moreover, it is important to note that the
condensed form used for deriving the symplectic Lanczos method for the symplectic
eigenproblem differs from the one used for the Hamiltonian eigenproblem. To the
best of our knowledge, these forms cannot be transformed into each other using some
Moebius transform, like, e.g., the Cayley transformation when turning a Hamiltonian
into a symplectic matrix and vice versa. The results in this paper explicitly rely on
the symplectic butterfly form, hence they could not be derived from similar results
for the Hamiltonian J-Hessenberg form.

Section 2 reviews the symplectic butterfly form and some of its properties that will
be helpful for analyzing the symplectic Lanczos method which reduces a symplectic
matrix to butterfly form. This symplectic Lanczos method is presented in section 3.

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 685

Further, that section is concerned with finding conditions for the symplectic Lanczos
method terminating prematurely such that an invariant subspace associated with
certain desired eigenvalues is obtained. We will also consider the important question
of determining stopping criteria. The implicitly restarted symplectic Lanczos method
itself is derived in section 4. Numerical properties of the proposed algorithm are
discussed in section 5. In section 6, we present some preliminary numerical examples.

2. The symplectic butterfly form. A symplectic matrix

B =

[
B11 B12

B21 B22

]
=

 ❅ ❅❅❅

❅ ❅❅❅

 , where Bij ∈ R

n×n,

is called a butterfly matrix if B11 and B21 are diagonal, and B12 and B22 are tridiago-
nal. Banse in [2] and Banse and Bunse-Gerstner in [3] showed that for every symplectic
matrix M , there exist numerous symplectic matrices S such that B = S−1MS is a
symplectic butterfly matrix. In [2], an elimination process for computing the butterfly
form of a symplectic matrix is presented (see also [5]).

In [5], an unreduced butterfly matrix is introduced in which the lower right tridiag-
onal matrix is unreduced, that is, the subdiagonal elements of B22 are nonzero. Using
the definition of a symplectic matrix, one easily verifies that if B is an unreduced
butterfly matrix, then B21 is nonsingular. This allows the decomposition of B into
two simpler symplectic matrices:

B =

[
B−1

21 B11

0 B21

] [
0 −I
I T

]
=

 ❅ ❅

0 ❅

[

0 −I
I ❅❅❅

]
,(2.1)

where T = B−1
21 B22 is tridiagonal and symmetric. Hence 4n−1 parameters that deter-

mine the symplectic matrix can be read off directly. The unreduced butterfly matrices
play a role analogous to that of unreduced Hessenberg matrices in the standard QR
theory [2, 5, 6].

We will frequently make use of the decomposition (2.1) and will denote it by

B1 =

[
B−1

21 B11

0 B21

]
=

a−1
1 b1

. . .
. . .

a−1
n bn

a1

. . .

an

,(2.2)

B−1
2 =

[
0 −I
I B−1

21 B22

]
=

−1
. . .

. . .

−1
1 c1 d2

. . . d2
. . .

. . .

. . .
. . .

. . . dn
1 dn cn

,(2.3)

686 PETER BENNER AND HEIKE FAßBENDER

B =

b1 b1c1 − a−1
1 b1d2

. . . b2d2
. . .

. . .

. . .
. . .

. . . bn−1dn
bn bndn bncn − a−1

n

a1 a1c1 a1d2

. . . a2d2
. . .

. . .

. . .
. . .

. . . an−1dn
an andn ancn

.(2.4)

Remark 2.1 (see [5]).
(a) Any unreduced butterfly matrix is similar to an unreduced butterfly matrix

with bi = 1, |ai| = 1 for i = 1, . . . , n, and sign(ai) = sign(di) for i = 2, . . . n.
(b) We will have deflation if dj = 0 for some j. Then the eigenproblem can be

split into two smaller ones with unreduced symplectic butterfly matrices.
Eigenvalues and eigenvectors of symplectic butterfly matrices can be computed

efficiently by the SR algorithm [8], which is a QR-like algorithm in which the QR
decomposition is replaced by the SR decomposition. Almost every matrix A ∈ R

2n×2n

can be decomposed into a product A = SR, where S is symplectic and R is J-
triangular, that is

R =

[
R11 R12

R21 R22

]
=

 ❅ ❅

...❅ ❅

 ,

where all submatrices Rij ∈ R
n×n are upper triangular, and R21 is strictly upper

triangular [13]. In the following a matrix D ∈ R
2n×2n will be called trivial if it is both

symplectic and J-triangular. D is trivial iff it has the form

D =

[
C F
0 C−1

]
,

where C and F are diagonal matrices with C nonsingular.
If the SR decomposition A = SR exists, then other SR decompositions of A can

be built from it by passing trivial factors back and forth between S and R. That
is, if D is a trivial matrix, S̃ = SD and R̃ = D−1R, then A = S̃R̃ is another SR
decomposition of A. If A is nonsingular, then this is the only way to create other SR
decompositions. In other words, the SR decomposition is unique up to trivial factors.

The SR algorithm is an iterative algorithm that performs an SR decomposition
at each iteration. If B is the current iterate, then a (rational) function q is chosen
(such that q(B) ∈ R

2n×2n) and the SR decomposition of q(B) is formed, if possible:

q(B) = SR.

Then the symplectic factor S is used to perform a similarity transformation on B to
yield the next iterate, which we will call B̂:

B̂ = S−1BS.(2.5)

If rank(q(B)) = 2n and B is an unreduced symplectic butterfly matrix, then so is

B̂ in (2.5) [2, 3]. If rank (p(B)) = 2n − ν =: 2k and B is an unreduced symplectic

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 687

butterfly matrix, then B̂ in (2.5) is of the form (see [5])

B̂ =

❅ ❅❅❅

❅ ❅❅❅

=

B̂11 B̂13

B̂22 B̂24

B̂31 B̂33

B̂42 B̂44

}k
}n− k
}k
}n− k

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
k n− k k n− k

,(2.6)

where

• [
B̂11 B̂13

B̂31 B̂33
] is a symplectic butterfly matrix and

• the eigenvalues of [B̂22 B̂24

B̂42 B̂44
] are just the ν shifts that are eigenvalues of B.

An algorithm for explicitly computing S and R is presented in [9]. As with explicit
QR steps, the expense of explicit SR steps comes from the fact that q(B) has to be
computed explicitly. A preferred alternative is the implicit SR step, an analogue to
the Francis QR step [17, 19, 22]. As the implicit SR step is analogous to the implicit
QR step, this technique will not be discussed here (see [5, 6] for details).

A natural way to choose the function q is to choose a polynomial p2(λ) = (λ −
µ)(λ−µ−1) for µ ∈ R (or µ ∈ C, |µ| = 1) or p4(λ) = (λ−µ)(λ−µ−1)(λ−µ)(λ−µ−1)
for µ ∈ C as these choices make use of the symmetries of the spectrum of symplectic
matrices. But, as explained in [6], a better choice is a Laurent polynomial to drive
the SR step. For example, instead of p4(λ) we will use

q4(λ) = p4(λ)λ
−2 = (λ+λ−1)2−(µ+µ−1+µ+µ−1)(λ+λ−1)+(µ+µ−1)(µ+µ−1)−2.

This reduces the size of the bulges that are introduced, thereby decreasing the number
of computations required per iteration. Moreover, the use of Laurent polynomials im-
proves the convergence and stability properties of the algorithm by effectively treating
each reciprocal pair of eigenvalues as a unit. Using a generalized Rayleigh-quotient
strategy, the butterfly SR algorithm is typically cubically convergent [6].

The right eigenvectors of unreduced butterfly matrices have the following property
which will be helpful when analyzing the symplectic Lanczos method introduced in
the next section.

Lemma 2.2. Suppose that B ∈ R
2n×2n is an unreduced butterfly matrix as in

(2.4). If Bx = λx with x �= 0, then eT2kx �= 0.
In order to prove this lemma we need the following definition. Let Pn be the

permutation matrix

Pn := [e1, e3, . . . , e2n−1, e2, e4, . . . , e2n] ∈ R
2n×2n.(2.7)

If the dimension of Pn is clear from the context, we leave off the subscript.
Proof of Lemma 2.2. The proof is by induction on the size of B. The entries of

the eigenvector x will be denoted by xi; x = [x1, x2, . . . , x2n]
T .

Suppose that n = 2. The second and fourth row of Bx = λx yield

b2x2 + b2d2x3 + (b2c2 − a−1
2)x4 = λx2,(2.8)

a2x2 + a2d2x3 + a2c2x4 = λx4.(2.9)

688 PETER BENNER AND HEIKE FAßBENDER

Since B is unreduced, we know that a2 �= 0 and d2 �= 0. If x4 = 0, then from (2.9) we
obtain

x2 + d2x3 = 0,(2.10)

while (2.8) gives b2(x2 + d2x3) = λx2. Using (2.10) we obtain x2 = 0, and further,
x3 = 0.

The third row of Bx = λx gives

a1x1 + a1c1x3 + a1d2x4 = λx3.

Using x2 = x3 = x4 = 0 and a1 �= 0, since B is unreduced, we obtain x1 = 0. Thus
x = 0, which contradicts the assumption x �= 0.

Assume that the lemma is true for matrices of order 2(n−1). Let B2n,2n ∈ R
2n×2n

be an unreduced butterfly matrix. For simplicity we will consider the permuted
equation B2n,2n

P xP = λxP , where B
2n,2n
P = PB2n,2nPT and xP = Px. Partition

B2n,2n
P , xP as

B2n,2n
P =

B

2(n−1),2(n−1)
P 0 dn(bn−1e2n−3 + an−1e2n−2)

bndne
T
2n−2 bn bncn − a−1

n

andne
T
2n−2 an ancn

 ,

xP =

 y
x̃2n−1

x̃2n

 ,

where B
2(n−1),2(n−1)
P ∈ R

(2n−2)×(2n−2) is an unreduced butterfly matrix and y ∈
R

2n−2. Suppose x2n = x̃2n = 0. This implies

dny2n−2 + x̃2n−1 = 0(2.11)

since an �= 0 as B2n,2n is unreduced. Further we have

bn(dny2n−2 + x̃2n−1) = λx̃2n−1.

Hence, using (2.11) we get x̃2n−1 = 0. This implies B2n−1,2n−1
P y = λy. Using

x̃2n−1 = x̃2n = 0 we further obtain from (2.11) y2n−2 = 0. This is a contradiction,
because by induction hypothesis eT2n−2y �= 0.

Remark 2.3. If Bx = λx, then (Jx)TB = λ−1(Jx)T . Let y be the right eigenvec-
tor of B to λ−1, i.e., By = λ−1y, then (Jy)TB = λ(Jy)T . From Lemma 2.2 it follows
that eT2ny �= 0, hence the nth component of the left eigenvector of B corresponding to
λ is �= 0.

3. A symplectic Lanczos method for symplectic matrices. In this section,
we review the symplectic Lanczos method to compute the butterfly form (2.4) for
a symplectic matrix M derived in [5]. The usual unsymmetric Lanczos algorithm
generates two sequences of vectors. Due to the symplectic structure of M it is easily
seen that one of the two sequences can be eliminated here, and thus work and storage
can essentially be halved. (This property is valid for a broader class of matrices; see
[18].) Further, this section is concerned with finding conditions for the symplectic
Lanczos method terminating prematurely such that an invariant subspace associated
with certain desired eigenvalues is obtained. Finally, we will consider the important
question of determining stopping criteria.

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 689

In order to simplify the notation we use in the following sections permuted versions
of M and B as in the previous section. Let

MP = PMPT , BP = PBPT , SP = PSPT , JP = PJPT

with the permutation matrix P as in (2.7).

3.1. The symplectic Lanczos factorization. We want to compute a sym-
plectic matrix S such that S transforms the symplectic matrix M to a symplectic
butterfly matrix B; in the permuted version MS = SB yields

MPSP = SPBP .(3.1)

Equivalently, as B = B1B
−1
2 , we can consider

MPSP (B2)P = SP (B1)P ,(3.2)

where

(B1)P =

a−1
1 −b1
0 a1

. . .

. . .

a−1
n −bn
0 an

,(3.3)

(B2)P =

c1 1 d2 0
−1 0 0 0

d2 0 c2 1
. . .

0 0 −1 0
. . .

. . .
. . . dn 0

. . .
. . . 0 0

dn 0 cn 1
0 0 −1 0

.(3.4)

The structure-preserving Lanczos method generates a sequence of permuted symplec-
tic matrices

S2n,2k
P = [v1, w1, v2, w2, . . . , vk, wk] ∈ R

2n×2k,

satisfying

MPS
2n,2k
P = S2n,2k

P B2k,2k
P − dk+1(bk+1vk+1 + ak+1wk+1)e

T
2k,(3.5)

where B2k,2k
P = PkB

2k,2kPk
T is a permuted 2k × 2k symplectic butterfly matrix.

The vector rk+1 := dk+1(bk+1vk+1 + ak+1wk+1) is the residual vector and is JP -

orthogonal to the columns of S2n,2k
P , the Lanczos vectors. The matrix B2k,2k

P is the

JP -orthogonal projection of MP onto the range of S2n,2k
P ,

B2k,2k
P = J2k,2k

P (S2n,2k
P)TJPMPS

2n,2k
P .

690 PETER BENNER AND HEIKE FAßBENDER

Here J2k,2k
P denotes a permuted 2k × 2k matrix J of the form (1.3). Equation (3.5)

defines a length 2k Lanczos factorization of MP . If the residual vector rk+1 is the
zero vector, then (3.5) is called a truncated Lanczos factorization when k < n. Note
that rn+1 must vanish since (S2n,2n

P)TJP rn+1 = 0 and the columns of S2n,2n
P form a

JP -orthogonal basis for R
2n. In this case the symplectic Lanczos method computes a

reduction to permuted butterfly form.
The symplectic Lanczos factorization is, up to multiplication by a trivial matrix,

specified by the starting vector v1 (see [5, Theorem 4.1]).
Let SP = [v1, w1, v2, w2, . . . , vn, wn]. For a given v1, a Lanczos method constructs

the matrix SP columnwise from the equations

MPSP (B2)P ej = SP (B1)P ej , j = 1, 2,

From this we obtain the algorithm given in Table 3.1 (for a more detailed discussion,
see [5]).

Table 3.1
Symplectic Lanczos method.

Algorithm : Symplectic Lanczos method

Choose an initial vector ṽ1 ∈ R
2n, ṽ1 �= 0.

Set v0 = 0 ∈ R
2n.

Set d1 = ||ṽ1||2 and v1 =
1
d1
ṽ1.

for m = 1, 2, . . . do

(update of wm)
set

w̃m =MP vm − bmvm
am = vTmJPMP vm

wm = 1
am
w̃m

(computation of cm)

cm = a−1
m vTmJPM

−1
P wm

(update of vm+1)

ṽm+1 = −dmvm−1− cmvm+wm+ a−1
m M−1

P vm

dm+1 = ||ṽm+1||2
vm+1 =

1
dm+1

ṽm+1

Remark 3.1. Using the derived formulae for wk+1, the residual term rk+1 =
dk+1(bk+1vk+1 + ak+1wk+1) can be expressed as

rk+1 = dk+1MP vk+1.

There is still some freedom in the choice of the parameters that occur in this
algorithm. Essentially, the parameters bm can be chosen freely. Here we set bm = 1.
Likewise, a different choice of the parameters am, dm is possible.

Note that M−1
P = −JPMT

P JP since M is symplectic. Thus M−1
P vm is just a

matrix-vector product with the transpose of MP . Making use of this, the algorithm

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 691

can be rewritten such that only one matrix-vector product is required for each com-
puted Lanczos vector wm or vm. Thus an efficient implementation of this algorithm
requires 6n + (4nz + 32n)k flops1, where nz is the number of nonzero elements in
MP and 2k is the number of Lanczos vectors computed (that is, the loop is executed
k times). The algorithm as given in Table 3.1 computes an odd number of Lanczos
vectors; for a practical implementation one has to omit the computation of the last
vector vk+1 (or one has to compute an additional vector wk+1).

In the symplectic Lanczos method as given above we have to divide by parameters
that may be zero or close to zero. If the normalization parameter dm+1 is zero, the
corresponding vector ṽm+1 is the zero vector. In this case, a JP -orthogonal invariant
subspace ofMP or equivalently, a symplectic invariant subspace ofM is detected. By
redefining ṽm+1 to be any vector satisfying

vTj JP ṽm+1 = 0, wTj JP ṽm+1 = 0,

for j = 1, . . . ,m, the algorithm can be continued. The resulting butterfly matrix is
no longer unreduced; the eigenproblem decouples into two smaller subproblems. In
the case in which dm+1 ≈ 0, a good approximation to a symplectic invariant subspace
of M may have been found (if ||S2n,2m

P || is large, then dm+1 can not be trusted; see
section 3.3 for a discussion); then one can proceed as described above. In the case in
which w̃m is zero (close to zero), an invariant subspace of MP with dimension 2m− 1
is found (may be found). From Table 3.1 it is easy to see that the parameter am will
be (close to) zero if w̃m = 0 (w̃m ≈ 0). We further obtain from Table 3.1 that in this
case MP vm = bmvm, i.e., bm is an eigenvalue of MP with corresponding eigenvector
vm. (In the case in which w̃m ≈ 0, we have MP vm ≈ bmvm.) Due to the symmetry
of the spectrum of M , we also have that 1/bm is an eigenvalue of M . Computing an
eigenvector y of MP corresponding to 1/bm, we can try to augment the (2m − 1)-
dimensional invariant subspace to an MP -invariant subspace of even dimension. If
this is possible, the space can be made JP -orthogonal by JP -orthogonalizing y against
{ v1, w1, . . . , vm−1, wm−1 } and normalizing such that yTJP vm = 1.

Thus if either vm+1 or wm+1 vanishes, the breakdown is benign. If vm+1 �= 0
and wm+1 �= 0 but am+1 = 0, then the breakdown is serious. No reduction of the
symplectic matrix to a symplectic butterfly matrix with v1 as first column of the
transformation matrix exists. On the other hand, an initial vector v1 exists so that
the symplectic Lanczos process does not encounter serious breakdown. However,
determining this vector requires knowledge of the minimal polynomial of M . Thus,
no algorithm for successfully choosing v1 at the start of the computation yet exists.

Moreover, an error analysis of the symplectic Lanczos algorithm in finite-precision
arithmetic analogous to the analysis for the unsymmetric Lanczos algorithm presented
by Bai [1] can also be derived; see [14]. As to be expected, the computed Lanczos
vectors loose J(JP)-orthogonality when some Ritz values begin to converge.

3.2. Truncated symplectic Lanczos factorizations. This section is con-
cerned with finding conditions for the symplectic Lanczos method terminating prema-
turely. This is a welcome event since in this case we have found an invariant symplectic
subspace S2n,2k and the eigenvalues of B2k,2k are a subset of those of M . We will
first discuss the conditions under which the residual vector of the symplectic Lanczos
factorization will vanish at some step k. Then we will show how the residual vector

1Following [19], we define each floating point arithmetic operation together with the associated
integer indexing as a flop.

692 PETER BENNER AND HEIKE FAßBENDER

and the starting vector are related. Finally, a result indicating when a particular
starting vector generates an exact truncated factorization is given.

First, the conditions under which the residual vector of the symplectic Lanczos
factorization will vanish at some step k will be discussed. From the derivation of the
algorithm it is immediately clear that if no breakdown occurs, then

span{v1, . . . , vk+1, w1, . . . , wk}
= span{v1,M−1

P v1, . . . ,M
−k
P v1,MP v1, . . . ,M

k
P v1}

= span{span(K(MP , v1, k)) ∪ {M−k
P v1}},

span{v1, . . . , vk+1, w1, . . . , wk+1}
= span{v1,M−1

P v1, . . . ,M
−k
P v1,MP v1, . . . ,M

k+1
P v1}

= span(K(MP , v1, k + 1)),

where K(X, v, k) = {v,X−1v,X−2v, . . . ,X−(k−1)v,Xv,X2v, . . . ,Xkv}. Further, it is
easy to see that

dim K(MP , v1, k) = d < 2k =⇒ dim K(MP , v1, j) = d ∀ j > k.(3.6)

If dim K(MP , v1, k + 1) = 2k + 1, then

wk+1 =MP vk+1 − bk+1vk+1 ∈ span{v1, . . . , vk+1, w1, . . . , wk}.
Hence, there exist real scalars α1, . . . , αk+1 and β1, . . . , βk such that

MP vk+1 = α1v1 + · · ·+ αk+1vk+1 + β1w1 + · · ·+ βkwk.

Using the definition of ak+1 as given in Table 3.1 and the above expression we obtain
because of J-orthogonality

ak+1 = vTk+1JPMP vk+1

= α1v
T
k+1JP v1 + · · ·+ αk+1v

T
k+1JP vk+1 + β1v

T
k+1JPw1 + · · ·+ βkv

T
k+1JPwk

= 0.

As w̃k+1 = ak+1wk+1 =MP vk+1 − bk+1vk+1 (see Table 3.1) it follows that w̃k+1 = 0.
This implies that an invariant subspace of MP with dimension 2k + 1 is found.

If dim K(MP , v1, k+1) = 2k, thenM−1
P vk ∈ span{v1, . . . , vk, w1, . . . , wk}. Hence

a−1
k M−1

P vk = α1v1 + · · ·+ αkvk + β1w1 + · · ·+ βkwk

for properly chosen αj , βj , and from the algorithm in Table 3.1

ṽk+1 = α1v1 + · · ·+ αk−2vk−2 + (αk−1 − dk)vk−1 + (αk − ck)vk
+β1w1 + · · ·+ βk−1wk−1 + (βk + 1)wk.

Since [v1, w1, . . . , vk, wk]
TJP ṽk+1 = [0, . . . , 0] we obtain for j < k and . < k − 2

vTj JP ṽk+1 = βjv
T
j JPwj = βj = 0,

vTk JP ṽk+1 = (βk + 1)vTk JPwk = βk + 1 = 0,

wT JP ṽk+1 = αw
T
 JP v = −α = 0,

wTk−1JP ṽk+1 = (αk−1 − dk)wTk−1JP vk−1 = dk − αk−1 = 0,

wTk JP ṽk+1 = (αk − ck)wTk JP vk = ck − αk = 0.

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 693

Therefore, ṽk+1 = 0, and further, dk+1 = 0. This implies that the residual vector
of the symplectic Lanczos factorization will vanish at the first step k such that the
dimension of K(M, v1, k+1) is equal to 2k and hence is guaranteed to vanish for some
k ≤ n.

Next, we will discuss the relation between the residual term and the starting
vector. Here, v̂1 will denote the first Lanczos vector after permuting it back, i.e.,
v̂1 = PT v1. If dim K(M, v̂1, n) = 2n, then

MK(M, v̂1, n) = K(M, v̂1, n)Cn,

where K(M, v̂1, n) = [v̂1,M
−1v̂1,M

−2v̂1, . . . ,M
−(n−1)v̂1,Mv̂1,M

2v̂1, . . . ,M
nv̂1] ∈

R
2n×2n, and Cn is a generalized companion matrix of the form

Cn =

0 1 c1
. . .

. . .
...

. . . 1
...

0 cn
1 0 cn+1

1
. . .

...
. . . 0 c2n−1

1 c2n

(see [2, proof of Satz 3.6]). Thus,

MK(M, v̂1, k) = K(M, v̂1, k)Ck + (Mk+1v̂1 −K(M, v̂1, k)Cke2k)e
T
2k.(3.7)

Define the residual in (3.7) by

fk+1 :=Mk+1v̂1 −K(M, v̂1, k)Cke2k.(3.8)

Note that

fk+1 = pk(M)v̂1,(3.9)

where

pk(λ) := λk+1 −
k−1∑
j=0

(ck+j+1λ
j+1 + cj+1λ

−j).

We will now show that fk+1 is up to scaling the residual of the length 2k symplectic
Lanczos iteration with starting vector v̂1. Together with (3.9) this reveals the relation

between residual and starting vectors. Since det (Ck − λI) = λ2k −∑k−1
j=0 (ck−jλ

j +

ck+j+1λ
k+j), we obtain

pk(λ) = λ−(k−1) det (Ck − λI).

Let K(M, v̂1, k) = S2n,2kR, where S2n,2k ∈ R
2n×2k with J-orthogonal columns (that

is, (S2n,2k)TJ2n,2nS2n,2k = J2k,2k) and R ∈ R
2k×2k is a J-triangular matrix. Then

694 PETER BENNER AND HEIKE FAßBENDER

S2n,2ke1 = v̂1. The diagonal elements of R are nonzero iff the columns of K(M, v̂1, k)
are linear independent. Choosing

c =

c1
...
c2k

 = R−1(−J2k,2k(S2n,2k)TJ2n,2n)Mk+1v̂1

assures that (−J2k,2k(S2n,2k)TJ2n,2n)fk+1 = 0. Now multiplying (3.7) from the right
by R−1 yields

MK(M, v̂1, k)R
−1 −K(M, v̂1, k)CkR

−1 = fk+1e
T
2kR

−1

⇐⇒ MS2n,2k − S2n,2kB = fk+1e
T
2k/r2k,2k,(3.10)

where B = RCkR
−1 is an unreduced butterfly matrix (see [2, proof of Satz 3.6])

with the same characteristic polynomial as Ck. Equation (3.10) is a valid symplectic
Lanczos recursion with starting vector v̂1 = S2n,2ke1 and residual vector fk+1/r2k,2k.
By (3.9) and due to the essential uniqueness of the symplectic Lanczos recursion, any
symplectic Lanczos recursion with starting vector v̂1 yields a residual vector that can
be expressed as a polynomial in M times the starting vector v̂1.

Remark 3.2. From (3.8) it follows that if dim K(M, v̂1, k + 1) ≤ 2k, then we
can choose c1, . . . , c2k such that fk+1 = 0. This shows that if the Krylov subspace
K(M, v̂1, k + 1) forms a 2k-dimensional M -invariant subspace, the residual of the
symplectic Lanczos recursion will be zero after k Lanczos steps such that the columns
of S2n,2k span a symplectic basis for the subspace K(M, v̂1, k + 1).

The final result of this section will give necessary and sufficient conditions for a
particular starting vector to generate an exact truncated factorization in a similar
way as stated for the Arnoldi method in [39]. This is desirable since then the columns
of S2n,2k form a basis for an invariant symplectic subspace of M and the eigenvalues
of B2k,2k are a subset of those of M . Here, v̂k, ŵk will denote the Lanczos vectors
after permuting them back, i.e., v̂k = PT vk, ŵk = PTwk.

Theorem 3.3. Let MS2n,2k − S2n,2kB2k,2k = dk+1(bk+1v̂k+1 + ak+1ŵk+1)e
T
2k

be the symplectic Lanczos factorization after k steps, with B2k,2k unreduced. Then
dk+1 = 0 iff v̂1 = Xy, where MX = XY with rank (X) = 2k and Y is a Jordan
matrix of order 2k.

Proof. If dk+1 = 0, let B2k,2kX̃ = X̃Y be the Jordan canonical form of B2k,2k

and put X = S2n,2kX̃. Then MX = S2n,2kB2k,2kX̃ = S2n,2kX̃Y = XY and v̂1 =
S2n,2ke1 = S2n,2kX̃X̃−1e1 = Xy with y = X̃−1e1.

Suppose now thatMX = XY , rank(X) = 2k, and v̂1 = Xy. ThenMmX = XY m

for m ∈ N and it follows that

Mmv̂1 =MmXy = XY my ∈ Range(X)

for m ∈ N. Hence by (3.6) dim K(M, v̂1, k + 1) ≤ rank (X) = 2k. Since B2k,2k is
unreduced, dim K(M, v̂1, j) = 2j for j = 1, . . . , k. Hence dim K(M, v̂1, k + 1) = 2k,
and therefore, dk+1 = 0.

A similar result may be formulated in terms of Schur vectors or symplectic Schur
vectors (see, e.g., [32, 29] for the real symplectic Schur decomposition of a symplectic
matrix). These theorems provide the motivation for the implicit restart developed
in the next section. Theorem 3.3 suggests that one might find an invariant subspace
by iteratively replacing the starting vector with a linear combination of approximate
eigenvectors corresponding to eigenvalues of interest. Such approximations are readily
available through the Lanczos factorization.

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 695

3.3. Stopping criteria. Now assume that we have performed k steps of the
symplectic Lanczos method and thus obtained the identity (after permuting back)

MS2n,2k = S2n,2kB2k,2k + dk+1(bk+1v̂k+1 + ak+1ŵk+1)e
T
2k.

If the norm of the residual vector is small, the 2k eigenvalues of B2k,2k are approx-
imations to the eigenvalues of M . Numerical experiments indicate that the norm of
the residual rarely becomes small by itself. Nevertheless, some eigenvalues of B2k,2k

may be good approximations to eigenvalues of M . Let λ be an eigenvalue of B2k,2k

with the corresponding eigenvector y. Then the vector x = S2n,2ky satisfies

||Mx− λx|| = ||(MS2n,2k − S2n,2kB2k,2k)y||
= |dk+1| |eT2ky| ||bk+1v̂k+1 + ak+1ŵk+1||.(3.11)

The vector x is referred to as Ritz vector and λ as Ritz value of M . If the last
component of the eigenvector y is sufficiently small, the right-hand side of (3.11) is
small and the pair {λ, x} is a good approximation to an eigenvalue-eigenvector pair
of M . Note that by Lemma 2.2, |eT2ky| > 0 if B2k,2k is unreduced. The pair (λ, x) is
exact for the nearby problem

(M − E)x = λx, where E = dk+1(bk+1v̂k+1 + ak+1ŵk+1)e
T
k (S

2n,2k)TJ2n,2n.

A small ||E|| is not sufficient for the Ritz pair {λ, x} being a good approximation
to an eigenvalue-eigenvector pair of M . The advantage of using the Ritz estimate
|dk+1| |eT2ky| ||bk+1v̂k+1 + ak+1ŵk+1|| is to avoid the explicit formation of the resid-
ual (MS2n,2k − S2n,2kB2k,2k)y when deciding about the numerical accuracy of an
approximate eigenpair.

It is well known that for nonnormal matrices the norm of the residual of an
approximate eigenvector is not by itself sufficient information to bound the error in
the approximate eigenvalue. It is sufficient, however, to give a bound on the distance
to the nearest matrix to which the given approximation is exact. In the following, we
will give a computable expression for the error. Assume that B2k,2k is diagonalizable,
i.e., there exists a nonsingular Y such that

Y −1B2k,2kY =

λ1

. . .

λk
λ−1

1

. . .

λ−1
k

= Λ;

Y can be chosen symplectic. Let X = S2n,2kY = [x1. . . . , x2k] and denote the residual
term dk+1(bk+1v̂k+1 + ak+1ŵk+1) by r̂k+1. Since MS2n,2k = S2n,2kB2k,2k + r̂k+1e

T
2k,

it follows that

MS2n,2kY = S2n,2kY Y −1B2k,2kY + r̂k+1e
T
2kY

or MX = XΛ + r̂k+1e
T
2kY. Thus,

Mxi = λixi + y2k,ir̂k+1 and Mxk+i = λ−1
i xk+i + y2k,k+ir̂k+1

696 PETER BENNER AND HEIKE FAßBENDER

for i = 1, . . . , k. The last equation can be rewritten as

(Jxk+i)
TM = λi(Jxk+i)

T + y2k,k+iλir̂
T
k+1JM.

Using Theorem 2′ of [21] we obtain that (λi, xi, (Jxk+i)
T) is an eigentriplet ofM−Fλi

,
where

||Fλi || = max

{
||r̂k+1|| |y2k,i|
||xi|| ,

||r̂Tk+1JM || |y2k,k+iλi|
||Jxk+i||

}
.

Furthermore, when ||Fλi
|| is small enough, then

|θi − λj | ≤ cond(λj)||Fλi
||+O(||Fλi

||2),
where θi is an eigenvalue ofM and cond(λj) is the condition number of the Ritz value
λj :

cond(λj) =
||xi||2||Jxk+i||2
|xTk+iJxi|

= ||xi||2||xk+i||2.

Similarly, we obtain that {λ−1
i , xk+i, (Jxi)

T } is an eigentriplet of M − Fλ−1
i
, where

||Fλ−1
i
||2 = |dk+1| max

i

{
||r̂k+1||2|y2k,k+i|
||xk+i||2 ,

||r̂Tk+1JM ||2|y2k,iλ−1
i |

||Jxi||2

}
.

Consequently, as λi and λ
−1
i should be treated alike, the symplectic Lanczos algorithm

should be continued until ||Fλi ||2 and ||Fλ−1
i
||2 are small, and until cond(λj)||Fλi

||2
and cond(λj)||Fλ−1

i
||2 are below a given threshold for accuracy. Note that as in the

Ritz estimate, in the criteria derived here the essential quantities are |dk+1| and the
last component of the desired eigenvectors |y2k,i| and |y2k,k+i|.

4. An implicitly restarted symplectic Lanczos method. In the previous
sections we have briefly mentioned two algorithms for computing approximations to
the eigenvalues of a symplectic matrixM . The symplectic Lanczos algorithm is appro-
priate when the matrixM is large and sparse. If only a small subset of the eigenvalues
is desired, the length k symplectic Lanczos factorization may suffice. The analysis in
the last chapter suggests that a strategy for finding 2k eigenvalues in a length k fac-
torization is to find an appropriate starting vector that forces the residual rk+1 to
vanish. The SR algorithm, on the other hand, computes approximations to all eigen-
values and eigenvectors ofM . From Theorem 4.1 in [5] (an implicit Q-theorem for the
SR case) we know that in exact arithmetic, when using the same starting vector, the
SR algorithm and the length n Lanczos factorization generate the same symplectic
butterfly matrices (up to multiplication by a trivial matrix). Forcing the residual for
the symplectic Lanczos algorithm to zero has the effect of deflating a subdiagonal el-
ement during the SR algorithm: by Remark 3.1 rk+1 = −dk+1MP vk+1 and from the
symplectic Lanczos process we have dk+1 = ‖vk+1‖2. Hence, a zero residual implies
a zero dk+1 such that deflation occurs for the corresponding butterfly matrix.

Our goal in this section will be to construct a starting vector that is a member of
the invariant subspace of interest. Our approach is to implicitly restart the symplectic
Lanczos factorization. This was first introduced by Sorensen [39] in the context of
unsymmetric matrices and the Arnoldi process. The scheme is called implicit because

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 697

the updating of the starting vector is accomplished with an implicit shifted SR mech-
anism on B2j,2j , j ≤ n. This allows us to update the starting vector by working with
a symplectic matrix in R

2j×2j rather than in R
2n×2n, which is significantly cheaper.

The iteration starts by extending a length k symplectic Lanczos factorization by
p steps. Next, 2p shifts are applied to B2(k+p),2(k+p) using double or quadruple SR
steps. The last 2p columns of the factorization are discarded, resulting in a length k
factorization. The iteration is defined by repeating this process until convergence.

For simplicity let us first assume that p = 1 and that a 2n × 2(k + 1) matrix

S2n,2k+2
P is known such that

MPS
2n,2k+2
P = S2n,2k+2

P B2k+2,2k+2
P + rk+2e

T
2k+2(4.1)

as in (3.5). Let µ be a real shift and

q2(B
2k+2,2k+2) = (B2k+2,2k+2 − µI)(B2k+2,2k+2 − µ−1I)(B2k+2,2k+2)−1 = SR.

Then (using (2.6))

S−1
P B2k+2,2k+2

P SP

will be a permuted butterfly matrix and SP is an upper triangular matrix with two
additional subdiagonals.

With this we can re-express (4.1) as

MP (S
2n,2k+2
P SP) = (S2n,2k+2

P SP)(S
−1
P B2k+2,2k+2

P SP) + rk+2e
T
2k+2SP .

Defining S̆2n,2k+2
P = S2n,2k+2

P SP and B̆2k+2,2k+2
P = S−1

P B2k+2,2k+2
P SP , this yields

MP S̆
2n,2k+2
P = S̆2n,2k+2

P B̆2k+2,2k+2
P + rk+2e

T
2k+2SP .(4.2)

The above equation fails to be a symplectic Lanczos factorization since the columns
2k, 2k+1, 2k+2 of the matrix dk+2(bk+2vk+2 + ak+2wk+2)e

T
2k+2SP are nonzero. Let

sij be the (i, j)th entry of SP . The residual term in (4.2) is

dk+2(bk+2vk+2 + ak+2wk+2)(s2k+2,2ke
T
2k + s2k+2,2k+1e

T
2k+1 + s2k+2,2k+2e

T
2k+2).

Rewriting (4.2) as

MP S̆
2n,2k+2
P = [S̆2n,2k

P , v̆k+1, w̆k+1, vk+2, wk+2]Z,

where Z is blocked as

B̆2k,2k
P 0 d̆k+1(b̆ke2k−1 + ăke2k)

b̆k+1d̆k+1e
T
2k b̆k+1 b̆k+1c̆k+1 − ă−1

k+1

ăk+1d̆k+1e
T
2k ăk+1 ăk+1c̆k+1

dk+2bk+2s2k+2,2ke
T
2k dk+2bk+2s2k+2,2k+1 dk+2bk+2s2k+2,2k+2

dk+2ak+2s2k+2,2ke
T
2k dk+2ak+2s2k+2,2k+1 dk+2ak+2s2k+2,2k+2

,

we obtain as a new Lanczos identity

MP S̆
2n,2k
P = S̆2n,2k

P B̆2k,2k
P + r̆k+1e

T
2k,(4.3)

698 PETER BENNER AND HEIKE FAßBENDER

where

r̆k+1 = d̆k+1(b̆k+1v̆k+1 + ăk+1w̆k+1) + dk+2s2k+2,2k(bk+2vk+2 + ak+2wk+2).

Here, ăk+1, b̆k+1, d̆k+1 denote parameters of B̆2k+2,2k+2
P , while ak+2, bk+2, dk+2 are

parameters of B2k+2,2k+2
P . In addition, v̆k+1, w̆k+1 are the last two column vectors

from S̆2n,2k+2
P , while vk+2, wk+2 are the two last column vectors of S2n,2k+2

P .

As the space spanned by the columns of S2n,2k+2 = (Pn)
TS2n,2k+2

P Pk+1 is J-
orthogonal, and SP is a permuted symplectic matrix, the space spanned by the
columns of S̆2n,2k = (Pn)

T S̆2n,2k
P Pk is J-orthogonal. Thus (4.3) is a valid symplectic

Lanczos factorization. The new starting vector is v̆1 = ρq2(MP)v1 for some scalar
ρ ∈ R. This can be seen as follows: first note that for unreduced butterfly matri-
ces B2k+2,2k+2 we have q2(B

2k+2,2k+2
P)e1 �= 0. Hence, from q2(B

2k+2,2k+2
P) = SPRP

we obtain q2(B
2k+2,2k+2
P)e1 = ρSP e1 for ρ = eT1 RP e1 as RP is an upper triangular

matrix. As q2(B
2k+2,2k+2
P)e1 �= 0, we have ρ �= 0. Using (4.3) it follows that

S̆2n,2k
P e1 = S2n,2k+2

P SP e1

=
1

ρ
S2n,2k+2
P q2(B

2k+2,2k+2
P)e1

=
1

ρ
S2n,2k+2
P (B2k+2,2k+2

P − µI)(B2k+2,2k+2
P − µ−1I)(B2k+2,2k+2

P)−1e1

=
1

ρ
(MPS

2n,2k+2
P − rk+2e

T
2k+2 − µS2n,2k+2

P)(I − µ−1(B2k+2,2k+2
P)−1)e1

=
1

ρ
(MPS

2n,2k+2
P − µS2n,2k+2

P)(I − µ−1(B2k+2,2k+2
P)−1)e1

as rk+2e
T
2k+2(I − µ−1(B2k+2,2k+2

P)−1)e1 = 0. Thus, using (4.3) again we get

S̆2n,2k
P e1 =

1

ρ
(MP − µI)(S2n,2k+2

P − µ−1S2n,2k+2
P (B2k+2,2k+2

P)−1)e1

=
1

ρ
(MP − µI)(S2n,2k+2

P − µ−1M−1
P S2n,2k+2

P)e1

−1
ρ
µ−1M−1

P rk+2e
T
2k+2(B

2k+2,2k+2
P)−1e1

=
1

ρ
(MP − µI)(I − µ−1M−1

P)S2n,2k+2
P e1

= q2(MP)v1

as eT2k+2(B
2k+2,2k+2
P)−1e1 = 0.

Note that in the symplectic Lanczos process the vectors vj of S2n,2k
P satisfy the

condition ||vj ||2 = 1 and the parameters bj are chosen to be one. This is no longer
true for the odd-numbered column vectors of SP generated by the SR decomposition
and the parameters b̆j from B̆2k,2k

P , and thus, for the new Lanczos factorization (4.3).
Both properties could be forced using trivial factors. Numerical tests indicate that
there is no obvious advantage in doing so.

Using standard polynomials as shift polynomials instead of using Laurent polyno-
mials as above results in the following situation: In p2(B

2k+2,2k+2
P) = (B2k+2,2k+2

P −
µI)(B2k+2,2k+2

P − µ−1I) = SPRP SP is an upper triangular matrix with four (!) ad-
ditional subdiagonals. Therefore, the residual term in (4.2) has five nonzero entries.

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 699

Table 4.1
k-step restarted symplectic Lanczos method.

Algorithm: k-step restarted symplectic Lanczos method

perform k steps of the symplectic Lanczos algorithm to compute S2n,2k
P and B2k,2k

P

obtain the residual vector rk+1

while ||rk+1|| > tol
perform p additional steps of the symplectic Lanczos method

to compute S
2n,2(k+p)
P and B

2(k+p),2(k+p)
P

select p shifts µi
compute B̆2k,2k

P and S̆2n,2k
P via implicitly shifted SR steps

set S2n,2k
P = S̆2n,2k

P and B2k,2k
P = B̆2k,2k

P

obtain the new residual vector rk+1

end while

Hence, not the last two but the last four columns of (4.2) have to be discarded in
order to obtain a new valid Lanczos factorization. That is, we would have to discard
wanted information, which is avoided by using Laurent polynomials.

This technique can be extended to the quadruple shift case using Laurent poly-
nomials as the shift polynomials as discussed in section 2. The implicit restart can be
summarized as given in Table 4.1. In the course of the iteration we have to choose p
shifts ∆ = {µ1, . . . , µp} in order to apply 2p shifts: choosing a real shift µk implies
that µ−1

k is also a shift due to the symplectic structure of the problem. Hence, µ−1
k is

not added to ∆ as the use of the Laurent polynomial q2 guarantees that µ−1
k is used

as a shift once µk ∈ ∆. In case of a complex shift µk, |µk| = 1, this implies that µk is
also a shift not added to ∆. For complex shifts µk, |µk| �= 1, we include µk, µk in ∆.

Numerous choices are possible for the selection of the p shifts. One possibility is to

choose p “exact” shifts with respect to B
2(k+p),2(k+p)
P . That is, first the eigenvalues of

B
2(k+p),2(k+p)
P are computed (by the SR algorithm), then p unwanted eigenvalues are

selected. One choice for this selection might be to sort the eigenvalues by decreasing
magnitude. There will be k + p eigenvalues with modulus greater than or equal to 1:

|λ1| ≥ · · · ≥ |λk| ≥ |λk+1| ≥ · · · |λk+p| ≥ 1

≥ |λ−1
k+p| ≥ · · · ≥ |λ−1

k+1| ≥ |λ−1
k | ≥ · · · ≥ |λ−1

1 |.

Select the 2p eigenvalues with modulus closest to 1 as shifts. If λk+1 is complex with
|λk| = |λk+1| �= 1, then we have to choose either 2p + 2 shifts or just 2p − 2 shifts,

as λk+1 belongs to a quadruple pair of eigenvalues of B
2(k+p),2(k+p)
P and in order to

preserve the symplectic structure either λk and λk+1 have to be chosen or none.

A different possibility of choosing the shifts is to keep those eigenvalues that are
good approximations to eigenvalues of M . That is, eigenvalues for which (3.11) is
small. Again, we have to make sure that our set of shifts is complete in the sense
described above.

Choosing eigenvalues of B
2(k+p),2(k+p)
P as shifts has an important consequence

for the next iterate. Assume for simplicity that B
2(k+p),2(k+p)
P is diagonalizable. Let

λ(B
2(k+p),2(k+p)
P) = {θ1, . . . , θ2k} ∪ {µ1, . . . , µ2p} be a disjoint partition of the spec-

trum of B
2(k+p),2(k+p)
P . Selecting the exact shifts µ1, . . . , µ2p in the implicit restart,

700 PETER BENNER AND HEIKE FAßBENDER

following the rules mentioned above yields a matrix

B̆
2(k+p),2(k+p)
P =

[
B̆2k,2k
P X
0 Y

]
,

where λ(B̆2k,2k
P) = {θ1, . . . , θ2k} and λ(Y) = {µ1, . . . , µ2p}. This follows from (2.6).

Moreover, the new starting vector has been implicitly replaced by the sum of 2k
approximate eigenvectors:

v̆1 = S
2n,2(k+p)
P SP e1 =

1

ρ
S

2n,2(k+p)
P q(B

2(k+p),2(k+p)
P)e1 =

1

ρ
S

2n,2(k+p)
P

2k∑
j=1

ζjyj ,

where ρ = eT1 RP e1, B
2(k+p),2(k+p)
P yj = θjyj , and ζj is properly chosen. The last

equation follows since q(B
2(k+p),2(k+p)
P)e1 has no component along an eigenvector of

B
2(k+p),2(k+p)
P associated with µj , 1 ≤ j ≤ 2p. Hence v̆1 is a linear combination of the

2k Ritz vectors associated with the Ritz values that are kept:

v̆1 = ρ

2k∑
j=1

ζjxj , where S
2n,2(k+p)
P yj = xj .

It should be mentioned that the k-step restarted symplectic Lanczos method as
in Table 4.1 with exact shifts builds a J-orthogonal basis for a number of generalized
Krylov subspaces simultaneously. The subspace of length 2(k+p) generated during a
restart using exact shifts contains all the Krylov subspaces of dimension 2k generated
from each of the desired Ritz vectors; for a detailed discussion, see [15]. A similar
observation for Sorensen’s restarted Arnoldi method with exact shifts was made by
Morgan in [34]. For a discussion of this observation see [34] or [25]. Morgan infers
that “the method works on approximations to all of the desired eigenpairs at the
same time, without favoring one over the other” [34, p. 1220]. This remark can also
be applied to the method presented here.

Moreover, the implicitly restarted symplectic Lanczos method can be interpreted
as a nonstationary subspace iteration. An analogous statement for the implicitly
restarted Arnoldi method is given in [27]. Assume that we have computed

MPS
2n,2m
P = S2n,2m

P B2m,2m
P + rm+1e

T
2m,(4.4)

a length m = k + p symplectic Lanczos reduction. As p shifts for the implicit restart
we have chosen {µ1, . . . , µp}, where the shifts are sorted such that first all the complex
shifts are given so that for a shift µ2j ∈ C, |µ2j | �= 1 we have µ2j−1 = µ2j , and then
all real and purely imaginary shifts are given. Hence, we want to apply the Laurent
polynomial

q2p(B) = (B − µpI)(B − µ−1
p I)B−1 · . . . · (B − µ1I)(B − µ−1

1 I)B−1

during the implicit restart. It is fairly easy to see that

q2p(MP)S
2n,2k
P = S2n,2m

P q2p(B
2m,2m
P)[e1, e2, . . . , e2k](4.5)

(see [15, Lemma 5.19]). Applying q2p(MP) to the first 2k columns of S2n,2m
P is equiv-

alent to the basis representation given by the first 2k columns of S2n,2m
P q2p(B

2m,2m
P).

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 701

Applying an implicit restart to (4.4) using the rational function q2p, we essentially

apply the SR algorithm with shifts µ1, µ
−1
1 , . . . , µp, µ

−1
p to B2m,2m

P :

B2m,2m
P SP = SP B̆

2m,2m
P .

SP ∈ R
2m×2m is a symplectic, upper triangular matrix with m− k additional subdi-

agonals. Write SP as SP = [S
[1]
P S

[2]
P S

[3]
P] with S

[1]
P ∈ R

2m×2k, S
[2]
P ∈ R

2m×2, S
[3]
P ∈

R
2m×(2m−2k−2). Then

B2m,2m
P S

[1]
P = [S

[1]
P S

[2]
P S

[3]
P]

B̆2k,2k
P

b̆k+1d̆k+1e
T
2k

ăk+1d̆k+1e
T
2k

0

 .

Postmultiplying (4.4) with S
[1]
P and using eT2mS

[1]
P = 0, which is due to the special

form of SP (upper triangular with m− k additional subdiagonals), we obtain

MPS
2n,2m
P S

[1]
P = S2n,2m

P B2m,2m
P S

[1]
P + rm+1e

T
2mS

[1]
P

= S̆2n,2k
P B̆2k,2k

P + d̆k+1(b̆k+1S
2n,2m
P S

[2]
P e1 + ăk+1S

2n,2m
P S

[2]
P e2)e

T
2k

= S̆2n,2k
P B̆2k,2k

P + r̆k+1e
T
2k,

where S̆2n,2k
P = S2n,2m

P S
[1]
P . This is just the implicitly restarted symplectic Lanczos

recursion obtained by applying one implicit restart with the Laurent polynomial q2p.

Applying the SR algorithm with shifts µ1, µ
−1
1 , . . . , µp, µ

−1
p to B2m,2m

P is equivalent
to computing the permuted SR decomposition

q2p(B
2m,2m
P) = SPRP .

Substituting this into (4.5) we obtain

q2p(MP)S
2n,2k
P = S2n,2m

P SPRP [e1, e2, . . . , e2k] = S̆2n,2k
P R̆P ,

where R̆P is a 2k × 2k upper triangular matrix. This equation describes a nonsta-
tionary subspace iteration. As one step of the implicitly restarted symplectic Lanczos
process computes the new subspace spanned by the columns of S̆2n,2k

P from S2n,2k
P ,

the implicitly restarted symplectic Lanczos algorithm can be interpreted as a nonsta-
tionary subspace iteration.

In the above discussion we have assumed that the permuted SR decomposition

q(B
2(k+p),2(k+p)
P) = SPRP exists. Unfortunately, this is not always true. During the

bulge-chase in the implicit SR step, it may happen that a diagonal element aj of B1

(2.2) is zero (or almost zero). In that case no reduction to symplectic butterfly form
with the corresponding first column v̆1 does exist. In the next section we will prove
that a serious breakdown in the symplectic Lanczos algorithm is equivalent to such
a breakdown of the SR decomposition. Moreover, it may happen that a subdiagonal
element dj of the (2, 2)-block of B−1

2 (2.3) is zero (or almost zero) such that

B̆
2(k+p),2(k+p)
P =

[
B̆2j,2j
P

B̂P

]
.

702 PETER BENNER AND HEIKE FAßBENDER

The matrix B̆
2(k+p),2(k+p)
P is split, and an invariant subspace of dimension j is found.

If j ≥ k and all shifts have been applied, then the iteration is halted. Otherwise we
can continue as in the procedure described by Sorensen in [39, Remark 3].

One important property for a stable implicitly restarted Lanczos method is that
the Lanczos vectors stay bounded after possibly many implicit restarts. Neither for the
symplectic Lanczos method nor for the symplectic SR algorithm can it be proved that
the symplectic transformation matrix stays bounded. Hence the symplectic Lanczos
vectors S2n,2k

P computed via an implicitly restarted symplectic Lanczos method may
not stay bounded; this has to be monitored during the iteration. During the SR step
on the 2k×2k symplectic butterfly matrix, all but k−1 transformations are orthogonal.
These are known to be numerically stable. For the k − 1 nonorthogonal symplectic
transformations that have to be used, we choose among all possible transformations
the ones with optimal (smallest possible) condition number (see [9]).

As the iteration progresses, some of the Ritz values may converge to eigenvalues of
M long before the entire set of wanted eigenvalues have. These converged Ritz values
may be part of the wanted or unwanted portion of the spectrum. In either case it
is desirable to deflate the converged Ritz values and corresponding Ritz vectors from
the unconverged portion of the factorization. If the converged Ritz value is wanted,
then it is necessary to keep it in the subsequent factorizations; if it is unwanted, then
it must be removed from the current and the subsequent factorizations. Lehoucq and
Sorensen develop in [25, 40] locking and purging techniques to accomplish this in the
context of unsymmetric matrices and the restarted Arnoldi method. These ideas can
be carried over to the situation here.

It is well known that for general Lanczos-like methods the stability of the overall
process is improved when the norm of the Lanczos vectors is chosen to be equal to 1
[36, 41]. Moreover, without some form of reorthogonalization any Lanczos algorithm
is numerically unstable. For more on these two important points see [4, section 6.1],
as the discussion given there in the context of a symplectic Lanczos method for the
Hamiltonian eigenproblem does not differ from what can be said here.

5. Breakdowns in the SR factorization. If there is a starting vector v̆1 =
ρq(M)v1 for which the explicitly restarted symplectic Lanczos method breaks down,
then it is impossible to reduce the symplectic matrix M to symplectic butterfly form
with a transformation matrix whose first column is v̆1. Thus, in this situation the SR
decomposition of q(B) cannot exist.

As will be shown in this section, this is the only way that breakdowns in the
SR decomposition can occur. In the SR step, most of the transformations used are
orthogonal symplectic transformations; their computation cannot break down. The
only source of breakdown can be one of the symplectic Gaussian eliminations Lj .
For simplicity, we will discuss the double shift case. Only the following elementary
elimination matrices are used in the implicit SR step:

• elementary symplectic Givens matrices [35]

Gk =

[
Ck −Sk
Sk Ck

]
,

where Ck = I + (ck − 1)eke
T
k , Sk = skeke

T
k , and c

2
k + s2k = 1,

• elementary symplectic Gaussian elimination matrices [9]

Lk =

[
Wk Vk
0 W−1

k

]
,

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 703

where Wk = I + (wk − 1)(ek−1e
T
k−1 + eke

T
k), and Vk = vk(ek−1e

T
k + eke

T
k−1),

• elementary symplectic Householder transformation

Hk =

Ik−1,k−1

P
Ik−1,k−1

P

, where P = In−k+1,n−k+1−2vv

T

vT v
.

Assume that k steps of the symplectic Lanczos algorithm are performed, then
from (3.5)

MPS
2n,2k
P = S2n,2k

P B2k,2k
P + rk+1e

T
2k.(5.1)

Now an implicit restart is to be performed using an implicit double shift SR step. In
the first step of the implicit SR step, a symplectic Householder matrixH1 is computed
such that HT

1 q(B
2k,2k)e1 = λe1. H1 is applied to B2k,2k via HT

1 B
2k,2kH1, introducing

a small bulge in the butterfly form: additional elements are found in the positions
(2, 1), (1, 2), (n + 2, n + 1), (n + 1, n + 2), (1, n + 3), (3, n + 1), (n + 1, n + 3), and
(n+3, n+1). The remaining implicit transformations perform a bulge-chasing sweep
down the subdiagonal to restore the butterfly form. An algorithm for this is given in
[2] or [5]; it can be summarized for the situation here as in Table 5.1, where G̃j and
Gj both denote symplectic Givens transformation matrices acting in the same planes
but with different rotation angles.

Table 5.1
Reduction to butterfly form—double shift case.

for . = 1 : n− 1
compute G+1 such that (G+1B

2k,2k)n++1, = 0
B2k,2k = G+1B

2k,2kGT+1

compute L+1 such that (L+1B
2k,2k)+1, = 0

B2k,2k = L+1B
2k,2kL−1

+1

compute G̃+1 such that (B2k,2kG̃+1),+1 = 0

B2k,2k = G̃T+1B
2k,2kG̃+1

compute H+1 such that (B2k,2kH+1),n++2 = 0
B2k,2k = HT

+1B
2k,2kH+1

end

Suppose that the first j − 1 Gaussian transformations, j < k, exist and that we
have computed

Ŝ = H1G
T
2 L

−1
2 G̃2 . . . Hj−2G

T
j−1L

−1
j−1G̃j−1Hj−1G

T
j .

In order to simplify the notation, we switch to the permuted version and rewrite the
permuted symplectic matrix ŜP as

ŜP =

[
SP 0
0 I2(n−j−1)2(n−j−1)

]
,

where SP ∈ R
(2j+2)×(2j+2), making use of the fact that the accumulated transforma-

tions affect only the rows 1 to j and n+ 1 to n+ j. The leading (2j + 2)× (2j + 2)

704 PETER BENNER AND HEIKE FAßBENDER

principal submatrix of Ŝ−1
P B2k,2k

P ŜP is given by

B̃2j+2,2j+2
P =

B̆2j−4,2j−4 0 b̆j−2d̆j−1e2j−5

0 ăj−2d̆j−1e2j−4

b̆j−1d̆j−1e
T
2j−4 b̆j−1 b̆j−1c̆j−1 − ă−1

j−1 0 x̂

ăj−1d̆j−1e
T
2j−4 ăj−1 ăj−1c̆j−1 0 x̂

0 ŷ1 b̂j x̂ x̂ x̂
0 ŷ2 âj x̂ x̂ x̂
0 x̂1 x̂2 x̂ x̂ x̂
0 0 0 x̂ x̂ x̂

,(5.2)

where the hatted quantities denote unspecified entries that would change if the SR
update could be continued. Next, the (2j + 1, 2j − 1) entry should be annihilated
by a permuted symplectic Gaussian elimination. This elimination will fail to exist if
âj = 0; the SR decomposition of q(B2k,2k) does not exist.

As will be needed later, âj = 0 implies that ŷ2 = 0. This follows as B̃2j+2,2j+2
P is

JP -orthogonal: From

eT2j−2B̃
2j+2,2j+2
P JP (B̃

2j+2,2j+2
P)T e2j = eT2j−2JP e2j = 0

we obtain 0 = −ăj−1ŷ2 − x̂âj . If âj = 0, we have ŷ2 = 0 as ăj−1 �= 0. (Otherwise the
last Gaussian transformation Lj−1 did not exist.)

Next, we show that this breakdown in the SR decomposition implies a breakdown
in the Lanczos process started with the starting vector v̆1 = ρq(MP)v1.

For this we have to consider (5.1) multiplied from the right by ŜP . From the
derivations in the last section we know that the starting vector of that recursion is
given by v̆1 = ρq(MP)v1. As the trailing (2n − 2j − 2) × (2n − 2j − 2) principal

submatrix of ŜP is the identity, we can just as well consider

MPS
2n,2j+2
P = S2n,2j+2

P B2j+2,2j+2
P + rj+2e

T
2j+2,

multiplied from the right by SP

MP S̆
2n,2j+2
P = S̆2n,2j+2

P B̆2j+2,2j+2
P + rj+2e

T
2j+2SP ,(5.3)

where B̆2j+2,2j+2
P = S−1

P B2j+2,2j+2
P SP corresponds to the matrix in (5.2) (no butterfly

form!) and S̆2n,2j+2
P = S2n,2j+2

P SP = [v̆1, w̆1, . . . , v̆j−1, w̆j−1, v̂j , ŵj , v̂j+1, ŵj+1]. The

columns of S̆2n,2j+2
P are JP -orthogonal, i.e.,

(S̆2n,2j+2
P)TJP S̆

2n,2j+2
P = J

2(j+1),2(j+1)
P .(5.4)

The starting vector of the recursion (5.3) is given by v̆1 = ρq(MP)v1. Deleting the
last four columns of S̆2n,2j+2

P in the same way as in the implicit restart we obtain a
valid symplectic Lanczos factorization of length 2j − 2.

In order to show that a breakdown in the SR decomposition of q(B) implies a
breakdown in the above symplectic Lanczos recursion, we need to show

âj = 0 =⇒ ăj = v̆Tj JPMP v̆j = 0.

From (5.2) and (5.3) we obtain

MP w̆j−1 = b̆j−2d̆j−1v̆j−2 + ăj−2d̆j−1w̆j−2 + (b̆j−1c̆j−1 − ă−1
j−1)v̆j−1

+ ăj−1c̆j−1w̆j−1 + ŷ1v̂j + ŷ2ŵj + x̂1v̂j+1,(5.5)

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 705

and

MP v̆k = b̆kv̆k + ăkw̆k, k ≤ j − 1.(5.6)

Further, we do know from the symplectic Lanczos algorithm

v̆j = −d̆j−1v̆j−2 − c̆j−1v̆j−1 + w̆j−1 + ă−1
j−1M

−1
P v̆j−1,(5.7)

all of these quantities are already known. Now consider

ăj = v̆Tj JPMP v̆j

= − d̆j−1v̆
T
j JPMP v̆j−2︸ ︷︷ ︸

x1

− c̆j−1v̆
T
j JPMP v̆j−1︸ ︷︷ ︸

x2

+ v̆Tj JPMP w̆j−1︸ ︷︷ ︸
x3

+ ă−1
j−1v̆

T
j JP v̆j−1︸ ︷︷ ︸
x4

.

Obviously, x4 = 0. Using (5.6) we obtain v̆Tj JPMP v̆k = b̆kv̆
T
j JP v̆k + ăkv̆

T
j JP w̆k = 0

for k = j − 1, j − 2. Hence x1 = x2 = 0. Using (5.5) and (5.4) will see that x3 = 0:

v̆Tj JPMP w̆j−1 = b̆j−2d̆j−1v̆
T
j JP v̆j−2 + ăj−2d̆j−1v̆

T
j JP w̆j−2

+ (b̆j−1c̆j−1 − ă−1
j−1)v̆

T
j JP v̆j−1 + ăj−1c̆j−1v̆

T
j JP w̆j−1

+ ŷ1v̆
T
j JP v̂j + ŷ2v̆

T
j JP ŵj + x̂1v̆

T
j JP v̂j+1

= ŷ1v̆
T
j JP v̂j︸ ︷︷ ︸
z1

+ ŷ2v̆
T
j JP ŵj︸ ︷︷ ︸
z2

+ x̂1v̆
T
j JP v̂j+1︸ ︷︷ ︸
z3

.

As âj = 0, ŷ2 = 0, and therefore, z2 = 0. With (5.7) we get

z1 = −ŷ1v̂Tj JP v̆j = −ŷ1ă−1
j−1v̂

T
j M

T
P JP v̆j−1.

From (5.3) we obtain MP v̂j = b̂j v̂j + âjŵj + x̂2v̂j+1. Hence, using (5.4) yields

z1 = −ŷ1ă−1
j−1(b̂j v̂

T
j JP v̆j−1 + âjŵ

T
j JP v̆j−1 + x̂2v̂

T
j+1JP v̆j−1) = 0.

Similarly, it follows that z3 = 0. Hence x3 = 0, and therefore, v̆Tj JPMP v̆j = 0.
This derivation has shown that an SR breakdown implies a serious Lanczos break-

down. The opposite implication follows from the uniqueness of the Lanczos factoriza-
tion. The result is summarized in the following theorem.

Theorem 5.1. Suppose the symplectic butterfly matrix B2k,2k corresponding to
(3.5) is unreduced, and let µ ∈ R. Let Lj be the jth symplectic Gauss transformation
required in the SR step on (B2k,2k − µI)(B2k,2k − µ−1I)(B2k,2k)−1. If the first j −
1 symplectic Gauss transformations of this SR step exist, then Lj fails to exist iff
v̆Tj JPMP v̆j = 0 with v̆j as in (4.3).

6. Numerical experiments. Some examples to demonstrate the properties of
the (implicitly restarted) symplectic Lanczos method are presented. The computa-
tional results are quite promising but certainly preliminary. All computations were
done using Matlab Version 5.1 on a Sun Ultra 1 with IEEE double-precision arith-
metic and machine precision ε = 2.2204× 10−16.

Our code implements exactly the algorithm as given in Table 4.1. In order to
detect convergence in the restart process, the rather crude criterion

||rk+1|| ≤ ||M || ∗ 10−6

706 PETER BENNER AND HEIKE FAßBENDER

was used. This ad hoc stopping rule allowed the iteration to halt quite early. Usually,
the eigenvalues largest in modulus (and their reciprocals) of the wanted part of the
spectrum are much better approximated than the ones of smaller modulus. In a black-
box implementation of the algorithm this stopping criterion has to be replaced with
a more rigorous one to ensure that all eigenvalues are approximated to the desired
accuracy (see the discussion in section 3.3). Benign breakdown in the symplectic
Lanczos process was detected by the criterion

||vm+1|| ≤ ε ∗ ||M || or ||wm+1|| ≤ ε ∗ ||M ||,
while a serious breakdown was detected by

vm+1 �= 0, wm+1 �= 0, |am+1| ≤ ε ∗ ||M ||.
Our implementation intends to compute the k eigenvalues of M largest in modulus
and their reciprocals. In the implicit restart, we used exact shifts where we chose the
shifts to be the 2p eigenvalues of B2k+p,2k+p closest to the unit circle.

Our observations have been the following.
• Re-J-orthogonalization is necessary; otherwise J-orthogonality of the com-
puted Lanczos vectors is lost after a few steps, and ghost eigenvalues (see,
e.g., [19]) appear. That is, multiple eigenvalues of B2k,2k correspond to simple
eigenvalues of M .
• The implicit restart is more accurate than the explicit one.
• The leading end of the “wanted” Ritz values (that is, the eigenvalues largest
in modulus and their reciprocals) converge faster than the tail end (closest to
cut off of the sort). The same behavior was observed in [39] for the implicitly
restarted Arnoldi method. In order to obtain faster convergence, it seems
advisable (similar to the implementation of Sorensen’s implicitly restarted
Arnoldi method in Matlab’s eigs) to increase the dimension of the com-

puted Lanczos factorization. That is, instead of computing S2n,2k
P and B2k,2k

P

as a basis for the restart, one should compute a slightly larger factorization,
e.g., of dimension 2(k + 3) instead of dimension 2k. When 2. eigenvalues
have converged, a subspace of dimension 2(k + 3 + .) should be computed
as a basis for the restart, followed by p additional Lanczos steps to obtain a
factorization of length k+3+.+p. Using implicit SR steps this factorization
should be reduced to one of length k+3+.. If the symplectic Lanczos method
would be implemented following this approach, the convergence check could
be done using only the k Ritz values of largest modulus (and their reciprocals)
or those that yield the smallest Ritz estimate

|dk+1| |eT2kyj | ||bk+1v̂k+1 + ak+1ŵk+1||,
where the yj are the eigenvectors of B

2k,2k.
• It is fairly difficult to find a good choice for k and p. Not for every possible
choice of k does there exist an invariant subspace of dimension 2k associated to
the k eigenvalues λi largest in modulus and their reciprocals. If λk is complex
and λk+1 = λk, then we cannot choose the 2p eigenvalues with modulus
closest to the unit circle as shifts because this would tear a quadruple of

eigenvalues apart, resulting in a shift polynomial q such that q(B
2(k+p),2(k+p)
P)

would not be real. All we can do is to choose the 2p − 2 eigenvalues with
modulus closest to 1 as shifts. In order to get a full set of 2p shifts we add as

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 707

the last shift the real eigenvalue pair with largest Ritz residual. Depending on
how good that real eigenvalue approximates an eigenvalue ofM , this strategy
worked, but the resulting subspace is no longer the subspace corresponding
to the k eigenvalues largest in modulus and their reciprocals. If the real
eigenvalue has converged to an eigenvalue of M , it is unlikely to remove
that eigenvalue just by restarting; it will keep coming back. Only a purging
technique like the one discussed by Lehoucq and Sorensen [25, 40] will be
able to remove this eigenvalue. Moreover, there is no guarantee that there is

a real eigenvalue of B
2(k+p),2(k+p)
P that can be used here. Hence, in a black-

box implementation one should either try to compute an invariant subspace
of dimension 2(k− 1) or of dimension 2(k+1). As this is not known a priori,
the algorithm should adapt k during the iteration process appropriately. This
is no problem if, as suggested above, one always computes a slightly larger
Lanczos factorization than requested.

Example 6.1. Tests were done using a 100 × 100 symplectic matrix with the
eigenvalues

200, 100, 50, 47, . . . , 4, 3, 2± i, 1/3, 1/4, . . . , 1/47, 1/50, 1/100, 1/200.

A real symplectic block-diagonal matrix with these eigenvalues was constructed and
a similarity transformation with a randomly generated orthogonal symplectic matrix
was performed to obtain a symplectic matrix M .

The first test performed concerned the loss of J-orthogonality of the computed
Lanczos vectors during the symplectic Lanczos method and the ghost eigenvalue prob-
lem (see, e.g., [19]). As expected, when using a random starting vectorM ’s eigenvalues
largest in modulus (and the corresponding reciprocals) tend to emerge right from the
start, e.g., the eigenvalues of B10,10 are

199.99997, 100.06771, 48.71752, 26.85083, 8.32399,

and their reciprocals. Without any form of re-J-orthogonalization, the J-orthogona-
lity of the Lanczos vectors is lost after a few iterations as indicated in Figure 6.1.

The loss of J-orthogonality in the Lanczos vectors results, as in the standard
Lanczos algorithm, in ghost eigenvalues. That is, multiple eigenvalues of B2k,2k cor-
respond to simple eigenvalues of M . For example, using no re-J-orthogonalization,
after 17 iterations the 6 eigenvalues largest in modulus of B34,34 are

207.63389, 200, 100, 49.99982, 47.04542, 45.85367.

Using complete re-J-orthogonalization, this effect is avoided:

200, 100, 49.99992, 47.02461, 45.93018, 42.31199.

The second test performed concerned the question whether an implicit restart is
more accurate than an explicit one. After 9 steps of the symplectic Lanczos method
(with a random starting vector) the resulting 18 × 18 symplectic butterfly matrix
B18,18 had the eigenvalues (using the Matlab function eig)

200.000000000000, 99.999999841718,
50.070648930465, 41.873264094053,
35.891491504806, 23.654512559868,
13.344815062428, 3.679215125563 ±5.750883779240i,

708 PETER BENNER AND HEIKE FAßBENDER

0 5 10 15
10

−15

10
−10

10
−5

10
0

number of Lanczos steps

||(
S10

0,
2k

)T J
50

 S
10

0,
2k

 −
 J

k || 2

Fig. 6.1. Loss of J-orthogonality after k symplectic Lanczos steps.

and their reciprocals. Removing the 4 complex eigenvalues from B18,18 using an
implicit restart as described in section 4, we obtain a symplectic butterfly matrix
B14,14
impl whose eigenvalues are

200.000000000000, 99.999999841719,
50.070648930464, 41.873264094053,
35.891491504806, 23.654512559868,
13.344815062428,

and their reciprocals. From (2.6) it follows that these have to be the 14 real eigenvalues
of B18,18 which have not been removed. As can be seen, we lost one digit during
the implicit restart (indicated by the “underbar” under the “lost” digits in the above
table). Performing an explicit restart with the explicitly computed new starting vector
v̆1 = (MP−µI)(MP−µI)(MP−µ−1I)(MP−µ−1I)M−2

P v1 yields a symplectic butterfly

matrix B14,14
expl whose eigenvalues are

200.000000000000, 99.999999841793,
50.070648885030, 41.873247045627,
35.891922701991, 23.654509163541,
13.344810484061,

and their reciprocals. This time we lost up to 9 digits.

The last set of tests performed on this matrix concerned the k-step restarted
symplectic Lanczos method as given in Table 4.1. As M has only one quadruple
of complex eigenvalues, and these eigenvalues are smallest in magnitude, there is no
problem in choosing k � n. For every such choice there exists an invariant symplectic
subspace corresponding to the k eigenvalues largest in magnitude and their reciprocals.
In the tests reported here, a random starting vector was used. Figure 6.2 shows a plot
of ||rk+1|| versus the number of iterations performed. Iteration step 1 refers to the
norm of the residual after the first k Lanczos steps; no restart is performed. The three
lines in Figure 6.2 present three different choices for k and p: k = p = 8; k = 8, p = 16;
and k = 5, p = 10. Convergence was achieved for all three examples (and many more,
not shown here). Obviously, the choice k = 8, p = 2k results in faster convergence
than the choice k = p = 8. Convergence is by no means monotonic; during the major
part of the iteration the norm of the residual is changing quite dramatically. But once

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 709

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

number of iterations

no
rm

(r k+
1)

 "+" : k = p = 8, "o" : k = 8, p = 16, "[]" : k = 5, p =10

Fig. 6.2. k-step restarted symplectic Lanczos method with different choices of k and p.

a certain stage is achieved, the norm of the residual converges. Although convergence
for k = 8, p = k or p = 2k was quite fast, this does not imply that convergence is
as fast for other choices of k and p. The third line in Figure 6.2 demonstrates that
the convergence for k = 5, p = 10 does need twice as many iteration steps as for
k = 8, p = 16.

Example 6.2. Symplectic matrix pencils that appear in discrete-time linear-
quadratic optimal control problems are typically of the form

L− λN =

[
F 0

CTC I

]
− λ

[
I −BBT
0 FT

]
, F ∈ R

n×n, C ∈ R
p×n, B ∈ R

n×m.

(Note: For F �= I, L and N are not symplectic, but L − λN is a symplectic matrix
pencil.) Assuming that L and N are nonsingular (that is, F is nonsingular), solv-
ing this generalized eigenproblem is equivalent to solving the eigenproblem for the
symplectic matrix

N−1L =

[
I −BBT
0 FT

]−1 [
F 0

CTC I

]
.

If one is interested in computing a few of the eigenvalues of L − λN , one can
use the restarted symplectic Lanczos algorithm on M = N−1L. In each step of the
symplectic Lanczos algorithm, one has to compute matrix-vector products of the form
Mx and MTx. Making use of the special form of L and N , this can be done without
explicitly inverting N : Let us consider the computation of y =Mx. First compute

Lx =

[
F 0

CTC I

] [
x1

x2

]
=

[
Fx1

CTCx1 + x2

]
=:

[
z1
z2

]
= z,

where x ∈ R
2n is written as x = [x1 x2]

T , x1, x2 ∈ R
n. Next, one has to solve the

linear system Ny = z. Partition y ∈ R
2n analogous to x and z, then from Ny = z we

obtain y2 = F−T z2, and y1 = z1 +BBT y2. In order to solve y2 = F−T z2 we compute
the LU decomposition of F and solve the linear system FT y2 = z2 using backward
and forward substitution. Hence, the explicit inversion of N or F is avoided. In the

710 PETER BENNER AND HEIKE FAßBENDER

0 1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

number of iterations

no
rm

(r k+
1)/n

orm
(M

)
"+": k = p = 5, "*": k = 5, p = 10, "o": k = p = 5 modified

Fig. 6.3. k-step restarted symplectic Lanczos method with different choices of the shifts.

case in which F is a sparse matrix, sparse solvers can be employed. In particular, if
the control system comes from some sort of discretization scheme, F is often banded,
which can be used here by computing an initial band LU factorization of F in order to
minimize the cost for the computation of y2. Note that in most applications, p,m� n
such that the computational cost for CTCx1 and BBT y2 is significantly cheaper than
a matrix-vector product with an n × n matrix. In case of single-input (m = 1) or
single-output (p = 1) the corresponding operations come down to two dot products
of length n each.

Using Matlab’s sparse matrix routine sprandn, sparse normally distributed ran-
dom matrices F,B,C (here, p = m = n) of different dimensions and with different den-
sities of the nonzero entries were generated. Here, an example of dimension 2n = 1000
is presented, where the density of the different matrices was chosen to be

matrix ≈ nonzero entries
F 0.5n2

B 0.2n2

C 0.3n2.

Matlab computed the norm of the corresponding matrix M = N−1L to be ≈ 5.3×
105.

In the first set of tests k was chosen to be 5, and we tested p = k and p = 2k.
As can be seen in Figure 6.3, for the first three iterations, the norm of the residual
decreases for both choice of p but then increases quite a bit. During the first step,
the eigenvalues of B10,10 are approximating the five eigenvalues of L− λN largest in
modulus and their reciprocals. In step 4, a “wrong” choice of the shifts is done in
both cases. The extended matrices B20,20 and B30,30 both still approximate the five
eigenvalues of L− λN largest in modulus, but there is a new real eigenvalue coming
in, which is not a good approximation to an eigenvalue of L − λN . But, due to the
way the shifts are chosen here, this new eigenvalue is kept, while an already good
approximated eigenvalue—a little smaller in magnitude—is shifted away, resulting in
a dramatic increase of ||rk+1||. Modifying the choice of the shifts such that the good
approximation is kept, while the new real eigenvalue is shifted away, the problem is

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 711

0 1 2 3 4 5 6 7 8 9 10 11
10

−8

10
−6

10
−4

10
−2

10
0

10
2

number of iterations

no
rm

(r k+
1)/n

orm
(M

)
"+": k = p = 4, , "*": k = 4, p = 8, "[]": k = p = = 7, "o": k = 7, p = 14

Fig. 6.4. k-step restarted symplectic Lanczos method with different choices of k and p.

0 1 2 3 4 5 6
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

number of iterations

no
rm

(r k+
1)/n

orm
(M

)

"+": k = 15, p = 30, "*": k = 20, p =40, "[]": k = p = 21, "o": k = 21, p = 42

Fig. 6.5. k-step restarted symplectic Lanczos method with different choices of k and p.

resolved, the “good” eigenvalues are kept, and convergence occurs in a few steps (the
o-line in Figure 6.3).

Using a slightly larger Lanczos factorization as a basis for the restart, e.g., a
factorization of length k + 3 instead of length k, and using a locking technique to
decouple converged approximate eigenvalues and associated invariant subspaces from
the active part of the iteration, this problem is avoided.

Figure 6.4 displays the behavior of the k-step implicitly restarted symplectic Lanc-
zos method for different choices of k and p, where k is quite small. Convergence is
achieved in any case.

So far, in the tests presented, k was always chosen such that there exists a deflating
subspace of L− λN corresponding to the k eigenvalues largest in modulus and their
reciprocals. For k = 20, there is no such deflating subspace. (There is one for k = 19
and one for k = 21.) See Figure 6.5 for a convergence plot. The eigenvalues of

712 PETER BENNER AND HEIKE FAßBENDER

B2(k+p),2(k+p) in the first iteration steps approximate the k+ j eigenvalues of largest
modulus and their reciprocals (where 5 ≤ j ≤ p) quite well. Our choice of shifts is
to select the 2p eigenvalues with modulus closest to 1, but as λk+1 is complex with
|λk+1| = |λk| �= 1, we can only choose 2(p−1) shifts that way. The last shift is chosen
according to the strategy explained above. This eigenvalue keeps coming back before
it is annihilated. A better idea to resolve the problem is to adapt k appropriately.

7. Concluding remarks. We have investigated a symplectic Lanczos method
for symplectic matrices. Employing the technique of implicitly restarting the method
using double or quadruple shifts as zeros of the driving Laurent polynomials, this
results in an efficient method to compute a few extremal eigenvalues of symplectic
matrices and the associated eigenvectors or invariant subspaces. The residual of the
Lanczos recursion can be made to be zero by choosing proper shifts. It is an open
problem how these shifts should be chosen in an optimal way. The preliminary nu-
merical tests reported here show that for exact shifts, good performance is already
achieved.

Before implementing the symplectic Lanczos process in a black-box algorithm,
some details need consideration: in particular, techniques for locking of converged
Ritz values as well as purging of converged, but unwanted, Ritz values need to be
derived in a way as it has been done for the implicitly restarted Arnoldi method.

REFERENCES

[1] Z. Bai, Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem,
Math. Comp., 62 (1994), pp. 209–226.

[2] G. Banse, Symplektische Eigenwertverfahren zur Lösung zeitdiskreter optimaler Steuerungs-
probleme, Ph.D. thesis, Universität Bremen, Fachbereich 3–Mathematik und Informatik,
Bremen, Germany, 1995.

[3] G. Banse and A. Bunse-Gerstner, A condensed form for the solution of the symplectic
eigenvalue problem, in Systems and Networks: Mathematical Theory and Applications,
U. Helmke, R. Menniken, and J. Sauer, eds., Akademie Verlag, Berlin, Germany, 1994,
pp. 613–616.

[4] P. Benner and H. Faßbender, An implicitly restarted symplectic Lanczos method for the
Hamiltonian eigenvalue problem, Linear Algebra Appl., 263 (1997), pp. 75–111.

[5] P. Benner and H. Faßbender, The symplectic eigenvalue problem, the butterfly form, the
SR algorithm and the Lanczos method, Linear Algebra Appl., 275/276 (1998), pp. 19–47.

[6] P. Benner, H. Faßbender, and D. Watkins, SR and SZ algorithms for the symplectic
(butterfly) eigenproblem, Linear Algebra Appl., 287 (1999), pp. 41–76.

[7] M. Bohner, Linear Hamiltonian difference systems: Disconjugacy and Jacobi–type conditions,
J. Math. Anal. Appl., 199 (1996), pp. 804–826.

[8] A. Bunse-Gerstner, Matrix factorization for symplectic QR-like methods, Linear Algebra
Appl., 83 (1986), pp. 49–77.

[9] A. Bunse-Gerstner and V. Mehrmann, A symplectic QR-like algorithm for the solution of
the real algebraic Riccati equation, IEEE Trans. Automat. Control, AC-31 (1986), pp. 1104–
1113.

[10] D. Calvetti, L. Reichel, and D. C. Sorensen, An implicitly restarted Lanczos method for
large symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 2 (1994), pp. 1–21.

[11] J. Della Dora, Sur quelques Algorithmes de recherche de valeurs propres, Thése, L’Université
Scientifique es Medicale de Grenoble, Grenoble, France, 1973.

[12] J. Della Dora, Numerical linear algorithms and group theory, Linear Algebra Appl., 10
(1975), pp. 267–283.

[13] L. Elsner, On some algebraic problems in connection with general eigenvalue algorithms,
Linear Algebra Appl., 26 (1979), pp. 123–138.

[14] H. Faßbender, Error analysis of the symplectic Lanczos method for the symplectic eigenvalue
problem, BIT, 40 (2000), pp. 471–496.

[15] H. Faßbender, Symplectic Methods for Symplectic Eigenproblems, Habilitationsschrift, Uni-
versität Bremen, Fachbereich 3–Mathematik und Informatik, Bremen, Germany, 1998.

AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD 713

[16] U. Flaschka, V. Mehrmann, and D. Zywietz, An analysis of structure preserving meth-
ods for symplectic eigenvalue problems, RAIRO Automat.-Prod. Inform. Ind., 25 (1991),
pp. 165–190.

[17] J. G. F. Francis, The QR transformation Part I and Part II, Comput. J., 4 (1961), pp. 265–
271, 332–345.

[18] R. Freund, A transpose-free quasi-minimal residual methods for non-Hermitian linear sys-
tems, SIAM J. Sci. Comput., 14 (1993), pp. 470–482.

[19] G. Golub and C. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University Press,
Baltimore, MD, 1989.

[20] E. Grimme, D. Sorensen, and P. Van Dooren, Model reduction of state space systems via
an implicitly restarted Lanczos method, Numer. Algorithms, 12 (1996), pp. 1–31.

[21] W. Kahan, B. N. Parlett, and E. Jiang, Residual bounds on approximate eigensystems of
nonnormal matrices, SIAM J. Numer. Anal., 19 (1982), pp. 470–484.

[22] V. N. Kublanoskaja, On some algorithms for the solution of the complete eigenvalue problem,
U.S.S.R. Comput. Math. and Math. Phys., 3 (1961), pp. 637–657.

[23] P. Lancaster and L. Rodman, The Algebraic Riccati Equation, Oxford University Press,
Oxford, UK, 1995.

[24] A. Laub, Invariant subspace methods for the numerical solution of Riccati equations, in The
Riccati Equation, S. Bittanti, A. Laub, and J. Willems, eds., Springer-Verlag, Berlin,
Germany, 1991, pp. 163–196.

[25] R. Lehoucq and D. Sorensen, Deflation techniques for an implicitly restarted Arnoldi itera-
tion, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 789–821.

[26] R. Lehoucq, D. Sorensen, and C. Yang, ARPACK User’s Guide. Solution of Large-Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, PA,
1998.

[27] R. B. Lehoucq, On the convergence of an implicitly restarted Arnoldi method, preprint MS
1110, Sandia National Laboratory, Albuquerque, NM, 1999.

[28] W.-W. Lin, A new method for computing the closed loop eigenvalues of a discrete-time algebraic
Riccati equation, Linear Algebra Appl., 6 (1987), pp. 157–180.

[29] W.-W. Lin, V. Mehrmann, and H. Xu, Canonical forms for Hamiltonian and symplectic
matrices and pencils, Linear Algebra Appl., 301–303 (1999), pp. 469–533.

[30] V. Mehrmann, Der SR-Algorithmus zur Berechnung der Eigenwerte einer Matrix, Diplomar-
beit, Universität Bielefeld, Bielefeld, FRG, 1979.

[31] V. Mehrmann, A symplectic orthogonal method for single input or single output discrete time
optimal quadratic control problems, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 221–247.

[32] V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory and Numerical
Solution, Lecture Notes in Control and Information Sciences 163, Springer-Verlag, Heidel-
berg, Germany, 1991.

[33] V. Mehrmann and D. Watkins, Structure preserving methods for computing eigenpairs of
large sparse skew-Hamiltonian/Hamiltonian pencils, Tech. Report SFB393/00-02, Fak. f.
Mathematik, TU Chemnitz, Chemnitz, FRG, 2000.

[34] R. B. Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue problems,
Math. Comp., 65 (1996), pp. 1213–1230.

[35] C. Paige and C. Van Loan, A Schur decomposition for Hamiltonian matrices, Linear Algebra
Appl., 14 (1981), pp. 11–32.

[36] B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for unsym-
metric matrices, Math. Comp., 44 (1985), pp. 105–124.

[37] R. Patel, Computation of the stable deflating subspace of a symplectic pencil using structure
preserving orthogonal transformations, in Proceedings of the 31st Annual Allerton Con-
ference on Communication, Control and Computing, University of Illinois, Urbana, IL,
1993.

[38] R. Patel, On computing the eigenvalues of a symplectic pencil, Linear Algebra Appl., 188/189
(1993), pp. 591–611.

[39] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

[40] D. C. Sorensen, Deflation for implicitly restarted Arnoldi methods, Tech. Report, Department
of Computational and Applied Mathematics, Rice University, Houston, Texas, 1998.

[41] D. R. Taylor, Analysis of the look ahead Lanczos algorithm, Ph.D. thesis, Center for Pure
and Applied Mathematics, University of California, Berkeley, CA, 1982.

[42] C. Van Loan, A symplectic method for approximating all the eigenvalues of a Hamiltonian
matrix, Linear Algebra Appl., 16 (1984), pp. 233–251.

PARALLEL STRATEGIES FOR RANK-k UPDATING
OF THE QR DECOMPOSITION∗

ERRICOS J. KONTOGHIORGHES†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 714–725

Abstract. Parallel strategies based on Givens rotations are proposed for updating the QR
decomposition of an n × n matrix after a rank-k change (k < n). The complexity analyses of the
Givens algorithms are based on the total number of Givens rotations applied to a 2-element vector.
The algorithms, which are extensions of the rank-1 updating method, achieve the updating using
approximately 2(k + n) compound disjoint Givens rotations (CDGRs) with elements annihilated by
rotations in adjacent planes. Block generalization of the serial rank-1 algorithms are also presented.
The algorithms are rich in level 3 BLAS operations, making them suitable for implementation on
large scale parallel systems. The performance of some of the algorithms on a 2-D SIMD (single
instruction stream–multiple instruction stream) array processor is discussed.

Key words. QR decomposition, Givens rotations, parallel algorithms

AMS subject classifications. 15A23, 65F05, 65F25, 65Y05

PII. S0895479896308585

1. Introduction. Given the QR decomposition (QRD) of a nonsingular n × n
matrix A

A = QR,(1.1)

the problem of recomputing the QRD of

Ã = A+

k∑
i=1

xiy
T
i = A+XY T(1.2)

is considered, where xi, yi ∈ �n, X = (x1 . . . xk), Y = (y1 . . . yk), R ∈ �n×n is
upper triangular and Q ∈ �n×n is orthogonal. The matrix XY T has rank k and
the problem is known as the rank-k updating of the QRD (hereafter, rank-k UQRD)
problem. Observing that

Ã = Q(R+QTXY T),

the rank-k UQRD problem requires the reduction of

Â = R+ ZY T(1.3)

to upper triangular form using orthogonal transformations, where Z = QTX. An
algorithm for updating the QRD after a rank-1 change (that is k = 1 in (1.2)) has
been described in [5, 6].

The purpose of this work is to propose and analyze parallel strategies for rank-k
UQRD, which is important in applications where repeated updating is required [23].

∗Received by the editors August 29, 1996; accepted for publication (in revised form) by L. Elden
April 12, 2000; published electronically October 25, 2000. This research was supported in part by
Swiss National Foundation grants 21-54109.98, 1214-056900.99/1, and 2000-061875.00/1.

http://www.siam.org/journals/simax/22-3/30858.html
†Institut d’informatique, Université de Neuchâtel, Emile-Argand 11, Case postale 2, CH-2007

Neuchâtel, Switzerland (erricos.kontoghiorghes@info.unine.ch).

714

RANK-K UPDATING OF THE QR DECOMPOSITION 715

The algorithms are based on Givens rotations and Householder transformations. The
first algorithm is an adaptation of a previously reported parallel Givens sequence
for computing the QRD [22]. The second is a block-version of the rank-1 Givens
method for UQRD [5, 6]. The performance of the algorithms on a single instruction
stream–multiple data stream (SIMD) array processor is investigated.

Throughout the paper G
(k)
i,j denotes a Givens rotation in plane (i, j) that reduces

to zero the element wik when applied from the left of W ∈ �n×k. It is assumed
that a maximum of �n/2� disjoint Givens rotations can be applied simultaneously.
The product of these rotations is called compound disjoint Givens rotation (CDGR)
[3, 13, 15, 19]. It is assumed that one time unit is required to construct and apply
a single Givens rotation to a 2-element vector. For the complexity analyses of the
Givens algorithms the time required to compute the rank-k updating R + ZY T in
(1.3) is assumed to be negligible and will not be taken into account. For simplicity
the construction of the orthogonal matrix in the UQRD will not be shown.

In section 2 a parallel realization of the algorithm in [5] for solving the rank-k
UQRD problem is presented when k > 1. Block-versions of the rank-1 Givens algo-
rithms are given in section 3 for solving the rank-k problem, where k > 1. In section 4
the performances of some of the algorithms on a SIMD computer are discussed. Con-
clusions and future work are presented and discussed in section 5.

2. Parallelization of the rank-1 UQRD algorithm. The parallelization of
the rank-1 UQRD algorithm in [5] is considered for the rank-k case, where 1 ≤ k <
n. The first stage of the rank-1 algorithm in [5] is the application of the n − 1

Givens rotations V T = G
(1)
2,1 · · · G

(1)
n−1,n−2G

(1)
n,n−1 to the augmented matrix (Z R)

such that V T (Z R) = (ζe1 H), where ζ2 = ZTZ, e1 is the first column of the
n× n identity matrix In and H is an upper Hessenberg matrix [6]. After computing
H̃ = H+ζe1Y

T , the second stage of the algorithm computes the n−1 Givens rotations

UT = G
(n−1)
n,n−1 . . . G

(2)
3,2G

(1)
2,1 to retriangularize the Hessenberg matrix H̃. Thus, the

UQRD of Ã = A+XY T = QV URn = QnRn, where Rn is upper triangular and Qn

is orthogonal. In this algorithm a total of 2(n− 1) rotations are applied in 3(n2 − 1)
time units.

For the solution of the rank-k UQRD problem when k > 1, this algorithm can
be repeated k times using 2k(n − 1) rotations and 3k(n2 − 1) time units. However,
computations on zi, the ith column of Z, can commence immediately after the last
two elements of zi−1 (i = 2, . . . , k) have been annihilated. Thus, the annihilation
of the elements in zi can start at the (2i − 1)th step and will fill-in, successively,
the ith subdiagonal of R. Once zi has been reduced to the form ζie1, the rank-1
updating R+ζie1y

T
i is performed. This method is a variation of the Sameh and Kuck

annihilation scheme (hereafter, the VSK algorithm) and requires 2k + n− 3 CDGRs
to perform the first stage of the rank-k UQRD [22]. Alternatively, the annihilation of
the elements of zi can cease once the ith subdiagonal of R has been filled-in, since,
at this stage, the updating R+ ziy

T
i may be performed without creating any further

modification of the structure of R. This (SK algorithm) is equivalent to computing
the QRD

Q̃TZ =

(
Rz
0

)
k
n− k

(2.1)

716 ERRICOS J. KONTOGHIORGHES

using the Sameh and Kuck annihilation scheme and H = Q̃TR. The matrix resulting
from the rank-k updating

H̃ = H +

(
Rz
0

)
Y T(2.2)

has the same structure as H—that is, its last n − k − 1 subdiagonals are zero. The
first stage in Figure 2.1 illustrates the transformations on Z and the fill-in of R, with
n = 8. The entries denote the annihilated elements of Z and the fill-in of R after
applying a CDGR.

In the retriangularization of H̃ a total of k + n − 2 CDGRs are used. At step
k + 1 − i the elements of the ith (i = 1, . . . , k) subdiagonal begin to be annihilated

successively by the n − i Givens rotations G
(1)
i+1,i, G

(2)
i+2,i+1, . . . , G

(n−i)
n,n−1. The VSK

algorithm, which triangularizes H̃, can begin after the (k + n − 1)th CDGR has
been applied to Z. Thus, the VSK algorithm requires one CDGR more than the SK
algorithm. The total number of CDGRs applied using the SK algorithm is given by
2(k+n−2). The computational details of the SK algorithm are shown by Algorithm 1,
where steps 2–9 and 11–18 compute stage 1 and stage 2, respectively. The 2×2 Givens
rotation G(j) annihilates the first element of the second row when it is applied from

the left of a 2-row matrix, i.e., G(j) ≡ G
(1)
2,1. The standard colon notation is used to

denote submatrices [6].

1: Let Z = QTX and R̃ =
(
R QT

)
.

2: for i = 1, 2, . . . , k + n− 2 do
3: for all j = 1, 2, . . . , k do-in-parallel
4: p = n+ 2j − i− 1
5: if (j < p ≤ n) then
6:

(
Zp−1:p,j:k R̃p−1:p,p−j:2n

)
= G(j)

(
Zp−1:p,j:k R̃p−1:p,p−j:2n

)
7: end if
8: end for all
9: end for
10: R1:k,1:k = R1:k,1:n + Z1:k,:Y

T

11: for i = n− k, n− k + 1, . . . , 2n− 3 do
12: for all j = 1, 2, . . . , n− 1 do-in-parallel
13: p = n+ 2j − i− 1
14: if (j < p ≤ n) and (j ≤ i− n+ k + 1) then
15: R̃p−1:p,j:2n = G(j)R̃p−1:p,j:2n

16: end if
17: end for all
18: end for

Algorithm 1. SK algorithm.

Alternatively, H̃ can be triangularized using a series of n−1 Householder transfor-
mations P (1), P (2), . . . , P (n−1), where P (i) annihilates the elements i+1 to min(k+i, n)
(i = 1, . . . , n−1) of the ith column of H̃ using the ith row of H̃ as a pivot row. Observe
that the last Householder reflection is equivalent to a single Givens rotation. Further-
more, the parallel algorithms are identical to the serial rank-1 Givens algorithm in [5]
when k = 1. The second stage of Figure 2.1 shows the annihilation pattern for both

RANK-K UPDATING OF THE QR DECOMPOSITION 717

First Stage

Z → [ζ1e1] Z → Rz R→ H

VSK

� � �

1
2
3
4
5
6
7

3
4
5
6
7
8
9

5
6
7
8
9
10
11

SK

� � �

� �

�

1
2
3
4
5
6
7

3
4
5
6
7
8

5
6
7
8
9

fill-in

�1
�2

�3
�4

�5
�6

�7

�3
�4

�5
�6

�7
�8

�5
�6

�7
�8

�9

� � � � � � � �

� � � � � � �

� � � � � �

� � � � �

� � � �

� � �

� �

�

Second Stage

H̃ → Rn H̃ → Rn

Givens method

1
2
3
4
5

2
3
4
5
6
7

3
4
5
6
7
8
9

� � � � � � � �

� � � � � � �

� � � � � �

� � � � �

� � � �

� � �

� �

�

Householder method

1
2
3
4
5

1
2
3
4
5
6

1
2
3
4
5
6
7

� � � � � � � �

� � � � � � �

� � � � � �

� � � � �

� � � �

� � �

� �

�

Fig. 2.1. Rank-k UQRD by CDGRs and Householder transformations.

methods. In the case of Householder reflections, an integer entry i (i = 1, . . . , n− 1)
denotes the elements annihilated by the ith Householder transformation.

The time complexities of the first and second stages of Algorithm 1 are given,
respectively, by

T
(1)
SK(k, n) =

n−1∑
i=1

(k + n+ 1 + i) +

k−1∑
i=1

(k + 2n− i)

and

T
(2)
SK(k, n) = 2n(k − 1) +

n−1∑
i=1

(2n+ 1− i).

Thus, the time complexity of the SK algorithm is computed by

TSK(k, n) = T
(1)
SK(k, n) + T

(2)
SK(k, n)

= 3(n2 − 1) + (k − 1)(10n+ k − 2)/2.

The QRD of an n × n matrix using the SK annihilation scheme requires 2n − 3
CDGRs. Thus, after explicitly computing the updating R + ZY T , the QRD of Â in
(1.3) requires (2k+1) fewer CDGRs than the SK rank-k algorithm, when k > 1. The
time complexity of this method is given by

TQR(k, n) =

n−1∑
i=1

2n+

n−2∑
i=1

(2n− i)

≈ n(7n− 9)/2.

Comparing TSK and TQR, for fixed k, limn→∞ TSK(k, n)/TQR(k, n) = 6/7.

3. Block parallel strategies. Block generalizations of the rank-1 algorithms
can be employed to solve the rank-k UQRD problem. The first block parallel algorithm
is based on the serial rank-1 Givens algorithm. Although blocks are processed one
at a time, the computations within the blocks can be performed in parallel, using

718 ERRICOS J. KONTOGHIORGHES

either Householder reflections or CDGRs [8, 13]. Partitioning the matrices Z and R
according to

Z =

Z1

Z2

...
Zν

n1

n2

nν

(3.1a)

and

R =

n1 n2 nν

R1,1 R1,2 . . . R1,ν

R2,2 . . . R2,ν

. . .
...

Rν,ν

n1

n2

nν

,(3.1b)

let the QRD of Zν be given by

QT
ν Zν =

(
Wν

0

)
k
nν − k

(3.2a)

and

QT
ν Rν,ν =

(
R̃ν,ν
R̂ν,ν

)
k
nν − k

,(3.2b)

where n =
∑ν
j=1 nj and nν ≥ k. Computing, for i = ν−1, . . . , 2, 1, the block-updating

QR factorization

QT
i

k ni nν

Zi Ri,i . . . Ri,ν

Wi+1 0 . . . R̃i+1,ν

ni

k

=

k ni nν

Wi R̃i,i . . . R̃i,ν

0 R̂i,i . . . R̂i,ν

 k

ni
,(3.3)

the upper triangular matrix Rz in (2.1) is given by Rz = W1 and the matrix H̃ in
(2.2) has the block-Hessenberg structure

H̃ =

n1 n2 nν

H̃1,1 H̃1,2 . . . H̃1,ν

R̂1,1 R̂1,2 . . . R̂1,ν

R̂2,2 . . . R̂2,ν

. . .
...

R̂ν,ν

k
n1

n2

nν − k

,(3.4)

where Qi is orthogonal, Wi is a k × k upper triangular matrix, and

(
H̃1,1 H̃1,2 . . . H̃1,ν

)
=
(
R̃1,1 R̃1,2 . . . R̃1,ν

)
+W1Y

T .(3.5)

RANK-K UPDATING OF THE QR DECOMPOSITION 719

To triangularize H̃, the factorizations with i = 1, . . . , ν − 1,

Q̂T
i

(ni ni+1 nν

H̃i,i H̃i,i+1 . . . H̃i,ν

R̂i,i R̂i,i+1 . . . R̂i,ν

)
k
ni

=

(ni ni+1 nν

R∗
i,i R∗

i,i+1 . . . R∗
i ν

0 H̃i+1,i+1 . . . H̃i+1,ν

)
ni
k

(3.6)

are first computed where Q̂i is orthogonal and R∗
i i is upper triangular. Then the

QRD

Q̂T
ν

(
H̃ν,ν

R̂ν,ν

)
= R∗

ν,ν(3.7)

is computed so that the required upper triangular matrix is given by

Rn =

n1 n2 nν

R∗
1,1 R∗

1,2 . . . R∗
1,ν

R∗
2,2 . . . R∗

2,ν

. . .
...

R∗
ν,ν

n1

n2

nν

.(3.8)

A summary of this block parallel strategy is shown in Algorithm 2.

1: Compute the factorization (3.2).
2: for i = ν − 1, . . . , 2, 1 do
3: Compute the updating QRD (3.3).
4: end for
5: Compute (3.5).
6: for i = 1, 2, . . . , ν − 1 do
7: Compute the factorization (3.6).
8: end for
9: Compute the QRD (3.7).

Algorithm 2. Block-version of the serial rank-1 algorithm.

The second block parallel algorithm operates on more than one block simultane-
ously. It is based on the recursive doubling approach and the block parallel algorithms
in [2, 8]. Assume for simplicity that ni = k (i = 1, . . . , ν) and ν = 2g. Using the
partitioning of Z and R in (3.1), the QRDs

QT
i,0

(
Zi Ri,i . . . Ri,ν

)
=
(
W̃

(0)
i R

(0)
i,i . . . R

(0)
i,ν

)
(3.9)

are first computed simultaneously for i = 1, . . . , ν, where W̃
(0)
i and R

(0)
i j (j = i, . . . , ν)

are, respectively, upper triangular and full dense square matrices of order k. Then, in
step i = 1, . . . , g, the orthogonal factorizations

QT
j,i

W̃

(i−1)
j R

(i−1)
j,j . . .R

(i−1)
j,ν

W̃
(i−1)
p 0 . . .R

(i−1)
p,ν

 =

W̃

(i)
j R

(i)
j,j . . . R

(i)
j,ν

0 R
(i)
p,j. . .R

(i)
p,ν

 ; p = j + 2(g−i)(3.10)

720 ERRICOS J. KONTOGHIORGHES

are computed simultaneously for j = 1, . . . , 2(g−i), where W̃
(i)
j is a k× k upper trian-

gular matrix. After the gth step, Rz = W̃
(g)
1 is computed.

Using this method, the matrix H̃ in (2.2) is nonfull and dense. This structure
can facilitate the development of efficient parallel strategies to triangularize H̃. One
such parallel strategy is shown in Figure 3.1 for g = 3. The symbols � and � denote
square dense and upper triangular matrices of order k, respectively. A number in
an annihilated block indicates the block-row used in the factorization. It is assumed
that a single step is required to apply simultaneously a set of disjoint orthogonal
factorizations. Note that, during a factorization step, some blocks which will be
used in the subsequent factorization step are simultaneously triangularized also. This
reduces the time complexity of applying the disjoint orthogonal factorizations, which
reduces to simultaneously updating, rather than computing, a number of QRDs. In
the first four steps both the Z and R matrices are shown, while in the remaining steps
the operations are assumed to be performed on the H̃ matrix.

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7 Step 8 Step 9

Step 10 Step 11 Step 12 Step 13

� � � � � � � �
� � � � � � �

� � � � � �
� � � � �

� � � �
� � �

� �
�

� � � � � � � �
� � � � � � �

� � � � � �
� � � � �

� � � �
� � �

� �
�

� � � � � � � �
� � � � � � �

� � � � � �
� � � � �

� � � �
� � �

� �
�

� � � � � � � �
� � � � � � �

� � � � � �
� � � � �

� � � �
� � �

� �
�

� � � � � � �
� � � � � �

� � � � �
� � � �

� � �
� �

�

� � � � � � �
� � � � � �

� � � � �
� � � �

� � �
� �

�

� � � � � � �
� � � � � �

� � � � �
� � � �

� � �
� �

�

� � � � � � �
� � � � � �

� � � � �
� � � �

� � �
� �

�

� � � � � � �
� � � � � �

� � � � �
� � � �

� � �
� �

�

� � � � � � �
� � � � � �

� � � � �
� � � �

� � �
� �

�

� � � � � � �
� � � � � �

� � � � �
� � � �

� � �
� �

�

� � � � � � �
� � � � � �

� � � � �
� � � �

� � �
� �

�

� � � � � � �
� � � � � �

� � � � �
� � � �

� � �
� �

�

�
�
�
�
�
�
�
�

�
�
�
�

4
3
2
1 �

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

2
1 �

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
1

5
6

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

5
6
7

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

1
2
3
4

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

2
3
4

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

3
4

7

�
�

�
�
�

�
�

�

�
�

�
�

�
�

4

6

�
�

�
�

�
�

�
�

�
�
� �

5

7

�
�

�
�

�
�

�
�

�
�

�
6

�
�

�
�

�
�

�
�� 7

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Fig. 3.1. Solving the rank-k UQRD problem using the block-greedy rank-k algorithm.

4. Numerical results. The main rank-k algorithms have been implemented
on the 4096-processors MasPar MP-2 SIMD system. A SIMD computer comprises
multiple processors which simultaneously execute an operation on parts of an array
in a data parallel mode. The MasPar SIMD system is composed of a front-end (a
DECstation 5000) and a data parallel unit (DPU). The parallel computations are
executed by the processing element (PE) array in the DPU, while serial operations
are performed on the front-end. The 4096 PEs of the MP-2 are arranged in an es×es
array, where es = 64. The default cyclic distribution has been used to map the
matrices and vectors onto the DPU. In a cyclic distribution, an n element vector
and an m× n element matrix are mapped onto �n/es2 and �m/es�n/es layers of

RANK-K UPDATING OF THE QR DECOMPOSITION 721

Table 4.1
Execution time of the rank-k algorithms on the MasPar MP-2 SIMD system.

n k Househol. Givens Algor. 1 Algor. 1 Algor. 2 Rank-1 Algor.
QRD QRD Givens Househol. Househol. Givens

1408 32 130.69 768.44 156.50 73.54 41.88 967.94
1408 64 130.22 767.77 236.91 113.18 47.22 1923.39
1408 96 130.45 768.06 319.16 147.26 63.38 2885.09
1408 128 130.37 768.22 398.39 186.79 68.38 3853.06
1408 160 130.85 768.43 478.20 222.10 84.62 4804.64
1408 192 130.94 768.37 553.00 259.91 88.79 5774.98
1408 224 130.73 768.83 629.61 295.87 105.18 6731.87
1408 256 130.94 768.21 698.88 331.69 108.72 7699.97

1024 8 54.98 312.12 61.45 40.11 20.19 135.55
1024 16 55.04 311.85 64.09 40.43 21.04 270.32
1024 32 54.98 314.26 87.08 41.70 23.14 539.87
1024 64 54.85 314.11 131.40 63.84 26.46 1081.28
1024 96 55.14 314.17 175.29 82.59 35.52 1619.62
1024 128 55.10 313.95 217.43 104.40 38.26 2156.16
1024 160 55.17 313.70 259.35 123.93 47.46 2699.36
1024 192 55.16 313.84 296.65 143.80 49.56 3234.43
1024 224 55.28 313.51 334.37 163.16 58.67 3773.50
1024 256 55.77 313.77 366.53 181.61 60.42 4300.03
1024 288 55.37 314.17 398.90 200.34 69.63 4858.85
1024 320 55.42 313.83 423.61 216.21 71.04 5398.72

256 64 2.12 9.39 12.26 6.89 2.86 96.90
384 64 4.78 23.56 23.14 12.18 4.86 182.85
512 64 9.43 48.49 37.84 19.31 7.71 293.82
640 64 16.25 86.44 55.96 27.88 11.21 432.77
768 64 25.62 140.84 77.71 38.16 15.38 599.94
896 64 38.73 215.63 102.69 50.05 20.46 817.22

1152 64 75.46 434.20 162.82 78.56 32.67 1337.54
1280 64 100.35 584.85 198.24 95.02 39.63 1620.29

memory, respectively. The time to execute a single arithmetic operation on an array
depends on the number of memory layers required to map the array on to the DPU
[11]. Other processor mappings are available for efficiently mapping arrays onto the
PE array when the default cyclic distribution is not the best choice [16]. The MasPar
cannot be partitioned into smaller SIMD subarrays.

Table 4.1 shows the execution times in milliseconds (msec) for the various algo-
rithms. The first two algorithms use Householder transformations and CDGRs to
compute the QRD of Ã in (1.2) without exploiting the previous QRD of A in (1.1).
The SK algorithm (Algorithm 1) using CDGRs and Householder transformations to
compute the second stage are shown in the following two columns, respectively. The
final two columns show the execution times of Algorithm 2 and the rank-1 algorithm
which is repeated k times. The block-parallel algorithm illustrated in Figure 3.1
has not been implemented since simultaneous factorization of matrices cannot be
performed efficiently on the MasPar [11]. In the case of Algorithm 2, nν = k and
n1 = · · · = nν−1 = 64, where 64 is the edge size of the 2-D SIMD array processor.
The following observations can be made:

• Householder algorithms outperform equivalent Givens algorithms;
• With the exception of very small problems, the SK-algorithm employing only

722 ERRICOS J. KONTOGHIORGHES

0.9900 0.9925 0.9950 0.9975 1.0000 1.0025 1.0050 1.0075

20

40

60

80

100

120

Householder QRD

Execution Time / Prediction Time

E
xe

cu
tio

n
T

im
e

0.995 1.000 1.005 1.010

50

100

150

200

250

300

350

Algorithm 2 Householder

Execution Time / Prediction Time

E
xe

cu
tio

n
T

im
e

0.99 1.00 1.01 1.02 1.03

0

5000

10000

15000

20000

25000

30000

35000

40000

Rank-1 Algorithm Givens

Execution Time / Prediction Time

E
xe

cu
tio

n
T

im
e

Fig. 4.1. Ratio between actual and predicted execution times.

CDGRs outperforms the Givens algorithm which solves the rank-k updating
problem by computing the QRD afresh using the the SK-scheme;

• The performance of the SK-algorithm (Algorithm 1) improves when the sec-
ond stage is computed using Householder transformations. However, this
improvement in performance is sufficient to outperform the Householder al-
gorithm in which the QRD is computed afresh only when k is very small and
n is large;

• The block-parallel version of the rank-1 algorithm (Algorithm 2) performs
better than the Householder QRD algorithm for fixed k and increasing n;

• The rank-1 algorithm when repeated k times results in the worst performance.

Performance models (msec × 10−3) for the Householder method that computes
the QRD from afresh (TQR), Algorithm 2 (TBH), and the rank-1 algorithm (TR−1)
have been constructed using statistical regression methods [11, 16]. These are given

RANK-K UPDATING OF THE QR DECOMPOSITION 723

by

TQR(Nes,Kes) = N(75.47 + 62.42N + 9.24N2 + 0.43NK),

TBH(Nes,Kes) = N(7.15 + 5.03N + 193.9K − 14.41K2 + 36.6NK) + 1.94K3,

and

TR−1(Nes,Kes) = K(286100 + 42270N + 2646N2).

It has been assumed that the dimensions of the matrices are multiples of the
edge size of the array processor, that is, n = Nes and k = Kes. These models
predict accurately the execution time of the algorithms. Figure 4.1 shows the ratio of
actual and predicted execution times for the three algorithms. An analysis of these
performance models leads to the same conclusions as those drawn from the analysis
of the execution times in Table 4.1. It should be noted that these observation are
specific to SIMD systems and cannot be generalized for other parallel architectures.
The performance capabilities of the algorithms on other kinds of parallel systems need
to be investigated.

5. Conclusions and future research. Parallel strategies have been presented
for retriangularizing an n× n upper triangular matrix R after a rank-k change. The
first two algorithms are based on the SK annihilation scheme in [22] and solve the
updating problem by applying 2(k+ n− 2) CDGRs. However, these algorithms need
more CDGRs than the 2n − 3 CDGRs required to compute the QRD of Â in (1.3),
after forming the updating R + ZY T . Two block parallel strategies based on the
serial rank-1 algorithm and the recursive doubling method have also been described
for solving the rank-k UQRD problem.

The theoretical measures of complexity of the Givens algorithms hold for shared
memory machines where the number of processing elements is at least equal to the
maximum number of disjoint rotations that comprise a CDGR—that is, for parallel
systems of constant communication complexity that have enough processors to com-
pute and apply simultaneously all the disjoint Givens rotations at any step of the
algorithms. Generally, the performance of the algorithms will strongly depend on the
hardware and software characteristics of the target parallel machine. It is expected
that no single algorithm will be superior for all types of parallel architectures.

The block parallel algorithms will be suitable for execution on multiprocessor
multiple instruction stream–multiple data stream (MIMD) systems because of their
low communication overheads and heavy use of level 3 BLAS operations [2]. In con-
ventional SIMD systems the use of Householder algorithms which do not take into
consideration matrix structures are often found to outperform equivalent algorithms
which are based on CDGRs and which exploit the nonfull dense structure of the ma-
trices [9, 13, 15]. The advantage of employing a CDGR requiring less execution time
than a single Householder transformation is offset by the large number of CDGRs
applied to compute the factorizations.

The rank-k updating algorithms can be extended to solve the block downdating
QRD problem and the general linear model (GLM) [4, 13, 15, 17, 20]. One of the
methods for solving the block downdating QRD problem requires the QRD of the
square matrix B after computing the orthogonal factorization

GT

(
Q R
Z 0

)
=

(
D C
0 B

)
k
n
,

724 ERRICOS J. KONTOGHIORGHES

where
(
QT ZT

)
has orthogonal rows, Z ∈ �k×k and R ∈ �n×n are upper triangular

matrices, G is orthogonal, |D| = I, I is the identity matrix, |C| = |Â|, and Â denotes
the data deleted from the original data matrix. Within the context of the numerical
solution of the GLM, a generalized QRD (GQRD) of the full column rank Z ∈ �n×k
(n ≥ k) and an n× n upper triangular matrix R is computed [1, 7]. The GQRD of Z
and R is given by

QTZ =

(
Rz
0

)
k
n− k

, (QTR)P = Rn,

where Q and P are n×n orthogonal matrices and Rz and Rn are upper triangular [18,
21]. In some econometric applications, Z, and consequently, Rz, are block-diagonals
and R is defined by the Kronecker product C⊗I, where C is upper triangular [10, 12,
14]. It may be observed that the common feature of the rank-k UQRD problem and
the factorizations described here is the retriangularization of a triangular matrix after
it has been premultiplied by the orthogonal matrix of a QRD. Block generalization of
the parallel strategies reported in [7, 13] is currently being considered for solving the
downdating and GLM problems by exploiting their special properties.

Acknowledgments. The author is grateful to Maurice Clint, Denis Parkinson,
the anonymous referee, and the associate editor for their valuable comments and sug-
gestions. The author would like also to thank the Institut für Informatik, Fakultät für
Mathematik und Informatik, Friedrich-Schiller-Universität Jena, Germany for provid-
ing him access to the MasPar MP-2.

REFERENCES

[1] E. Anderson, Z. Bai, and J. J. Dongarra, Generalized QR factorization and its applications,
Linear Algebra Appl., 162 (1992), pp. 243–271.

[2] M. W. Berry, J. J. Dongarra, and Y. Kim, A parallel algorithm for the reduction of a non-
symmetric matrix to block upper-Hessenberg form, Parallel Comput., 21 (1995), pp. 1189–
1211.

[3] M. Cosnard, J.-M. Muller, and Y. Robert, Parallel QR decomposition of a rectangular
matrix, Numer. Math., 48 (1986), pp. 239–249.

[4] L. Eldén and H. Park, Block downdating of least squares solutions, SIAM J. Matrix Anal.
Appl., 15 (1994), pp. 1018–1034.

[5] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix
factorizations, Math. Comp., 28 (1974), pp. 505–535.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[7] E. J. Kontoghiorghes, Parallel Givens sequences for solving the general linear model on a
EREW PRAM, Parallel Algorithms Appl., 15 (2000), pp. 57–75.

[8] E. J. Kontoghiorghes, New parallel strategies for block updating the QR decomposition, Par-
allel Algorithms Appl., 5 (1995), pp. 229–239.

[9] E. J. Kontoghiorghes, Ordinary linear model estimation on a massively parallel SIMD com-
puter, Concurrency: Practice and Experience, 11 (1999), pp. 323–341.

[10] E. J. Kontoghiorghes, Parallel strategies for computing the orthogonal factorizations used in
the estimation of econometric models, Algorithmica, 25 (1999), pp. 58–74.

[11] E. J. Kontoghiorghes, Parallel Algorithms for Linear Models: Numerical Methods and Esti-
mation Problems, Advances in Computational Economics 15, Kluwer Academic Publishers,
Boston, MA, 2000.

[12] E. J. Kontoghiorghes, Parallel strategies for solving SURE models with variance inequalities
and positivity of correlations constraints, Comput. Econ., 15 (2000), pp. 89–106.

[13] E. J. Kontoghiorghes and M. R. B. Clarke, Solving the updated and downdated ordinary
linear model on massively parallel SIMD systems, Parallel Algorithms Appl., 1 (1993),
pp. 243–252.

RANK-K UPDATING OF THE QR DECOMPOSITION 725

[14] E. J. Kontoghiorghes and M. R. B. Clarke, An alternative approach for the numerical
solution of seemingly unrelated regression equations models, Comput. Statist. Data Anal.,
19 (1995), pp. 369–377.

[15] E. J. Kontoghiorghes and M. R. B. Clarke, Solving the general linear model on a SIMD
array processor, Comput. Artificial Intelligence, 14 (1995), pp. 353–370.

[16] E. J. Kontoghiorghes, M. Clint, and H.-H. Nägeli, Recursive least–squares using hybrid
Householder algorithms on massively parallel SIMD systems, Parallel Comput., 25 (1999),
pp. 1147–1159.

[17] S. Kourouklis and C. C. Paige, A constrained least squares approach to the general Gauss–
Markov linear model, J. Amer. Statist. Assoc., 76 (1981), pp. 620–625.

[18] B. De Moor and P. Van Dooren, Generalizations of the singular value and QR decomposi-
tions, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 993–1014.

[19] J. J. Modi and M. R. B. Clarke, An alternative Givens ordering, Numer. Math., 43 (1984),
pp. 83–90.

[20] C. C. Paige, Numerically stable computations for general univariate linear models, Comm.
Statist. Simulation Comput., 7 (1978), pp. 437–453.

[21] C. C. Paige, Some Aspects of Generalized QR Factorizations, in Reliable Numerical Com-
putation, M. G. Cox and S. J. Hammarling, eds., Clarendon Press, Oxford, UK, 1990,
pp. 71–91.

[22] A. H. Sameh and D. J. Kuck, On stable parallel linear system solvers, J. ACM, 25 (1978),
pp. 81–91.

[23] G. M. Shroff and C. H. Bishof, Adaptive condition estimation for rank-one updates of QR
factorizations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1264–1278.

DIFFERENCES IN THE EFFECTS OF ROUNDING ERRORS IN
KRYLOV SOLVERS FOR SYMMETRIC INDEFINITE LINEAR

SYSTEMS∗

GERARD L. G. SLEIJPEN† , HENK A. VAN DER VORST† , AND JAN MODERSITZKI‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 726–751

Abstract. The three-term Lanczos process for a symmetric matrix leads to bases for Krylov
subspaces of increasing dimension. The Lanczos basis, together with the recurrence coefficients,
can be used for the solution of symmetric indefinite linear systems, by solving a reduced system
in one way or another. This leads to well-known methods: MINRES (minimal residual), GMRES
(generalized minimal residual), and SYMMLQ (symmetric LQ). We will discuss in what way and to
what extent these approaches differ in their sensitivity to rounding errors.

In our analysis we will assume that the Lanczos basis is generated in exactly the same way for
the different methods, and we will not consider the errors in the Lanczos process itself. We will show
that the method of solution may lead, under certain circumstances, to large additional errors, which
are not corrected by continuing the iteration process.

Our findings are supported and illustrated by numerical examples.

Key words. linear systems, iterative methods, MINRES, GMRES, SYMMLQ, stability

AMS subject classifications. 65F10, 65N12

PII. S0895479897323087

1. Introduction. We consider iterative methods for the construction of approx-
imations to the solution of a linear system Ax = b, where A is supposed to be a
real symmetric n by n matrix. Without loss of generality, we assume x0 = 0. Let
rk = b−Axk (in particular, r0 = b) and

Kk(A;b) ≡ Span{b,Ab, . . . ,Ak−1b},

the k-dimensional Krylov subspace. The methods to be analyzed build the iterates
xk such that

1. xk ∈ Kk(A;b) and ‖b−Axk‖2 = min (GMRES, MINRES),
2. xk ∈ AKk(A;b) and ‖A−1b− xk‖2 = min (SYMMLQ).

With the standard three-term Lanczos process, we generate an orthonormal basis
v1, . . . ,vk for Kk(A;b), with v1 ≡ b/‖b‖2 . The three-term Lanczos process can be
recast in matrix formulation as

AVk = Vk+1T k,(1)

in which Vj is defined as the n by j matrix with columns v1, . . . ,vj , and T k is a k+ 1
by k tridiagonal matrix.

Paige [9] has shown that in finite precision arithmetic, the Lanczos process can
be implemented so that the computed Vk+1 and T k satisfy

AVk = Vk+1T k + Fk,(2)

∗Received by the editors June 17, 1997; accepted for publication (in revised form) by Z. Strakoš
March 28, 2000; published electronically October 25, 2000.

http://www.siam.org/journals/simax/22-3/32308.html
†Mathematical Institute, Utrecht University, P.O. Box 80.010, 3508 TA Utrecht, The Netherlands

(sleijpen@math.uu.nl, vorst@math.uu.nl).
‡Institute of Mathematics, Medical University of Lübeck, Wallstraße 40, 23560 Lübeck, Germany

(modersitzki@math.mu-luebeck.de).

726

ROUNDING ERRORS IN KRYLOV SOLVERS 727

with, under mild conditions for k,

‖Fk‖2 ≤ 2
√
k (7‖A‖2 +m1‖ |A| ‖2)u

(u is the machine precision, and m1 denotes the maximum number of nonzeros in any
row of A). Since ‖ |A| ‖2 ≤ √m1 ‖A‖2 (see Lemma A.1), we obtain the convenient
expression

‖Fk‖2 ≤ 2
√
k (7 +m1

√
m1) ‖A‖2 u.(3)

Popular Krylov subspace methods for symmetric linear systems can be derived
with formula (1) as a starting point: MINRES, GMRES (adapted to symmetric ma-
trices; see below), and SYMMLQ. The matrix T k can be interpreted as the restriction
of A with respect to the Krylov subspace, and the main idea behind these Krylov solu-
tion methods is that the given system Ax = b is replaced by a smaller system with T k
over the Krylov subspace. This reduced system is solved—implicitly or explicitly—in
a convenient way and the solution is transformed with Vk to a solution in the original
n-dimensional space. The main computational differences between the methods are
due to a different way of solution of the reduced system and to differences in the back
transformation to an approximate solution of the original system. We will describe
these differences in relevant detail in coming sections.

Of course, these methods have been derived assuming exact arithmetic; for in-
stance, the generating formulas are all based on an exact orthogonal basis for the
Krylov subspace. In numerical reality, however, we have to compute this basis, as
well as all other quantities in the methods, and then it is of importance to know
how the generating formulas behave in finite precision arithmetic. The errors in the
underlying Lanczos process have been analyzed by Paige [9, 10]. It has been proven
by Greenbaum and Strakoš [7] that rounding errors in the Lanczos process may have
a delaying effect on the convergence of iterative solvers but do not prevent eventual
convergence in general. Usually, a rigorous error analysis is on a worst case scenario,
and as a consequence, the error bounds cannot very well be used to explain differences
between these methods, as observed in practical situations.

In this paper, we propose a different way of analyzing these methods, different in
the way that we do not attempt to derive sharper upper bounds, but that we try to
derive upper bounds for relevant differences between these processes in finite precision
arithmetic. This will not help us to understand why any of these methods converges
in finite precision, but it will give us some insight in answering practical questions
such as the following.
• When and why is MINRES less accurate than SYMMLQ? This question was

already posed in the original publication [11], but the answer in [11, p. 625] is largely
speculative.
• Is MINRES suspect for ill-conditioned systems, because of the minimal residual

approach (see [11, p. 619])? Hints are given for the explanation of the observation
that MINRES may be more inaccurate than SYMMLQ [11, p. 625]. We will further
substantiate this. In [2, p. 43] an explicit relation is suggested between MINRES
and working with A2, and it is argued that its sensitivity to rounding errors of the
solution depends on κ2(A)2. (It is even stated: ‘the squared condition number of A2’,
implying κ2(A2)2 = κ2(A)4, which seems to be an unlucky formulation.)
•Why and when does SYMMLQ converge slower than, for instance, MINRES or

GMRES?

728 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

Choose x0

x = x0, r = b−Ax, ρ=‖r‖, v = r/ρ

β=0, β̃=0, c=−1, s=0

vold = 0, w = 0, ˜̃w = v

while |ρ| > tol do

ṽ← Av − β vold

α← v∗ ṽ, ṽ← ṽ − αv

β ← ‖ṽ‖, vold ← v, v← ṽ/β

�1←s α− c β̃, �2←s β

α̃←−s β̃ − c α, β̃←c β

�0←
√

α̃2 + β2, c← α̃/�0, s←β/�0

w̃← ˜̃w − �1w, ˜̃w←v − �2w

w←w̃/�0

x← x+ (ρ c)w, ρ←s ρ

end while

Fig. 1. The MINRES algorithm.

• Why does MINRES sometimes lead to rather large residuals, whereas the error
in the approximation is significantly smaller? See, for instance, observations on this
made in [11, p. 626]. Most important, understanding the differences between these
methods will help us in making a choice.

We will now briefly characterize the different methods in our investigation.

1. MINRES (see [11]): Determine xk = Vkyk, yk ∈ R
k, such that ‖b−Axk‖2

is minimal. This minimization leads to a small system with T k, and the
tridiagonal structure of T k is exploited to get a short recurrence relation for
xk. The advantage of this is that only three vectors from the Krylov subspace
have to be saved (in fact, MINRES works with transformed basis vectors; this
will be explained in section 2.3). For the implementation of MINRES that
we have used, see Figure 1.

2. GMRES (see [13]): This method also minimizes, for yk ∈ R
k, the residual

‖b−Axk‖2. GMRES was designed for unsymmetric matrices for which the or-
thogonalization of the Krylov basis is done with Arnoldi’s method. This leads
to a small upper Hessenberg system that has to be solved. However, when
A is symmetric, then, in exact arithmetic, the Arnoldi method is equivalent
to the Lanczos method (see also [6, p. 41]). Although GMRES is commonly
presented with an Arnoldi basis, there are various implementations of it that
differ in finite precision, for instance, with modified Gram–Schmidt, classical
Gram–Schmidt, Householder, and other variants. We view Lanczos as one
way to obtain an orthogonal basis, and therefore, we stick to the name GM-
RES. However, in order to stress the fact that our version of GMRES relies
on Lanczos, we will use the notation GMRES∗.

Due to the way of solution in GMRES∗ (and in GMRES), all the basis

ROUNDING ERRORS IN KRYLOV SOLVERS 729

Choose x0

x = x0, r = b−Ax, ρ=‖r‖, v = r/ρ

β=0, β̃=0, c=−1, s=0

vold = 0, V = [], z=[], k=0

while ρ > tol do

V← [V , v], k ← k + 1

ṽ← Av − β vold

α← v∗ ṽ, ṽ← ṽ − αv

β ← ‖ṽ‖, vold ← v, v← ṽ/β

�1 ← s α− c β̃, �2 ← s β

α̃← −s β̃ − c α, β̃ ← c β

�0 ←
√

α̃2 + β2, c← α̃/�0, s← β/�0

if k = 1

�� = [], R = [�0]

else

R←
[
R
�0

]
, ��← [�� , �1 , �0]

R← [R , ��T], ��← [�0 , �2]

end if

z ← [z T , cρ]T , ρ← s ρ

end while

x = x+V(R−1z)

Choose x0

x = x0, r = b−Ax, ρ=‖r‖, v = r/ρ

β=0, β̃=0, c=−1, s=0, κ = ρ

vold = 0, w = v, g=0, ˜̃g=ρ

while κ > tol do

ṽ← Av − β vold

α← v∗ ṽ, ṽ← ṽ − αv

β ← ‖ṽ‖, vold ← v, v← ṽ/β

�1←s α− c β̃, �2←s β

α̃←−s β̃ − c α, β̃←c β

�0←
√

α̃2 + β2, c← α̃/�0, s←β/�0

g̃←˜̃g − �1 g,
˜̃g←−�2 g, g← g̃/�0

x← x+ (g c)w + (g s)v

w← sw − cv, κ←
√

g̃2 + ˜̃g2
end while

Fig. 2. The GMRES∗ algorithm. The vec-
tor �0 for the expansion of the upper triangular
matrix R is a row vector of zeros of appropriate
size (different size at different occurrences).

Fig. 3. The SYMMLQ algorithm.

vectors vj have to be stored. For our implementation of GMRES∗, see Fig-
ure 2.

3. SYMMLQ (see [11]): Determine xk = AVkyk, yk ∈ R
k, such that the error

x−xk has minimal Euclidean length. It may come as a surprise that ‖x−xk‖2
can be minimized without knowing x, but this can be accomplished by re-
stricting the choice of xk to AKk(A;b). Conjugate gradient approximations
can, if they exist, be computed with little effort from the SYMMLQ infor-
mation. In the SYMMLQ implementation suggested in [11] this is used to
terminate iterations either at a SYMMLQ iterate or a conjugate gradient it-
erate, depending on which one is best. For the implementation of SYMMLQ
that we have used, see Figure 3.

Note that these methods can be carried out with exactly the same basis vectors
vj and tridiagonal matrices T j .

Notations. Quantities associated with n dimensional spaces will be represented
in boldface, like A and vj . Vectors and matrices on low dimensional subspaces are

730 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

denoted in normal mode: T , y. Constants will be denoted by lowercase Greek symbols,
with the exception that we will use u to denote the relative machine precision. The
absolute value of a matrix refers to elementwise absolute values, that is, |A| = (|aij |)
for A = (aij).

Most of our bounds on perturbations in the solutions at the kth iteration step will
be expressed as bounds for corresponding perturbations to the residual in the kth step,
relative to the norm of an initial residual. Since all these iteration methods construct
their search spaces from residual vector information (that is, they all start with r0 =
b), and since we make at least errors in the order of u ‖b‖2 in the computation of
the residuals, we may not expect perturbations of order less than uκ2(A)‖b‖2 in
the iteratively computed solutions. So, our bounds can only be expected to show
up in the computed residuals, if the errors are larger than the error induced by the
computation of the residuals itself.

2. Differences in round-off errors for MINRES and GMRES∗.

2.1. The basic formulas for GMRES∗ and MINRES in exact arithmetic.
We will first describe the generic formulas for the iterative methods MINRES and
GMRES∗, and we will assume exact arithmetic in the derivation of these formulas.

The aim is to minimize ‖b−Ax‖2 over the Krylov subspace, and since

‖b−Axk‖2 = ‖b−AVk yk‖2
= ‖b−Vk+1 T k yk‖2
= ‖T k yk − ‖b‖2 e1‖2,(4)

we see that a minimizer yk must be the linear least squares solution of the k + 1 by
k overdetermined system

T k yk = ‖b‖2e1.

This system is solved with Givens rotations, which leads to an upper triangular re-
duction of T k,

T k = Q
k
Rk,(5)

in which Rk is k by k upper triangular with bandwidth 3 and Q
k

is a k + 1 by k
matrix with orthonormal columns. Using (5), yk can be solved from

Rk yk = zk ≡ ‖b‖2QT

k
e1,

and since xk = Vkyk, we obtain

xk = VkR
−1
k Q

T

k
‖b‖2e1 = VkR

−1
k zk.(6)

The GMRES method, proposed for unsymmetric A in [13], can be characterized
by the specific order of computation in the above derivation, indicated by adding
parentheses:

xk = Vk(R−1
k Q

T

k
‖b‖2e1) = Vk(R−1

k zk).(7)

When A is symmetric, then Arnoldi’s method is equivalent to Lanczos’s method, so
that (7) describes GMRES for symmetric A (further referred to as GMRES∗). The

ROUNDING ERRORS IN KRYLOV SOLVERS 731

well-known disadvantage of this approach is that we have to store all columns of Vk
for the computation of xk.

MINRES follows essentially the same approach as GMRES for the minimization
of the residual, but it exploits the banded structure of Rk in order to get short
recurrences for xk and in order to save on memory storage.

Indeed, the computations in the generating formula (6) can be grouped as

xk =
(
VkR

−1
k

)
zk ≡Wk zk.(8)

For the computation of Wk = VkR
−1
k , it is easy to see that the last column of Wk is

obtained from the last two columns of Wk−1 and vk. This makes it possible to update
xk−1 = Wk−1 zk−1 to xk with a short recurrence, since zk follows from the kth Givens
rotation applied to the vector (z T

k−1, 0)T . This interpretation leads to MINRES.
We see that MINRES and GMRES∗ both use Vk, Rk, T k, Q

k
, and zk for the

computation of xk. Of course, we are not forced to compute these quantities in
exactly the same way for the two methods, but there is no reason to compute them
differently. Therefore, we will compare implementations of GMRES∗ and MINRES
that are based on exactly the same quantities in floating point finite arithmetic.

From now on we will study in what way MINRES and GMRES∗ differ in finite
precision arithmetic, given exactly the same set Vk, Rk, T k, Q

k
, and zk (all computed

in finite precision, too) for the two different methods. Hence, the differences in finite
precision between GMRES∗ and MINRES are only caused by a different order of
computation of the formula xk = VkR

−1
k zk, namely,

for GMRES∗: xk = Vk
(
R−1
k zk

)
,(9)

for MINRES: xk =
(
VkR

−1
k

)
zk.(10)

In finite precision, the relation (5) will not be satisfied exactly. Instead, we have
that [8, Theorem 18.4]

T k = Q
k
Rk +Gk, where ‖Gk‖F ≤ c k2 u ‖T k‖F +O(u2),(11)

with c a modest constant. The matrix Q
k

is orthogonal; it is the product of the exact
Givens rotations involved in the elimination of subdiagonal elements in the actually
computed reductions of T k.

2.2. Error analysis for GMRES∗. In order to understand the difference be-
tween GMRES∗ and MINRES, we will study in this section the computational errors
in Vk

(
R−1
k zk

)
, with respect to the exactly evaluated VkR

−1
k zk (given the computed

Vk, Rk, and zk). We will indicate actual computation in floating point finite precision
arithmetic by fl, and the result will be denoted by a .̂ Then, according to [4, p. 89],
in floating point arithmetic the computed solution ŷk = fl(R−1

k zk) satisfies

(Rk + ∆R)ŷk = zk, with |∆R| ≤ 3u |Rk|+O(u2).(12)

This implies that ŷk = (I+R−1
k ∆R)−1R−1

k zk, so that, apart from second order terms
in u, the error ∆1 in the computation of yk is

∆1 ≡ ŷk − yk = −R−1
k ∆RR

−1
k zk.

Here yk = R−1
k zk: yk is the exact value based on the computed Rk and zk. Then we

also make errors in the computation of xk, that is, we compute x̂k = fl(Vkŷk). With
the error bounds for the matrix vector product [8, p. 76], we obtain

x̂k = Vkŷk + ∆2, with |∆2| ≤ k u |Vk| |yk|+O(u2).(13)

732 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

Hence, the error ∆xk = x̂k − xk (where xk = VkR
−1
k zk), which can be attributed to

the evaluation of the generating formula (9) for GMRES∗, has two components:

∆xk = Vk∆1 + ∆2.(14)

This error leads to a contribution ∆rk to the residual, that is, ∆rk is that part of rk
that can be attributed to errors in the evaluation of (9) (ignoring O(u2) terms):

∆rk ≡ r̂k − rk = −A∆xk
= −AVk∆1 −A∆2r

= AVkR
−1
k ∆RR

−1
k zk −A∆2

= Vk+1T kR
−1
k ∆RR

−1
k zk −A∆2

= Vk+1Qk∆RR
−1
k zk −A∆2.

(15)

Note that in finite precision we have that AVk = Vk+1T k + Fk, and that, because
of (3), the term Fk leads to an additional contribution of O(u2) in ∆rk. This is also
the case in forthcoming situations where we replace AVk by Vk+1T k in the derivation

of upper bounds for error contributions. In a similar way, the error term GkR
−1
k in

the formula for T kR
−1
k (see (11)) leads to a O(u2) term.

Using the bound in (12) and the bound for ∆2, we get (skipping higher order
terms in u)

‖∆rk‖2 ≤ ‖Vk+1Qk‖2 3u ‖ |Rk| ‖2 ‖R−1
k zk‖2 + k u ‖A‖2 ‖ |Vk| ‖2‖yk‖2

≤ 3
√

3u ‖Vk+1‖2 ‖Rk‖2 ‖R−1
k zk‖2 + k

√
k u ‖A‖2 ‖R−1

k zk‖2
≤ 3

√
3u ‖Vk+1‖2 κ2(Rk) ‖b‖2 + k

√
k u ‖A‖2 ‖R−1

k ‖2 ‖b‖2.

Here we have used that ‖ |Rk| ‖2 ≤
√

3 ‖Rk‖2 (which follows from [15, Theorem 4.2];
see Lemma A.1 for details) and ‖ |Vk| ‖2 ≤ ‖Vk‖F ≤

√
k. The factor κ2 denotes the

condition number with respect to the Euclidean norm.
Note that we could bound ‖Vk+1‖2 by

‖Vk+1‖2 ≤
√
k + 1,

which is, because of the local orthogonality of the vj , a crude overestimate. According
to [12, p. 267 (bottom)], it may be more realistic to replace this factor

√
k + 1 by a

factor
√
m, where m denotes the maximum number of times that a Ritz value of Tk

has converged to any eigenvalue of A. When solving a linear system, this value of m
is usually small, e.g., 2 or 3.

We would like to replace Rk in the error bounds by something that can directly
be related to A. Therefore, we note that

R T

k Rk = T T

k T k,

ignoring errors in the order of u.
It has been shown in [5, 7] that the matrix T k that has been obtained in finite

precision arithmetic may be interpreted as the exact Lanczos matrix obtained from
a matrix Ã in which eigenvalues of A are replaced by multiplets. Each multiplet
contains eigenvalues that differ by O(u

1
4) from an original eigenvalue of A.1 With

1This order of difference is pessimistic; factors proportional to u
1
2 , or even u, are more likely but

have not been proved [6, section 4.4.2].

ROUNDING ERRORS IN KRYLOV SOLVERS 733

Ṽk we denote the orthogonal matrix that generates T k, in exact arithmetic, from Ã.
Hence,

T T

k T k = Ṽ
T

kÃ
T

ÃṼk,

so that

σmin(R T

k Rk) ≥ σmin(Ã
T

Ã) and σmax(R T

k Rk) ≤ σmax(Ã
T

Ã),

which implies (ignoring errors proportional to mild orders of u)

κ2(Rk) ≤ κ2(Ã) = κ2(A).(16)

This finally results in an upper bound for the error in the residual for GMRES∗,
which can be attributed to the evaluation of the generating formula (9):

‖∆rk‖2
‖b‖2 ≤ (3

√
3 ‖Vk+1‖2 + k

√
k)uκ2(A).(17)

Note that, even if there were only rounding errors in the representation of A or
b, then we may expect a perturbation ∆x to A−1b that is (in norm) up to the order
of u ‖A−1‖2 ‖b‖2. This corresponds to an error −A∆x in the residual, for which the
norm is up to the order of uκ2(A)‖b‖2. In this sense the stability of GMRES∗ is
optimal.

Our analysis for GMRES∗ has been restricted to certain parts of the algorithm.
For an analysis of all errors in the original GMRES, including those in the Arnoldi
process and the Givens rotations, for unsymmetric A, see [3].

2.3. Error analysis for MINRES. For MINRES we have to study the errors
in the evaluation in finite precision of

(
VkR

−1
k

)
zk.

We will first analyze the floating point errors introduced by the computation of
the columns of Wk = VkR

−1
k . The jth row wj,: of Wk satisfies

wj,:Rk = vj,:,

which means that in floating point finite precision arithmetic we obtain the solution
ŵj,: of a perturbed system:

ŵj,:(Rk + ∆Rj) = vj,:,(18)

with

|∆Rj | ≤ 3u |Rk|+O(u2).(19)

Note that the perturbation term ∆Rj depends on j. This gives ŵj,:Rk = vj,:−ŵj,:∆Rj ,
and when we combine the relations for j = 1, . . . , k, we obtain

Ŵk = (Vk + ∆W)R−1
k ,(20)

with

|∆W | ≤ 3u
∣∣∣Ŵk

∣∣∣ |Rk|+O(u2).(21)

We may replace Ŵk by Wk = VkR
−1
k in (21), because this leads only to O(u2) errors.

734 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

We also expect errors in the evaluation of x̂k = fl((VkR
−1
k)zk) because of finite

precision errors in the multiplication of Ŵk with zk:

x̂k = Ŵkzk + ∆3, with |∆3| ≤ k u |Wk | |zk|+O(u2).(22)

The errors in Ŵk and the error term ∆3 describe the errors that are due to the
evaluation of the generating formula for MINRES. Added together, they lead to
∆xk ≡ x̂k − xk (with xk = VkR

−1
k zk) related to MINRES

∆xk = ∆WR
−1
k zk + ∆3,(23)

and this leads to the following contribution to the MINRES residual:

∆rk ≡ r̂k − rk = −A∆xk = −A∆WR
−1
k zk −A∆3.(24)

If we use the bound (21) for ∆W , and use for other quantities bounds similar to
those for GMRES, then we obtain (again, ignoring O(u2) terms)

‖∆rk‖2 ≤ 3u ‖A‖2 ‖ |VkR−1
k | ‖2 ‖ |Rk| ‖2 ‖R−1

k zk‖2 + k u ‖A‖2 ‖ |VkR−1
k | ‖2 ‖zk‖2

≤ 3
√

3u ‖A‖2 ‖Vk‖F ‖R−1
k ‖2 ‖Rk‖2 ‖R−1

k ‖2 ‖b‖2
+ k u ‖A‖2 ‖Vk‖F ‖R−1

k ‖2 ‖b‖2
≤ 3
√

3u ‖Vk‖F κ2(A)2 ‖b‖2 + k uκ2(A) ‖Vk‖F ‖b‖2.

Here we have also used the fact that

‖ |VkR−1
k | ‖2 ≤ ‖VkR−1

k ‖F ≤ ‖Vk‖F ‖R−1
k ‖2,(25)

and, with ‖Vk‖F ≤
√
k, the expression can be further bounded.

This results in the following upper bound for the error contribution in the residual
for MINRES, due to the computational errors in the generating formula (10):

‖∆rk‖2
‖b‖2 ≤ 3

√
3k uκ2(A)2 + k

√
k uκ2(A).(26)

We see that the generating formula for MINRES leads to an upper bound for the
norm of the relative error in the residual that is proportional to the squared condition
number of A, whereas for GMRES∗ this led to an upper bound for the relative error
in norm proportional to the condition number only; see (17). This means that if we
plot the norms of the residuals for MINRES and GMRES∗, then the upper bounds
suggest that we may expect to see differences.

More specifically, they suggest that the difference between the norms of the com-
puted residuals for the two methods may be expected to be up to the order of the
square of the condition number. As soon as the norm of the computed residual of
GMRES∗ (involving all errors made in the process) gets below uκ2(A)2 ‖b‖2, then
this difference may be visible. Indeed, our experiments display a clear difference
between the residual norms for MINRES and GMRES∗, in the order of our upper
bounds.

2.4. Discussion. In Figure 4, we have plotted the residuals obtained for GMRES∗

and MINRES. Our analysis suggests that there may be a difference between both up
to the order of the square of the condition number times machine precision relative

ROUNDING ERRORS IN KRYLOV SOLVERS 735

to ‖b‖2. Of course, the computed residuals reflect all errors made in both processes,
and if all these errors together lead to perturbations in the same order for MINRES
and GMRES∗, then we will not see much difference in the norms of the residuals.
However, as we see, all the errors in GMRES∗ lead to something proportional to the
condition number, and now the effect of the square of the condition number is clearly
visible in the error in the residual for MINRES.

Our analysis implies that one has to be careful with MINRES when solving linear
systems with an ill-conditioned matrix A, especially when eigenvector components in
the solution, corresponding to small eigenvalues, are important.

The residual norm reduction ‖rk‖2/‖b‖2 for the exact (but unknown) MINRES
residual can be expressed as the product ρk ≡ |s1 · . . . ·sk| of the sines sk of the Givens
rotations; see [13, Proposition 1]. (See also (57) and its subsequent discussion). This
is the last ((k + 1)th) coordinate of the vector that is obtained by applying the k
Givens rotations (used for the annihilation of the subdiagonal elements of T k) to
the vector e1 (of length k + 1). In GMRES the computed value ρ̂k, computed with
the ŝk, is often used for monitoring the reduction of the residual norm. In practical
computations, a residual norm is not often computed explicitly at each iteration step
as ‖b − Ax̂k‖2, with x̂k the kth floating point approximate solution, because this
would require an extra matrix-vector product.

In Figure 4, we have also plotted the computed residual reduction factors ρ̂k for
MINRES and GMRES∗, as dotted curves. We see that the ρ̂k are only close to the
actual residual reductions (the drawn curves) until where these stagnate: for MINRES
this happens at a level proportional to κ2(A)2u, and for GMRES∗ this happens at a
level proportional to κ2(A)u.

We do not know whether the ρ̂k are always close to the actual residual reduction
factors before the latter ones stagnate because of errors due to the evaluation of the
generating formulas; this might be not the case if there is a severe loss of orthogonality
among the columns of Vk in an earlier phase of the iteration history.

We have not considered the question of how close to orthogonal Vk+1 should be,
but we have seen that the generating formula (10) for MINRES may lead to errors that
are in norm proportional to κ2(A)2u. Because the ρ̂k cannot reflect computational
errors in the solution of the reduced system (in fact, the derivation of the ρk assumes
exact solution of the reduced system), we should expect at least a deviation by that
order of magnitude in ρ̂k with respect to ‖Ax̂k − b‖2/‖b‖2. This suggests that the
computed reduction factor may be very unreliable for ill-conditioned matrices A.

The situation for GMRES∗ is much better: the errors introduced by the evaluation
of the generating formula (9) have the same order of magnitude as the errors that we
should expect from a small relative perturbation (of order O(u)) of the given system.

2.5. Diagonal matrices. Numerical analysts often carry out experiments for
(unpreconditioned) iterative solvers for symmetric systems with diagonal matrices,
because, at least in exact arithmetic, the convergence behavior depends on the dis-
tribution of the eigenvalues and the structure of the matrix plays no role in Krylov
solvers. However, the behavior of these methods for diagonal systems may be quite
different in finite precision, as we will now show, and, in particular for MINRES,
experiments with diagonal matrices may give a too optimistic view on the behavior
of the method.

Rotating the matrix from diagonal to nondiagonal (i.e., A = QTDQ, with D
diagonal and Q orthogonal, instead of A = D) has hardly any influence on the errors
in the GMRES∗ residuals (no results shown here). This is not the case for MINRES:

736 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

0 10 20 30 40 50 60 70 80 90
–14

–12

–10

–8

–6

–4

–2

0
Convergence history MINRES , A=Q’*diag(D)*Q, Q Givens

k

lo
g1

0(
|r

|)
 (

so
lid

 li
ne

),
 lo

g1
0(

|r
ho

|)
 (

do
tte

d
lin

e)

0 10 20 30 40 50 60 70 80 90
–14

–12

–10

–8

–6

–4

–2

0
Convergence history MINRES , A=Q’*diag(D)*Q, Q Givens

k

lo
g1

0(
|r

|)
 (

so
lid

 li
ne

),
 lo

g1
0(

|r
ho

|)
 (

do
tte

d
lin

e)

0 10 20 30 40 50 60 70 80 90
–14

–12

–10

–8

–6

–4

–2

0
Convergence history GMRES* , A=Q’*diag(D)*Q, Q Givens

k

lo
g1

0(
|r

|)
 (

so
lid

 li
ne

),
 lo

g1
0(

|r
ho

|)
 (

do
tte

d
lin

e)

0 10 20 30 40 50 60 70 80 90
–14

–12

–10

–8

–6

–4

–2

0
Convergence history GMRES* , A=Q’*diag(D)*Q, Q Givens

k

lo
g1

0(
|r

|)
 (

so
lid

 li
ne

),
 lo

g1
0(

|r
ho

|)
 (

do
tte

d
lin

e)

Fig. 4. MINRES (top) and GMRES∗ (bottom): solid line (—) log10 of ‖b − Ax̂k‖2/‖b‖2;
dotted line (· · ·) log10 of the estimated residual norm reduction ρk. The pictures show the results
for a positive definite system (the left pictures) and for an indefinite system (the right pictures).
For both examples κ2(A) = 3 · 108. To be more specific, at the left A = GDG′ with D diagonal,
D ≡ diag(10−8, 2 ·10−8, 2 : h : 3), h = 1/789, and G the Givens rotation in the (1, 30)-plane over an
angle of 45◦; at the right A = GDG′ with D diagonal D ≡ diag(−10−8, 10−8, 2 : h : 3), h = 1/389,
and G the same Givens rotation as for the left example; in both examples (and others to come) b is
the vector with all coordinates equal to 1, x0 = 0, and the relative machine precision u = 1.1 ·10−16.

experimental results (cf. Figure 5) indicate that the errors in the MINRES residuals for
diagonal matrices are of order uκ2(A), similar to GMRES∗. This can be understood
as follows.

If we neglect O(u2) terms, then, according to (18), the error, due to the inversion
of Rk, in the jth coordinate of the MINRES-xk, due to the evaluation of the generating
formula, is given by

(∆xk)j = (ŵj,: − wj,:)zk + (∆3)j = −vj,:R−1
k ∆RjR

−1
k zk + (∆3)j ,

where (∆3)j is the jth coordinate of ∆3 (see (22)).
When A is diagonal with (j, j)-entry λj , the error in the jth coordinate of the

MINRES residual is equal to (use (1) and (5))

(∆rk)j = λjvj,:R
−1
k ∆RjR

−1
k zk − λj(∆3)j

= eT
j AVkR

−1
k ∆RjR

−1
k zk − λj(∆3)j

= eT
j Vk+1Qk∆Rj

R−1
k zk − λj(∆3)j .

(27)

ROUNDING ERRORS IN KRYLOV SOLVERS 737

0 10 20 30 40 50 60 70 80 90
–14

–12

–10

–8

–6

–4

–2

0
Convergence history MINRES with A=diag(D)

k

lo
g1

0(
|r

|)
 (

so
lid

 li
ne

),
 lo

g1
0(

|r
ho

|)
 (

do
tte

d
lin

e)

0 10 20 30 40 50 60 70 80 90
–14

–12

–10

–8

–6

–4

–2

0
Convergence history MINRES with A=diag(D)

k

lo
g1

0(
|r

|)
 (

so
lid

 li
ne

),
 lo

g1
0(

|r
ho

|)
 (

do
tte

d
lin

e)
Fig. 5. MINRES: solid line (—) log10 of ‖b − Ax̂k‖2/‖b‖2; dotted line (· · ·) log10 of the

estimated residual norm reduction ρ̂k. The pictures show the results for a positive definite diagonal
system (the left picture) and for an indefinite diagonal system (the right picture). Except for the
Givens rotation, the matrices in these examples are equal to the matrices of the examples in Figure 4:
here G = I.

Therefore, in view of (19), and including the error term for the multiplication with

Ŵk (cf. (22)), we have for MINRES applied to a diagonal matrix

‖∆rk‖2
‖b‖2 ≤ (3

√
3‖Vk+1‖2 + k

√
k)uκ2(A),

which is the same upper bound as for the errors in the GMRES∗ residuals in (17).
The perturbation matrix ∆Rj

depends on the row index j. Since, in general, ∆Rj

will be different for each coordinate j, (27) cannot be expected to be correct for non-
diagonal matrices. In fact, if A = QT diag(λj)Q, with Q some orthogonal matrix,
then errors of order u ‖R−1

k ‖2 κ2(Rk) in the jth coordinate of xk can be transferred
by Q to an mth coordinate and may not be damped by a small value |λm|. More
precisely, if Γ is the maximum size of the off-diagonal elements of A that “couple”
small diagonal elements of A to large ones, then the error in the MINRES residual
will be of order Γu ‖R−1

k ‖2 κ2(R−1
k) ≤ Γu ‖A−1‖2 κ2(A). If Γ ≈ ‖A‖2, we recover

essentially the bound (26).

2.6. The errors in the approximations. In exact arithmetic we have that
‖xk‖2 = ‖VkR−1

k zk‖2 = ‖R−1
k zk‖2. We will in this section assume that, in finite pre-

cision, this also gives approximately the right order of magnitude for representations
of the solution

‖x̂k‖2 ≈ ‖xk‖2 = ‖yk‖2.

Then the errors (14) and (23), related to the evaluation of the generating formulas
(9) and (10), respectively, can be bounded by essentially the same upper bound:

‖∆xk‖2
‖x̂k‖2 � (3

√
3 + k

√
k)u ‖Vk‖2 κ2(Rk) ≤ (3

√
3k + k

√
k)uκ2(A).(28)

This may come as a surprise since the bound for the error contribution to the residual
for MINRES is proportional to κ2(A)2.

738 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

Based upon our observations in numerical experiments, we think that this can
be explained as follows. The error in the GMRES∗ approximation has its relatively
largest components mainly in the direction of the ‘small’ eigenvectors of A. These
components are relatively reduced by the multiplication with A, and then have less
effect to the norm of the residual.

On the other hand, the errors in the MINRES approximation are more or less of
the same magnitude over the spectrum of eigenvalues of A. Multiplication with A
will make error components associated with larger eigenvalues more effective in the
residual.

We will support our viewpoint by a numerical example. The results in Figure 6
are obtained with a positive definite matrix with two tiny eigenvalues. For b we took
a random perturbation of Ay in the order of 0.01: b = Ay + p, ‖p‖2 ≤ 10−2. This
example mimics the situation where the right-hand-side vector is affected by errors
from measurements. The solution x of the equation Ax = b has huge components in
the direction of the two eigenvectors with smallest eigenvalue. In the other directions
x is equal to y plus a perturbation of less than one percent. The coordinates of the
vector y in our example form a parabola, which makes the effects more easily visible.

The convergence histories of GMRES∗ and of MINRES (not shown here) for this
example with x0 = 0 are comparable to the ones in the left pictures of Figure 4, but,
because of a higher condition number, the final stagnation of the residual norm in the
present example takes place on a higher level (≈ 3 · 10−8 for GMRES∗ and ≈ 100 for
MINRES).

Figure 6 shows the solution xk as computed at the 80th step of GMRES (top
pictures) and of MINRES (bottom pictures); the right pictures show the component of
xk orthogonal to the two eigenvectors with smallest eigenvalue, while the left pictures
show the complete xk. Note that ‖xk‖2 ≈ 107. The curve of the projected GMRES∗

solution (top right picture) is a slightly perturbed parabola indeed (the irregularities
are due to the perturbation p). The computational errors from the GMRES∗ process
are not visible in this picture: these errors are mainly in the direction of the two
‘small’ eigenvectors.

In contrast, the irregularities in the MINRES curve (bottom right picture) are
almost exclusively the effect of rounding errors in the MINRES process.

3. Error analysis for SYMMLQ. In SYMMLQ we minimize the norm of
x − xk, for xk = x0 + AVkyk, which means that yk is the solution of the normal
equations

V T

k ATAVkyk = V T

k AT (x− x0) = V T

k r0 = ‖r0‖2 e1.
This system can be further simplified by exploiting the Lanczos relations (1):

V T

k ATAVk = T T

kV
T

k+1Vk+1T k = T T

k T k.

A stable way of solving this set of normal equations is based on an LQ decomposition
of T T

k , and this is equivalent to the transpose of the QR decomposition of T k (see
(5)), which is constructed for GMRES∗ and MINRES:

T T

k = R T

k Q
T

k
.

This leads to

T T

k T kyk = R T

k Rkyk = ‖r0‖2 e1,

ROUNDING ERRORS IN KRYLOV SOLVERS 739

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1.5

–1

–0.5

0

0.5

1

1.5
x 10

7 x_{GMRES*}

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
x_{GMRES*} proj on span(V(3:n))

sing. vectors V with increasing sing. values

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1.5

–1

–0.5

0

0.5

1

1.5
x 10

7 x_{MINRES}

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1.5

–1

–0.5

0

0.5

1

1.5

2
x_{MINRES} proj on span(V(3:n))

sing. vectors V with increasing sing. values

Fig. 6. The pictures show the solution x of Ax = b, computed with 80 steps of GMRES∗ (top
pictures) and of MINRES (bottom pictures). The ith coordinate of xk (along the vertical axis) is
plotted against i

n
(along the horizontal axis). A = Q∗DQ with D = diag(10−10, 2 · 10−10, 2 : h : 3),

h = 1/97 and Q unitary, Qij =

√
2

n+1
sin

i(n+1−j)
(n+1)π

, n = 100. b = Ay + p with yi = i
n
(1 − i

n
),

and p random, ‖p‖2 ≤ 0.01. The right pictures show the component of xk orthogonal to the two
eigenvectors with smallest eigenvalue, while the left pictures show the complete xk.

from which the basic generating formula for SYMMLQ is obtained:

xk = x0 + AVkR
−1
k R

−T

k ‖r0‖2 e1
= x0 + Vk+1T kR

−1
k R

−T

k ‖r0‖2 e1
= x0 + (Vk+1Qk) (L−1

k ‖r0‖2 e1),(29)

with Lk ≡ R T

k . We will further assume that x0 = 0 and hence r0 = b. This gives the
following generating formula:

xk = (Vk+1Qk) (L−1
k ‖b‖2 e1).(30)

The actual implementation of SYMMLQ [11] is based on an update procedure for
Vk+1Qk, and on a three-term recurrence relation for gk ≡ ‖b‖2 L−1

k e1.
The differences in finite precision between MINRES and GMRES∗ could be ana-

lyzed by studying the differences in the evaluation of the generating formula for these
methods (see (6)):

xk = VkR
−1
k Q

T

k
‖b‖2e1.(31)

740 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

Note that, because of Lk = R T

k , the generating formulas for the three methods
contain in principle the same computed ingredients Vk+1, Q

k
, Rk, and b. In fact, we

see no good reason for using differently computed values for each of the algorithms.
The methods MINRES and GMRES∗ have been characterized by a different or-

der of evaluation of essentially the same generating formula (see (9) and (10)). For
SYMMLQ we have a completely different generating formula which even in exact
arithmetic leads to completely different results. Observed differences in the results
for SYMMLQ, compared to MINRES and GMRES∗, can by no means be attributed
to computational errors. However, we have tried to make plausible that eventually
the norm of the residual for MINRES may be contaminated by a term proportional to
‖b‖2κ2(A)2u, which may lead to a stagnation of the residual norm at a significantly
higher level than for GMRES∗; see, for instance, Figure 4. Since SYMMLQ may be
considered as an alternative for MINRES (one reason is that it avoids storage of the
full Vk+1), it may be of interest to see whether computational errors in the generating
formula may have a similar polluting effect on the residual as for MINRES. Note that
even if we can answer this question, then this does not reveal all differences due to
rounding errors in MINRES and SYMMLQ. One reason could be that rounding errors
in Vk manifest themselves differently (because of the right multiplication with Q

k
),

although this does not seem very likely to us because of the (near) orthogonality of
Q
k
.
We postulate that the main factor, for ill-conditioned systems, in the upper bound

for the norm of the additional rounding errors in the residual for SYMMLQ, due to
the evaluation of the generating formula, comes from solving Lkgk = ‖b‖2e1 for gk.
In order to simplify our rather complicated analysis for SYMMLQ, we have chosen to
study only the effect of the errors introduced by this part of the formula.

The resulting error ∆xk is written as

∆xk = Vk+1Qk(ĝk − gk) with Lkgk = ‖b‖2 e1,(32)

where gk represents the exact solution and ĝk is the value obtained in finite preci-
sion arithmetic. We write gk/‖b‖2 = (γ1, . . . , γk)T , and likewise the coordinates of
ĝk/‖b‖2 are denoted by γ̂j . These coordinates can be written as

γk = eT

k L
−1
k e1, γ̂k = eT

k (Lk + ∆L)−1e1, with |∆L| ≤ 3u |Lk|+O(u2).(33)

In order to simplify our formulas, we will omit the O(u2) terms in the further analysis.
For the analysis of the residual, we will be interested in the term AVk+1Qk. Using

the relation for the finite precision Lanczos process, we have (cf. (2))

AVk+1Qk = Vk+2 T k+1Qk + Fk+1Qk.

Since Tk+3 is symmetric, we have for its submatrices that

T k+1 = T T

k+2 I k+1
,

where I
k+1

is the k + 3 by k + 1 left block of the k + 3-dimensional identity matrix.

Moreover, for the LQ decomposition in finite precision, we have (cf. (11))

T T

k+2 = Lk+2Q
T

k+2
+GT

k+2.

The matrix Q
k+2

is upper Hessenberg. Hence, I
k+1
Q
k

consists of the first k columns

of Q
k+2

and orthogonality of Q
k+2

implies that

QT

k+2
I
k+1
Q
k

= I
k
.

ROUNDING ERRORS IN KRYLOV SOLVERS 741

Hence, taking into account that Lk+2 = (�i,j) is lower tridiagonal (�i,j �= 0 only if
i ≤ j ≤ i+ 2),

AVk+1Qk = Vk+2 T k+1Qk + Fk+1Qk

= Vk+2Lk+2 I k + Vk+2G
T

k+2 I k+1
Q
k

+ Fk+1Qk

= VkLk + [vk+1,vk+2]Mk

[
eT

k−1

eT

k

]
+ F′

k+1,(34)

where Mk is the right 2 by 2 lower block of Lk+2 I k,

Mk ≡
[
�k+1,k−1 �k+1,k

0 �k+2,k

]
,

and

F′
k+1 ≡ Vk+2G

T

k+2 I k+1
Q
k

+ Fk+1Qk.

Note that, on account of (3) and (11),

‖F′
k+1‖2 ≤ c′ k2

√
k u ‖A‖2(35)

for some modest constant c′.
We will use that (Lk + ∆L)−1 = L−1

k − L−1
k ∆LL

−1
k (neglecting O(u2) terms;

cf. (33)). Then, from (34), we find for the residual r̂k corresponding to the computed
approximation x̂k = xk + ∆xk (see (32)),

r̂k ≡ b−Ax̂k = b−AVk+1Qk (Lk + ∆L)−1‖b‖2 e1
= b−VkLkL−1

k ‖b‖2e1 + VkLkL
−1
k ∆LL

−1
K ‖b‖2e1

−
(

[vk+1,vk+2]Mk

[
eT

k−1

eT

k

]
+ F′

k+1

)
(Lk + ∆L)−1‖b‖2 e1

= Vk∆L‖b‖2L−1
k e1 − ‖b‖2 [vk+1,vk+2] t̂k − F′

k+1 (Lk + ∆L)−1‖b‖2 e1,(36)

where

t̂k ≡Mk

[
eT

k−1

eT

k

]
(Lk + ∆L)−1e1.(37)

For the process where the system Lkgk = ‖b‖2e1 is solved exactly (∆L = 0), we have

rk ≡ b−Axk = −‖b‖2 [vk+1,vk+2] tk − F′
k+1L

−1
k ‖b‖2 e1,(38)

where

tk ≡Mk

[
eT

k−1

eT

k

]
L−1
k e1.

Neglecting order u2 terms (e.g., stemming from F′
k+1∆L), we conclude that the

error in the SYMMLQ residual rk, due to the solution of Lkgk = ‖b‖2 e1 in finite
precision, can be written as

∆rk ≡ r̂k − rk = ‖b‖2Vk∆LL
−1
k e1 − ‖b‖2 [vk+1,vk+2] (t̂k − tk).(39)

742 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

0 20 40 60 80 100 120 140
–15

–10

–5

0

5

10
Convergence history SYMMLQ , A=Q’*diag(D)*Q, Q Givens

k

lo
g1

0(
|r

|)
 (

so
lid

 li
ne

),
 lo

g1
0(

|r
ho

|)
 (

do
tte

d
lin

e)

0 10 20 30 40 50 60 70 80 90
–15

–10

–5

0

5

10
Convergence history SYMMLQ , A=Q’*diag(D)*Q, Q Givens

k

lo
g1

0(
|r

|)
 (

so
lid

 li
ne

),
 lo

g1
0(

|r
ho

|)
 (

do
tte

d
lin

e)
Fig. 7. SYMMLQ: solid line (—) log10 of ‖b − Ax̂k‖2/‖b‖2; dotted line (· · ·) log10 of the

estimated residual norm reduction ‖t̂k‖2. The pictures show the results for the positive definite
system (the left picture) and for the indefinite system (the right picture) of Figure 4. Both systems
have condition number 3 · 108.

To obtain a bound for norm of this error, note that (see (16))

‖Vk∆LL
−1
k e1‖2 ≤ 3u ‖Vk‖2 ‖ |Lk| ‖2 ‖Lk‖2 ≤ 3

√
3u ‖Vk‖2 κ2(Lk)

= 3
√

3u ‖Vk‖2 κ2(Rk) ≤ 3
√

3u ‖Vk‖2 κ2(A).
(40)

Since vk+1 and vk+2 are orthonormal up to machine precision, this leads to

‖∆rk‖2
‖b‖2 ≤ 3

√
3 ‖Vk‖2 uκ2(A) + (1 + c′u)‖t̂k − tk‖2(41)

for some modest constant c′. A straightforward estimate is

‖t̂k − tk‖2 =

∥∥∥∥Mk

[
eT

k−1

eT

k

]
L−1
k ∆LL

−1
k e1

∥∥∥∥
2

≤ 3
√

3uκ2(Lk)2 ≤ 3
√

3uκ2(A)2,(42)

which is much larger than the first term in (41). Experiments indicate that ‖t̂k− tk‖2
converges towards 0 (even below the value uκ2(A)). Below, we will explain why this
is to be expected (cf. (60)). Figure 7 illustrates that the upper bound in (41), with
‖t̂k − tk‖2 ≈ 0, is fairly sharp.

Accuracy. In exact arithmetic (where also Fk+1 = 0 and Gk+2 = 0), the norm
‖rk‖2 of the SYMMLQ residual is equal to ‖tk‖2 (as can be seen from (38)). There-
fore, the computed residual norm reduction ‖t̂k‖2 is usually used for monitoring the
convergence in a stopping criterion. In actual computations with SYMMLQ, no resid-
ual vectors are computed. To see how close ‖t̂k‖2 is to the reduction ‖r̂k‖2/‖b‖2 of
the norm of the actual residual, first note that rounding errors in the multiplication
in (37) by Mk and in (36) by [vk+1,vk+2] can be bounded by some modest mul-
tiple of uκ2(Lk).2 These bounds will be neglected in the estimates below: since
κ2(Lk) ≤ κ2(A) (see (16)), they are much smaller than the bound on ‖F′

k+1L
−1
k e1‖2

arising from (35). The rounding errors in vk+1 and vk+2 have a similar effect: these
vectors are orthonormal up to machine precision.

2Note the contrast in the effect of errors in the multiplication by Mk and in the solution of
Lkgk = e1 (cf. (42)).

ROUNDING ERRORS IN KRYLOV SOLVERS 743

From (36), (35), and (40), neglecting relatively small terms, it follows that
∣∣∣∣ ‖t̂k‖2 − ‖r̂k‖2‖b‖2

∣∣∣∣ ≤ ‖Vk∆LL
−1
k e1‖2 + ‖F′

k+1L
−1
k e1‖2 ≤ c′ k2

1
2 uκ2(A).(43)

Apparently, SYMMLQ is rather accurate since, for any method, errors in the
order uκ2(A) should be expected anyway.

Convergence. It is not clear yet whether the convergence of SYMMLQ is insen-
sitive to rounding errors in the assembly of xk (cf. (31)). This would follow from
(41) if both tk and t̂k would approach 0. It is unlikely that ‖tk‖2 will be (much)
larger than ‖t̂k‖2, that is, it is unlikely that the inexact process converges faster than
the process in exact arithmetic. Therefore, when it is observed that ‖t̂k‖2 is small
(of order uκ2(A)), it may be concluded that the speed of convergence has not been
affected seriously by rounding errors in the assembly of xk. In experiments, we see
that t̂k approaches zero if k increases.

For practical applications, assuming that ‖tk‖2 � ‖t̂k‖2, it is useful to know that
the computable value ‖t̂k‖2 informs us on the accuracy of the computed approximate
and on a possible loss of speed of convergence. However, it is of interest to know
in advance whether the computed residual reduction will decrease to 0. Moreover,
we would like to know whether ‖tk‖2 � ‖t̂k‖2. Of course, it is impossible to prove
that SYMMLQ will converge for any symmetric problem: one can easily construct
examples for which ‖rk‖2 will be of order 1 for any k < n. But, as we will analyze
in the next subsection, the interesting quantities can be bounded in terms of the
MINRES residual. That result will be used in order to show that the term ‖t̂k − tk‖2
will be relatively unimportant as soon as MINRES has converged to some degree.

3.1. A relation between SYMMLQ and MINRES residual norms. In
this subsection we will assume exact arithmetic (in particular, the underlying Lanczos
process is assumed to be exact, too). The residuals rMR

k and rME

k denote the residuals
of MINRES and SYMMLQ, respectively.

The norm of the residual b−Axb, with xb the best approximate of x in Kk(A;b),
i.e., ‖x−xb‖2 ≤ ‖x−y‖2 for all y ∈ Kk(A;b), can be bounded in terms of the norm
of the MINRES residual rMR

k :

‖b−Axb‖2
‖rMR

k ‖2
≤ κ2(A).(44)

This follows from the observation that rMR

k = b−AxMR

k , where xMR

k is from the same
subspace from which the best approximate xb has been selected, and furthermore,
that ‖b−Axb‖2 ≤ ‖A‖2 ‖x−xb‖2 and ‖x−xMR

k ‖2 ≤ ‖A−1‖2 ‖rMR

k ‖2. Unfortunately,
SYMMLQ selects its approximation xk from a different subspace, namely AKk(A;b).
This makes a comparison less straightforward.

The following lemma will be used for bounding the SYMMLQ error in terms of the
MINRES error. Its proof uses the fact that rMR

k connects Kk+1(A;b) and AKk(A;b),
that is, rMR

k ∈ Kk+1(A;b), rMR

k ⊥ AKk(A;b), and hence Kk+1(A;b) is spanned by
rMR

k and AKk(A;b).
Lemma 3.1. For each z ∈ Kk+1(A;b), we have

‖x− xME

k ‖22 ≤ ‖x− z‖22 + |αk|2 ‖rMR

k ‖22, where αk ≡ (x, rMR

k)

‖rMR

k ‖22
.(45)

744 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

Proof. By construction xME

k minimizes ‖x−z‖2 over all z in the space AKk(A;b).
Hence x−xME

k ⊥ AKk(A;b). Since rMR

k ⊥ AKk(A;b), it follows that (xME

k , r
MR

k) = 0,
and therefore,

αk = (x− xME

k , r
MR

k)/‖rMR

k ‖22 and x− xME

k − αkrMR

k ⊥ rMR

k .(46)

Since x− xME

k ⊥ AKk(A;b) and rMR

k ⊥ AKk(A;b), (46) implies that

x− xME

k − αkrMR

k ⊥ Kk+1(A;b).

By construction we have that xME

k − αkrMR

k ∈ Kk+1(A;b) and, as a consequence,

‖x− xME

k − αkrMR

k ‖2 ≤ ‖x− z‖2 for all z ∈ Kk+1(A;b).(47)

From Pythagoras’s theorem, with (46), we conclude that

‖x− xME

k ‖22 = ‖x− xME

k − αkrMR

k ‖22 + |αk|2‖rMR

k ‖22,
and (45) follows by combining this result with (47).

Unfortunately, a combination of (45) with z = xMR

k and the obvious estimate
|αk| ‖rMR

k ‖2 ≤ ‖x − xME

k ‖2 from (46) does not lead to a useful result. An interesting
result follows from an upper bound for |αk| that can be obtained from a relation
between two consecutive MINRES residuals and a Lanczos basis vector. This result
is formulated in the next theorem.

Theorem 3.2.

‖rME

k ‖2 ≤ νk+1 κ2(A) ‖rMR

k ‖2 with νk ≡ k + 1
2

ln(k).(48)

Proof. We use the relation

rMR

k = s2rMR

k−1 + c2rCG

k ,(49)

where

s ≡ ‖r
MR

k ‖2
‖rMR

k−1‖2
,(50)

and rCG

k is the kth conjugate gradient residual. The scalars s and c represent the
Givens transformation used in the kth step of MINRES. This relation is a special case
of the slightly more general relation between GMRES and FOM residuals, formulated
in [1, 16]. For symmetric A, GMRES is equivalent with MINRES, and FOM is
equivalent with CG.

Since rCG

k = ‖rCG

k ‖2vk+1 ⊥ rMR

k−1 ∈ Kk(A; r0), it follows that

rMR

k = s2rMR

k−1 + γvk+1,(51)

where γ = c2‖rCG

k ‖2.
Since γvk+1 ⊥ rMR

k−1 ∈ Kk(A; r0), it follows that ‖γvk+1‖2 ≤ ‖rMR

k ‖2. Moreover,
since rMR

k−1 ⊥ AKk−1(A; r0) and γvk+1 ⊥ Kk(A; r0), we have that rMR

k−1 ⊥ xME

k−1 and
γvk+1 ⊥ xMR

k . Therefore, with eME
j ≡ x− xME

j , relation (51) implies

|αk| ‖rMR

k ‖2 =

∣∣∣∣
(
x,

rMR

k

‖rMR

k ‖2

)∣∣∣∣ ≤ ‖r
MR

k ‖22
‖rMR

k−1‖22

∣∣∣∣
(
x,

rMR

k−1

‖rMR

k ‖2

)∣∣∣∣+

∣∣∣∣
(
x,
γvk+1

‖rMR

k ‖2

)∣∣∣∣

=
‖rMR

k ‖22
‖rMR

k−1‖22

∣∣∣∣
(
x− xME

k−1,
rMR

k−1

‖rMR

k ‖2

)∣∣∣∣+

∣∣∣∣
(
x− xMR

k ,
γvk+1

‖rMR

k ‖2

)∣∣∣∣ ,

ROUNDING ERRORS IN KRYLOV SOLVERS 745

and hence,

|αk| ≤ ‖e
ME

k ‖2
‖rMR

k−1‖2
+
‖x− xMR

k ‖2
‖rMR

k ‖2
.(52)

A combination of (52) and (45) with z = xMR

k+1 leads to

‖eME

k ‖22
‖rMR

k ‖22
≤ ‖x− x

MR

k+1‖22
‖rMR

k ‖22
+

(‖eME

k−1‖2
‖rMR

k−1‖2
+
‖x− xMR

k ‖2
‖rMR

k ‖2

)2

.(53)

With

βk ≡ ‖eME

k ‖2
‖A−1‖2 ‖rMR

k ‖2
,

and using the minimal residual property ‖rMR

k+1‖2 ≤ ‖rMR

k ‖2, we obtain the following
recursive upper bound from (53):

β2
k ≤ 1 + (βk−1 + 1)2.

Now, a simple induction argument, using

β0 =
1

‖A−1‖2
‖eME

0 ‖2
‖rMR

0 ‖2
=

1

‖A−1‖2
‖x‖2
‖b‖2 ≤ 1,

shows that βk ≤ νk+1, and the definition of βk implies

‖rME

k ‖2
‖rMR

k ‖2
≤ κ2(A)βk,(54)

which completes the proof.
For our analysis in section 3.2 of the additional errors in SYMMLQ, we also need

a slightly more general result, formulated in the next theorem.
Theorem 3.3. Let c = Ay for some y. Consider the best approximation yME

k of
y in AKk(A;b) and the yMR

k ∈ Kk(A;b) for which AyMR

k is the best approximation
of c in AKk(A;b).

Then, with νk as in (48), we have

‖c−AyME

k ‖2
‖rMR

k ‖2
≤ νk+1 κ2(A)µk, where µk ≡ sup

i≤k

‖c−AyMR
i ‖2

‖rMR
i ‖2

.(55)

Proof. The proof comes along the same lines as the proof of Theorem 3.2.
Replace the quantities x and xMR

k by y and yMR

k . Since the y quantities fulfill the
same orthogonality relations, (45) is valid also in the y quantities. This is also the case
for the upper bound for |αk| ‖rMR

k ‖2 = |(y, rMR

k /‖rMR

k ‖2)|. Hence, with eME
j ≡ y−yME

j ,
we have

‖eME

k ‖22
‖rMR

k ‖22
≤ ‖y − y

MR

k+1‖22
‖rMR

k ‖22
+

(‖eME

k−1‖2
‖rMR

k−1‖2
+
‖y − yMR

k ‖2
‖rMR

k ‖2

)2

.(56)

If we define β̂k ≡ βk/µk, we find that

β̂2
k ≤ 1 + (β̂k−1 + 1)2 and β̂0 =

1

µ0‖A−1‖2
‖eME

0 ‖2
‖rMR

0 ‖2
≤ 1.

746 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

Therefore, as in the proof of Theorem 3.2, β̂k ≤ νk+1, which implies (55).
For the relations between SYMMLQ and MINRES we have assumed exact arith-

metic, that is, we have assumed an exact Lanczos process as well as an exact solve of
the systems with Lk. However, we can exclude the influence of the Lanczos process
by applying Theorem 3.2 right away to a system with a Lanczos matrix Tm and initial
residual ‖r0‖2e1. In this setting, we have, for k < m, that [13, Proposition 1]

‖rMR

k ‖2 = ‖r0‖2 ρk, where ρk ≡ |s1 · . . . · sk|,(57)

with sj the sine in the jth Givens rotation for the QR decomposition of T k; ρk is the
estimated reduction of the norms of the MINRES residuals. Note that (57) is also an
immediate consequence of (50).

From relation (54) in combination with the fact that ‖rME

k ‖2 = ‖r0‖2 ‖tk‖2 (cf. (38),
where, in this setting, F′

k+1 = 0), we conclude that

‖tk‖2 ≤ ρk κ2(Tm) νk+1 with νk = k + 1
2

ln(k),(58)

for all m > k.
Note that inequality (58) is correct for any symmetric tridiagonal extension T̃m

of Tk+1: (58) holds with T̃m instead of Tm. It has been shown in [5] that there is an

extension T̃m of which any eigenvalue is in a O(u
1
4)-neighborhood of some eigenvalue

of A, and therefore, κ2(T̃m) ≈ κ2(A) in fairly good precision. This leads to our upper
bound

‖tk‖2 � ρk κ2(A) νk+1 with νk = k + 1
2

ln(k).(59)

In section 3.2, we will show that

‖t̂k − tk‖2 � 5u ρk κ2(A)2
(

1
6k

3 +O(k2 ln k)
)
.(60)

The upper bound in (60) contains a square of the condition number. However, in the
interesting situation where ρk decreases towards 0, the effect of the condition number
squared will be annihilated eventually.

Remark 3.4. Except for the constants k+O(k) and 1
6k

3+O(k2 ln k), the estimates
(59) and (60), respectively, appear to be sharp (see Figure 8).

Although the maximal values of the ratio of ‖t̂k − tk‖2/ρk in Figure 8 exhibit
slowly growing behavior, the growth is not of order k3. In the proof of (60) (cf.
section 3.2), upper bounds as in (59) are used in a consecutive number of steps. In
view of the irregular convergence of SYMMLQ, the upper bound (59) will be sharp
for at most a few steps. By exploiting this observation, one can show that a growth
of order k2, or even less, will be more likely.

3.2. SYMMLQ recurrences. In this section we derive the upper bound (60).
Suppose that the jth recurrence for the γi’s, with γi as defined in (33), is perturbed

by a relatively small δ and all other recurrence relations are exact:

δ = �jj γ̃j + �jj−1γj−1 + �jj−2γj−2 with |δ| ≤ µu |�jj | |γj |.(61)

The resulting perturbed quantities are labeled as .̃
Then

t̃k − tk = δMk

[
eT

k−1

eT

k

]
L−1
k ej .(62)

ROUNDING ERRORS IN KRYLOV SOLVERS 747

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8
SYMMLQ versus MINRES

lo
g1

0
of

quotient of the estimates of the residual norms: SYMMLQ / M INRES
0 20 40 60 80 100 120

–14

–12

–10

–8

–6

–4

–2

0

2

4

(e_k^t(L+Delta)\e1)./rho_k, |Delta|<eps*|L|, eps=2.958e13

lo
g1

0
of

perturbations in SYMMLQ

Fig. 8. Results for the indefinite matrix with condition number 3 · 108 (as in the right pictures)

of Figure 4 and Figure 7. The left picture shows log10 of the ratio ‖t̂k‖2/ρk of the estimated
residual norm reduction ‖t̂k‖2 of SYMMLQ and ρk for MINRES (cf. (59)). The right picture models

‖t̂k− tk‖2/ρk (cf. (60)) with an artificial random pertubation ∆̃L, |∆̃L| � |∆L|, and ∆L as in (33):

it shows the log10 of |eT
k (Lk + ∆̃L)−1e1/ρk − eT

k (Lk + ∆L)−1e1/ρk|, where |∆̃L| ≤ 3 · 10−13 |Lk|.

For j = 1, t̃k − tk is a multiple of the SYMMLQ residual for the Tm-system
(m > k) and, as in the proof of inequality (59), Theorem 3.2 could be applied for
estimating ‖t̃k − tk‖2. For the situation where j �= 1, Theorem 3.3 can be used.

To be more precise, we apply Theorem 3.3 with vi = ei, A = Tm, and c = ej .
Then we have (in the notation as indicated in Theorem 3.3),

yME

k = 0 (k < j), ‖ej − TmyME

k ‖2 =

∥∥∥∥Mk

[
eT

k−1

eT

k

]
L−1
k ej

∥∥∥∥
2

(k ≥ j),(63)

and

yMR

k = 0 (k + 1 < j), ‖ej − Tm yMR

k ‖2 = cj−1
ρk
ρj−1

≤ ρk
ρj−1

(k + 1 ≥ j),(64)

with cj−1 the cosine in the (j− 1)th Givens rotation. Note that ‖ej −Tm yMR
i ‖2/ρi ≤

1/ρj−1 for all i ≤ k. Therefore, by Theorem 3.3,∥∥∥∥Mk

[
eT

k−1

eT

k

]
L−1
k ej

∥∥∥∥
2

≤ κ2(Tm) νk+1
ρk
ρj−1

.(65)

For this specific situation, where yME
j−1 = 0, the estimate for βk in the proof of

Theorem 3.3 can be improved. If we take β̂k ≡ ρj−1βk, then we now have that

β̂2
k ≤ 1 + (β̂k−1 + 1)2 and β̂j−1 ≤ 1. This implies that ρj−1βk ≤ νk−j+2. Therefore,

the νk+1 in (65) can be replaced by νk−j+2.

A combination of (62) with (65) gives (cf. (58) and following discussion)

‖t̃k − tk‖2 ≤ |δ|
ρj−1

ρk κ2(Tm) νk−j+2 � |δ|
ρj−1

ρk κ2(A) νk−j+2.(66)

Using the definition ofMj and the recurrence relations for the γj , we can express tj−1

as

tj−1 =Mj−1

[
γj−2

γj−1

]
=

[−�jj γj
�j+1 j−1 γj−1

]
.

748 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

Therefore, from (59), we have that

|�jj | |γj |
ρj−1

≤ ‖tj−1‖2
ρj−1

≤ κ2(A) νj .(67)

Hence (cf. (61))

|δ|
ρj−1

≤ µuκ2(A) νj ,

and, with (66), this gives

‖t̃k − tk‖2 ≤ µu ρk κ2(A)2 νj νk−j+2.(68)

Because the recurrences are linear, the effect of a number of perturbations is
the cumulation of the effects of single perturbations. If each recurrence relation is
perturbed as in (61), then the estimate (60) appears as a cumulation of bounds as in
(68). The vector t̂k in (60) represents the result of these successive perturbations due
to finite precision arithmetic.

Finally, we will explain that the effect of rounding errors in solving L−1e1 can be
described as the result of successively perturbed recurrence relations (61), with µ = 5.
First we note that the γ̃k’s resulting from the perturbation

�jj γ̃j + �jj−1γj−1(1 + µ ξ) + �jj−2γj−2 = 0 with |ξ| ≤ u

are the same as those resulting from the perturbation

�j−1j−1γ̃j−1(1 + µ ξ) + �j−1j−2γj−2 + �j−1j−3γj−3 = 0 ,

which means that a perturbation to the second term in the jth recurrence relation
can also be interpreted as a similar perturbation to the first term in the (j − 1)th
recurrence relation.

Now we consider perturbations that are introduced in each recurrence relation
due to finite precision arithmetic errors. Let γ̂j represent the actually computed γj ,
then

γ̂j = −�jj−1γ̂j−1(1 + ξ′) + �jj−2γ̂j−2(1 + ξ′′)
�jj(1 + 2 ξ)

, with |ξ|, |ξ′|, |ξ′′| ≤ u,

and this can be rewritten, with different ξ and ξ′, as

�jj γ̂j(1 + 3 ξ) + �jj−1γ̂j−1(1 + 2 ξ′) + �jj−2γ̂j−2 = 0, with |ξ|, |ξ′| ≤ u.

Since the perturbation to the second term in this jth recurrence relation can be
interpreted as a similar perturbation to the first term in the (j − 1)th recurrence
relation (which was already perturbed with a factor (1 + 3ξ)), we have that the
computed γ̂j can be interpreted as the result of perturbing each leading term with a
factor (1 + 5ξ).

4. Discussion and conclusions. In Krylov subspace methods there are two
main effects of floating point finite precision arithmetic errors. One effect is that the
generated basis for the Krylov subspace deviates from the exact one. This may lead
to a loss of orthogonality of the Lanczos basis vectors, but the main effect on the

ROUNDING ERRORS IN KRYLOV SOLVERS 749

iterative solution process is a delay in convergence rather than misconvergence. In
fact, what happens is that we try to find an approximated solution in a subspace that
is not as optimal, with respect to its dimension, as it could have been.

The other effect is that the determination of the approximation itself is perturbed
with rounding errors, and this is, in our view, a serious point of concern; it has been
the main theme of this study. In our study we have restricted ourselves to symmetric
indefinite linear systems Ax = b. Before we review our main results, it should be
noted that we should expect upper bounds for relative errors in approximations for x
that contain at least the condition number of A, simply because we can in general not
compute Axk exactly. We have studied the effects of perturbations to the computed
solution through their effect on the residual, because the residual (or its norm) is
often the only information that we get from the process. This residual information is
often obtained in a cheap way from some update procedure, and it is not uncommon
that the updated residual may take values far smaller than machine precision (relative
to the initial residual). Our analysis shows that there are limits on the reduction of
the true residual because of errors in the approximated solution. For GMRES, this
observation has also been made in [3].

In view of the fact that we may expect at least a linear factor κ2(A), when
working with Euclidean norms, GMRES∗ (section 2.2) and SYMMLQ (section 3)
lead to acceptable approximate solutions. When these methods converge, then the
relative error in the approximate solution is, apart from modest factors, bounded
by uκ2(A). SYMMLQ is attractive since it minimizes the norm of the error, but
it does so with respect to A times the Krylov subspace, which may lead to a delay
in convergence with respect to GMRES∗ (or MINRES), by a number of iterations
that is necessary to gain a reduction by κ2(A) in the residual; see Theorem 3.2 (also
Figure 8). For ill-conditioned systems, this may be considerable.

As has been pointed out in [11], the conjugate gradient iterates can be constructed
with little effort from SYMMLQ information if they exist. For indefinite systems the
conjugate gradient iterates are well defined for at least every other iteration step,
and they can be used to terminate the iteration if this is advantageous. However,
the conjugate gradient process features no minimization property (in contrast to the
positive definite case) when the matrix is indefinite, and so there is no guarantee that
any of these iterates will be sufficiently close to the desired solution before SYMMLQ
converges.

For indefinite symmetric systems we see that MINRES may lead to large pertur-
bation errors: for MINRES the upper bound contains a factor κ2(A)2 (section 2.3).
This means that if the condition number is large, then the methods of choice are GM-
RES or SYMMLQ. Note that for the symmetric case, GMRES can be based on the
three-term recurrence relation, which means that the only drawback is the necessity
to store all the Lanczos vectors. If storage is at a premium, then SYMMLQ is the
method of choice.

If the given system is well conditioned, and if we are not interested in very accurate
solutions, then MINRES may be an attractive choice.

Of course, one may combine any of the discussed methods with a variation on iter-
ative refinement: after stopping the iteration at some approximation xk, we compute
the residual r(xk) = b−Axk, if possible in higher precision, and we continue to solve
Az = r(xk). The solution zj of this system is used to correct xk: xappr = xk+zj . The
procedure could be repeated, and eventually this leads to approximations for x so that
the relative error in the residual is in the order of machine precision (for more details

750 SLEIJPEN, VAN DER VORST, AND MODERSITZKI

on this, see [14]). However, if we would use MINRES, then, after restart, we have to
carry out at least a number of iterations for the reduction by a factor equal to the
condition number, in order to arrive at something of the same quality as GMRES∗,
which may make the method much less effective than GMRES∗. For situations where
κ2(A) ≥ 1/

√
u, MINRES may even be incapable of getting at a sufficient reduction

for the iterative refinement procedure to converge.
It is common practice among numerical analysts to test the convergence behavior

of Krylov subspace solvers for symmetric systems with well-chosen diagonal matrices.
This often gives quite a good impression of what to expect for nondiagonal matrices
with the same spectrum. However, as we have shown in our section 2.5, for MINRES
this may lead to a too optimistic picture, since floating point error perturbations with
MINRES for a diagonal matrix lead to errors in the residual (and the approximated
solution) that are a factor κ2(A) smaller than for nondiagonal matrices.

Appendix.
Lemma A.1. If, for a matrix C, nC = min(nc, nr) with nc the maximum number

of nonzeros per column and nr the maximum number of nonzeros per row, then

‖ |C| ‖2 ≤ √nC ‖C‖2.(69)

Proof. We prove the lemma with respect to columns; the row variant follows from
the fact that ‖BT‖2 = ‖B‖2 for any matrix B.

Since ‖ |C| ‖22 ≤ nC maxj
(∑

i |cij |2
)

(see [15, Theorem 4.2]), we have

‖ |C| ‖22 ≤ nC max
j
‖Cej‖22 ≤ nC ‖C‖22.

Acknowledgments. The writing of this paper has been an exercise in mod-
esty. We have to admit that it was only with extensive help of three anonymous
referees, who invested embarrassing amounts of time, that the present version of this
manuscript could be written. Somehow we seem to have developed a certain blind-
ness for inaccuracies in the often complicated formulas, in the course of expressing
our ideas. We are extremely thankful for the patience of the referees and for their
detailed advice.

REFERENCES

[1] P. N. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci.
Statist. Comput., 12 (1991), pp. 58–78.

[2] A. M. Bruaset, A Survey of Preconditioned Iterative Methods, Longman Scientific and Tech-
nical, Harlow, UK, 1995.

[3] J. Drkošová, A. Greenbaum, M. Rozložńık, and Z. Strakoš, Numerical stability of GM-
RES, BIT, 35 (1995), pp. 309–330.

[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The John Hopkins Univer-
sity Press, Baltimore, London, 1996.

[5] A. Greenbaum, Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences,
Linear Algebra Appl., 113 (1989), pp. 7–63.

[6] A. Greenbaum, Iterative Methods for Solving Linear Systems, Frontiers in Applied Mathe-
matics 17, SIAM, Philadelphia, PA, 1997.

[7] A. Greenbaum and Z. Strakoš, Predicting the behavior of finite precision Lanczos and con-
jugate gradient computations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 121–137.

[8] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[9] C. C. Paige, Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix,

J. Inst. Math. Appl., 18 (1976), pp. 341–349.
[10] C. C. Paige, Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigen-

problem, Linear Algebra Appl., 34 (1980), pp. 235–258.

ROUNDING ERRORS IN KRYLOV SOLVERS 751

[11] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[12] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall Ser. Comput. Math.,
Prentice-Hall, Englewood Cliffs, NJ, 1980.

[13] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[14] K. Turner and H. F. Walker, Efficient high accuracy solutions with GMRES(m), SIAM J.
Sci. Statist. Comput., 13 (1992), pp. 815–825.

[15] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math., 14
(1969/1970), pp. 14–23.

[16] H. A. van der Vorst and C. Vuik, The superlinear convergence behaviour of GMRES, J.
Comput. Appl. Math., 48 (1993), pp. 327–341.

MULTILEVEL ONE-WAY DISSECTION FACTORIZATION∗

ALAN GEORGE† , WEI-PAI TANG† , AND YA DAN WU†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 752–771

Abstract. Strategies for choosing an effective solver for a large sparse matrix equation are
governed by the particular application. In this article, the context is the numerical solution of
unsteady incompressible Navier–Stokes flow. When thousands of matrix equations differing only
in their right-hand sides must be solved, a multilevel one-way dissection scheme is an attractive
choice. This method has the property that large parts of the matrix factors are not stored; they are
(implicitly) regenerated as needed during the solution process. The resulting storage requirement is
competitive with those of preconditioned iterative methods. In addition, the efficiency at the solution
stage is much superior to the iterative competitors.

Analysis of the storage and operation counts for the multilevel one-way dissection is presented
along with numerical results for unsteady incompressible Navier–Stokes flow on a curvilinear grid.
The improvements in performance of our new methods over other competitive methods are significant.

Key words. multilevel, one-way dissection, ordering, incompressible flow

AMS subject classifications. 65F05, 65N06, 76D05

PII. S0895479898332564

1. Introduction. In solving the unsteady incompressible Navier–Stokes equa-
tions (INSE), the projection method and its numerous variants are very effective
finite difference methods (see, e.g., [2, 19, 20, 22]). With this method, the most time-
consuming task is the solution of a discretized Poisson equation for each time step.
For a complex region Ω, a curvilinear grid is required; in this work, a half-staggered
curvilinear grid [2, 14] is used. The purpose of the present study is to develop and vali-
date an effective Poisson solver for unsteady viscous incompressible flow with irregular
geometry.

Let the discretized Poisson equation on a half-staggered curvilinear grid be

Ax = f,(1.1)

where the discretized Poisson operator uses a nine-point stencil. For our two-
dimensional flow problems, the matrix size is between 40,000 and 330,000, where the
corresponding grid is from 200×200 to 550×600. The right-hand sides are unrelated
in time, and A is symmetric and semidefinite. In particular, A is singular and the
zero eigenvalue has two independent eigenvectors, which implies that the right-hand
side must meet two constraints1 (see [8, 10]). Since (1.1) is to be solved at every time
step for the unsteady INSE, an effective solver is crucial.

There are many methods which can be used for solving this problem. In gen-
eral, those methods fall into two classes: iterative methods (preconditioner based, or
multilevel based) and direct methods (factorization based). The choice is usually
governed by a combination of two requirements: storage and computation.

∗Received by the editors January 15, 1998; accepted for publication (in revised form) by S. Vavasis
May 13, 2000; published electronically October 31, 2000. This work was supported by the Natural
Sciences and Engineering Research Council of Canada.

http://www.siam.org/journals/simax/22-3/33256.html
†Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

(jageorge@sparse1.uwaterloo.ca, wptang@bryce1.uwaterloo.ca, y4wu@elora.uwaterloo.ca).
1For three-dimensional flow problems, the resulting Poisson operator is a 27-point stencil. There

are many more independent eigenvectors which are associated with the zero eigenvalue which causes
extra difficulties for many other iterative techniques. Our technique and analysis in this paper can
be extended to many three-dimensional problems. See [11].

752

MULTILEVEL DISSECTION 753

Multilevel-type methods are often particularly effective for Poisson operators.
However, for two-dimensional Navier–Stokes flow problems, since the Poisson operator
derived on a half-staggered grid has two independent eigenvectors associated with a
zero eigenvalue, there are two constraints which are imposed on the right-hand side
f . These constraints are difficult to satisfy on the coarse meshes. Consequently, the
potential of the multilevel methods cannot be fully realized for this type of problem.
In [13, 15] a comparison between a fast solver and a multigrid method on a nonuniform
rectangular half-staggered grid showed that the former is about 6 times faster than
the multigrid method. The solver presented in this study is an improvement over the
fast solver of [13] (in the solution stage).

For three-dimensional problems, the situation is even more challenging; there
are many more independent eigenvectors associated with the zero eigenvalue [11].
Moreover, the eigenvectors are difficult to compute.

For preconditioner-based iterative methods, the storage requirement is modest,
but a relatively large number of iterations is required because the problem is difficult
and a fine grid is required in order to obtain an acceptable resolution. As we will see
in section 4, for a medium-sized grid (250×250), PCG-ILU(2) [6] needs 238 iterations
to reduce the residual norm by a factor of 10−5.

Direct methods, on the other hand, are more effective in terms of computation
requirement in the solution stage, but the storage required for the matrix factors is
prohibitively large. For a 250 × 250 grid, direct methods using the natural ordering
can require up to 10 times the storage of methods proposed in this paper; even the
optimal nested dissection ordering requires twice the storage of this method (see Table
3.1).

For a two-dimensional INSE, any effective Poisson solver for this particular appli-
cation on a topologically rectangular p×q grid should meet the following requirements:

• Storage requirement ≈ O(pαqβ), α � 1, β = 1.
• Solution cost for each time step ≈ O(pαqβ), α � 1, β = 1.

That means the storage and solution cost are proportionally close to the number
of unknowns, or the ratios rise only slightly with the number of unknowns. Since
thousands of systems differing only in the right-hand side are to be solved, the cost
for the factorization or the construction of the preconditioner is not crucial because
it can be amortized over the large number of solution steps. This fact suggests that
the use of a one-way dissection (1WD) [9, 18] method as a solver may be attractive.

The multilevel 1WD methods are direct methods that share with iterative meth-
ods the property of being economical with memory. Only part of the factor is saved
during the factorization; the majority of the fill-ins in the off-diagonal blocks are
“thrown away” and (effectively) recomputed as required during each solution process.
This is the key to achieving good balance between storage requirement and solution
time. It is a direct method, since only a finite number of operations are required for
the solution. It also has the flavor of a domain decomposition iterative method, since
solutions on subdomains are repeatedly computed in one solution process. For the
details of using domain decomposition and preconditioners for solving compressible
Navier–Stokes problems, see [1].

In [12, 18], the one-level and two-level 1WD schemes were studied. For a rectan-
gular p×q grid problem, the storage requirement and the computational requirements
for factorization and solution are given in Table 1.1.

In this paper, 1WD methods using levels greater than two are analyzed. Their
utility and efficiency are demonstrated in the solving of some difficult flow problems

754 ALAN GEORGE, WEI-PAI TANG, AND YA DAN WU

Table 1.1
The storage requirement and the computational requirements for factorization and solution for

one-level and two-level 1WD on a p× q grid. The factorization cost for two-level 1WD is O(p
5
3 q2)

in [12, 18]; here it is improved to O(p
7
3 q).

Storage requirement Factorization cost Solution cost

One-level O(p
3
2 q) O(p

5
2 q) O(p

3
2 q)

Two-level O(p
4
3 q) O(p

7
3 q) O(p

4
3 q)

using very large grids. For clarity, we consider a five-point stencil equation in the
analysis. The generalization of our results to the nine-point stencil is straightforward.

In the next section, a brief description of the numerical method used for INSE is
presented. In particular, the characteristic of the Poisson operator derived from this
method is discussed. Section 3 describes the multilevel 1WD ordering method. Its
analysis is presented in section 4, with the detailed proofs provided in the appendices.
A comparison with PCG-ILU(2) and PCG-ILU(4) methods [6] is also presented to
demonstrate the new solver’s efficiency. Numerical results are listed in section 5.

2. Numerical method for INSEs. Consider the two-dimensional unsteady
INSE

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ grad p =

1

Re
div grad w,(2.1)

div w = 0.(2.2)

Here w = (u, v)′, with initial condition

w(x, y, 0) = w0(x, y) in Ω,

the constraint condition (2.2), and boundary condition

w(x, y, t) = wb(x, y, t) on ∂Ω.

The boundary condition on ∂Ω satisfies the consistency condition∮
∂Ω

wnds = 0.(2.3)

As noted earlier, for a region Ω with complex geometry, a curvilinear grid is often
required. We use a curvilinear half-staggered grid where the velocity is defined at the
nodes, and the pressure is defined at the center of the cell of discretization [15], as
depicted in Figure 2.1(a).

In the curvilinear coordinate system (ξ, η), the momentum equation (2.1) and
continuity equation (2.2) can be obtained by a smooth coordinate transformation:

x = x(ξ, η), y = y(ξ, η).

After the coordinate transformation, the computational region, which may be a union
of rectangles, is covered by a square mesh ∆ξ = ∆η = 1.

In the computational region (ξ, η), the partial derivatives of the transformation
functions are approximated by central differencing. Thus for each node point (i, j)

xξ ≈ xi+1,j−xi−1,j

2∆ξ ≡ xc, yξ ≈ yi+1,j−yi−1,j

2∆ξ ≡ yc,

xη ≈ xi,j+1−xi,j−1

2∆η ≡ xe, yη ≈ yi,j+1−yi,j−1

2∆η ≡ ye.

MULTILEVEL DISSECTION 755

+p
v vui-1,j-1 i-1,j-1

ui,j-1 i,j-1

u vi,j i,j

i,j

ui-1,j
vi-1,j

(a) Half-staggered cur-
vilinear grid.

i,jhi,jf

i,je

i,jg

i,j i,j

i,ji,j

o

ca bi,j

d

(b) Nine-point stencil.

2

-8

2

2 2

(c) Skewed five-point
stencil.

Fig. 2.1. Half-staggered curvilinear grid and the stencil of Poisson operator.

The transformation Jacobian at (i, j) is given by

J = xξyη − xηyξ ≈ xcye − xeyc ≡ s.

Now grad p is approximated at (i, j) by

Gp =
1

s

δ̄p
∆ξ

ye − δ̄p
∆η yc

− δ̄p
∆ξ

xe +
δ̄p
∆ηxc

 ,

where
δ̄p

∆ξ
=

1

2
(pi+1,j+1 + pi+1,j − pi,j+1 − pi,j)

and
δ̄p

∆η
=

1

2
(pi+1,j+1 + pi,j+1 − pi+1,j − pi,j).

If

R =

(
ye −yc
−xe xc

)
,

then Gp = 1
sR Ḡp, where Ḡp = (δ̄p∆ξ ,

δ̄p
∆η)

T . Here div w is approximated by 1
sDw,

and Dw = D̄ RTw = −(R Ḡ)Tw.
Let the INSE, upon central differencing discretization in the (ξ, η) space, be rep-

resented by

dw

dt
+ F(w, t) +Gp = 0(2.4)

and

Dw = 0,(2.5)

where F is a nonlinear operator corresponding to the convection and diffusion, includ-
ing the boundary condition and nonhomogeneous terms.

756 ALAN GEORGE, WEI-PAI TANG, AND YA DAN WU

The Crank–Nicholson scheme for (2.4) is

wn+1 − wn

∆t
+ H(wn,wn+1, tn+

1
2) + Gpn+

1
2 = 0,(2.6)

where H(wn,wn+1, t) is a consistent and smooth approximation of F(w, t).
Using the component-consistent pressure correction projection method [16] on

(2.6) and (2.5) yields

w̃n+1 − wn

∆t
+ H(wn, w̃n+1, tn+

1
2) + Gpn− 1

2 = 0,(2.7)

wn+1 − w̃n+1

∆t
+ Gφ = 0,(2.8)

and

Dwn+1 = 0,(2.9)

where w̃n+1 is the auxiliary velocity, and φ = pn+ 1
2 − pn−

1
2 . From (2.8) and (2.9), we

obtain the discrete Poisson equation

DGφ =
1

∆t
Dw̃n+1,(2.10)

where DG = −(R Ḡ)T (1sR Ḡ).
The solution procedure per time step is as follows:
1. Solve for w̃n+1 from (2.7).
2. Solve for φ from (2.10).
3. Update wn+1.
Obviously, the matrix resulting from the operator DG is symmetric and non-

positive. For the interior nodes on the computational region, DG is the nine-point
stencil operator as listed in Figure 2.1(b). The corresponding coefficients (ai,j , bi,j , . . . ,
hi,j and oi,j) at node (i, j) are as follows:

ai,j = Ai−1,j−1 + 2Bi−1,j−1 + Ci−1,j−1,
bi,j = −Ai−1,j−1 + Ci−1,j−1 −Ai,j−1 + Ci,j−1,
ci,j = Ai,j−1 − 2Bi,j−1 + Ci,j−1,
di,j = Ai−1,j−1 − Ci−1,j−1 +Ai−1,j − Ci−1,j ,
ei,j = Ai,j−1 − Ci,j−1 +Ai,j − Ci,j ,
fi,j = Ai−1,j − 2Bi−1,j + Ci−1,j ,
gi,j = −Ai−1,j + Ci−1,j −Ai,j + Ci,j ,
hi,j = Ai,j + 2Bi,j + Ci,j ,
oi,j = −(ai,j + bi,j + ci,j + di,j + ei,j + fi,j + gi,j + hi,j),

where

Ai,j ≡ 1

s
(x2
e + y2

e)|i,j , Bi,j ≡ −1
s
(xcxe + ycye)|i,j , Ci,j ≡ 1

s
(x2
c + y2

c)|i,j .

In particular, if the original curvilinear grid degenerates to an equally spaced square
grid, the Poisson operator is the well-known skewed five-point stencil as shown in
Figure 2.1(c). (See [10] for details.) In general, no pressure boundary condition is
given; if the velocity boundary condition is a Dirichlet condition, we use only this
velocity boundary condition to form (2.10). Thus, we get a Neumann condition for

MULTILEVEL DISSECTION 757

φ in (2.10). In [13], we have shown that the resulting Poisson operator has two inde-
pendent eigenvectors corresponding to zero eigenvalues. One is a constant vector and
the other has a checkerboard pattern. The singular system imposes extra constraints
on the right-hand side. When the multigrid method is used, the extra constraints
are difficult to satisfy on the coarse grid, which causes the method to converge very
slowly.

3. Multilevel 1WD ordering methods. The basic idea of one-level 1WD
ordering on a p× q topologically rectangular mesh2 is to choose k vertical grid lines,
i.e., separators (k is an integer satisfying (1 < k < q)), dissecting the grid into
k+1 roughly equal independent subdomains, each subdomain being approximately a
p× q−k

k+1 rectangular subgrid. The nodes in the subdomains are numbered row by row,
followed by those in the separators, as depicted in Figure 3.1(a). After reordering the
matrix A by one-level 1WD, the nonzero structure of A is as shown in Figure 3.1(b).
The equation (1.1) can be written as

Ax =

[
D11 CT

1

C1 D22

] [
xI
xS

]
=

[
fI
fS

]
,(3.1)

where D11 and D22 are symmetric diagonal blocks corresponding to the subdomains
and separators, respectively. In particular, D11 is a block diagonal matrix where each
of its diagonal blocks is a banded matrix with a very small bandwidth. This allows for
effective storage scheme of the factorization. The matrix C1 is a very sparse matrix
corresponding to the coupling terms between the subdomains and separators.

Applying block asymmetric LU factorization to A [12, Chapter 6] yields

A = LU =

[
D11 0
C1 I

] [
I D−1

11 CT
1

0 S1

]
,(3.2)

where the Schur complement S1 = D22 − C1D
−1
11 CT

1 is a symmetric matrix. Due to
the ordering, S1 is a block tridiagonal matrix (see Figure 3.1(c)). When the number
of the separators is large, S1 is a very sparse matrix.

The solution process of the block 2× 2 system involves the following:
1. Solve D11t1 = fI .
2. Compute t2 = fS − C1t1.
3. Solve S1xS = t2.
4. Solve D11(xI − t1) = −CT

1 xS .
During the solution process, only D11 and S1 are factored into LdL

T
d and LsL

T
s

by Cholesky decomposition, and only the nonzeros in Ld, C1, Ls are stored. That is,
only the diagonal blocks of the whole matrix factor corresponding to the separators
and subdomains are retained; the majority of the fill-ins in the off-diagonal blocks are
“thrown away” during the factorization. The nonzero structure in the lower triangular
factor is shown in Figure 3.1(c), where we only keep the black parts and throw away
the gray parts. The key step in the 1WD method is to eliminate the storage for
D−1

11 CT
1 by the extra computation in step 4.

An *-level (* > 1) 1WD is obtained by recursively applying the one-level 1WD on
the original grid * times, as depicted in Figures 3.2 and 3.3. These diagrams illustrate
the two-level and three-level 1WDs applied to a rectangular computational region, the
matrix structures induced by the 1WD ordering method, and the nonzero structure
of the lower triangular factors.

2It can be generalized to a union of rectangles.

758 ALAN GEORGE, WEI-PAI TANG, AND YA DAN WU

p

q

1 2 3 5 6

7 8 9 10 11

4

(a) An example of applying one-level 1WD
on a rectangular computational region. The
numbers indicate the order in which the
subdomains and separators are labeled.

(b) The matrix structure in-
duced by the one-level 1WD
ordering of (a).

(c) The matrix structure of the lower triangular factor.
The gray areas indicate the fill-ins in the off-diagonal
blocks, which are thrown away. Only elements in the
black areas are kept.

Fig. 3.1. One-level 1WD on a p× q grid.

We compared the number of nonzeros in the lower triangular factor for two- and
three-level 1WDs with the natural ordering and the nested dissection method. The
results for 150× 150 and 250× 250 grids are listed in Table 3.1. Note, in particular,
that the nested dissection ordering method needs twice as much storage as the three-
level 1WD method. We normalized the storage for two-level 1WD to one. Obviously,
the saving of 1WD in storage is significant compared with other direct methods. In

MULTILEVEL DISSECTION 759

29

p

q

3

5

25

26

27

28

1

4

2

6

(a) An example of applying two-level 1WD
on a rectangular computational region.

(b) The matrix structure in-
duced by the two-level 1WD
ordering of (a).

(c) The matrix structure of the lower triangular fac-
tor. The gray areas indicate the fill-ins in the off-
diagonal blocks, which are thrown away. Only ele-
ments in the black areas are kept.

Fig. 3.2. Two-level 1WD on a p× q grid.

Table 4.1, we can also see that the storage requirement of two-level 1WD is close to
that of the ILU(2) factorization.

4. Storage requirement, operation counts analysis. We present the anal-
ysis of storage requirement and operation counts for the solution stage and the fac-
torization stage in this section. First, consider the storage requirement for the *-level
1WD method. Our computational scheme requires that only the diagonal blocks of
the factor (i.e., Ld and Ls for one-level) and off-diagonal blocks of A (i.e., C1 for

760 ALAN GEORGE, WEI-PAI TANG, AND YA DAN WU

p

q

(a) An example of applying three-level
1WD on a rectangular computational re-
gion.

(b) The matrix structure in-
duced by the three-level 1WD
ordering of (a).

(c) The matrix structure of the lower triangular
factor. The gray areas indicate the fill-ins in
the off-diagonal blocks, which are thrown away.
Only elements in the black areas are kept.

Fig. 3.3. Three-level 1WD on a p× q grid.

Table 3.1
A comparison of storage requirement for different orderings.

Ordering algorithms
Grid size Natural 1WD 1WD 1WD Nested

ordering (1 level) (2 level) (3 level) dissection
150× 150 8.33 1.55 1. 0.89 1.81
250× 250 11.38 1.66 1. 0.84 1.73

MULTILEVEL DISSECTION 761

one-level) to be stored. Since each diagonal block of the factor is dense near the di-
agonal (see Figure 3.3(c)), we can use the envelope storage scheme described in [12];
i.e., for each row in the matrix, all the entries from the first nonzero in each row to
the diagonal are stored. These row portions are stored in contiguous locations in a
one-dimensional array. An auxiliary index vector is used to point to the start of each
row portion. This storage scheme requires less overhead storage compared with other
sparse matrix storage formats. In particular, the elimination of the indexing for each
individual nonzero reduces significant looping overhead in the solution stage. The off-
diagonal blocks of A are very sparse, and their nonzeros are stored in a compressed
sparse row format. The analysis of the storage requirement can be achieved in two
steps. First, we show the optimal storage needed for one-level 1WD. Then the general
case is a simple recursive result. The results are stated below, where the lower-order
terms are omitted; the detailed proofs are presented in appendices.

Theorem 4.1. For a p × q grid, the storage requirement S(l)(p, q) for *-level
1WD is approximately (omitting the lower-order terms)

(*+ 1)

(
3

2

) �
�+1

q p
�+2
�+1 +

5p q

4
− 5p2

2
− (*− 1)

(
3

2

) 1
�+1

q p
�

�+1 ,(4.1)

and the optimal number of the separators on the top level (first level) is kmin =

(2
3p�

)
1

�+1 q − 1.
Proof. See Appendix A.
An estimate of the operation count required to solve Ax = f by the solution

process described in the last section, assuming the diagonal blocks of the factor have
been given, is stated as Theorem 4.2 below.

Theorem 4.2. When the storage requirement for *-level 1WD is minimized, the
operation count θs

(l)(p, q) for the solution of a p × q grid problem is approximately
(omitting the lower-order terms)

2(2�+1 − 1)

(
3

2

) �
�+1

q p
�+2
�+1 + 5× 2�−2p q − 5p2.(4.2)

Proof. See Appendix B.
The storage requirements versus level for grid sizes from 200×200 to 1000×1000

are shown in Figure 4.1. For all of these grids, when the level goes up, the storage
requirement goes down. Also, when the grid size increases, the saving of storage in
using higher levels is more significant. Hence our interest in the use of higher levels
for very large problems. Figure 4.2 shows the solution operation counts versus level
for the corresponding grids. When the level goes up, the operation count increases
sharply if the grid is small, but it increases more slowly if the grid is large. Thus, we
can trade off storage requirements against computation time by choosing a suitable
level for a particular grid.

We compare the performance of the two-level 1WD with a preconditioned con-
jugate gradient (PCG) method which uses ILU(2) or ILU(4) as preconditioner. The
results from the simulation of driven polar cavity flows (Re=100) are listed in Ta-
ble 4.1. For a 250× 250 grid, the two-level 1WD is 91 times faster than PCG-ILU(2)
and 67 times faster than PCG-ILU(4). The largest grid used in our flow computa-
tions is 550×600, and for the larger grids the speed-up over iterative methods is even
greater. If the convergence criterion is less than 10−5, we will also anticipate even
greater advantage over iterative methods. The average storage requirement for each

762 ALAN GEORGE, WEI-PAI TANG, AND YA DAN WU

Fig. 4.1. Storage requirements of 1WD against level.

Fig. 4.2. Solution operation counts of 1WD against level.

grid node for the two-level 1WD is 7 percent more than that of PCG-ILU(2). It is
noteworthy that the multilevel 1WD method is even faster than the fast solver for

MULTILEVEL DISSECTION 763

Table 4.1
Comparison among two-level 1WD, PCG-ILU(2), and PCG-ILU(4) on average storage require-

ment for each grid node, iteration number, solution time required to reduce the residual norm by a
factor of 10−5 at each time step for PCG-ILU(2) and ILU(4), and factor time. The results are the
average value over 10 time steps (using SUN360 computer and Fortran 77 compiler).

Method
Grid Storage Number of Avg. sol. time Fact. time
size (per unknown) iterations (seconds) (seconds)

1WD(1-level) 150×150 29.2 1 0.68 56.2
1WD(2-level) 150×150 19.6 1 0.84 121.6
PCG-ILU(2) 150×150 21.7 138.6 57.0 3.3
PCG-ILU(4) 150×150 27.5 90.9 42.9 5.4
1WD(1-level) 250×250 37.68 1 2.64 387.7
1WD(2-level) 250×250 23.4 1 3.03 840.6
PCG-ILU(2) 250×250 21.8 238.8 280.9 9.3
PCG-ILU(4) 250×250 27.7 155.4 207.8 15.0

nonuniform grids reported on in [13]. In addition, the latter cannot be applied in the
curvilinear grid case.

The last column of Table 4.1 contains times for the factorization for both methods.
The times for our method are large; however, the factorization is done only once, so
this cost can be amortized over all the time steps. Since typically more than 1000
time steps are required, this cost is not a critical factor with respect to efficiency.

Theorem 4.3. When the storage requirement for *-level 1WD is minimized, the

factorization operation count θ
(l)
f (p, q) for a p× q grid is approximately (omitting the

lower-order terms)
one-level (* = 1):

θ
(1)
f (p, q) =

25

9

(
3

2

) 1
2

p
5
2 q +

3p2 q

4
− 13

6
p3 +O(p

3
2 q);

multilevel (* ≥ 2):

θ
(�)
f (p, q) =

(
2�+2 − 29

9

)(
3

2

) �
�+1

p
2�+3
�+1 q + α p2 q − 13

6
p3 +O(p

2�+1
�+1 q),

where α = 55
6 when * = 2, and α = 17× 2�−2 − 29

6 when * > 2.
Proof. See Appendix C.
It is interesting to explore the asymptotic behavior of the storage estimate. Let

N = p = q, which implies l ≤ 2(log2N − 1). When N → ∞, the optimal number of
separators on the top level (first level) kmin →

√
2−1. Then we may get the following

bound S∞ for the minimum storage requirement S(�)(p, q):

S∞ ≈ 2
√
2N2log2N +O(N2).

In practice, the number of the separators must be an integer. Assuming it is
kmin + β (0 < β < 1) on the top level (first level), then the approximate minimum
storage requirement S(�)(p, q) and its bound S∞ are, respectively,

S(�)(p, q) = (*+ 1)
(

3
2

) �
�+1 q p

�+2
�+1 + 5p q

4 − 5−3β
2 p2

−min{1, 5−3β
4 }(*− 1)

(
3
2

) 1
�+1 q p

�
�+1 ,

S∞ ≈ max{2, 7+3β
4 }
√
2N2log2N +O(N2).

764 ALAN GEORGE, WEI-PAI TANG, AND YA DAN WU

For solution and factorization operation counts, we need only to change the term 5p2

to (5−3β)p2, and 13
6 p3 to 13−7β

6 p3, respectively. For simplicity in analysis, we assume
the separator number k is real.

5. Numerical results. Numerical tests for the unsteady flows around a cylinder
and an aerofoil are described in the following.

5.1. Unsteady flow over a circular cylinder. The fundamental fluid dynam-
ics problem of a circular cylinder in uniform flow has been examined extensively in
both computational and experimental studies and is considered a stringent test for
flow solvers. The resulting flow field strongly depends on the Reynolds number.

Case I (low Reynolds numbers). For unsteady flow at Re = 100, the grid is
nonorthogonal and 400×400. At a Reynolds number higher than 40, any perturbation
excites an unsteady flow and eventually a periodic vortex shedding is established
generating the well-known Von Kármán vortex street forced by vortices which are
shed alternately with a distinct frequency from the top and bottom of the cylinder.
This phenomenon has been addressed in several previous numerical and experimental
works [4, 21]. In the present study, the formation of the vortex street is depicted
clearly in spanwise vorticity contours (Figure 5.1).

0 5 10 15 20

-4

-2

0

2

4

Fig. 5.1. Spanwise vorticity of circular cylinder at Re=100; dotted and solid lines denote
negative and positive levels, respectively.

Case II (high Reynolds numbers). The initial development of an impulsively
started flow at Re = 3000 and 9500 is simulated. At these Reynolds numbers, the
flow exhibits a rich vortex structure which makes the computation difficult. In the
following results, a 400×400 grid for Re = 3000 and 550×600 grid for Re = 9500 are
used. According to experimental results [3], at early times, the α-phenomenon and
the β-phenomenon are detected by visualization at Re = 3000 and 9500. The results
of the computation in Figure 5.2 demonstrate the ability of the method to capture the
α-phenomenon and β-phenomenon accurately. Its agreement with previous numerical
results [17] is also quite good.

5.2. NACA 0012 aerofoil. The impulsively started flow around NACA 0012 is
simulated at incidence 34◦ at Re = 1000. Figure 5.3 shows the streamlines of numerical
flow at T = 1.6 and 4. From the figure, it is clear that a Von Kármán vortex street is
created. The numerical results are in good agreement with experimental and previous
numerical results [5, 7].

MULTILEVEL DISSECTION 765

0.0 0.5 1.0 1.5

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(a) Re = 3000, T = 2.50.

0.0 0.2 0.4 0.6 0.8 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(b) Re = 9500, T = 1.00.

Fig. 5.2. Streamlines for impulsively started circular cylinder at Re = 3000 and 9500.

0.0 0.5 1.0 1.5

-0.5

0.0

0.5

(a) T = 1.6.

0.0 0.5 1.0 1.5

-0.5

0.0

0.5

(b) T = 4.0.

Fig. 5.3. Streamlines for impulsively started NACA 0012 aerofoil at Re = 1000, incidence 34◦.

6. Conclusion. An effective multilevel 1WD ordering method was presented to
solve a Poisson equation which resulted from the discrete unsteady INSEs on a two-
dimensional half-staggered curvilinear grid. This discrete Poisson equation is difficult
to solve iteratively, and no fast FFT-based direct methods are available [13]. The
multilevel 1WD ordering method provides a good balance between storage require-
ment and solution time. Storage and operation counts have been derived, and the
saving in storage is significant compared with other direct methods. The storage re-
quirement of the 1WD is close to that of PCG-ILU(2), and the solution time is 1–2
orders of magnitude less than that of competitive methods. Although the factoriza-
tion time is high, it can be amortized over the large number of solution steps, yielding
a significant overall saving. Some difficult flows involving very large grids have been
simulated, providing numerical results that are in good agreement with experimental
and previous numerical results.

766 ALAN GEORGE, WEI-PAI TANG, AND YA DAN WU

Appendix A. Storage requirement.
Proof of Theorem 4.1. First, we consider one-level 1WD method with k1 sep-

arators on a p × q grid. The separators dissect the grid into k1 + 1 roughly equal
independent subdomains, each subdomain being approximately a p× q−k1

k1+1 rectangu-
lar subgrid. After reordering A by the one-level 1WD, we partition A as in (3.1) and
factor A as in (3.2), and keep only the nonzeros in the lower triangular factors Ld, Ls
and the sparse matrix C1.

D11 is a block diagonal matrix having k1 + 1 diagonal blocks. Each diagonal

block is a p(q−k1)
k1+1 × p(q−k1)

k1+1 band matrix with bandwidth q+1
k1+1 . After the Cholesky

factorization, the number of nonzero elements in Ld is about

S(Ld) = (k1 + 1)× p(q − k1)

k1 + 1

q + 1

k1 + 1
.

Approximately,

S(Ld) ≤ p q2

k1 + 1
.

C1 is a k1p×p(q−k1) sparse matrix, with each row having two nonzero elements.
The storage requirement for C1 is

S(C1) = 2k1p.

The lower triangular factor Ls of matrix S1 has (k1 − 1) full blocks and k1 lower
triangular blocks, all of which are p× p matrices. The number of nonzero elements in
Ls is

S(Ls) = (k1 − 1)p2 +
k1p(p+ 1)

2
=

3k1p
2

2
+

k1p

2
− p2.

So, the total storage requirement S(p, q, k1) for one-level 1WD is

S(p, q, k1) = S(Ld) + S(C1) + S(Ls) ≤ p q2

k1 + 1
+
3k1p

2

2
+
5k1p

2
− p2.

Since k1 ≤ q/2, we can replace the lower-order term 5k1p
2 by its upper bound, and

then

S(p, q, k1) ≤ p q2

k1 + 1
+
3k1p

2

2
+
5p q

4
− p2.

Obviously, when k1 = kmin = (2
3p)

1
2 q − 1, the storage requirement S(p, q, k1)

approaches the minimum S(1)(p, q),

S(1)(p, q) = S(p, q, kmin) ≤ 2

(
3

2

) 1
2

q p
3
2 +

5p q

4
− 5p2

2
,

which is just (4.1) when * = 1.
Assuming the storage requirement for *-level (* ≥ 1) 1WD satisfies the formula

(4.1), we will show that the storage requirement of (* + 1)-level 1WD also satisfies
(4.1).

MULTILEVEL DISSECTION 767

For (* + 1)-level 1WD, let the number of separators in the top level (first level)
be k�+1. They dissect the p× q grid into k�+1 + 1 roughly equal independent subdo-

mains. Each subdomain is a p� × q� rectangular subgrid, where p� =
q−k�+1

k�+1+1 , q� = p.

These subgrids are ordered by *-level 1WD. The minimum storage for each subgrid is
approximately

(*+ 1)

(
3

2

) �
�+1

q� p
�+2
�+1

� +
5p� q�
4
− 5p2

�

2
− (*− 1)

(
3

2

) 1
�+1

q� p
�

�+1

� .

The storage requirements for C1 and Ls are 2k�+1p and 3k�+1p
2

2 + k�+1p
2 − p2,

respectively. Hence, the total storage for (*+ 1)-level 1WD is

S(p, q, k�+1) ≈ (k�+1 + 1)

[
(+ 1)

(
3
2

) �
�+1 q� p

�+2
�+1

� + 5p� q�
4

− 5p2
�
2

− (− 1)
(
3
2

) 1
�+1 q� p

�
�+1

�

]

+
3k�+1p

2

2
+

5k�+1p

2
− p2.

Substituting q−k�+1

k�+1+1 for p�, p for q�, we obtain approximately

S(p, q, k�+1) ≤ (*+ 1)
(

3
2

) �
�+1 p q

(
q

k�+1+1

) 1
�+1

+ 3k�+1p
2

2 + 5p q
4 − p2

− q2

k�+1+1 − (*− 1)
(

3
2

) 1
�+1 p q

�
�+1 (k�+1 + 1)

1
�+1 .

Consider the two highest-order terms,

(*+ 1)

(
3

2

) �
�+1

p q

(
q

k + 1

) 1
�+1

+
3kp2

2
.(A.1)

Obviously, (A.1) is minimum when k = kmin = (2
3p(�+1))

1
�+2 q − 1. Then letting

k�+1 = kmin, the storage for (*+ 1)-level approaches the minimum S(�+1)(p, q),

S(�+1)(p, q) = S(p, q, kmin) ≤ (+ 2)
(

3

2

) �+1
�+2

q p
�+3
�+2 +

5p q

4
− 5p2

2
− 	
(

3

2

) 1
�+2

q p
�+1
�+2 .

Appendix B. Operation count for solution.
Proof of Theorem 4.2. First, we consider one-level 1WD with k1 separators. In

the solution process, the matrix D11 is solved twice, which yields an operation count
of approximately

2× 2× S(Ld) ≤ 4p q2

k1 + 1
.

The matrix C1 is multiplied twice, which yields an operation count of approxi-
mately

2× S(C1) = 4k1p.

The matrix S1 is solved once, which yields an operation count of approximately

2× S(Ls) = 3k1p
2 + k1p− 2p2.

Therefore, the total operation count is approximately

4p q2

k1 + 1
+ 4k1p+ 3k1p

2 + k1p− 2p2 ≤ 4p q2

k1 + 1
+ 3k1p

2 +
5p q

2
− 2p2,

768 ALAN GEORGE, WEI-PAI TANG, AND YA DAN WU

where we have replaced the lower-order term 5k1p by its upper bound 5p q
2 . When

the storage requirement is minimized, i.e., k1 = (2
3p)

1
2 q− 1, the total operation count

θ
(1)
s (p, q) for solution is approximately

θ(1)
s (p, q) = 6

(
3

2

) 1
2

q p
3
2 +

5p q

2
− 5p2.

Assuming that (4.2) is valid for *-level 1WD, we will show that it is also valid for
(*+ 1)-level 1WD.

For (*+1)-level 1WD, we regard it as applying one-level 1WD with k�+1 separators
on a p × q grid and then applying *-level 1WD on the (k�+1 + 1) subgrids (each

subgrid is a p� × q� rectangular grid, where p� =
q−k�+1

k�+1+1 , q� = p). When the storage

is minimized for the subgrid, the operation count for solving each subgrid matrix is
approximately

2(2�+1 − 1)

(
3

2

) �
�+1

q� p
�+2
�+1

� + 5× 2�−2p� q� − 5p2
� .

There are k�+1+1 subgrids and all are solved twice during the solution process. That
yields an approximate operation count of

2× (k�+1 + 1)×
(
2(2�+1 − 1)

(
3

2

) �
�+1

q� p
�+2
�+1

� + 5× 2�−2p� q�

)
,

where the lower-order term p2
� is ignored. Adding operation counts due to C1 and

S1, i.e., 4k�+1p and 3k�+1p
2 + k�+1p − 2p2, the total operation count for solution is

roughly

2 × (k�+1 + 1) ×
(

2(2�+1 − 1)
(

3

2

) �
�+1

q� p
�+2
�+1

� + 5 × 2�−2p� q�

)
+ 3k�+1p

2 + 5k�+1p− 2p2.

Substituting q−k�+1

k�+1+1 for p�, p for q�, we obtain approximately

4(2�+1 − 1)

(
3

2

) �
�+1

p q

(
q

k�+1 + 1

) 1
�+1

+ 5× 2�−1p q + 3k�+1p
2 − 2p2.

Therefore, when storage requirement is minimized, i.e., k�+1 = (2
3p�+1)

1
�+2 q − 1, the

total operation count for solution is approximately

θ(�+1)
s (p, q) = 2(2�+2 − 1)

(
3

2

) �+1
�+2

q p
�+3
�+2 + 5× 2�−1p q − 5p2.

Appendix C. Operation count for factorization.
First, we introduce a theorem from [12].
Theorem C.1. The number of operations required to compute the triangular

factor L of the N ×N matrix A is given by

1

2

N−1∑
i=1

[φ(i)− 1][φ(i) + 2],

where φ(i) is the number of nonzeros in the ith column of L.
We now prove Theorem 4.3.
For one-level 1WD, the computation can be broken into three categories:

MULTILEVEL DISSECTION 769

1. The factorization of matrix D11. D11 is a block diagonal matrix having k1+1

blocks, and each block is a p(q−k1)
k1+1 × p(q−k1)

k1+1 band matrix with bandwidth
q+1
k1+1 . By Theorem C.1, the operation requirement for factoring matrix D11

is

1

2

p(q−k1)

k1+1 −1∑
i=1

(
q + 1

k1 + 1
− 1

)(
q + 1

k1 + 1
+ 2

)× (k1 + 1).

Assuming p, q are large enough, it is approximately

p q

2

(
q2 + 2q

(k1 + 1)2
+

q

k1 + 1

)
.

2. The factorization of matrix S1. This corresponds to factoring a kp×kp block
tridiagonal matrix having blocks of size p×p. By Theorem C.1, the operation
requirement for factoring matrix S1 is

1

2

[
(k1 − 1)

p∑
i=1

(p+ i− 1)(p+ i+ 2) +

p∑
i=1

(i− 1)(i+ 2)

]

=
7k1p

3

6
− p3 +

(3k1 − 2)p2

2
− 2k1p

3
.

3. The computation of matrix S1.

S1 = D22 − C1D
−1
11 CT

1 .

D11 is a block diagonal matrix having k1 + 1 blocks, and each block is a
p(q−k1)
k1+1 × p(q−k1)

k1+1 band matrix with bandwidth q+1
k1+1 . C1 is also a block matrix

having 2k1 blocks, and each block is a
p(q−k1)
k1+1 × p matrix. Considering that

C1 is very sparse and C1(D
−1
11 CT

1) is symmetric, we can use the method of
[12, 18] to compute D−1

11 CT
1 = L−T

d (L−1
d CT

1). When computing W = L−1
d CT

1 ,

leading zeros in Ld should be exploited; when computing W̃ = L−T
d W , the

computation should be stopped as soon as the last required element of W̃ has
been computed.
Then the operation count for computing D−1

11 CT
1 is

2k1 × (p− 1)× p(q − k1)(q + 1)

(k1 + 1)2
≈ 2p2 q2

k1 + 1
.

In each block of C1, there is only one nonzero entry in each row; hence the
operation count for computing C1(D

−1
11 CT

1) is

2k1 × p× 2p = 4k1p
2.

Therefore, the total computation requirement for the factorization for one-level
1WD ordering is approximately

p q

2

[
q2 + 2q

(k1 + 1)2
+

q

k1 + 1

]
+

7k1p
3

6
− p3 +

(3k1 − 2)p2

2
− 2k1p

3
+

2p2 q2

k1 + 1
+ 4k1p

2.

770 ALAN GEORGE, WEI-PAI TANG, AND YA DAN WU

When k1 = (2
3p)

1
2 q − 1, the expression above is approximately

25

9

(
3

2

) 1
2

p
5
2 q +

3p2 q

4
− 13

6
p3 +O(p

3
2 q).

For (*+ 1)-level (* ≥ 1) 1WD, we regard it as applying one-level 1WD with k�+1

separators on p × q grid and applying *-level 1WD on the (k�+1 + 1) subgrids (each

subgrid is a p� × q� rectangular grid, in which p� =
q−k�+1

k�+1+1 , q� = p).

When the storage requirement is minimum, the operation count for factoring
matrix D11 is approximately

(k�+1 + 1)× θ
(�)
f (p�, q�).

D11 is a block diagonal matrix having k�+1 +1 blocks, and each block is a p�× q�
grid problem which is ordered by *-level 1WD. C1 is also a block matrix having 2k�+1

blocks, and each block is a p(q−k�+1)
k�+1+1 by p matrix.3 Hence the operation count for

computing D−1
11 CT

1 is

2k�+1 × p× θ(�)
s (p�, q�),

and the operation count for computing C1(D
−1
11 CT

1) is

2k�+1 × p× 2p = 4k�+1p
2.

Adding the operation count for factoring S1, the total operation count for factorization
is approximately

θf (p, q, k�+1, p�, q�) = (k�+1 + 1)× θ
(�)
f (p�, q�) + 2k�+1 × p× θ

(�)
s (p�, q�)

+ 4k�+1p
2 + 7k�+1p

3

6 − p3 + (3k�+1−2)p2

2 − 2k�+1p
3 .

Let

p� =
q − k�+1

k�+1 + 1
, q� = p, k�+1 =

(
2

3p�+1

) 1
�+2

q − 1.

Then,

θf (p, q, k�+1, p�, q�) = θ
(�+1)
f (p, q).

3To make the derivation clear, we order all the nodes in subdomains first, followed by their
separators. In the real solution process we order the nodes as shown in Figures 3.2 and 3.3.

MULTILEVEL DISSECTION 771

REFERENCES

[1] T. J. Barth, T. F. Chan, and W. P. Tang, A parallel non-overlapping domain-decomposition
algorithm for compressible fluid flow problems on triangulated domains, Contemp. Math.,
218 (1998), pp. 23–41.

[2] J. B. Bell, P. Colella, and H. M. Glaz, A second-order projection method for the incom-
pressible Navier–Stokes equations, J. Comput. Phys., 85 (1989), pp. 257–283.

[3] R. Bouard and M. Coutanceau, The early stages of development of the wake behind an
impulsively started cylinder for 40 < Re < 104, J. Fluid Mech., 101 (1980), pp. 583–607.

[4] M. Coutanceau and J. R. Defaye, Circular cylinder wake configurations: A flow visualization
survey, Appl. Mech. Rev., 44 (1991), pp. 255–306.

[5] O. Daube, Ta Phuoc Loc, P. Monnet, and M. Coutanceau, Ecoulement instationnaire
décollé d’un fluide incompressible autour d’un profil: une comparaison théorie-expérience,
AGARD Conference Proceedings 386, Neuilly-sur-Seine, France, 1985, Paper 3.

[6] E. F. D’Azevedo, P. A. Forsyth, and W. P. Tang, Towards a cost-effective ILU precondi-
tioner with high level fill, BIT, 32 (1992), pp. 442–463.

[7] G. B. Deng, E. Guilmineau, J. Piquet, P. Queutey, and M. Visonneau, Computation of
unsteady laminar viscous flow past an aerofoil using the CPI method, Internat. J. Numer.
Methods Fluids, 19 (1994), pp. 765–794.

[8] M. Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal.
Numér., 11 (1977), pp. 341–354.

[9] A. George, Numerical experiments using dissection methods to solve n by n grid problems,
SIAM J. Numer. Anal., 14 (1977), pp. 161–179.

[10] A. George, L. C. Huang, W. P. Tang, and Y. D. Wu, Numerical simulation of unsteady in-
compressible flow Re ≤ 9500 on the curvilinear half-staggered mesh, SIAM J. Sci. Comput.,
21 (2000), pp. 2331–2351.

[11] A. George, L. C. Huang, W. P. Tang, and Y. D. Wu, Numerical solution for the time-
dependent three-dimensional incompressible Navier-Stokes equations on a curvilinear half-
staggered grid, in the Sixth Annual Conference of the Computational Fluid Dynamics Society
of Canada, University of Victoria, Victoria, British Columbia, Canada, 1998, pp. VIII-25–
VIII-30.

[12] A. George and J. W.-H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall, Englewood Cliffs, NJ, 1981.

[13] G. Golub, L. C. Huang, H. Simon, and W. P. Tang, A fast solver for incompressible Navier-
Stokes equations with finite difference methods, SIAM J. Sci. Comput., 19 (1998), pp. 1606–
1624.

[14] L. C. Huang, The numerical solution of the unsteady incompressible Navier-Stokes equations
on the curvilinear half-staggered mesh, J. Comput. Math, to appear.

[15] L. C. Huang, J. Oliger, W. P. Tang, and Y. D. Wu, Toward efficient and robust finite
difference schemes for unsteady incompressible Navier-Stokes equations—on the half stag-
gered mesh, in the Sixth International Symposium on Computational Fluid Dynamics, Lake
Tahoe, NV, 1995, pp. 467–472.

[16] L. C. Huang and Y. D. Wu, The component-consistent pressure correction projection method
for the incompressible Navier-Stokes Equations, Comput. Math. Appl., 31 (1996), pp. 1–21.

[17] P. Koumoutsakos and A. Leonard, High-resolution simulation of the flow around an impul-
sively started cylinder using vortex methods, J. Fluid Mech., 296 (1995), pp. 1–38.

[18] E. Ng, On One-Way Dissection Schemes, Master’s thesis, University of Waterloo, Waterloo,
Ontario, Canada, 1979.

[19] E. G. Puckett, A. S. Almgren, J. B. Bell et al., A high-order projection method for
tracking fluid interfaces in variable density incompressible flows, J. Comput. Phys., 130
(1997), pp. 269–282.

[20] M. Rosenfeld, D. Kwak, and M. Vinokur, A fractional step solution for the unsteady in-
compressible Navier-Stokes equations in generalized coordinate systems, J. Comput. Phys.,
94 (1991), pp. 102–137.

[21] E. M. Saiki and S. Biringen, Numerical simulation of a cylinder in uniform flow: Application
of a virtual boundary method, J. Comput. Phys., 123 (1996), pp. 450–465.

[22] J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible
flow, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 870–891.

SMOOTHNESS AND PERIODICITY OF SOME MATRIX
DECOMPOSITIONS∗

JANN-LONG CHERN† AND LUCA DIECI‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 772–792

Abstract. In this work we consider smooth orthonormal factorizations of smooth matrix-
valued functions of constant rank. In particular, we look at Schur, singular value, and related
decompositions. Furthermore, we consider the case in which the functions are periodic and study
periodicity of the factors. We allow for eigenvalues and singular values to coalesce.

Key words. constant rank, orthonormal factorizations, periodic matrices

AMS subject classifications. 15A, 65F, 65L

PII. S0895479899353622

1. Introduction. In the recent paper [6], Dieci and Eirola considered smooth
orthonormal factorizations of smooth time-dependent matrix-valued functions. The
purpose of the present work is to further the study of [6] in two distinct directions:

(i) extend some of the results of [6] to the case in which the function to be
factored has constant rank;

(ii) consider the case in which the function is periodic and study periodicity of
the factors.

Thus, we consider a k times differentiable matrix-valued function of real variable
t → A(t) and write A ∈ Ck(R,Fm×n), k ≥ 0, where we have F = C or R. We can
think of t as time, and in practice t may belong to an interval (open or close), or the
half line, rather than the whole real line, but this has no bearing on our results. If
all entries of A are periodic of period τ , then we will write A ∈ Ckτ (R,Fm×n). We
call Q ∈ F

m×n orthonormal if Q∗Q = I; in case m = n, we call Q unitary if F = C

and orthogonal if F = R. Also, in what follows, by Λ(B) we will indicate the set of
eigenvalues of the matrix B.

The study of functions with constant rank is important in applications related to
differential algebraic systems; for example, see [16, 5, 15] and especially [2, sections
2.4–2.5]. Periodic matrix-valued functions arise quite often in the study of dynamical
systems (e.g., see [20] and [11]), and it is clearly of interest being able to understand
not just the smoothness of the factors relative to their factorizations, but also the
periodicity of these factors.

Early study of both issues appear in the work of Sibuya; see [19]. Sibuya’s study
is about block diagonalization of matrix-valued functions with (two) disjoint groups
of eigenvalues, and he studied both smoothness and periodicity of the diagonalizing
transformation. Some of Sibuya’s results were later somewhat improved by work of
Eremenko (see [7]), but—as far as we could determine—Sibuya’s periodicity results
basically are still the best available. More recent study of factorization of analytic
functions with constant rank is implicit in the work of Bunse-Gerstner et al. (see [3]),

∗Received by the editors March 22, 1999; accepted for publication (in revised form) by A. Bunse-
Gerstner June 6, 2000; published electronically October 31, 2000. This work was supported in part
under NSF grants DMS-9625813 and DMS-9973266.

http://www.siam.org/journals/simax/22-3/35362.html
†Department of Mathematics, National Central University, Chung-Li 32054, Taiwan, Republic of

China (chern@math.ncu.edu.tw).
‡School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 (dieci@math.gatech.

edu).

772

MATRIX DECOMPOSITIONS: SMOOTHNESS AND PERIODICITY 773

who considered analytic singular value decompositions (SVD) for analytic matrix
functions. Some effort in the smooth, nonanalytic case for smooth SVDs of con-
stant rank functions can be found in the Ph.D. thesis of Pütz [17], who also tackles
computational issues.

Our chief contributions are twofold. On the one hand, we improve upon exist-
ing results, and give new results, about smoothness of constant rank functions, in
particular for the SVD and related factorizations such as Takagi’s factorization and
generalized SVD. On the other hand, we give new results in the periodic case in the
case of coalescing eigenvalues (singular values): we classify periodicity of the eigende-
composition in the Hermitian case and similarly for the SVD.

An outline of the paper is as follows. In the next section, we consider smooth
factorizations for smooth matrix-valued functions of constant rank. Then, in section
3 we consider the periodic case. To maintain focus on these two separate issues, we
found it convenient to split these two topics.

Remark 1.1. In [6], under some nondegenericity assumptions, differential equa-
tions were derived for the factors of the various decompositions examined. We have
also derived differential equations for (some of) the decompositions of section 2 of
the present work. However, we opted for purely algebraic proofs of the results of
section 2, since the arguments used are more in tune with those adopted to prove the
periodicity results of section 3 (and see also [19]), and it does not seem easy to use
the differential equations to obtain the periodicity results.

2. Orthonormal decompositions in the constant rank case. The most
important decomposition of this section is the SVD for functions of constant rank,
Theorem 2.4, from which most other decompositions follow. In order to prove this
result, we will make use of the following two lemmas, both of which are easy to prove,
and the first is certainly well known (e.g., see [6]).

Lemma 2.1 (QR decomposition). Let A ∈ Ck(R,Fm×n), m ≥ n, k ≥ 0, and
A(t) be full rank for all t. Then A admits a factorization A(t) = Q(t)R(t) for all t,
where Q ∈ Ck(R,Fm×n) is orthonormal and R(t) ∈ Ck(R,Fn×n) is upper triangular.
The factorization can be made unique by requiring R to have positive diagonal entries
(real even in the case F = C).

Proof. This follows at once upon using the standard Gram–Schmidt’s process on
the columns of A.

Lemma 2.2 (invariant subspaces lemma). Let A ∈ Ck(R,Fn×n) be Hermitian
(symmetric if F = R). Let Qi ∈ Ck(R,Fn×ni), i = 1, . . . , p, be orthonormal represen-
tations of separated invariant subspaces of A; that is, for fixed p and dimensions ni,
each Qi is orthonormal, n1 + · · ·+ np ≤ n, and

AQi = QiXi, Λ(Xi) ∩ Λ(Xj) = ∅, i 	= j, for all t.(2.1)

Then the matrix valued function Q :=
[
Q1, . . . , Qp

]
is orthonormal.

Proof. We need to verify that Q∗
jQi = 0 for i 	= j. Using (2.1) and X∗

i = Xi, we
have

Xj(Q
∗
jQi) = Q∗

jA
∗Qi = Q∗

jAQi = (Q∗
jQi)Xi.

From this we have the Lyapunov equation for Q∗
jQi,

(Q∗
jQi)Xi −Xj(Q

∗
jQi) = 0,

which has the unique solution Q∗
jQi = 0 since Λ(Xi) ∩ Λ(Xj) = ∅ for all t (see

[10]).

774 JANN-LONG CHERN AND LUCA DIECI

The next result was proven in [6] when k ≥ 1; our technique here is different and
is based on [19].

Theorem 2.3. Let A ∈ Ck(R,Fn×n), k ≥ 0, and assume that (with p fixed)
Λ(A) = Λ1 ∪ · · · ∪ Λp, where Λi ∩ Λj = ∅ for all t and i 	= j, i, j = 1, . . . , p. Further,
in case F = R, we will assume that det(Λi) ∈ R for all i. (This ensures that complex
conjugate eigenvalues are grouped together.) Then there exists unitary (orthogonal if
F = R) Q ∈ Ck(R,Fn×n) such that

Q∗(t)A(t)Q(t) =

[
T11 T12 ... T1p
0 T22 ... T2p
...
0 ... 0 Tpp

]
,(2.2)

where Λ(Tii) = Λi, i = 1, . . . , p. Moreover, if A is normal,1 then Tij ≡ 0, i 	= j, and
Tii, i = 1 . . . , p, are also normal.

Proof. Under the stated assumptions, [19, Theorem 3 and Remark 3] give the
block diagonalization

S−1(t)A(t)S(t) = diag(E11, . . . , Epp),(2.3)

where S ∈ Ck(R,Fn×n) and the diagonal blocks Eii correspond to the eigenvalues Λi,
for i = 1, . . . , p. By Lemma 2.1, we can choose Ck unitary Q and upper triangular R
such that S = QR. It is now enough to block partition R according to the partitioning
of (2.3) to obtain (2.2). Now consider the case of normalA. Let T := Q∗AQ; obviously

T is normal. Now, partition T in (2.2) as T = [T11 C

0 T̂
] and use TT ∗ = T ∗T to

obtain

C∗T11 − T̂C∗ = 0 for all t,

whose only solution is C = 0 (since Λ(T11)∩Λ(T̂) = ∅ for all t). An obvious induction
argument completes the proof.

We are now ready for the SVD of a constant rank matrix-valued function.
Theorem 2.4 (SVD). Let A ∈ Ck(R,Fm×n), m ≥ n and k ≥ 0, have constant

rank: rank(A(t)) = n − r for all t, r fixed: 0 ≤ r ≤ n − 1. Then there exist unitary
(orthogonal if F = R) U ∈ Ck(R,Fm×m) and V ∈ Ck(R,Fn×n) such that

U∗(t)A(t)V (t) = S =

[
S+ 0
0 0

]
,(2.4)

where S+ ∈ Ck(R,F(n−r)×(n−r)) is Hermitian (symmetric if F = R) positive definite.
Further, suppose that the continuous eigenvalues of S+ (i.e., singular values of

A), λ1, . . . , λn−r, satisfy

lim inf
τ→0

|λi(t+ τ)− λj(t+ τ)|
|τe| ∈ (0,∞](2.5)

for some e ≤ k and for all t and i 	= j. Then there exists unitary (orthogonal if
F = R) Q ∈ Ck−e(R,F(n−r)×(n−r)) such that Q∗S+Q = diag(λ1, . . . , λn−r). The
singular values can be taken to be Ck functions.

Proof. Consider the following Hermitian function:

B(t) =

[
0 A(t)

A∗(t) 0

]
.(2.6)

1A is normal if A∗A = AA∗.

MATRIX DECOMPOSITIONS: SMOOTHNESS AND PERIODICITY 775

Then B ∈ Ck(R,F(m+n)×(m+n)), and it is easily verified that

if λ(t) ∈ Λ(B(t)) ⇒ −λ(t) ∈ Λ(B(t)) for all t.(2.7)

We also have from (2.6)

rankB(t) = 2 rankA(t) = 2(n− r) for all t.(2.8)

Moreover, from Theorem 2.3, there exists unitary Q ∈ Ck(R,F(m+n)×(m+n)) such
that

Q∗(t)B(t)Q(t) =

S+(t) 0 0

0 S−(t) 0
0 0 0

 ,(2.9)

where S+, S− ∈ Ck(R,F(n−r)×(n−r)) are Hermitian, and S+/S− comprise all the pos-
itive/negative eigenvalues, respectively (S+/S− are positive/negative definite). Col-
umn partition Q according to (2.9), Q(t) =

[
Q1(t) Q2(t) Q3(t)

]
, and let

W1(t) = Q1(t) =

[
X(t)
Y (t)

]
, W2(t) =

[
X(t)
−Y (t)

]
,

whereX ∈ Ck(R,Fm×(n−r)), Y ∈ Ck(R,Fn×(n−r)), andW1,W2 ∈ Ck(R,F(m+n)×(n−r))
are orthonormal. Let

W (t) =
[
W1(t) W2(t) Q3(t)

]
,(2.10)

so that

BW1 = W1S+, BW2 = W2(−S+), BQ3 = Q30.

Upon using Lemma 2.2, we see that W (t) is unitary for all t and

W ∗(t)B(t)W (t) =

S+(t) 0 0

0 −S+(t) 0
0 0 0

 .(2.11)

Now, we set

U1(t) =
√
2X(t), V1(t) =

√
2Y (t),(2.12)

so that U1 ∈ Ck(R,Fm×(n−r)) and V1 ∈ Ck(R,Fn×(n−r)) are orthonormal and

A(t)V1(t) = U1(t)S+(t) and A∗(t)U1(t) = V1(t)S+(t) for all t.(2.13)

To complete the proof of (2.4), we need to get smooth orthonormal representations
for the kernel of the row and column space of A. We proceed as follows. Since
A∗A ∈ Ck(R,Fn×n), AA∗ ∈ Ck(R,Fm×m) are both of rank (n − r), by Theorem 2.3
there exist unitary (orthogonal if F = R) Q1 ∈ Ck(R,Fn×n) and Q2 ∈ Ck(R,Fm×m)
such that

Q∗
1(t)A

∗(t)A(t)Q1(t) =

[
M1(t) 0
0 0

]
, Q∗

2(t)A(t)A
∗(t)Q2(t) =

[
M2(t) 0
0 0

]
,

776 JANN-LONG CHERN AND LUCA DIECI

with M1, M2 ∈ Ck(R,F(n−r)×(n−r)), Hermitian and nonsingular. Partition

Q1(t) =
[
Q11(t) V2(t)

]
, Q2(t) =

[
Q22(t) U2(t)

]
,

so that we have

(U∗
2 (t)A(t)) (U

∗
2 (t)A(t))

∗ = 0, (A(t)V2(t))
∗ (A(t)V2(t)) = 0,

and thus

U∗
2 (t)A(t) = 0, A(t)V2(t) = 0 for all t.(2.14)

From (2.13) and (2.14) we have

(A(t)A∗(t))U1(t) = U1(t)S
2
+(t), (A(t)A∗(t))U2(t) = 0,

(A∗(t)A(t))V1(t) = V1(t)S
2
+(t), (A∗(t)A(t))V2(t) = 0.

(2.15)

Finally, let

U(t) =
[
U1(t) U2(t)

]
, V (t) =

[
V1(t) V2(t)

]
.(2.16)

Since 0 	∈ Λ(S+(t)), from (2.15) and Lemma 2.2, U(t) and V (t) are unitary (orthogo-
nal), and we obtain the desired result (2.4).

The second part of the theorem is a direct application of [6, Theorems 3.3 and
3.5].

The next two factorizations are straightforward applications of Theorem 2.4.
Corollary 2.5 (complete QR). Let A ∈ Ck(R,Fm×n), m ≥ n and k ≥ 0, be of

constant rank: rank(A) = n− r for all t, and fixed r: 0 ≤ r ≤ n−1. Then there exist
unitary Q ∈ Ck(R,Fm×m) and V ∈ Ck(R,Fn×n) such that

A(t)V (t) = Q(t)R(t) for all t,(2.17)

and R ∈ Ck(R,Fn×n) is of the form

R(t) =

[
R1(t) 0
0 0

]
(2.18)

with R1(t) ∈ F
(n−r)×(n−r) upper triangular and full rank for all t.

Proof. Use Theorem 2.4 to get U∗AV =
[
S+ 0
0 0

]
, and then use Lemma 2.1 to get

S+(t) = Q1(t)R1(t). Finally, let

Q(t) = U(t)

[
Q1(t) 0
0 Ir×r

]
, R(t) =

[
R1(t) 0
0 0

]
.

Corollary 2.6 (polar factorization). Let A ∈ Ck(R,Fm×n), m ≥ n and r ≥ 0,
be of constant rank: rank(A) = n− r for all t, and fixed r: 0 ≤ r ≤ n−1. Then there
exist orthonormal Q ∈ Ck(R,Fm×n) and Hermitian (symmetric) positive semidefinite
P ∈ Ck(R,Fn×n) such that

A(t) = Q(t)P (t) for all t.(2.19)

Proof. From Theorem 2.4 we have A(t) = U1(t)S1(t)V
∗(t) with S1 =

[
S+ 0
0 0

] ∈
Ck(R,Fn×n) and S+ positive definite for all t. Here, U1 are the first n columns of

MATRIX DECOMPOSITIONS: SMOOTHNESS AND PERIODICITY 777

U and S1 are the first n rows of S in Theorem 2.4. Thus, it is enough to rewrite
A(t) = (U1(t)V

∗(t))(V (t)S1(t)V
∗(t)) = Q(t)P (t).

The next factorization is encountered in a number of applications; see [1, 12, 18]
and see [4] for numerical study. The smoothness of its factors is proved similarly to
how we proved Theorem 2.4.

Theorem 2.7 (Takagi’s factorization). Let A ∈ Ck(R,Cn×n) be a complex sym-
metric matrix valued function (i.e., AT = A) of constant rank: rank(A(t)) ≡ n − r
for all t for fixed r : 0 ≤ r ≤ n− 1. Then there exists unitary U ∈ Ck(R,Cn×n) such
that

A(t) = U(t)

[
S+ 0
0 0

]
UT (t) for all t,(2.20)

and S+ ∈ Ck(R,R(n−r)×(n−r)) is symmetric positive definite.
Moreover, suppose that the continuous eigenvalues of S+, λ1, . . . , λn−r, satisfy

(2.5) for some e ≤ k and for all t and i 	= j. Then there exists orthogonal Q ∈
Ck−e(R,R(n−r)×(n−r)) such that QTS+Q = diag(λ1, . . . , λn−r). The eigenvalues can
be taken to be Ck functions.

Proof. If A is complex symmetric, then A(t) = B(t) + iC(t), where B,C ∈
Ck(R,Rn×n) are symmetric. Consider the symmetric function M ∈ Ck(R,R2n×2n),

M(t) =

[
B(t) C(t)
C(t) −B(t)

]
,(2.21)

and notice that we have rank(M) = 2(n− r) for all t; this fact follows from

(1/2)
[
In −iIn

−iIn In

]
M∗(t)M(t)

[
In −iIn

−iIn In

]∗
=
[
A∗(t)A(t) 0

0 A(t)A∗(t)

]
.

Thus, similarly to the proof of Theorem 2.4, we now obtain the Ck block Schur de-
composition of M :

WT (t)M(t)W (t) =

S+(t) 0 0

0 −S+(t) 0
0 0 0

 ,(2.22)

where S+ ∈ R
(n−r)×(n−r) is symmetric positive definite, and W is orthogonal of the

form W =
[
W1 W2 Q3

]
with W1 = [X−Y] and W2 = [Y

X
]. Now let

U1(t) = X(t)− iY (t) for all t,(2.23)

so that U1 ∈ Ck(R,Cn×(n−r)) is orthonormal and

A(t) = U1(t)S+(t)U
T
1 (t).(2.24)

Next, let P1(t) = U1(t)U
∗
1 (t). Then rank(P1(t)) = n − r for all t, and from Theo-

rem 2.3 there exists unitary V ∈ Ck(R,Cn×n) such that V ∗(t)P1(t)V (t) =
[
P11(t) 0

0 0

]
,

with P11 ∈ C
(n−r)×(n−r), Hermitian. Write V (t) =

[
V1(t) V2(t)

]
, and let

U(t) =
[
U1(t) V2(t)

]
.(2.25)

Then, since V ∗
2 P1V2 = (U∗

1V2)
∗(U∗

1V2) = 0, we get V ∗
2 U1 = 0, and so U(t) is unitary.

Moreover, trivially

A(t) = U(t)

[
S+(t) 0
0 0

]
UT (t),

778 JANN-LONG CHERN AND LUCA DIECI

and (2.20) follows.
Finally, the statement about being able to eigendecompose S+ under the assump-

tion (2.5) is again a direct consequence of [6, Theorems 3.3 and 3.5].
We complete this section with a result on smoothness of the generalized SVD,

which unfolds nicely as a consequence of things we proved earlier in this section. We
first need the following elementary lemma.

Lemma 2.8 (smooth Choleski factorization). Let A ∈ Ck(R,Fn×n) and A(t) be a
Hermitian (symmetric) positive definite function for all t. Then there exists a unique
lower triangular function G ∈ Ck(R,Fn×n), with positive diagonal entries, such that

A(t) = G(t)G∗(t) for all t.(2.26)

Proof. Write A = [a11 b∗

b Â
]. Let G1 = [

√
a11 0
b/

√
a11 In−1

]. Clearly, G1 ∈
Ck(R,Fn×n), and G−1

1 AG−∗
1 =

[
1 0
0 A1

]
, with A1 = Â − bb∗/a11. Obviously, A1 ∈

Ck(R,F(n−1)×(n−1)) and is positive definite, so repeating this procedure gives the
result.

Theorem 2.9 (generalized SVD). Let A ∈ Ck(R,Fm×n), m ≥ n, be a con-
stant rank function: rank(A) = n − r for all t, r : 0 ≤ r ≤ n − 1, and let
B ∈ Ck(R,Fp×n), p ≥ n, be full rank for all t. Then there exist unitary (orthogonal)
U1 ∈ Ck(R,Fm×m), orthonormal U2 ∈ Ck(R,Fp×n), and invertible X ∈ Ck(R,Fn×n)
such that, for all t,

U∗
1 (t)A(t)X(t) =

[
SA(t) 0
0 0

]
, U∗

2 (t)B(t)X(t) =

[
SB(t) 0
0 Ir

]
,(2.27)

where SA ∈ Ck(R,F(n−r)×(n−r)), SB ∈ Ck(R,F(n−r)×(n−r)), SA is Hermitian positive
definite, and

S∗
A(t)SA(t) + S∗

B(t)SB(t) = I for all t.

Proof. Clearly, rank[A(t)
B(t)

] = n for all t, and hence from Lemma 2.1 there exist

orthonormal Q ∈ Ck(R,F(m+p)×n) and nonsingular upper triangular R ∈ Ck(R,Fn×n)
such that [A(t)

B(t)
] = Q(t)R(t) =: [Q1(t)

Q2(t)
]R(t). Here, Q1 ∈ Ck(R,Fm×n) has constant

rank n − r, and Q2 has full rank n for all t. Thus, from Theorem 2.4, there exist
unitary (orthogonal) U1 ∈ Ck(R,Fm×m) and V ∈ Ck(R,Fn×n) such that

Q1(t) = U1(t)

[
SA(t) 0
0 0

]
V ∗(t) for all t,

and SA ∈ Ck(R,F(n−r)×(n−r)) is Hermitian positive definite for all t.
Next, consider the following Ck orthonormal transformation

[
U∗

1 (t) 0
0 Ip

] [
Q1(t)
Q2(t)

]
V (t) =

[
SA(t) 0
0 0

]

W (t)

 ,(2.28)

where W (t) = Q2(t)V (t), and thus W has full rank for all t. Partition W (t) =:
(W1(t) W2(t)), where W1 ∈ Ck(R,Fp×(n−r)), W2 ∈ Ck(R,Fp×r). From (2.28),

S∗
A(t)SA(t) +W ∗

1 (t)W1(t) = I, W ∗
1 (t)W2(t) = 0, and W ∗

2 (t)W2(t) = I for all t.

MATRIX DECOMPOSITIONS: SMOOTHNESS AND PERIODICITY 779

Since W1 is full rank for all t, then W ∗
1 W1 is positive definite. So, from Lemma 2.8,

we have W ∗
1 W1 = I − S∗

ASA = GG∗ for all t, where G ∈ Ck(R,F(n−r)×(n−r)) is
nonsingular and lower triangular. Now, we let

U2(t) = W (t)

[
(G∗(t))−1 0

0 I

]
, SB(t) = G∗(t) for all t.

It is easy to check that U2(t) is orthonormal for all t and that

Q2(t) = U2(t)

[
SB(t) 0
0 I

]
V ∗(t).

So, letting X(t) = (V ∗(t)R(t))−1 for all t, the result is proved.

3. Periodicity of the factors. In this section we consider the periodic case,
A ∈ Ckτ (R,Fm×n). Without loss of generality, we will take τ = 1 and assume that 1
is the minimal period of A. Also, we will henceforth assume that the function A does
not have all constant eigenvalues. See Remarks 3.5 and 3.21 for what to expect in
this case.

It is natural to inquire whether or not the (smooth) factors in section 2 (e.g., see
Theorems 2.3 and 2.4) inherit some periodicity in case the function A is periodic of
period 1. For example, can we say that Q in Theorem 2.3 has period 1? Besides being
a question of theoretical interest, this inquiry has also practical implications, since it
would indicate that it may be possible to compute a factorization of A over only one
period. Guided by what we know from Floquet theory for differential equations and
from the work of Sibuya in [19], we may expect that in the case F = R the factors are
periodic with twice the period they have in the case F = C.

We divide the results of this section in two parts. In the first part, we give
somewhat “coarser” periodicity results: we look at periodicity of the factors for block
eigendecompositions in the case in which the blocks correspond to disjoint groups
of eigenvalues, and as a by-product we look at periodicity of the factorizations of
section 2. In the second part, we look at the “finer” structure by allowing eigenvalues
(singular values) to coalesce: for example, we ask ourselves about periodicity of the
Schur factors in an eigendecomposition of a Hermitian matrix valued function.

3.1. Periodicity of block decompositions. The first group of results are
lumped together in Theorem 3.3 below. The statements there are immediate con-
sequences of similar results of section 2 and of Lemma 3.1 and Theorem 3.2, which
extend Lemmas 2.1 and 2.8 and Theorem 2.3, to the periodic case.

Lemma 3.1 (periodicity of QR and Choleski decompositions). We have the
following.

• Let A ∈ Ck1 (R,Fm×n), where m ≥ n, k ≥ 0, and let A(t) be full rank for all
t. Then A admits a unique factorization A(t) = Q(t)R(t) for all t, where
Q ∈ Ck1 (R,Fm×n) is orthonormal and R ∈ Ck1 (R,Fn×n) is upper triangular
with positive diagonal entries (real even in the case F = C).

• Let A ∈ Ck1 (R,Fn×n) and A be Hermitian positive definite. Then there exists
a unique lower triangular function G with positive diagonal entries, G ∈
Ck1 (R,Fn×n), such that A(t) = G(t)G∗(t) for all t.

Proof. Both for F = C and F = R, the stated results about periodicity follow
immediately from: (i) the Gram–Schmidt’s process on the columns of A, for the QR
factorization, and (ii) the procedure of the proof of Lemma 2.8, for the Choleski
factorization.

780 JANN-LONG CHERN AND LUCA DIECI

Theorem 3.2 (Sibuya’s result and block Schur form). Let A ∈ Ck1 (R,Cn×n)
with k ≥ 0. Assume that Λ(A) = Λ1 ∪ · · · ∪ Λl, where Λi ∩ Λj = ∅ for all t and
i 	= j, i, j = 1, . . . , l. Then there exist invertible S ∈ Ck1 (R,Cn×n) and unitary
Q ∈ Ck1 (R,Cn×n) such that

S−1(t)A(t)S(t) =

[
E11 0 ... 0
0 E22 ... 0
...
0 ... 0 Ell

]
≡ E(t),(3.1)

Q∗(t)A(t)Q(t) =

[
T11 T12 ... T1l
0 T22 ... T2l
...
0 ... 0 Tll

]
≡ T (t) ,(3.2)

where each Tij ∈ Ck1 (R,Cni×nj) and Eii ∈ Ck1 (R,Cni×ni) with Λ(Eii) = Λ(Tii) =
Λi, i = 1, . . . , l, and n1 + · · ·+ nl = n.

In case F = R, assume that det(Λi) ∈ R for all i. Then the previous statements—
in particular, (3.1) and (3.2)—are true for invertible S ∈ Ck2 (R,Rn×n) and orthogonal
Q ∈ Ck2 (R,Rn×n). Now, each Tij ∈ Ck2 (R,Rni×nj) and Eii ∈ Ck2 (R,Rni×ni).

For either F = C or F = R, if A is normal, then in (3.2) we have Tij = 0, i 	= j,
and Tii, i = 1, . . . , l, are also normal.

Proof. The smoothness results are in Theorem 2.3. As far as the periodicity
results, we recall that in [19, Theorem 3, Remark 3], Sibuya proved the result (3.1)
with S of period 1 for two disjoint blocks of eigenvalues, in the case F = C. It
is immediate to apply his result over and over to obtain (3.1) with S of period 1
for p disjoint blocks of eigenvalues. Application of Lemma 3.1 yields S = QR and
thus (3.2). In the real case, F = R, Sibuya (see [19, Remark 1]) gives (3.1) with
S of period 2 for two disjoint blocks of eigenvalues. One cannot simply apply this
result over and over now, since this would increase the period of S. However, the
arguments in Sibuya’s proofs can be readily generalized to dealing with p blocks of
eigenvalues simultaneously. So doing, one obtains S ∈ Ck2 (R,Rn×n) and then trivially
Q ∈ Ck2 (R,Rn×n) in (3.2) applying Lemma 3.1 to get S = QR. The statement in the
normal case is proved as in the last part of the proof of Theorem 2.3.

Statements (i)–(v) in Theorem 3.3 below are extension to the periodic case of
Theorem 2.4, Corollaries 2.5 and 2.6, and Theorems 2.7 and 2.9, respectively.

Theorem 3.3. Let A ∈ Ck1 (R,Cm×n), respectively, R
m×n, m ≥ n and k ≥ 0, be

of constant rank: rank(A) = n− r for all t and fixed r: 0 ≤ r ≤ n− 1.
(i) There exist unitary U ∈ Ck1 (R,Cm×m) and V ∈ Ck1 (R,Cn×n), respectively,

orthogonal U ∈ Ck2 (R,Rm×m) and V ∈ Ck2 (R,Rn×n), such that (2.4) holds, where
S+ ∈ Ck1 (R,C(n−r)×(n−r)), respectively, S+ ∈ Ck2 (R,R(n−r)×(n−r)), is Hermitian, re-
spectively, symmetric, positive definite.

(ii) There exists unitary Q ∈ Ck1 (R,Cm×m) and V ∈ Ck1 (R,Cn×n), respectively,
orthogonal Q ∈ Ck2 (R,Rm×m) and V ∈ Ck2 (R,Rn×n), such that (2.17) and (2.18) hold
with R1 ∈ Ck1 (R,C(n−r)×(n−r)), respectively, R1 ∈ Ck2 (R,R(n−r)×(n−r)).

(iii) There exist unitary Q ∈ Ck1 (R,Cm×n), respectively, orthogonal Q ∈
Ck2 (R,Rm×n), and Hermitian (symmetric) positive semidefinite P ∈ Ck1 (R,Cn×n),
respectively, P ∈ Ck2 (R,Rn×n), such that (2.19) holds.

Now, let A ∈ Ck1 (R,Cn×n) be complex symmetric with constant rank n− r, where
0 ≤ r ≤ n− 1. Then,

(iv) there exists unitary U ∈ Ck1 (R,Cn×n) and symmetric positive definite S+ ∈
Ck1 (R,R(n−r)×(n−r)) such that (2.20) holds.

MATRIX DECOMPOSITIONS: SMOOTHNESS AND PERIODICITY 781

Finally, let A ∈ Ck1 (R,Fm×n), m ≥ n, be of constant rank n − r, and let B ∈
Ck1 (R,Fp×n), p ≥ n, be full rank for all t. Then,

(v) there exist unitary U1 ∈ Ck1 (R,Cm×m) and orthonormal U2 ∈ Ck1 (R,Cp×n),
respectively, orthogonal U1 ∈ Ck2 (R,Rm×m) and U2 ∈ Ck2 (R,Rp×n), and invertible
X ∈ Ck1 (R,Cn×n), respectively, X ∈ Ck2 (R,Rn×n), such that (2.27) holds.

We are now ready to provide sharper results in a number of cases. First, let us
begin remarking that, as a consequence of Theorem 3.2, a function A ∈ Ck1 (R,Cn×n)
with distinct eigenvalues is diagonalizable with a Ck1 function of eigenvectors (similarly,
it has a Ck1 Schur decomposition). This is because the diagonal blocks Eii and Tii
in (3.1) and (3.2) are of period 1 when F = C. However, in the real case F = R, it
appears that the blocks Eii (and Tii) are of period 2, since S and Q have period 2 in
this case. Our next task is to show that, even in the real case, Eii can be chosen of
period 1, when A has only simple eigenvalues (real or complex conjugate), and that
also Tii can be chosen of period 1 in this case, when A is normal.

Theorem 3.4. Let A ∈ Ck1 (R,Rn×n), k ≥ 0. Suppose that A(t) has only simple
(real or complex conjugate) eigenvalues for all t. Then, in (3.1), we can choose
S ∈ Ck2 (R,Rn×n) such that Eii ∈ Ck1 (R,Rni×ni) (here, ni = 1 or 2). Further, if
A is normal the conclusions remain true with S orthogonal, i.e., in (3.2) we have
Tii ∈ Ck1 (R,Rni×ni).

Proof. Clearly, if A has only real distinct eigenvalues, then they have period
1, because they have period 1 seen as resulting from a complex similarity transfor-
mation. Next, consider the case of a complex conjugate pair, and write Eii(t) =

[b11(t) b12(t)
b21(t) b22(t)

], where each bij is a Ck2 function. The eigenvalues of Eii(t) are λ and

λ̄, and they are both Ck1 functions (since they are simple). Since Eii is real, and the

eigenvalues of A are distinct, then b12(t) 	= 0 for all t. Now, let x(t) = b22(t)−b11(t)
2b12(t)

,

a(t) = Im(λ(t))
b12(t)

and S1(t) =
[

1 0
x(t) 1

]
, S2(t) =

[
1/a(t) 0

0 1

]
, so that Si ∈ Ck2 (R,R2×2), i =

1, 2. We have

(S1(t)S2(t))
−1

Eii(t) (S1(t)S2(t)) =
[

Re(λ(t)) Im(λ(t))
− Im(λ(t)) Re(λ(t))

]
∈ Ck1 (R,R2×2).

Therefore, we can choose Eii ∈ Ck1 (R,R2×2) even though S ∈ Ck2 (R,Rn×n). The
statement in the case of A normal is an immediate consequence of the fact that a
(2× 2) nonsymmetric normal matrix has the form [Re(λ(t)) Im(λ(t))

− Im(λ(t)) Re(λ(t))
].

Remark 3.5. Of course, if A ∈ Ck1 with all eigenvalues constant, then Theorem 3.2
still holds. In this case, if all eigenvalues are distinct, Eii and Tii are constant.

3.2. Periodicity in coalescing case. Our next task is to characterize the pe-
riodicity of the eigenvalues (singular values), and of the corresponding orthonormal
factors, in the case in which eigenvalues are allowed to coalesce. We will restrict to
the Hermitian case. The first step will be to establish periodicity of the eigenvalues,
and then we will determine the periodicity of the unitary transformation.

So, we have a function A ∈ Ck1 (R,Cn×n), A = A∗, or also A analytic: A ∈ Cω1 , and
we want to establish the periodicity of its eigenvalues. This seemingly simple problem
is rather complex, since there is a very delicate interplay between smoothness of the
eigenvalues and their periodicity. Let us begin with the following observation.

• The eigenvalues of A are roots of the characteristic polynomial of A, call it
π(λ, t), and clearly π(λ, t+1) = π(λ, t). Therefore, we can certainly label the
eigenvalues of A so that they are periodic functions of period 1. Since the
eigenvalues are continuous functions, we thus immediately have that there

782 JANN-LONG CHERN AND LUCA DIECI

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1.

exists an ordering of the eigenvalues so that they are (at least) C01 functions.
Now, if the eigenvalues are simple, then we know that they can be taken as Ck1
functions (this follows from Theorem 3.2). However, if two eigenvalues coalesce and
we want them to be periodic functions of period 1, then in general we may have to
settle for C0 eigenvalues. Alternatively, we must be willing to increase the period
in order to retain smoothness. This fundamental conflict between having period 1
and/or maximal possible smoothness is already present in the analytic case. Recall
that if A = A∗ ∈ Cω, then it has an analytic diagonalization A = QDQ∗ regardless of
whether or not the eigenvalues coalesce; see [14].

Example 3.6. Consider the symmetric function A(t) = [1 − 1
2 sin2 πt − 1

4 sin 2πt
− 1

4 sin 2πt 1
2 sin2 πt

],

t ∈ R. Clearly, A ∈ Cω1 , and thus we know that it has analytic eigenvalues (and
eigenvectors). The analytic eigenvalues are λ1(t) =

1+cosπt
2 , and λ2(t) =

1−cosπt
2 , and

we notice that λ1 = λ2 at t = 1/2, 3/2, The associated orthogonal function of

eigenvectors is Q =
[

cos π
2 t sin π

2 t
− sin π

2 t cos π
2 t

]
, so that QT (t)A(t)Q(t) =

[
λ1(t) 0

0 λ2(t)

]
. Notice

that λ1,2 ∈ Cω2 and Q ∈ Cω4 ; in other words, we retained analyticity of the eigenval-
ues, but we have doubled their period (with respect to that of A) and then doubled
again the period of Q. Of course, we could have chosen the eigenvalues to be merely
continuous, and of period 1, as follows:

λ̃1(t) =

{
1+cosπt

2 if 0 ≤ t ≤ 1/2 or 3/2 ≤ t ≤ 2,
1−cosπt

2 if 1/2 ≤ t ≤ 3/2,

λ̃2(t) =

{
1−cosπt

2 if 0 ≤ t ≤ 1/2 or 3/2 ≤ t ≤ 2,
1+cosπt

2 if 1/2 ≤ t ≤ 3/2.

Figure 1 summarizes the situation: the curves on the top, bottom, of the value 1/2
give λ̃1,2.

Example 3.7. For all t, takeA(t) = Q(t)D(t)QT (t), withD(t) = diag(λ1(t), λ2(t)),
λ1(t) = cos2 πt, λ2(t) =

1
2 sin

2 πt, and Q =
[

cosπt sinπt
− sinπt cosπt

]
. Easily, A, D ∈ Cω1 , while

Q is analytic of period 2. Figure 2 exemplifies the situation: even though the functions

MATRIX DECOMPOSITIONS: SMOOTHNESS AND PERIODICITY 783

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2.

λ1,2 intersect, after 1 unit of time they are back in their original position.
Based upon Examples 3.6 and 3.7, we conjecture that the periodicity of the eigen-

values depend on the relative positioning of coalescing eigenvalues after one period.
This conjecture turns out to be essentially correct, as we set out to prove.

Consider the general case A ∈ Ck1 or A ∈ Cω1 ; for short, we will write this as

A ∈ Ck,ω1 . Of course, we can (and will) think that the problem has been reduced to
a block diagonal form as in (2.2), with the Tii being associated to disjoint groups of
eigenvalues. To be precise, we will assume that the Tii satisfy Assumptions 3.8(i–ii)
below.

Assumption 3.8. Let B = B∗, B ∈ Ck,ω1 be such that
(i) “B’s eigenstructure is as fine as possible.” By this we mean that there do not

exist Λ(1) and Λ(2), both nonempty, such that Λ(1) ∩Λ(2) = ∅ and Λ(1) ∪Λ(2) = Λ(B)
for all t.

(ii) “If B /∈ Cω, its eigenvalues satisfy condition (2.5).”
Assumption 3.8(ii) relative to each Tii in (2.2) implies (see [6]) that each Tii

can be diagonalized with unitary (orthogonal) Uii ∈ Ck−ei(R,Fni×ni). Therefore, if
we let e = max ei, i = 1, . . . , l, in the Ck case, there exists a unitary matrix Q ∈
Ck−e,ω(R,Fn×n) which diagonalizes A:

Q∗AQ =: D = diag(D1, D2, . . . , Dl), Di = diag(λ
(i)
j , j = 1, . . . , ni).(3.3)

Our goal is to establish the periodicity of D, and the first step will be to establish
the periodicity of the Di’s. We need the following definition.

Definition 3.9. Given an (integer) partition of n: n1, . . . , nl so that n1 + · · ·+
nl = n, let µ(n) := lcm(n1, . . . , nl) (lcm is the least common multiple). For given
value of n, let µ∗(n) be the maximum value of µ(n) over all partitions of n.

Theorem 3.10 (periods of eigenvalues). Let A ∈ Ck,ω1 (R,Fn×n), A = A∗, with
eigenvalues not all constant. Let the function A be in the form (2.2), where the
diagonal blocks satisfy Assumption 3.8(i)–(ii). Then, with the notation of (3.3), the

784 JANN-LONG CHERN AND LUCA DIECI

functions Di ∈ Ck,ω can be taken periodic of periods pi, with 1 ≤ pi ≤ ni.
2 If

Di = λiI, λi constant, then we can take pi = 1. The diagonal function of eigenvalues,
D, can be taken periodic of period p, the least common multiple of the Di’s periods,
1 ≤ p ≤ µ∗(n).

Proof. The result follows from Lemma 3.14 below.
Remark 3.11. It should be appreciated that the function µ∗ : N→ N grows very

rapidly. Although a closed formula for the exact values of µ∗(n) appears hard to
obtain,3 it is easy to obtain the upper bound

log(µ∗(n)) ≤ n

e
.(3.4)

The verification of (3.4) is simple, since

lcm(n1, n2, . . . , nl) ≤
(
n1 + n2 + · · ·+ nl

l

)l
=
(n

l

)l
for all l,

and f(x) = (nx)
x has a global maximum at x0 =

n
e . (In comparison, µ∗(10) = 30 and

e
10
e ≈ 40, but already µ∗(16) = 140 and e

16
e ≈ 360.)

To prove Theorem 3.10, we need the following lemmas. We will use the concept
of irreducible matrix (e.g., see [13]). Also, given a constant matrix B, we will call
period of B the smallest integer k ≥ 1, if it exists, such that Bk = I.

Lemma 3.12. If P is an (n, n) irreducible permutation matrix, then it has pe-
riod n.

Proof. From [13, p. 512], an irreducible permutation matrix P is similar, via a
permutation similarity Π, to a cyclic matrix

ΠPΠT =

[
0 1 0
... 0 ...
0 1
1 0 ... 0

]
,

and thus Pn = I, but P k 	= I if k < n.
Lemma 3.13. If P is an (n, n) permutation matrix, then it has the irreducible

decomposition diag(Pii, i = 1, . . . , l), with Pii an (ni, ni) irreducible permutation, i =
1, . . . , l. The period of P is µ(n), where the partition of n is that associated to its
irreducible decomposition.

Proof. If P is irreducible, Lemma 3.12 gives the result. So, let P be reducible.
Then there exists a permutation matrix Π such that ΠPΠT =

[
P11 P12

0 P22

]
. Since Π is

a permutation, then P22 is necessarily also a permutation and hence P12 = 0. We
continue this reduction process until all diagonal blocks are irreducible, and apply
Lemma 3.12.

Lemma 3.14 (minimal integer period). Under the assumptions of Theorem 3.10,
there exists a smallest integer p such that D(t+p) = D(t) for all t. We call this value
p the minimal integer period of D, and we have 1 ≤ p ≤ µ∗(n).

Proof. First consider the Ck case. By assumption, the points where eigenvalues
coalesce are isolated, and thus there is only a finite number of points in [0, 1] where
eigenvalues coalesce. Without loss of generality, let the eigenvalues be distinct at t = 0,
and let 0 < t1 < · · · < tM+1 < 1 be the points in [0, 1] where some eigenvalues coalesce.

2The precise value of pi depends on the eigenvalues’ relative positions after one unit of time; see
Lemma 3.14

3Our colleague Yang Wang communicated to us the asymptotic log(µ∗(n)) =
√
n logn +

o(
√
n logn).

MATRIX DECOMPOSITIONS: SMOOTHNESS AND PERIODICITY 785

Let Ij = (tj , tj+1), j = 1, . . . ,M , and I0 = (tM+1 − 1, t1), so that the eigenvalues
are distinct on each of these subintervals. Let D(j)(t) = diag(λj1(t), . . . , λjn(t)) be
a labeling of the eigenvalues which reflects their relative ordering on each Ij : that
is, for all t ∈ Ij , λj1(t) > · · · > λjn(t); let D(0) be called simply D. Let Pj be the
permutation matrix defined so that

PjD
(j−1)(t)PTj = D(j)(t), j = 1, . . . ,M + 1, t ∈ Ij .

In particular, if we take a point τ0 ∈ I0, then we have

PM+1D
(M)(1 + τ0)P

T
M+1 = D(M+1)(1 + τ0),

and thus also

D(M+1)(1 + τ0) = PM+1PMD(M−1)(1 + τ0)P
T
MPTM+1 = · · ·

= PM+1 · · ·P1D(1 + τ0)P
T
1 · · ·PTM+1.

Since the roots of the characteristic polynomial have period 1 (as locus of points),
then D(M+1)(1 + τ0) = D(τ0), and if we let Π1 := PM+1 . . . P1, we then have

D(τ0) = Π1D(1 + τ0)Π
T
1 and further D(τ0) = Πl1D(l + τ0)(Π

T
1)
l, l = 1, 2,

Now, let p1 be the smallest integer such that Πp11 = I. Then, we obtain that D(t +
p1) = D(t) for all t ∈ I0. In precisely the same way, we now take a point τj ∈ Ij and
repeat the above reasoning to eventually obtain that there are permutation matrices
Π2, . . . ,ΠM+1 such that

D(j)(τj) = Πj+1D
(j)(1 + τj)Π

T
j+1, j = 1, . . . ,M,

and hence if pj are the periods of these Πj , we would have that D itself has periods pj
for all t ∈ Ij . But it is a simple observation that all pj are equal; e.g., it is immediate
that Π2 = P1Π1P

T
1 , etc. We let p be this common value, and so we have obtained

that D(t + p) = D(t) for all t ∈ ⋃j Ij . Finally, because of continuity, the function
D has period p everywhere. Applying Lemmas 3.12 and 3.13 we get the bound on
p : 1 ≤ p ≤ µ∗(n).

In the Cω case, we have Tii ∈ Cω1 and Di ∈ Cω, but we may now have that some
eigenvalues are identical for all t. Let µ1, . . . , µm (m ≤ n) be the eigenvalues of A, so
that no two of them are identical for all t. Since the µi’s are real analytic functions,
then these functions must have a finite order of contact; that is, there exists an integer

e < ∞ such that µ
(e)
i (t) 	= µ

(e)
j (t) for all t and i 	= j. Thus, the points where the

µi’s coalesce are isolated. We now can repeat the reasoning of the Ck case relative to
M = diag(µ1, . . . , µm).

We also have the following lemma.
Lemma 3.15. Under the assumptions of Theorem 3.10, D cannot have irrational

period.
Proof. Suppose there exists irrational b such thatD(t+b) = D(t) for all t. Because

of Lemma 3.14, there exists a minimal integer period p such that D(t + p) = D(t).
Then there exist integers k1, k2 such that λj(t + k1b) = λj(t + k2p) for all t and
j = 1, . . . , n. But then all λj must be constant, a case which we have excluded.

Up to this point, we know that the function D has minimal integer period p,
1 ≤ p ≤ µ∗(n). However, we have left open the possibility for D to have minimal

786 JANN-LONG CHERN AND LUCA DIECI

period given by a rational number p/q, with (p, q) = 1 (relatively prime) and p
the minimal integer period. Indeed, we now show—constructively—that there exist
Hermitian functions B of period 1 with D having such values p/q as periods.

Let us begin by constructing functions B = B∗ ∈ Ck,ω1 (R,Cm×m) such that

Q∗(t)B(t)Q(t) = D(t) for all t with D ∈ Ck,ωm/q(R,Rm×m) diagonal, (m, q) = 1, and

Q ∈ Cωm(R,Cm×m) unitary.
Lemma 3.16. There exist D ∈ Ck,ωm/q(R,Rm×m) diagonal and unitary Q ∈

Cωm(R,Cm×m) such that by letting B(t) := Q(t)D(t)Q∗(t) for all t, then B ∈
Ck,ω1 (R,Cm×m). Further, B satisfies Assumption 3.8(i)–(ii).

Proof. We are going to take D(t) = diag(λ1(t), . . . , λm(t)) of appropriate smooth-
ness, and of period m/q, such that

λj(t+ 1) = λj+1(t), j = 1, . . . ,m (mod m).(3.5)

Specifically, for j = 1, . . . ,m and for all t, we take

λj(t) =

{
cos
(

2π
m q(t+ j − 1)

)
in the Cω case,∣∣cosk+1

(
2π
m q(t+ j − 1)

)∣∣ in the Ck case.(3.6)

In either case, for such D we have

D(t+ 1) = PD(t)PT for all t, where P =

[
0 1 0
... 0 ...
0 1
1 0 ... 0

]
.(3.7)

Now we want to find Q of period m such that B has period 1.
Claim 3.17. The following two properties hold.
(i) If Q(t+ 1)P = Q(t) for all t, and P in (3.7), then B has period 1.
(ii) If we let α = 2π

m and αk = kα, k = 1, 2, . . . ,m− 1, then

m∑
j=1

eijαk = 0 for all k = 1, . . . ,m− 1.

Verification of Claim 3.17. To verify (i), observe that if Q(t + 1)P = Q(t), then
B(t+ 1) = Q(t+ 1)D(t+ 1)Q∗(t+ 1) = B(t) for all t. To verify (ii), we let z = eiαk ,
so that z 	= 1, but zm = 1. Thus, (ii) follows, since 0 = zm − 1 = (z − 1)(zm−1 + · · ·
+z + 1).

We are now ready to define Q. We take

Q(t) :=
[
q1(t) q1(t+ 1) · · · q1(t+m− 1)

]
, q1(t) =

1√
m

ei
2π
m t

...

ei
(m−1)2π

m t

ei2πt

 .(3.8)

In (3.8), clearly q1 ∈ Cωm and so does Q, and m is the minimal period of Q. Moreover,
by construction, Q(t + 1)P = Q(t). Direct verification, using Claim 3.17(ii), gives
Q∗(t)Q(t) = I for all t. Finally, using Claim 3.17(i), the lemma is proved.

Remark 3.18. With the help of Lemma 3.16, we can build matrices B ∈
Ck,ω1 (R,Cm×m) satisfying Assumption 3.8(i)–(ii), B = QDQ∗, D = diag(λ1, . . . , λm),

D ∈ Ck,ωp/q , p = 1, . . . ,m, and Q ∈ Cωp unitary. In fact, we may let D =
[
D1 0
0 D2

]
with

MATRIX DECOMPOSITIONS: SMOOTHNESS AND PERIODICITY 787

D1 = diag(λ1, . . . , λp) defined as D was in the proof of Lemma 3.16, and D2 = αIm−p
for appropriate constant α chosen so that we satisfy Assumption 3.8(i)–(ii). Accord-
ingly, let Q =

[
Q1 0
0 I

]
with Q1 defined (relative to D1) as Q was relative to D in the

proof of Lemma 3.16.
Remark 3.19. As a consequence of Remark 3.18, we can justify the claim that

there exist B ∈ Ck,ω1 , satisfying the assumptions of Theorem 3.10 with D ∈ Ck,ωp/q and
p : 1 ≤ p ≤ µ∗(n). To achieve this in the Cω case, take D = diag(D1, . . . , Dl) with
Dj ∈ Cωpj/qj diagonal of dimension nj , 1 ≤ pj ≤ nj , according to Remark 3.18, and

build Q in a similar block diagonal fashion. In the Ck case, in order to ensure that
Assumption 3.8(ii) is satisfied, we may have to shift the spectra of some of the Dj
appropriately.

Next, we examine the period of the eigenvectors Q in (3.3). Partition Q =[
Q1 Q2 . . . Ql

]
conformally to D’s partitioning, so that we have

AQi = QiDi, i = 1, . . . , l, Di = diag(λ
(i)
j , j = 1, . . . , ni).(3.9)

So far, we have established that each Di has period pi/qi, where 1 ≤ pi ≤ ni, (pi, qi)
= 1.

The denominators qi in the periods pi/qi of the functions Di play no further role
in what follows, and we will thus dispense with them, simply working with pi-periodic
Di’s. This said, it is worth stressing once more that the minimal period of Di may be
the rational number pi/qi; thus, also the minimal period of the (smooth) eigenvalues
of A may well be a rational number p/q, (p, q) = 1, 1 ≤ p ≤ µ∗(n). This same
observation holds true also for the singular values of Theorems 3.24 and 3.27.

Remark 3.20. In [9], Gingold and Hsieh devised a Schur decomposition procedure
for an analytic matrix-valued function A with real and analytic eigenvalues, which
in particular is valid for a Hermitian analytic function. Then, in [9, Theorem 10.1],
they noticed that if A and its analytic eigenvalues both have period 1, then their
procedure will produce analytic unitary factors also of period 1. Clearly, in light of
our results, one cannot generally assume that the (analytic) eigenvalues have period
1. However, we notice that it is enough to replace Gingold’s and Hsieh’s assumption
of eigenvalues of period 1 with that of “eigenvalues’ matrix D of minimal integer
period p,” and then the procedure of Gingold and Hsieh delivers a unitary, p-periodic,
analytic, matrix-valued function of eigenvectors. The validity of our observation is
immediately verified upon examining the procedure of [9].

Remark 3.21. If A ∈ Ck1 has all constant eigenvalues, then because of Assumption
3.8(ii) they must be distinct, and thus Theorem 3.2 applies. If instead A ∈ Cω1 , then
even if all eigenvalues of A are constant, and possibly many of them identical, the
procedure of [9] still delivers a unitary and analytic Q of period 1.

Because of Remark 3.20, in the Cω case we can take the unitary eigenvectors
Q ∈ Cω with period given by the lcm(p1, . . . , pl). The next result is for the Ck case.

Proposition 3.22. Let A = A∗ ∈ Ck1 (R,Cn×n), or A = AT ∈ Ck1 (R,Rn×n), be
such that its eigenvalues satisfy condition (2.5). Let D1, . . . , Dl be diagonal matrix-
valued functions, Di∩Dj = ∅, i 	= j, grouping the eigenvalues of A, as fine as possible
according to Assumption 3.8(i); thus, we can take Di ∈ Ckpi(R,Rni×ni), 1 ≤ pi ≤ ni,

i = 1, . . . , l. Let unitary Q ∈ Ck−e, Q =
[
Q1 Q2 . . . Ql

]
, be such that AQi =

QiDi, i = 1, . . . , l. Then, we can take each Qi of period pi and hence Q of period
given by lcm(p1, p2, . . . , pl).

If the function A is symmetric real valued, and Qi are real orthonormal, then each
Qi can be taken of period 2pi and Q of period 2 lcm(p1, p2, . . . , pl).

788 JANN-LONG CHERN AND LUCA DIECI

The proof of Proposition 3.22 follows from Theorem 3.23 below and Lemma 2.2.
Theorem 3.23. Let A = A∗, A ∈ Ck1 (R,Cn×n). Suppose that Λ(A) = Λ1 ∪ Λ2

and Λ1∩Λ2 = ∅ for all t. Let unitary Q ∈ Ck be such that Q∗AQ =
[
T11 0
0 T22

]
, Λ(Tii) =

Λi, i = 1, 2, and suppose that T11 satisfies Assumption 3.8. With e1 given in (2.5),
let Q11 ∈ Ck−e1(R,Cn1×n1) be such that Q∗

11T11Q11 = D1 = diag(λ1, λ2, . . . , λn1) ∈
Ckp1(R,Rn1×n1), 1 ≤ p1 ≤ ni. Let Q[Q11 0

0 In−n1

] =:
[
Q1 Q2

]
, so that

AQ1 −Q1D1 = 0 for all t.(3.10)

Then there exists orthonormal Q̃1 ∈ Ck−e1p1 (R,Cn×m1) such that (3.10) holds. If A

and Q̃1 are real valued, then Q̃1 can be chosen of period 2p1.
Proof. The basic idea of the proof, motivated by [19, Theorem 6], consists of

smoothly modifying the function Q1 of (3.10) to bring it into a periodic orthonormal
one still satisfying (3.10). Notice that our assumption implies that the points where
eigenvalues coalesce are isolated; therefore without loss of generality we can assume
that the eigenvalues are distinct at t = 0. Also, in what follows we let l = k − e1.

First, observe that if π(λ, t) is the characteristic polynomial ofA(t), then π(λ, t) =
π1(λ, t)π2(λ, t), where π1(λ, t) := (λ−λ1(t)) · · · (λ−λn1(t)) and π1(·, t) and π2(·, t)
do not have common roots. Therefore,

rankπ1(A(t), t) = n− n1 and rankπ2(A(t), t) = n1, for all t.

Next, we observe that

π1(A(t), t)Q1(t) = 0 for all t, where Q1 satisfies (3.10).(3.11)

To show (3.11) is a simple computation:

π1(A, t)Q1 = (A− λ1I) · · · (A(t)Q1 − λn1
Q1)

= (A− λ1I) · · · (A− λn1−1I)Q1(D − λn1I) = · · ·
= Q1(D − λ1I)(D − λ2I) · · · (D − λn1I)

= Q1 diag(0, λ2, . . . , λn1) · · ·diag(λ1, . . . , λn1−1, 0) = 0 for all t .

Therefore, Q1(· + p1) and Q1(·) satisfy the same linear system (3.11), which has
constant rank n − n1, and their ranks are equal to n1 for all t. In particular, this
implies that there exists a sufficiently small ρ > 0 and a C ∈ Cl([−ρ, ρ],Cn1×n1) such
that

Q1(t+ p1) C(t) = Q1(t), |t| ≤ ρ.(3.12)

Since both Q1(t+ p1) and Q1(t) are orthonormal, clearly C∗C = I. Since the eigen-
values are distinct at t = 0, then, for |t| ≤ ρ, C(t) = diag(eiφj(t), j = 1, . . . , n1)
with φj ∈ Cl. Next, let C̃(t) = C∗(0)C(t) for all t ∈ [−ρ, ρ], so that C̃(0) = I and

[Q1(t+ p1)C(0)]C̃(t) = Q1(t). Further, for ρ sufficiently small, the following function
is well defined:

R(t) =
1

2
(I + C̃(t))−1(I − C̃(t)), |t| ≤ ρ,

and notice that R∗(t) = −R(t) and R(0) = 0. Now take a function v which has
continuous derivatives of all orders, 0 ≤ v(t) ≤ 1 for all t, v(t) = 1 for t ≥ 0 and

MATRIX DECOMPOSITIONS: SMOOTHNESS AND PERIODICITY 789

v(t) = 0 for t ≤ −r0, where r0 > 0 is sufficiently small, r0 ≤ ρ (such v is called a
mollifier in [8]). Then define

R̃(t) = v(t)R(t), −r0 ≤ t ≤ 0,

and notice that R̃(t) = 0 for −∞ < t ≤ −r0. Let

Ĉ(t) =

{
C(t), 0 ≤ t ≤ ρ,

C(0)(I − 2R̃(t))(I + 2R̃(t))−1, t ≤ 0,

notice that Ĉ ∈ Cl is unitary (and diagonal), and set

Q̂1(t) = Q1(t)Ĉ(t− p1) for all t ≤ p1 + ρ.

Thus, Q̂1 is orthonormal, Cl on [−ρ, p1 + ρ], and satisfies (3.10). Using (3.12), we
obtain

Q̂1(t) =

{
Q1(t)C(0), −ρ ≤ t ≤ p1 − r0,

Q1(t− p1), p1 ≤ t ≤ p1 + ρ.
(3.13)

Now, take a C∞(R) function w such that 0 ≤ w(t) ≤ 1 for all t, w(t) = 1 for t ≥ p1−r1

and w(t) = 0 for t ≤ r1, where r1 > 0 is sufficiently small, r1 ≤ r0. Let

L = logC(0), N(t) = w(t)L, H(t) = exp(N(t)) for all t,

so that L∗ = −L, H is C∞ and unitary for all t, and

H(t) =

{
In−m1

, t ≤ r1,

C(0), t ≥ p1 − r1.

Finally, let

Q̃1(t) = Q̂1(t)H(t), −r1 ≤ t ≤ p1 + r1,(3.14)

so that Q̃1 ∈ Cl([−r1, p1 + r1],C
n×n1), and Q̃1 is orthonormal and satisfies (3.10).

Moreover, Q̃1 satisfies

Q̃1(t) =

{
Q1(t)C(0), −r1 ≤ t ≤ r1,

Q1(t− p1)C(0), p1 ≤ t ≤ p1 + r1.

In particular, Q̃1(t + p1) = Q̃1(t), 0 ≤ t ≤ r1, and thus the proof of the theorem
follows by periodically extending Q̃1([0, p1],C

n×n1).
In the case where A is real valued, and Q1 and thus C in (3.12) are real as well,

the previous construction fails because log(C(0)), and hence H(t) are complex valued,
in general. This is because now C(0) is a diagonal matrix of ±1. To remedy this,
define the function Q̄1 by

Q̄1(t) =

{
Q̂1(t+ p1)C(0), −p1 − ρ ≤ t ≤ 0,

Q̂1(t), 0 ≤ t ≤ p1 + ρ.

790 JANN-LONG CHERN AND LUCA DIECI

Then Q̄1 is orthonormal, Q̄1 ∈ Cl([−p1 − ρ, p1 + ρ],Rn×m1), and satisfies (3.10).
Furthermore,

Q̄1(t) =

{
Q1(t+ p1)(C(0))2, −p1 − ρ ≤ t ≤ −r0,

Q1(t− p1), p1 ≤ t ≤ p1 + ρ.

Now let L = log(C(0))2, which we can (and do) take as real logarithm. As before, we
now build an orthogonal C∞ function H such that

H(t) =

{
In−m1

, t ≤ −p1 + r1,

(C(0))2, t ≥ p1 − r1.

Then we let Q̃1(t) = Q̄1(t)H(t) for −p1 − r1 ≤ t ≤ p1 + r1 and have Q̃1 real
orthonormal and Cl. Moreover, it satisfies

Q̃1(t) =

{
Q1(t+ p1)(C(0))2, −p1 − r1 ≤ t ≤ −p1 + r1,

Q1(t− p1)(C(0))2, p1 ≤ t ≤ p1 + r1,

so that Q̃1(t + 2p1) = Q̃1(t), −p1 ≤ t ≤ −p1 + r1, and thus we can build a real Cl
orthonormal function of period 2p1.

We now give periodicity results for the SVD of a 1-periodic function allowing the
singular values to coalesce. The situation is very close to what we have just proven for
the Hermitian eigenproblem. We will consider the Ck case of a constant rank function.
The Cω case is dealt with in a similar way (see Remark 3.26).

First, we consider the case of complex valued A. We have the following.
Theorem 3.24. Let A ∈ Ck1 (R,Cm×n), let rank(A) = n − r for all t, and let

there exist e ≤ k such that for the nonzero singular values of A (2.5) holds:

lim inf
τ→0

|σi(t+ τ)− σj(t+ τ)|
|τe| ∈ (0,∞](3.15)

for all t and i 	= j. Then, for the matrix-valued function of singular values of A,
Σ = diag(σ1, . . . , σn−r), we have Σ ∈ Ckp (R,R(n−r)×(n−r)), 1 ≤ p ≤ µ∗(n− r).

Proof. The result follows from Theorem 3.3(i) and Theorem 3.10.
Under the assumptions of Theorem 3.24, we know that there exist orthonormal

functions U, V of appropriate dimensions such that

U∗AV =

[
Σ 0
0 0

]
, Σ = diag(σ1, . . . , σn−r).

Moreover, if we let U =
[
U1 U2

]
and V =

[
V1 V2

]
partitioned so that U∗

1AV1 = Σ,

then from Theorem 3.3(i) we know that U2 ∈ Ck1 (R,Cm×(m−n+r)), V2 ∈ Ck1 (R,Cn×r).
We also know that U1 ∈ Ck−e(R,Cm×(n−r)), V1 ∈ Ck−e(R,Cn×(n−r)). Further, we
have the following.

Theorem 3.25. Under the assumptions of Theorem 3.24, and with above nota-
tion, there exist orthonormal Ũ1 ∈ Ck−ep (R,Cm×(n−r)) and Ṽ1 ∈ Ck−ep (R,Cn×(n−r)),
so that Ũ =

[
Ũ1 U2

]
and Ṽ =

[
Ṽ1 V2

]
are unitary and U∗AV = [Σ 0

0 0
].

Proof. Since AV1 = U1Σ and A∗U1 = V1Σ, then[
0 A
A∗ 0

] [
1√
2
U1

1√
2
V1

]
=

[
1√
2
U1

1√
2
V1

]
Σ.(3.16)

MATRIX DECOMPOSITIONS: SMOOTHNESS AND PERIODICITY 791

Let Q1 := [
1√
2
U1

1√
2
V1

]. As previously noticed, Q1 ∈ Ck−e(R,C(m+n)×(n−r)), and Q1 is

orthonormal. So, by Theorem 3.23, we can replace Q1 by Q̃1 ∈ Ck−ep , still satisfying

(3.16):
[

0 A
A∗ 0

]
Q̃1 = Q̃1Σ. Define Ũ1 and Ṽ1, of the same dimensions as U1, V1,

respectively, from the partition Q̃1 =: [
1√
2
Ũ1

1√
2
Ṽ1

]. Since we have not only (3.16), but

also [
0 A
A∗ 0

] [
1√
2
U1

− 1√
2
V1

]
=

[
1√
2
U1

− 1√
2
V1

]
(−Σ),

then we also get that

[
0 A
A∗ 0

] [
1√
2
Ũ1

− 1√
2
Ṽ1

]
=

[
1√
2
Ũ1

− 1√
2
Ṽ1

]
(−Σ).

Recalling that σi 	= 0, i = 1, . . . , n − r, and arguing as in the proof of Theorem 2.4,
we obtain that Ũ1 and Ṽ1 are orthonormal. Using Lemma 2.2, we finally obtain that
Ũ and Ṽ are unitary.

Remark 3.26. For the SVD of A ∈ Cω, we obtain much the same periodicity
results as those of the Ck case, but the details differ somewhat. First, from [3] one
obtains an analytic SVD of analytic A. Then, we can infer periodicity of the singular
values as we did for the analytic eigenvalues of a Hermitian function. Finally, we
can use the construction of [9] on the analytic Hermitian matrix

[
0 A
A∗ 0

]
, as already

pointed out in Remark 3.20. The details of this construction are omitted.
To complete the periodicity results for the SVD of a matrix, we now turn to the

case of a real-valued function A. We have the following.
Theorem 3.27. Let A ∈ Ck1 (R,Rm×n) and let rank(A) = n − r for all t. Let

e ≤ k be such that for the nonzero singular values of A (3.15) holds, so that there exist
orthogonal U ∈ Ck−e(R,Rm×m) and V ∈ Ck−e(R,Rn×n) such that U∗AV = [Σ 0

0 0] with
Σ = diag(σ1, . . . , σn−r). Then we can take Σ ∈ Ckp (R,R(n−r)×(n−r)), p ≤ µ∗(n − r).

Moreover, we can choose U =
[
Ũ1 U2

]
and V =

[
Ṽ1 V2

]
, with AṼ1 = Ũ1Σ, and

Ũ1 ∈ Ck−e2p (R,Rm×(n−r)), Ṽ1 ∈ Ck−e2p (R,Rn×(n−r)) and U2 ∈ Ck2 (R,Rm×(m−n+r)),
V2 ∈ Ck2 (R,Rn×r).

Proof. The main ingredient is to show the stated periodicity of the singular
values’ function Σ. To this end, we can reason as follows. The σi’s are the positive
square roots of the nonzero eigenvalues of ATA: σi(t) =

√
λi(t) for all t for a given

ordering of the nonzero Ck eigenvalues of ATA. In particular, the σi’s can be taken
of the same period as the λi’s. Because of the assumption (3.15), and of Theorem 3.2
(in particular, (3.2) in the real, normal case), we have that there exists orthogonal
function V =

[
V1 V2

]
such that

V T (ATA)V =

λ1 ...

λn−r

0 ...
0

 .

Since ATA has period 1, then reasoning as in the proof of Lemma 3.14 relatively to
D = diag(λ1, . . . , λn−r), we obtain that D can be taken of period p, 1 ≤ p ≤ µ∗(n−r).

At this point, we proceed similarly to the proof of Theorem 3.25, by using Theo-
rem 3.3(i) and Theorem 3.23 in the real case, to obtain that U and V can be chosen
as stated.

792 JANN-LONG CHERN AND LUCA DIECI

Acknowledgment. J. L. Chern gratefully acknowledges the hospitality received
from the School of Mathematics and Center for Dynamical Systems and Nonlinear
Studies at Georgia Tech for the academic year 1997–1998.

REFERENCES

[1] V. M. Adamjan, D. Z. Arov, and M. G. Krein, Analytic properties of Schmidted Schur-
Takagi problem, Math. USSR Sb., 15 (1971), pp. 31–73.

[2] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of Initial Value
Problems in Differential-Algebraic Equations, North–Holland, New York, 1989.

[3] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols, Numerical computation
of an analytic singular value decomposition by a matrix valued function, Numer. Math.,
60 (1991), pp. 1–40.

[4] A. Bunse-Gerstner and W. B. Gragg, Singular value decompositions of complex symmetric
matrices, J. Comput. Appl. Math., 21 (1988), pp. 41–54.

[5] S. L. Campbell, The numerical solution of higher index linear time varying singular systems
of differential equations, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 334–348.

[6] L. Dieci and T. Eirola, On smooth decomposition of matrices, SIAM J. Matrix Anal. Appl.,
20 (1999), pp. 800–819.

[7] V. A. Eremenko, Some properties of periodic matrices, Ukrainian Math. J., 32 (1980), pp. 19–
26.

[8] A. Friedman, Foundations of Modern Analysis, Holt, Rinehart and Winston, New York, 1970.
[9] H. Gingold and P. F. Hsieh, Globally analytic triangularization of a matrix function, Linear

Algebra Appl., 169 (1992), pp. 75–101.
[10] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins Uni-

versity Press, Baltimore, MD, 1989.
[11] J. K. Hale, Ordinary Differential Equations, Krieger Publishing Co., Malabar, 1980.
[12] M. Hayes, Inhomogeneous plane waves, Arch. Ration. Mech. Anal., 85 (1984), pp. 41–79.
[13] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York,

1985.
[14] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1976.
[15] P. Kunkel and V. Mehrmann, Canonical forms for linear differential-algebraic equations

with variable coefficients, J. Comput. Appl. Math., 56 (1994), pp. 225–251.
[16] E. V. Mamontov, Some properties of a system of first order ordinary differential nonlinear

equations with a singular matrix of constant rank in front of the vector of the derivatives,
Differ. Uravn., 24 (1988), pp. 1055–1058.

[17] D. Pütz, Strukturehaltende Interpolation glatter Singulärwertzerlegungen, Ph.D. thesis, RWTH
Aachen, Aachen, Germany, 1994.

[18] C. E. Reid and E. Brändas, On a theorem for complex symmetric matrices and its relevance
in the study of decay phenomena, in Resonances, Lecture Notes in Phys., 325, Springer-
Verlag, Berlin, 1989, pp. 475–483.

[19] Y. Sibuya, Some global properties of matrices of functions of one variable, Math. Ann., 161
(1965), pp. 67–77.

[20] V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic
Coefficients, Vol. 1 and 2, John Wiley, New York, 1975.

GENERALIZED AUGMENTED MATRIX PRECONDITIONING
APPROACH AND ITS APPLICATION TO ITERATIVE SOLUTION

OF ILL-CONDITIONED ALGEBRAIC SYSTEMS∗

ALEXANDER PADIY† , OWE AXELSSON‡ , AND BEN POLMAN‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 793–818

Abstract. The present work is devoted to a class of preconditioners based on the augmented
matrix approach considered earlier by two of the present authors. It presents some generalizations
of the subspace-correction schemes studied earlier and gives a brief comparison of the developed
technique with a somewhat similar “deflation” algorithm.

The developed preconditioners are able to improve significantly an eigenvalue distribution of
certain severely ill-conditioned algebraic systems by using properly chosen projection matrices, which
correct the low-frequency components in the spectrum. One of the main advantages of the proposed
approach is the possibility of using inexact solvers within the projectors. Another attractive feature
of the developed method is that it can be easily combined with other preconditioners, for instance,
those which correct the high-frequency eigenmodes.

Key words. iterative solvers, preconditioning, subspace correction

AMS subject classifications. 65F10, 65F15, 65N55

PII. S0895479899356754

1. Introduction. In many problems the convergence of iterative schemes can
be significantly slowed down by a presence of several very small eigenvalues in the
spectrum of the algebraic system to be solved. This occurs, for example, when the
conjugate gradient (CG) method is applied to algebraic problems arising from dis-
cretization of second-order elliptic problems, especially in the case of strongly discon-
tinuous and/or anisotropic problem coefficients.

One of the ways to improve the convergence rate of the CG method is to “deflate”
certain components of the residual by using the projector

B = I − V (V TAV)−1V TA

as a (right) preconditioner; see, e.g., [12]. Here A is the original system matrix
and V is a rectangular matrix constructed in such a way that the Rayleigh quotient
(xTx)/(xTA−1x) does not take extremely small/large values on the subspace orthog-
onal to the image of V . Note that a projector of a similar structure appears also
in the multigrid setting. If V is chosen to be a coarse-to-fine prolongation operator,
then B is normally referred to as a coarse-grid correction operator. (An overview of
the multigrid framework can be found in, e.g., [8, 16, 17].)

A nice feature of the algorithm is that the convergence rate of the “deflated”
preconditioned conjugate (PCG) method depends on the ratio κ̃,

κ̃ =
λ̃max

λ̃min

, λ̃max = sup
x⊥ImV

xTx

xTA−1x
, λ̃min = inf

x⊥ImV

xTx

xTA−1x
,

∗Received by the editors June 8, 1999; accepted for publication (in revised form) by D. O’Leary
May 15, 2000; published electronically October 31, 2000. This work was partly supported by NWO
Dutch–Russian collaborative research program 047.003.017.

http://www.siam.org/journals/simax/22-3/35675.html
†Philips Research Laboratories Eindhoven, WAY-41, Prof. Holstlaan 4, 5656 AA Eindhoven, The

Netherlands (alexander.padiy@philips.com).
‡Department of Mathematics, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The

Netherlands (axelsson@sci.kun.nl, polman@sci.kun.nl).

793

794 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

rather than on the condition number κ,

κ =
λmax

λmin
, λmax = sup

xTAx

xTx
, λmin = inf

xTAx

xTx
.

Since λ̃max ≤ λmax and λ̃min ≥ λmin, the convergence rate of the “deflated” PCG
method is always better than the convergence rate of the unpreconditioned one. As
was shown in [12] for a class of second-order elliptic problems with smooth isotropic
coefficients, the dimension of the low-frequency eigencluster is normally relatively
small and, therefore, the number of columns in V can also be chosen small as com-
pared to the dimension of A. This makes efficient implementations of the “deflation”
procedure possible; see [10, 11, 12]. However, the algorithm requires the system with
the matrix AV = V TAV to be solved exactly on every iteration of the PCG method;
if the action of A−1

V is computed inaccurately, then the convergence of the iterative
scheme can be slow or divergence can even occur. This is a drawback of the “defla-
tion” procedure since the computation of A−1

V can be costly if its dimension is not
small; the system with AV can be efficiently solved only if it has a simple sparsity
structure (preferably block-diagonal) and, thus, the choice of V is severely restricted.

Following the idea suggested in [2], but strongly extending and improving that
method, we consider in the present paper an alternative approach to tackle the low-
frequency eigenmodes. Instead of “deflating” the small eigenvalues we propose to
“move” them to the vicinity of the largest eigenvalue by using a preconditioner B in
the form

B = I + σV B−1
V V T ,

where BV is an easily invertible approximation of AV ; we also refer to [9], where a
somewhat similar algorithm was studied.

One of the main advantages of the proposed algorithm is the possibility of avoiding
exactly solving systems with AV . This relaxes the restrictions posed on the choice
of V and often leads to more efficient implementations of the solver. Moreover, the
algorithm involves no extra multiplication with the system matrix A (as required in
the “deflation” method) and can be easily combined with another preconditioner M
which bounds the largest eigenvalues:

B = M−1 + σV B−1
V V T .

The developed algorithm belongs to the additive Schwarz framework. When
applied recursively with particular choices of M , V , and BV it leads to a number
of known methods such as I-cycle algebraic multilevel iterations (I-AMLI) [1, 3],
Bramble–Pasciak–Xu (BPX) [4], or multiple level diagonal scaling (MDS) [21]. This
issue is addressed in sections 3 and 4. The method has the same form as the auxiliary
space or two-level method discussed in [18], which is presented in finite element matrix
contexts. Our presentation is purely algebraic.

We will first introduce the method as a generalization of the augmented matrix
preconditioning approach [2] and then discuss its application to the problems aris-
ing from finite element discretization of second-order elliptic equations with highly
discontinuous and/or anisotropic coefficients.

2. The augmented matrix preconditioning approach. Let the matrices A
and V be of order n×n and n×m, respectively. Assume that rankV = m. Consider

AUGMENTED MATRIX PRECONDITIONING APPROACH 795

the augmented matrix

Ã =

[
A −AV

−V TA V TAV

]
=

[
In 0

−V T Im

] [
A 0

0 0

] [
In −V
0 Im

]
(1)

of order (n+m)× (n+m).

Theorem 2.1 (see [2]). The following relations between the eigenvalues of Ã and
A hold.

(a) Ã has at least m zero eigenvalues. The rest of the spectrum of Ã coincides
with the spectrum of (I + V V T)A.

(b) If A is symmetric positive definite, then for every eigenvalue λi of A there

exists an eigenvalue λ̃i of Ã such that λ̃i ≥ λi.
(c) If A is nonsingular and symmetric and V is constructed as

V = [α1v1, . . . , αmvm],

where vi are the normalized eigenvectors of A corresponding to λi,
i = 1, . . . ,m, then the nonzero eigenvalues of Ã are the following:

λ̃i =

{
(1 + α2

i)λi, i = 1, . . . ,m,
λi, i = m + 1, . . . , n.

Proof. It follows from (1) that Ã is similar to

[
In −V
0 Im

] [
In 0

−V T Im

] [
A 0

0 0

]
=

[
(In+V V T)A 0

−V TA 0

]
.

This shows part (a) of the theorem. The eigenvalues of (In+V V T)A are equal to those

of A+A
1
2V V TA

1
2 so part (b) follows from xTAx+(V TA

1
2x)T (V TA

1
2x) ≥ xTAx for

any x. Part (c) immediately follows from the orthonormality of the eigenvectors vi
of A, i = 1, . . . , n.

Assume that A is symmetric positive definite with an ordered set of eigenval-
ues {λi}ni=1, λ1 ≤ · · · ≤ λn = λmax. In this case the above theorem implies that

in order to improve the condition number of Ã one can define the matrix V by us-
ing the eigenvectors vi, i = 1, . . . ,m of A. If the scaling factors αi are chosen as
αi =

√
λn/λi − 1 or αi =

√
λn/λi, then the smallest eigenvalues λi of A are “moved”

to λ̃i = λn = λmax or to λ̃i = λn + λi ≤ 2λmax, respectively. As was pointed out
in [2], instead of using the matrix Ã in the iterative scheme, one can alternatively use
the matrix (I + V V T)A, i.e., one can use I + V V T as a preconditioner to A. The
preconditioner can also be written in the form I + V D−1V T , where D = diag(α2

i)
and V = [v1, . . . ,vm].

There are two problems associated with the practical implementation of this
method, namely, the eigenvectors vi are not generally known and likewise the scaling
factors αi are not known. To handle this we consider the case when vi are only as-
sumed to be linearly independent vectors spanning a proper subspace and introduce a
more general scaling matrix. Moreover, as it turns out, it is the subspace spanned by
{vi}m1 which matters and not the particular basis vectors used. Further we study a
preconditioner in a more general form I +V D−1V T , where the matrix D is no longer
assumed to be diagonal.

796 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

Lemma 2.2. Let A be symmetric positive definite. Then

P = A
1
2V (V TAV)−1V TA

1
2

is an orthogonal projector. Therefore, 0 and 1 are the only eigenvalues of P .
Proof. Clearly,

P 2 = A
1
2V (V TAV)−1V TAV (V TAV)−1V TA

1
2

= A
1
2V (V TAV)−1V TA

1
2 = P.

Since P 2 = P , P is an orthogonal projector.
Lemma 2.3 (Monotonicity [13]). Let A and Â be symmetric positive definite

matrices of order n× n and let Vk be rectangular matrices of order n×mk, k = 1, 2,
such that rankVk = mk, k = 1, 2. If ImV1 ⊆ ImV2, then for all i, 1 ≤ i ≤ n, the
following inequality holds

λi
(
(I + V2(V

T
2 Â V2)

−1V T
2)A

) ≥ λi
(
(I + V1(V

T
1 Â V1)

−1V T
1)A

)
.

Proof. It is readily seen that the proposition holds if

F = V2(V
T
2 Â V2)

−1V T
2 − V1(V

T
1 Â V1)

−1V T
1

is nonnegative definite. But since ImV1 ⊆ ImV2, there exists some matrix Q of order
m2 ×m1 such that V1 = V2Q. Then with Dk = V T

k Â Vk we have

F = V2(D
−1
2 −QD−1

1 QT)V T
2 = V2D

− 1
2

2 (I −D
1
2
2 QD−1

1 QTD
1
2
2)D

− 1
2

2 V T
2 ,

where

D
1
2
2 QD−1

1 QTD
1
2
2 = D

1
2
2 Q(QTD2Q)−1QTD

1
2
2

is an orthogonal projector, whose only eigenvalues are 0 and 1.
Corollary 2.4. If ImV1 = ImV2, then I + V2D

−1
2 V T

2 = I + V1D
−1
1 V T

1 .

Proof. In this case Q in V1 = V2Q is invertible, thus D
1
2
2 Q(QTD2Q)−1QTD

1
2
2

= I.
Remark 2.5. The above corollary shows that the individual eigenvectors of A are

not needed when constructing the matrix V ; we are rather interested in the subspace
spanned by them.

Next we consider a specific version of the preconditioner B = I + σV A−1
V V T

with the scaling matrix AV = V TAV . The following theorem is similar to a theorem
from [13].

Theorem 2.6. Let A be an n × n symmetric positive semidefinite matrix and
let a rectangular matrix V of order n ×m be defined as V = [v1, . . . ,vm]. Assume

that rankV = m. Further, define Ã as Ã = (I + σV A−1
V V T)A, where AV = V TAV .

Then the following statements hold:
(a) λmax(Ã) ≤ σ + λmax(A);
(b) if for some i, 1 ≤ i ≤ m, vi is an eigenvector of A with eigenvalue λi, then

it is also an eigenvector of Ã with eigenvalue λi + σ;
(c) let (λi,vi) be the eigenpairs of A and assume that V = [v1, . . . ,vm] contains

m eigenvectors. Then

Ãvi =

{
(λi + σ)vi, i = 1, . . . ,m,

λivi, i = m + 1, . . . , n.

AUGMENTED MATRIX PRECONDITIONING APPROACH 797

Proof. Clearly,

λmax(Ã) ≤ λmax(A) + σ sup
xTV (V TAV)−1V Tx

xTA−1x

= λmax(A) + σ sup
xTA

1
2V (V TAV)−1V TA

1
2x

xTx

= λmax(A) + σ,

where the last equality follows from Lemma 2.2. This proves part (a).
Let wi = (V TV)−1V Tvi. Then for i = 1, . . . ,m

Ãvi = λivi + σV (V TAV)−1V TAvi

= λivi + σV (V TAV)−1V TAVwi

= λivi + σVwi = (λi + σ)vi,

which shows part (b). To prove part (c) note that the eigenvectors are orthogonal so
V TAvi = 0, i = m + 1, . . . , n.

Corollary 2.7. Let V be such that ImV is spanned by the m eigenvectors
v1, . . . ,vm of A corresponding to the cluster of m smallest eigenvalues λ1, . . . , λm.
Then the eigenvalues of Ã = (I+σV (V TAV)−1V T)A are λ̃i = σ+λi for i = 1, . . . ,m
and λ̃i = λi for i = m + 1, . . . , n, which implies that

min {σ + λ1, λm+1} ≤ λi(Ã) ≤ max {σ + λm, λmax(A)} .(2)

Proof. Use Corollary 2.4 and Theorem 2.6.
Corollary 2.8. Assume that

ImV ⊇ span {v1, . . . ,vm}.(3)

Then the following estimate holds:

min {σ + λ1, λm+1} ≤ λi(Ã) ≤ σ + λmax(A).

Proof. Use Corollary 2.7 and Lemma 2.2.
As follows from the above corollaries, the preconditioner

B = I + σV (V TAV)−1V T , σ = λmax(A), ImV ⊇ span {v1, . . . ,vm}(4)

scales the smallest eigenvalues λi of A, and they are “moved” to λ̃i = λmax(A) + λi.
Since λ̃i ≤ 2λmax(A), this leads to the condition number estimate

κ(BA) ≤ 2λmax(A)

λm+1
.(5)

However, the preconditioner (4) is normally expensive to apply because of the need
to invert the matrix AV . In the following section we show that the action of A−1

V can
be replaced by the action of a preconditioner B−1

V to A−1
V . We also discuss there the

possibility to relax condition (3).

798 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

3. Generalized version with inexact projectors.
Theorem 3.1. Define the preconditioner B̂ as

B̂ = I + σ̂V B−1
V V T , σ̂ =

λmax(A)

λmax(B
−1
V AV)

, ImV ⊇ span {v1, . . . ,vm},(6)

where BV is an m×m symmetric positive definite approximation of AV . The eigen-
values λ(B̂A) of B̂A are bounded as follows:

min

{
λmax(A)

κ(B−1
V AV)

+ λ1, λm+1

}
≤ λ(B̂A) ≤ 2λmax(A).(7)

Proof. The minimal eigenvalue of B̂A can be estimated as

λmin(B̂A) = inf
x

{
xT (I + σ̂V B−1

V V T)x

xTA−1x

}

= inf
x

{
xTx

xTA−1x
+ σ̂ · x

TV B−1
V V Tx

xTA−1x

}

= inf
x

{
xTx

xTA−1x
+ σ̂ · x

TV B−1
V V Tx

xTV A−1
V V Tx

· x
TV A−1

V V Tx

xTA−1x

}

≥ inf
x

{
xTx

xTA−1x
+ σ̂λmin(B

−1
V AV) · x

TV A−1
V V Tx

xTA−1x

}

≥ min

{
λmax(A)

κ(B−1
V AV)

+ λ1, λm+1

}
,

where the last inequality follows from Corollary 2.7 with

σ = σ̂λmin(B
−1
V AV) =

λmax(A)

κ(B−1
V AV)

.

Analogously, λmax(B̂A) ≤ 2λmax(A).
Remark 3.2. The value of σ̂ in (6) was chosen as σ̂ = λmax(A)/λmax(B

−1
V AV) for

the ease of presentation. The optimal value of σ̂ (the value of σ̂ which minimizes the
condition number of B̂A) corresponds to the case when

σ̂λmin(B
−1
V AV) + λ1 = λm+1.

Note that λm+1 is not known in general.
Remark 3.3. As follows from (7), if κ(B−1

V AV) ≤ λmax(A)/λm+1, then the bounds

for κ(B̂A) and κ(BA) coincide.
Remark 3.4. As follows from the above remark, if κ(AV) ≤ λmax(A)/λm+1, then

one can define BV simply as BV = I or BV = diagAV .
As follows from Theorem 3.1, the preconditioner (6) is able to improve the spec-

trum of A even in the case when the action of A−1
V is replaced by the action of a

preconditioner B−1
V . It should be noted, however, that the preconditioner (6) is still

difficult to implement in practice since the condition ImV ⊇ span {v1, . . . ,vm} is not
easy to satisfy. Later, in Theorem 3.6, we show that this condition can be significantly
relaxed.

AUGMENTED MATRIX PRECONDITIONING APPROACH 799

In the following we use the notation cos(W1,W2) for cos(ϕ(W1,W2)), where ϕ
denotes the angle between the vector subspaces W1 and W2, namely,

cos(W1,W2) = cos(ϕ(W1,W2)) = sup
x ∈ W1

y ∈ W2

xTy

(xTx)
1
2 (yTy)

1
2

.

Lemma 3.5. Consider two arbitrary matrices V1 ∈ Rn×m1
, rankV1 = m1, and

V2 ∈ Rn×m2 , rankV2 = m2. If there exists γ < 1 such that

cos(ImV1, ImV2) = sup
x ∈ ImV1

y ∈ ImV2

xTy

(xTx)
1
2 (yTy)

1
2

≤ γ,

then

λmax

(
2∑
i=1

Vi(V
T
i Vi)

−1V T
i

)
≤ 1 + γ.

Proof. Define an auxiliary (m1 + m2)× n matrix R as

R =

[
(V T

1 V1)
− 1

2V T
1

(V T
2 V2)

− 1
2V T

2

]
.

The matrix R exists since Vi are full rank matrices and, thus, the matrices V T
i Vi are

symmetric positive definite. Since λmax(Q
TQ) = λmax(QQT) for all Q,

λmax

(
2∑
i=1

Vi(V
T
i Vi)

−1V T
i

)
= sup

x

xTRTRx

xTx
= λmax(R

TR) = λmax(RRT).

Taking into account the explicit form of RRT we have

λmax(RRT) = λmax

([
I WT

1 W2

WT
2 W1 I

])
= 1 + cos(ImW1, ImW2),

where Wi = Vi(V
T
i Vi)

− 1
2 , i = 1, 2. Clearly, ImVi = ImWi. Thus,

λmax

(
2∑
i=1

Vi(V
T
i Vi)

−1V T
i

)
= λmax(RRT) = 1 + cos(ImV1, ImV2) ≤ 1 + γ.

Theorem 3.6. Consider the preconditioner B̂

B̂ = I + σ̂V B−1
V V T , σ̂ = λmax(A)/λmax(B

−1
V AV).(8)

Assume that {(λi,vi)}ni=1 is an ordered set of eigenpairs of A such that λ1 ≤ · · · ≤ λn.

If V is such that the subspaces W = (ImA
1
2V)⊥ and Ve = span {v1, . . . ,vm} satisfy

the condition

cos(W,Ve) = sup
x ∈ W
y ∈ Ve

xTy

(xTx)
1
2 (yTy)

1
2

≤ γ(9)

800 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

for some γ < 1, then the minimal eigenvalue of B̂A is bounded as

λmin(B̂A) ≥ max

{
λ1, (1− γ) ·min

{
λmax(A)

κ(B−1
V AV)

, λm+1

}}
(10)

while λmax(B̂A) is bounded as λmax(B̂A) ≤ 2λmax(A) for any choice of V and BV .
Proof. The maximal eigenvalue λmax(B̂A) can be estimated as

λmax(B̂A) = sup
x

{
xT (I + σ̂V B−1

V V T)x

xTA−1x

}

≤ sup
x

{
xTx

xTA−1x
+ σ̂λmax(B

−1
V AV) · x

TV A−1
V V Tx

xTA−1x

}

= sup
x

{
xTx

xTA−1x
+ λmax(A) · x

TV A−1
V V Tx

xTA−1x

}
≤ 2λmax(A).

If we take into account that the eigensubspaces Ve and (Ve)⊥ of A are A-orthogonal,
then the minimal eigenvalue of B̂A can be estimated as

λmin(B̂A) = inf
x

{
xT (I + σ̂V B−1

V V T)x

xTA−1x

}

≥ inf
x

{
xTx

xTA−1x
+

λmax(A)

κ(B−1
V AV)

· x
TV A−1

V V Tx

xTA−1x

}

= inf
y

{
yTAy

yTy
+

λmax(A)

κ(B−1
V AV)

· y
TA

1
2V A−1

V V TA
1
2y

yTy

}

= inf
y

{
yTP⊥

e AP⊥
e y + yTPeAPey

yTy
+

λmax(A)

κ(B−1
V AV)

· y
TPwy

yTy

}

≥ inf
y

{
yTP⊥

e AP⊥
e y

yTy
+

λmax(A)

κ(B−1
V AV)

· y
TPwy

yTy

}

≥ inf
y

{
λm+1 · y

TP⊥
e y

yTy
+

λmax(A)

κ(B−1
V AV)

· y
TPwy

yTy

}

≥ min

{
λm+1,

λmax(A)

κ(B−1
V AV)

}
· inf

y

{
yTP⊥

e y + yTPwy

yTy

}

= min

{
λm+1,

λmax(A)

κ(B−1
V AV)

}
·
(
2− sup

y

{
yTPey + yTP⊥

w y

yTy

})
,

where Pe, P
⊥
e , Pw, and P⊥

w are the orthogonal projectors onto Ve, V⊥
e , ImA

1
2V , and

(ImA
1
2V)⊥, respectively. As follows from Lemma 3.5 with the matrices V1 and V2

chosen such that ImV1 = Ve and ImV2 = (ImA
1
2V)⊥,

λmin(B̂A) ≥ (1− γ) ·min

{
λmax(A)

κ(B−1
V AV)

, λm+1

}
.

Finally noting that V B−1
V V T is positive semidefinite we conclude the proof of

(10).

AUGMENTED MATRIX PRECONDITIONING APPROACH 801

Remark 3.7. As follows from (7), κ(B̂A) ≤ 2κ(A) for all choices of V and BV .
Thus, for all V and BV the convergence rate of the B̂-preconditioned iterative scheme
is not worse as of the same order as of the unpreconditioned one. In particular, no
divergence of the iterative scheme can occur (if we assume that the round-off effects
are neglected). This is a nice feature of the developed algorithm as compared to the
“deflation” procedure [12], since the latter can be divergent if the matrix BV is chosen
inappropriately.

Lemma 3.8. If the eigensubspace Ve = span {v1, . . . ,vm} of A is known, then
the value of cos(W,Ve) in (9) is readily computable. It can be evaluated as

cos(W,Ve) = λmax(ZA), Z = Ve(V
T
e AVe)

−1V T
e − V (V TAV)−1V T ,

where the matrix Ve is chosen such that rankVe = m, ImVe = Ve.
Proof. Introduce two auxiliary matrices Ve and W such that ImVe = Ve, rankVe =

dimVe, V T
e Ve = I, ImW = W, rankW = dimW, W = (ImA

1
2V)⊥, WTW = I.

Similarly to the proof of Lemma 3.5, we have

cos(W,Ve) = λmax

([
I WTVe

V T
e W I

])
− 1

= λmax

(
VeV

T
e + WWT

)− 1

= λmax

(
VeV

T
e + I −A

1
2V (V TAV)−1V TA

1
2

)
− 1

= sup
x

xTVe(V
T
e Ve)

−1V T
e x− xTA

1
2V (V TAV)−1V TA

1
2x

xTx

= sup
y

yTVe(V
T
e AVe)

−1V T
e y − yTV (V TAV)−1V Ty

yTA−1y
,

where the last equality follows from Corollary 2.4 by taking into account that the
subspace Ve is A

1
2 -invariant. Since

λmax(QA) = sup
x

xTQx

xTA−1x
, Q = QT ≥ 0, A = AT > 0,

we conclude that

cos(W,Ve) = λmax(ZA), Z = Ve(V
T
e AVe)

−1V T
e − V (V TAV)−1V T .

Remark 3.9. Since the eigensubspace Ve = span {v1, . . . ,vm} is A
1
2 -invariant, it

follows from ImV ⊇ Ve that ImA
1
2V ⊇ Ve. This implies that γ = 0 if ImV ⊇ Ve.

As follows from Theorem 3.6, there is no need to approximate the subspace
spanned by {vi}mi=1 with a very high accuracy. For the isotropic second-order elliptic
problem with a smooth coefficient function we can let, for instance, V = [w1, . . . ,wm],
where wi are the pointwise nodal values of the coarse-mesh finite element basis func-
tions ϕHi . An iterative scheme based on such choice of V was constructed in [12].
Another choice of w1, . . . ,wm could be the basis vectors of a known eigensubspace
of a similar problem, such as a problem with a different coefficient function. This
approach was taken in [3] and [14], where the low-frequency subspace of a strongly

802 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

anisotropic diffusion operator was approximated using the eigenvectors of the limit
problem with a degenerate diffusion tensor.

It should also be noted that the algorithm (8) can be applied recursively, i.e., we
can consider a nested sequence of preconditioners {B̂k}Jk=0 defined as

B̂k = I + σ̂kVk,k−1B̂k−1V
T
k,k−1.(11)

According to the classification introduced in [17] the above recursive algorithm belongs
to the class of parallel subspace correction methods.

Remark 3.10. In the case when B0 = I and Vk,k−1 are prolongation operators
in the standard multigrid setting the developed algorithm corresponds to the BPX
method [4].

Remark 3.11. The matrices Vk,k−1 in the multilevel preconditioner (11) can be
constructed using the matrix-dependent prolongation operators developed in [6, 20] or
[5, 15]. We also refer to [7], where preconditioners of a similar structure were studied.

If we additionally introduce a polynomial stabilization procedure to bound the
condition number of κ(BkAk) (see [1], for instance), then we arrive at the BPX-like
preconditioner of the W-cycle type:

B̄k =
(
I − Pνk(B̂kAk)

)
A−1
k , B̂k = I + σ̄kVk,k−1B̄k−1V

T
k,k−1,

where

Al = A, Ak−1 = V T
k,k−1AkVk,k−1,

and Pνk denotes a Chebyshev polynomial of degree νk normalized at the origin.

4. Incorporation of an “external” smoother. The method presented above
improves the condition number of the preconditioned system by “moving” the smallest
eigenvalues to the upper part of the spectrum. Next we show how it can be combined
with a smoother, which essentially improves the conditioning by making the largest
eigenvalues smaller.

The preconditioner is constructed as

B̃ = M−1 + σ̃V B−1
V V T , σ̃ = λmax(M

−1A)/λmax(B
−1
V AV),(12)

where M and BV are symmetric positive definite preconditioners for A and AV ,
respectively.

Remark 4.1. Preconditioners in this form appear within the additive Schwarz
framework (with application to domain decomposition methods). The term σ̃V B−1

V V T

then normally corresponds to the coarse-mesh correction operator while the smoother
M−1 corresponds to a series of subdomain solves.

Remark 4.2. When applied recursively in the standard multigrid setting with
Mk = diag (Ak), the algorithm (12) corresponds to the MDS method [21].

Remark 4.3. Consider the case when the matrices Ak are generated using the
hierarchical basis of finite elements. If the smoother Mk is defined as

M−1
k = I − Vk,k−1(V

T
k,k−1Vk,k−1)

−1V T
k,k−1,

then the algorithm corresponds to the multilevel method developed in [19]. If the
smoother Mk is extended to the form

M−1
k = (I − Vk,k−1(V

T
k,k−1Vk,k−1)

−1V T
k,k−1)M

(k)
11 (I − Vk,k−1(V

T
k,k−1Vk,k−1)

−1V T
k,k−1)

AUGMENTED MATRIX PRECONDITIONING APPROACH 803

and, additionally, the polynomial stabilization procedure is used to bound the con-
dition number of κ(B̂kAk), then the method reduces to the additive version of the
AMLI method [1, 3].

Theorem 4.4. Consider the preconditioner (12). Assume that {(λi,vi)}ni=1 is an
ordered set of eigenpairs of M−1A such that λ1 ≤ · · · ≤ λn. Define the matrix Ve as
Ve = [v1, . . . ,vm]. If V is such that the subspacesW = (ImA

1
2V)⊥ and Ve = ImA

1
2Ve

satisfy the condition (9) for some γ < 1, then the minimal eigenvalue of B̃A is bounded
as

λmin(B̃A) ≥ max

{
λ1, (1− γ) ·min

{
λmax(M

−1A)

κ(B−1
V AV)

, λm+1

}}
.(13)

The maximal eigenvalue of B̃A is bounded as

λmax(B̃A) ≤ 2λmax(M
−1A)(14)

for any choice of V and BV .
Proof. The maximal eigenvalue λmax(B̃A) can be estimated as in the proof of

Theorem 3.6. Taking into account that Ve is the eigensubspace of A
1
2M−1A

1
2 the

minimal eigenvalue can be estimated as

λmin(B̃A) = inf
x

{
xTA

1
2 M−1A

1
2x+ σ̃xTA

1
2V B−1

V V TA
1
2x

xTx

}

≥ inf
x

{
xTA

1
2 M−1A

1
2x

xTx
+

λmax(M
−1A)

κ(B−1
V AV)

· x
TA

1
2V A−1

V V TA
1
2x

xTx

}

≥ min

{
λm+1,

λmax(M
−1A)

κ(B−1
V AV)

}
· inf

x

{
xTP⊥

e x+ xTP∗x
xTx

}

= min

{
λm+1,

λmax(M
−1A)

κ(B−1
V AV)

}
·
(
2− sup

x

{
xTPex+ xTP⊥

∗ x

xTx

})
,

where Pe, P⊥
e , P∗, and P⊥

∗ are the orthogonal projectors onto Ve = ImA
1
2Ve,

V⊥
e = (ImA

1
2Ve)

⊥, ImA
1
2V , and (ImA

1
2V)⊥, respectively. As follows from Lemma 3.5

with the matrices V1 and V2 chosen such that ImV1 = Ve and ImV2 = (ImA
1
2V)⊥,

λmin(B̃A) ≥ (1− γ) ·min

{
λmax(M

−1A)

κ(B−1
V AV)

, λm+1

}
.

Now (13) follows by taking into account that V B−1
V V T is positive semidefinite.

Remark 4.5. The value of σ̃ in (12) was chosen as

σ̃ = λmax(M
−1A)/λmax(B

−1
V AV)

for the ease of presentation. The optimal value of σ̃ (the value of σ̃ which minimizes
the condition number of B̃A) corresponds to the case when

σ̃λmin(B
−1
V AV) + λ1 = λm+1.

804 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

Lemma 4.6. If the eigensubspace Ve = span {v1, . . . ,vm} of M−1A is known,

then the value of cos(W,Ve) = cos((ImA
1
2V)⊥, ImA

1
2Ve) is readily computable. It

can be evaluated as

cos(W,Ve) = λmax(ZA), Z = Ve(V
T
e AVe)

−1V T
e − V (V TAV)−1V T ,

where the matrix Ve is chosen such that rankVe = m, ImVe = Ve.
Proof. The proof is similar to that of Lemma 3.8.
In the following theorem the assumptions of Theorem 4.4 are slightly relaxed.
Theorem 4.7. Consider the preconditioner (12). Assume that there exist two

matrices M̂ and Â such that M̂ = M̂T > 0, Â = ÂT ≥ 0, M̂ ≥M , and Â ≤ A. (All

inequalities here are meant in positive definite sense.) Assume also that {(λ̂i, v̂i)}ni=1

is an ordered set of eigenpairs of M̂−1Â such that λ̂1 ≤ · · · ≤ λ̂n. Define the matrix V̂e
as V̂e = [v̂1, . . . , v̂m]. If the subspaces W = (ImA

1
2V)⊥ and V̂e = ImA

1
2 V̂e satisfy

the condition cos(W, V̂e) ≤ γ̂ for some γ̂ < 1, then the minimal eigenvalue of B̃A is
bounded as follows:

λ(B̃A) ≥ max

{
λmin(M

−1A), (1− γ̂) ·min

{
λmax(M

−1A)

κ(B−1
V AV)

, λ̂m+1

}}
.(15)

Proof. Similarly to the proof of Theorem 4.4,

λmin(B̃A) = inf
x

{
xTA

1
2 M−1A

1
2x+ σ̃xTA

1
2V B−1

V V TA
1
2x

xTx

}

≥ inf
x

{
xTA

1
2 M−1A

1
2x

xTx
+

λmax(M
−1A)

κ(B−1
V AV)

· x
TA

1
2V A−1

V V TA
1
2x

xTx

}

≥ inf
x

{
xT Â

1
2 M̂−1Â

1
2x

xTx
+

λmax(M
−1A)

κ(B−1
V AV)

· x
TA

1
2V A−1

V V TA
1
2x

xTx

}

≥ min

{
λ̂m+1,

λmax(M
−1A)

κ(B−1
V AV)

}
· inf

x

{
xT P̂⊥

e x+ xTP∗x
xTx

}

≥ (1− γ̂) ·min

{
λmax(M

−1A)

κ(B−1
V AV)

, λ̂m+1

}
,

where P̂e, P̂⊥
e , P∗, and P⊥

∗ are the orthogonal projectors onto V̂e = ImA
1
2 V̂e,

V̂⊥
e = (ImA

1
2 V̂e)

⊥, ImA
1
2V , and (ImA

1
2V)⊥, respectively. Combining the above

estimate with the result of Theorem 4.4 we obtain (15).
The above theorem shows that there is no need to know the eigenvectors of the

matrix M−1A in order to construct the matrix V in the preconditioner (12). It
suffices to find the matrices M̂ and Â such that the low-frequency eigensubspace
V̂e = span {ŵ1, . . . , ŵm} of M̂−1Â is known. Then the matrix V can be defined
simply as V = [ŵ1, . . . , ŵm]. This approach is taken in the next section, where
we construct a number of preconditioners for a class of singularly perturbed elliptic
problems by using the known eigensubspace of a degenerate limit problem.

5. Application to second-order elliptic problems with strongly discon-
tinuous and/or anisotropic coefficients. In this section we illustrate the appli-
cation of the algorithm (12) on a number of severely ill-conditioned model problems
involving a parameter.

AUGMENTED MATRIX PRECONDITIONING APPROACH 805

Example 5.1. Consider the one-dimensional diffusion problem

(a(x)u′)′ = f, x ∈ [0, 1],
u′(0) = u′

0,
u(1) = u1

(16)

discretized by means of conforming piecewise-linear finite elements on a uniform Carte-
sian mesh with stepsize h. Assume that a(x) = 1 for x < 1/2 and a(x) = ε for x ≥ 1/2.
The stiffness matrix of the discrete problem has the following structure:

A = h2

1 −1
−1 2 −1

· · · · · · · · ·
−1 2 −1

−1 1 + ε −ε
−ε 2ε −ε

· · · · · · · · ·
−ε 2ε −ε

−ε 2ε

.

For this problem the matrices Â and M̂ in Theorem 4.7 can be defined as follows:

Â = Â1 = h2

1 −1
−1 2 −1

· · · · · · · · ·
−1 2 −1

−1 1
ε −ε
· · · · · · · · ·
−ε 2ε −ε

−ε 2ε

,(17)

M̂ = M̂1 = 2diag Â1.(18)

As can be easily verified, the following statements hold:
(a) Â1 ≤ A, M̂1 ≥ diagA.
(b) The null-space of M̂−1

1 Â1 consists of the single vector v0 = (1, . . . , 1, 0, . . . , 0).

(c) On the subspace orthogonal to the null-space of M̂−1
1 Â1 the spectrum of

M̂−1
1 Â1 is contained in an interval [O(h2), O(1)].

Thus, the preconditioner (12) for A can be constructed as

B̃ = M−1 + σ̃V B−1
V V T , M = diagA, V = [v0].

As follows from Theorem 4.7, the spectrum of B̃A is contained in the interval
[O(h2), O(1)], and the bounds for λ(B̃A) are independent of ε.

Remark 5.2. The above algorithm for constructing the preconditioner (12) can
be straightforwardly extended to the case when the dimension of the space is greater
than 1.

Remark 5.3. The problems with multiple jumps in the coefficient function and
with other types of boundary conditions can be treated analogously. In this case the

806 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

null-space of M̂−1
1 Â1 contains the vectors vi which are constant along the “subdo-

mains” Ωi with constant value of a(x), which are not adjacent to the Dirichlet part
of the boundary. The matrix V in (12) is then constructed as

V = [v0, . . . ,vm].(19)

Remark 5.4. Alternatively to (17) and (18), we can define the matrices Â and M̂
as

Â = Â2 = h2

1 −1
−1 2 −1

· · · · · · · · ·
−1 2 −1

−1 1
ε −ε
· · · · · · · · ·
−ε 2ε −ε

−ε ε

,

M̂ = M̂2 = 2diag Â2,

i.e., we can replace all the boundary conditions of Dirichlet type by boundary con-
ditions of Neumann type. In this case the null-space of M̂−1

2 Â2 contains the vectors
which are constant along all the “subdomains” Ωi (even along the “subdomains”
which are adjacent to the Dirichlet part of the boundary). If the matrix V in (12)
is chosen such that ImV = ker M̂−1

2 Â2, then the preconditioner “shifts” the low-
frequency eigencluster at least as well as (or even better than) the preconditioner
with the matrix V defined by (19). The improvement is possible since the smallest
nonzero eigenvalue λ+

min(M̂
−1
2 Â2) of M̂−1

2 Â2 is at least as large as the smallest nonzero

eigenvalue λ+
min(M̂

−1
1 Â1) of M̂−1

1 Â1 (and in some cases it can be even significantly
larger).

Example 5.5. Consider the two-dimensional diffusion problem

∇K(x)∇u(x) = f(x) in x ∈ Ω,
u(x) = 0 on x ∈ ΓD ⊆ ∂Ω,

∂u(x)/∂n = 0 on x ∈ ΓN = ∂Γ/ΓD

with highly anisotropic diffusion tensor K(x)

K(x) =

[
ε 0
0 1

]
, 0 < ε� 1,

discretized by means of conforming piecewise-linear finite elements on a uniform Carte-
sian grid. For this problem the auxiliary matrices Â and M̂ in Theorem 4.7 can be
chosen as follows: the matrix Â can be defined to be the stiffness matrix of the degen-
erate limit problem with ε = 0, and the matrix M̂ can be defined as M̂ = 2diag Â.
Clearly, Â ≤ A, M̂ ≥ M = diagA. With this choice of Â and M̂ the null-space of
M̂−1Â is known: it consists of constant vectors aligned with the y-axis (except the
constant vectors which are adjacent with the Dirichlet part of the boundary). The
spectrum of M̂−1Â on the subspace orthogonal to the kernel is contained in the in-
terval [O(h2), O(1)]. Thus, if we choose the matrix V such that ImV = ker M̂−1Â,

AUGMENTED MATRIX PRECONDITIONING APPROACH 807

then the spectrum of B̃A is contained in the interval [O(h2), O(1)] and is bounded
independently on ε.

Remark 5.6. As can be easily verified, with the above choice of V (ImV =
ker M̂−1Â) the condition number κ(AV) of AV = V TAV is of order O(h−2), i.e.,
it is of the same order as the effective condition number κ+(M̂−1Â) of M̂−1Â,
κ+(M̂−1Â) = λmax(M̂

−1Â)/λ+
min(M̂

−1Â). Thus, the preconditioner BV for AV can
be constructed as BV = I or BV = diagAV ; see Remark 3.4. Such a choice of BV
allows an efficient parallel implementation of the preconditioner (12).

Remark 5.7. A similar approach for constructing the matrices V and BV can also
be applied in the three-dimensional case. If the diffusion tensor K(x) has the form

K(x) =

 εβ 0 0

0 ε 0
0 0 1

 , 0 < ε < 1, β ≥ 1,

then the preconditioner can be constructed by applying the above-described algo-
rithm recursively: first to the matrix A and then to the matrix AV . As in the
two-dimensional case, the resulting preconditioner can be efficiently parallelized.

Remark 5.8. We can define the matrix Â in Theorem 4.7 to be the stiffness matrix
which corresponds to the problem not only with ε = 0, but also with ΓN = ∂Γ. In
this case the subspace ImV contains all the constant vectors aligned with the y-axis.

Remark 5.9. The above algorithm for the anisotropic problems can be easily com-
bined with the algorithm for the discontinuous problems. This allows us to treat the
problems where the diffusion tensor is not only anisotropic but also discontinuous.

6. A purely algebraic algorithm for constructing the matrix V . For the
class of diffusion-type problems considered in the previous section the matrix V can
be constructed automatically using a heuristic technique developed in [3, 14] (see
also [15] for a similar approach). For the sake of completeness a brief description of
the algorithm follows.

Consider the diffusion problem as in Example 5.5:

∇K(x)∇u(x) = f(x) in x ∈ Ω,
u(x) = 0 on x ∈ ΓD ⊆ ∂Ω,

∂u(x)/∂n = 0 on x ∈ ΓN = ∂Γ/ΓD

(20)

discretized on a regular finite element mesh. Assume that the diffusion tensor K(x)
is piecewise constant and uniformly symmetric positive definite.

Let A = [ai,j]
n
i,j=1 be the stiffness matrix resulting from the discretization of (20).

Define the matrix Q = [qi,j]
n
i,j=1 which contains a pattern of “strong couplings”

within A:

qi,j =

0 if |ai,j | < ω ·min

 max
k = 1, n
k
= i

|ai,k|, max
k = 1, n
k
= j

|ak,j |

 , ω ∈ (0, 1),

1 otherwise.

(21)

Define a symmetric function χ(i, j) of two integer variables i and j: let the
function χ(i, j) be equal to unity either if qi,j = 1 or if there exists a k such that
χ(i, k) · χ(k, j) = 1; otherwise define the function χ(i, j) to be equal to zero. As can

808 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

be readily seen, the definition of χ(i, j) implies that χ(i, j) = 1 if and only if there is
a “strong connectivity path” between the unknowns i and j; otherwise χ(i, j) = 0.

Define also a number of sets G(p) of size np:

G(p) = {i(p)1 , . . . , i(p)np
}, i(p)s ∈ {1, 2, . . . , n}, p = 1, . . . , m̃,

such that they satisfy the conditions
• G(p1)

⋂
G(p2) = {∅} for all p1 �= p2 and

• for any i and j there exists p such that i ∈ G(p) and j ∈ G(p) if and only if
χ(i, j) = 1.

As follows from the above definition, each set G(p) contains a list of “strongly con-
nected unknowns” (with respect to A). The definition of G(p) also implies that if
there is no “strong connectivity path” from i to j, then the unknowns i and j belong
to different sets. If there is a “strong connectivity path” between the unknowns i and
j, then they belong to the same set G(p). As can be readily shown, the sets G(p) can
be computed with an arithmetic cost O(n).

Define a set of m̃ sparse vectors ŵ(p) of size n:

ŵ
(p)
i = 1 if i ∈ G(p); otherwise ŵ

(p)
i = 0.(22)

Clearly, the vectors ŵ(p) are L2-orthogonal to each other. Next, define a vector h
such that

hi = 1 if

∣∣∣∣
∑

ai,j
ai,i

∣∣∣∣ > ω; hi = 0 otherwise.(23)

Define a set X of indices pi, i = 1, . . . ,m, m ≤ m̃, such that

pi ∈ X if and only if hT ŵ(pi) = 0.(24)

Remark 6.1. The algorithm (23)–(24) selects only those sets G(pi), which are
“weakly connected” with the Dirichlet part of the boundary (see the previous section
for the motivation).

Define the matrices V1 and V2 as follows:

V1 =
[
w̃(p1), . . . , w̃(pm)

]
, pi ∈ X , i = 1, . . . ,m,

V2 =
[
w̃(1), . . . , w̃(m̃)

]
, i = 1, . . . , m̃.

(25)

Finally, define the matrix V in the preconditioner (12) as either V = V1 or V = V2.
As was demonstrated in the previous section, both ImV1 and ImV2 approximate

well the low-frequency eigensubspace of nearly degenerate diffusion-type operators.
A nice feature of the choice V = V1 is that it leads to a smaller condition number
of AV = V TAV . In many practical cases this allows an easier construction of BV .
It should be noted, however, that in the case V = V2 the smallest eigenvalues of A
could be captured more efficiently than in the case V = V1 since ImV1 ⊆ ImV2 (see
Lemma 2.3).

As follows from the definition of {w̃(i)}, the matrix V is sparse and contains at
most n nonzero entries. This means that if the action of B−1

V requires O(n) arithmetic
operations, then the action of the whole preconditioner (12) also requires only O(n)
operations.

Another important feature of the developed preconditioner is that it can be ef-
ficiently parallelized since in many practical applications it suffices to use a (block-)

AUGMENTED MATRIX PRECONDITIONING APPROACH 809

D

N

N

N

N

D

N

N

N

N

D

N

N

N

N

D

N

N

N

N

problem A problem B problem C problem D

Fig. 1. Test problems used in our numerical experiments.

diagonal preconditioner B−1
V for A−1

V . As can be easily verified, if we distribute the
algebraic system between the processors in the multiprocessor system such that the
unknowns from the same group G(p) belong to the same processor and distribute the
blocks of BV accordingly, then no interprocessor communications are needed to per-
form the multiplication with V B−1

V V T (if the matrix BV is block-diagonal and the
blocks are properly distributed).

7. Numerical experiments. In this section we illustrate the numerical per-
formance of the developed technique on a number of singularly perturbed elliptic
problems of the form given in Example 5.5. Namely, we consider piecewise-linear con-
forming finite element discretization of the diffusion equation (20) with Ω = [0, 1]2,
ΓD = {x = (x, y) : x = 0, 0 ≤ y < ȳ ≤ 1}, and ΓN = ∂Ω/ΓD on a uniform Cartesian
grid. The diffusion tensor K(x) is considered to be of the form

K(x) = a(x) ·
[

ε 0
0 1

]
, a(x) > 0, ε > 0.

The value of ε is chosen to be equal to 1, 103, or 106. The coefficient function a(x) is
assumed to be the following:

a(x) =

{
a if x belongs to the shaded area (see Figure 1),
1 otherwise,

where the value of a is chosen to be either 10−6, 10−3, 1, 103, or 106.
The main concern is to demonstrate insensitivity of the developed algorithm with

respect to the problem parameters. The results of our numerical experiments are
presented in Tables 1–12, where we study the performance of the method with re-
spect to variations of a, ε, ȳ and different modifications of the preconditioner (12).
The performance of the diagonal (pointwise Jacobi) preconditioner is also presented
for comparison. The stopping criterion within the PCG method is chosen to be
‖r(k)‖/‖r(0)‖ < 10−6, where r(0) is the initial residual and r(k) is the residual after
the kth iteration. The right-hand side in the algebraic system is chosen to be random.
The matrix V in (12) is constructed automatically using the heuristic algorithm (21)–
(25) with ω = 0.1.

Tables 1–4 show that for the problem with smooth isotropic coefficient function
the convergence rate of the diagonally preconditioned PCG method depends mildly
on the choice of the boundary conditions, whereas the situation is opposite in the
case when the coefficient function is highly anisotropic. Tables 5, 7, 9, and 11 show
that the jumps in the coefficient function have the effect of adding extra (internal)
Neumann-type boundary conditions, which again leads to a slower convergence of

810 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

Table 1
Problems A, B, C, and D, h = 1

64
, a = 1, PCG iteration count, and the dimension of ImV

(in parentheses) for different values of ε, ȳ and different choices of the preconditioner.

Preconditioner

V = V2 V = V1
B̂ = (diagA)−1 BV = AV BV = AV BV = I BV = diagAV

ȳ Anisotropy: ε = 1 (isotropic case)

0.125 241 (-) 203 (1) 241 (0) 241 (0) 241 (0)

0.250 239 (-) 238 (1) 239 (0) 239 (0) 239 (0)

0.375 239 (-) 239 (1) 239 (0) 239 (0) 239 (0)

0.500 234 (-) 232 (1) 234 (0) 234 (0) 234 (0)

0.625 225 (-) 223 (1) 225 (0) 225 (0) 225 (0)

0.750 222 (-) 220 (1) 222 (0) 222 (0) 222 (0)

0.875 212 (-) 209 (1) 212 (0) 212 (0) 212 (0)

1.000 179 (-) 117 (1) 179 (0) 179 (0) 179 (0)

ȳ Anisotropy: ε = 103 (anisotropic case)

0.125 1910 (-) 237 (65) 331 (57) 346 (57) 347 (57)

0.250 1781 (-) 243 (65) 423 (49) 417 (49) 421 (49)

0.375 1548 (-) 241 (65) 420 (41) 414 (41) 414 (41)

0.500 1290 (-) 235 (65) 405 (33) 407 (33) 410 (33)

0.625 1032 (-) 226 (65) 398 (25) 396 (25) 387 (25)

0.750 805 (-) 221 (65) 389 (17) 385 (17) 384 (17)

0.875 564 (-) 219 (65) 362 (9) 360 (9) 359 (9)

1.000 284 (-) 162 (65) 262 (1) 262 (1) 262 (1)

Table 2
Problem A, h = 1

64
, a = 103, PCG iteration count, and the dimension of ImV (in parentheses)

for different values of ε, ȳ and different choices of the preconditioner.

Preconditioner

V = V2 V = V1
B̂ = (diagA)−1 BV = AV BV = AV BV = I BV = diagAV

ȳ Anisotropy: ε = 1 (isotropic case)

0.125 310 (-) 195 (2) 216 (1) 216 (1) 216 (1)

0.250 307 (-) 194 (2) 214 (1) 214 (1) 214 (1)

0.375 308 (-) 193 (2) 213 (1) 213 (1) 213 (1)

0.500 303 (-) 205 (2) 219 (1) 219 (1) 219 (1)

0.625 298 (-) 205 (2) 217 (1) 217 (1) 217 (1)

0.750 290 (-) 194 (2) 207 (1) 207 (1) 207 (1)

0.875 280 (-) 182 (2) 197 (1) 197 (1) 197 (1)

1.000 260 (-) 160 (2) 171 (1) 171 (1) 171 (1)

ȳ Anisotropy: ε = 103 (anisotropic case)

0.125 2114 (-) 275 (131) 415 (123) 905 (123) 477 (123)

0.250 2007 (-) 294 (131) 559 (115) 808 (115) 520 (115)

0.375 1917 (-) 252 (131) 480 (107) 755 (107) 422 (107)

0.500 1884 (-) 246 (131) 480 (99) 700 (99) 421 (99)

0.625 1877 (-) 247 (131) 474 (91) 723 (91) 422 (91)

0.750 1851 (-) 233 (131) 474 (83) 728 (83) 416 (83)

0.875 1648 (-) 251 (131) 471 (75) 595 (75) 429 (75)

1.000 1382 (-) 245 (131) 471 (67) 420 (67) 406 (67)

AUGMENTED MATRIX PRECONDITIONING APPROACH 811

Table 3
Problem C, h = 1

64
, a = 103, PCG iteration count, and the dimension of ImV (in parentheses)

for different values of ε, ȳ and different choices of the preconditioner.

Preconditioner

V = V2 V = V1
B̂ = (diagA)−1 BV = AV BV = AV BV = I BV = diagAV

ȳ Anisotropy: ε = 1 (isotropic case)

0.125 400 (-) 267 (3) 288 (2) 289 (2) 292 (2)

0.250 397 (-) 263 (3) 284 (2) 281 (2) 283 (2)

0.375 394 (-) 262 (3) 279 (2) 276 (2) 279 (2)

0.500 393 (-) 262 (3) 275 (2) 272 (2) 273 (2)

0.625 389 (-) 260 (3) 271 (2) 268 (2) 272 (2)

0.750 388 (-) 262 (3) 273 (2) 266 (2) 271 (2)

0.875 382 (-) 262 (3) 271 (2) 268 (2) 272 (2)

1.000 380 (-) 260 (3) 268 (2) 265 (2) 268 (2)

ȳ Anisotropy: ε = 103 (anisotropic case)

0.125 3410 (-) 270 (261) 423 (253) 611 (253) 445 (253)

0.250 3275 (-) 240 (261) 394 (245) 562 (245) 395 (245)

0.375 3111 (-) 233 (261) 388 (237) 542 (237) 386 (237)

0.500 3087 (-) 222 (261) 380 (229) 544 (229) 377 (229)

0.625 2870 (-) 220 (261) 379 (221) 535 (221) 369 (221)

0.750 2918 (-) 222 (261) 379 (213) 506 (213) 341 (213)

0.875 2766 (-) 225 (261) 380 (205) 506 (205) 341 (205)

1.000 2620 (-) 232 (261) 463 (197) 392 (197) 408 (197)

Table 4
Problem D, h = 1

64
, a = 103, PCG iteration count, and the dimension of ImV (in parentheses)

for different values of ε, ȳ and different choices of the preconditioner.

Preconditioner

V = V2 V = V1
B̂ = (diagA)−1 BV = AV BV = AV BV = I BV = diagAV

ȳ Anisotropy: ε = 1 (isotropic case)

0.125 606 (-) 148 (17) 153 (16) 172 (16) 174 (16)

0.250 606 (-) 179 (17) 191 (15) 186 (15) 165 (15)

0.375 603 (-) 178 (17) 183 (14) 181 (14) 183 (14)

0.500 603 (-) 178 (17) 183 (14) 177 (14) 184 (14)

0.625 563 (-) 173 (17) 180 (13) 176 (13) 179 (13)

0.750 560 (-) 170 (17) 172 (13) 168 (13) 173 (13)

0.875 515 (-) 159 (17) 158 (12) 158 (12) 168 (12)

1.000 512 (-) 154 (17) 156 (12) 156 (12) 156 (12)

ȳ Anisotropy: ε = 103 (anisotropic case)

0.125 3709 (-) 199 (317) 207 (309) 965 (309) 508 (309)

0.250 4128 (-) 239 (317) 377 (301) 988 (301) 610 (301)

0.375 3964 (-) 229 (317) 335 (293) 913 (293) 546 (293)

0.500 3760 (-) 247 (317) 464 (285) 831 (285) 612 (285)

0.625 3461 (-) 211 (317) 339 (277) 691 (277) 470 (277)

0.750 2812 (-) 247 (317) 433 (269) 586 (269) 458 (269)

0.875 2111 (-) 205 (317) 334 (261) 455 (261) 326 (261)

1.000 1553 (-) 229 (317) 398 (253) 356 (253) 358 (253)

812 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

Table 5
Problem A, h = 1

64
, ȳ = 3

8
, PCG iteration count, and the dimension of ImV (in parentheses)

as a function of the coefficient jump a and the anisotropy ratio ε.

Coefficient jump a

10−6 10−3 1 103 106

Anisotropy: ε = 1 (isotropic case)

B̂ = (diagA)−1 282 (-) 281 (-) 239 (-) 304 (-) 382 (-)

BV = AV , V2 275 (2) 276 (2) 239 (1) 193 (2) 228 (2)

BV = AV , V1 285 (1) 282 (1) 239 (0) 224 (1) 232 (1)

BV = I, V1 271 (1) 288 (1) 239 (0) 214 (1) 240 (1)

BV = diagAV , V1 285 (1) 286 (1) 239 (0) 210 (1) 240 (1)

Anisotropy: ε = 103 (anisotropic case)

B̂ = (diagA)−1 2351 (-) 2335 (-) 1548 (-) 1911 (-) 2146 (-)

BV = AV , V2 257 (127) 265 (127) 241 (65) 252 (131) 300 (131)

BV = AV , V1 455 (103) 467 (103) 420 (41) 480 (107) 582 (107)

BV = I, V1 425 (103) 428 (103) 414 (41) 758 (107) 1171 (107)

BV = diagAV , V1 429 (103) 428 (103) 414 (41) 422 (107) 658 (107)

Anisotropy: ε = 106 (strongly anisotropic case)

B̂ = (diagA)−1 9266 (-) 7916 (-) 4882 (-) 6173 (-) 5923 (-)

BV = AV , V2 195 (127) 195 (127) 115 (65) 150 (131) 150 (131)

BV = AV , V1 269 (103) 257 (103) 161 (41) 243 (107) 215 (107)

BV = I, V1 312 (103) 562 (103) 170 (41) 2086 (107) 2501 (107)

BV = diagAV , V1 288 (103) 436 (103) 170 (41) 451 (107) 254 (107)

Table 6
Problem A, h = 1

64
, ȳ = 3

8
, relative arithmetic cost needed to construct the preconditioner (12)

(i.e., to compute M , σ̃, V , BV , as well as to factorize BV) and to multiply (12) by a vector as a
function of the coefficient jump a and the anisotropy ratio ε; the arithmetic cost needed to multipy
the stiffness matrix A by a vector is taken as a reference.

Coefficient jump a

10−3/10−6 1 103/106

Anisotropy: ε = 1

Initialize Apply Initialize Apply Initialize Apply

BV = AV , V2 3.43 0.75 3.42 0.68 3.43 0.75

BV = AV , V1 2.30 0.33 1.92 0.30 2.35 0.34

BV = I, V1 2.30 0.33 1.92 0.30 2.35 0.34

BV = diagAV , V1 2.30 0.33 1.92 0.30 2.35 0.34

Anisotropy: ε = 103/106

Initialize Apply Initialize Apply Initialize Apply

BV = AV , V2 5.92 0.81 3.54 0.77 6.16 0.81

BV = AV , V1 4.73 0.67 2.86 0.60 4.92 0.68

BV = I, V1 2.92 0.63 2.74 0.59 2.94 0.63

BV = diagAV , V1 2.96 0.63 2.75 0.59 2.98 0.63

the diagonally preconditioned iterative scheme. To the contrary, the PCG method
preconditioned by means of (12) exhibits robust performance in a wide range of a
and ε and is insensitive to the choice of the boundary conditions; see Tables 1–4, 5,
7, 9, and 11.

Tables 6, 8, 10, and 12 show that the expense for construction and applying the
preconditioner, including the construction of matrix V , is in general very small.

Numerical experiments demonstrate that the developed subspace-correction tech-
nique performs well even if the matrix AV is replaced by a simple diagonal precondi-

AUGMENTED MATRIX PRECONDITIONING APPROACH 813

Table 7
Problem B, h = 1

64
, ȳ = 3

8
, PCG iteration count, and the dimension of ImV (in parentheses)

as a function of the coefficient jump a and the anisotropy ratio ε.

Coefficient jump a

10−6 10−3 1 103 106

Anisotropy: ε = 1 (isotropic case)

B̂ = (diagA)−1 335 (-) 333 (-) 239 (-) 431 (-) 619 (-)
BV = AV , V2 317 (5) 320 (5) 239 (1) 177 (5) 197 (5)
BV = AV , V1 338 (4) 338 (4) 239 (0) 192 (4) 208 (4)
BV = I, V1 332 (4) 332 (4) 239 (0) 189 (4) 201 (4)
BV = diagAV , V1 337 (4) 347 (4) 239 (0) 192 (4) 208 (4)

Anisotropy: ε = 103 (anisotropic case)

B̂ = (diagA)−1 3064 (-) 2779 (-) 1548 (-) 3015 (-) 4637 (-)
BV = AV , V2 239 (217) 242 (217) 241 (65) 232 (233) 278 (233)
BV = AV , V1 400 (193) 414 (193) 420 (41) 384 (209) 422 (209)
BV = I, V1 380 (193) 392 (193) 414 (41) 571 (209) 1260 (209)
BV = diagAV , V1 387 (193) 384 (193) 414 (41) 395 (209) 902 (209)

Anisotropy: ε = 106 (strongly anisotropic case)

B̂ = (diagA)−1 13314 (-) 12345 (-) 4882 (-) 10526 (-) 12225 (-)
BV = AV , V2 219 (217) 234 (217) 115 (65) 164 (233) 197 (233)
BV = AV , V1 307 (193) 303 (193) 161 (41) 249 (209) 279 (209)
BV = I, V1 318 (193) 801 (193) 170 (41) 2000 (209) 1689 (209)
BV = diagAV , V1 321 (193) 659 (193) 170 (41) 599 (209) 323 (209)

Table 8
Problem B, h = 1

64
, ȳ = 3

8
, relative arithmetic cost needed to construct the preconditioner (12)

(i.e., to compute M , σ̃, V , BV , as well as to factorize BV) and to multiply (12) by a vector as a
function of the coefficient jump a and the anisotropy ratio ε; the arithmetic cost needed to multipy
the stiffness matrix A by a vector is taken as a reference.

Coefficient jump a

10−3/10−6 1 103/106

Anisotropy: ε = 1

Initialize Apply Initialize Apply Initialize Apply

BV = AV , V2 3.44 0.75 3.42 0.68 3.44 0.75

BV = AV , V1 2.49 0.46 1.92 0.30 2.62 0.49

BV = I, V1 2.49 0.46 1.92 0.30 2.62 0.49

BV = diagAV , V1 2.49 0.46 1.92 0.30 2.62 0.49

Anisotropy: ε = 103/106

Initialize Apply Initialize Apply Initialize Apply

BV = AV , V2 21.71 0.91 3.54 0.77 30.03 0.93

BV = AV , V1 15.82 0.81 2.86 0.60 21.65 0.83

BV = I, V1 3.17 0.69 2.74 0.59 3.21 0.70

BV = diagAV , V1 3.26 0.69 2.75 0.59 3.31 0.70

tioner BV ; in many practical cases it suffices to take BV = diagAV . However, if the
matrix AV is severely ill-conditioned, special care has to be taken when constructing
the preconditioner BV ; one of the possible approaches was mentioned in Remark 5.7,
alternatively one can use an incomplete factorization procedure to construct an ap-
proximation to A−1

V . In a multilevel setting the matrix BV can be constructed by
using the algorithm (12) recursively; in this case we obtain a preconditioner of the
form Bk = M−1

k + σkVk,k−1Bk−1V
T
k,k−1; see sections 3 and 4.

In Figures 2 and 3 we also illustrate the eigenvalue distribution of the precondi-
tioned matrix B̂A for different a, ε, and B̂. As one can see from the figures, the spec-
trum of the system preconditioned by (12) is contained in the interval [O(h2), O(1)],

814 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

Table 9
Problem C, h = 1

64
, ȳ = 3

8
, PCG iteration count, and the dimension of ImV (in parentheses)

as a function of the coefficient jump a and the anisotropy ratio ε.

Coefficient jump a

10−6 10−3 1 103 106

Anisotropy: ε = 1 (isotropic case)

B̂ = (diagA)−1 384 (-) 381 (-) 239 (-) 394 (-) 527 (-)

BV = AV , V2 384 (3) 384 (3) 239 (1) 263 (3) 281 (3)

BV = AV , V1 391 (2) 388 (2) 239 (0) 279 (2) 289 (2)

BV = I, V1 382 (2) 383 (2) 239 (0) 277 (2) 297 (2)

BV = diagAV , V1 390 (2) 385 (2) 239 (0) 279 (2) 294 (2)

Anisotropy: ε = 103 (anisotropic case)

B̂ = (diagA)−1 3777 (-) 3168 (-) 1548 (-) 3113 (-) 3771 (-)

BV = AV , V2 247 (253) 251 (253) 241 (65) 233 (261) 257 (261)

BV = AV , V1 405 (229) 413 (229) 420 (41) 387 (237) 409 (237)

BV = I, V1 444 (229) 402 (229) 414 (41) 553 (237) 934 (237)

BV = diagAV , V1 434 (229) 394 (229) 414 (41) 387 (237) 663 (237)

Anisotropy: ε = 106 (strongly anisotropic case)

B̂ = (diagA)−1 15007 (-) 14853 (-) 4882 (-) 13727 (-) 13274 (-)

BV = AV , V2 213 (253) 227 (253) 115 (65) 161 (261) 184 (261)

BV = AV , V1 298 (229) 301 (229) 161 (41) 273 (237) 287 (237)

BV = I, V1 334 (229) 947 (229) 170 (41) 2218 (237) 1653 (237)

BV = diagAV , V1 322 (229) 693 (229) 170 (41) 726 (237) 324 (237)

Table 10
Problem C, h = 1

64
, ȳ = 3

8
, relative arithmetic cost needed to construct the preconditioner (12)

(i.e., to compute M , σ̃, V , BV , as well as to factorize BV) and to multiply (12) by a vector as a
function of the coefficient jump a and the anisotropy ratio ε; the arithmetic cost needed to multipy
the stiffness matrix A by a vector is taken as a reference.

Coefficient jump a

10−3/10−6 1 103/106

Anisotropy: ε = 1

Initialize Apply Initialize Apply Initialize Apply

BV = AV , V2 3.43 0.75 3.42 0.68 3.43 0.75

BV = AV , V1 2.41 0.43 1.92 0.30 2.54 0.47

BV = I, V1 2.41 0.43 1.92 0.30 2.54 0.47

BV = diagAV , V1 2.41 0.43 1.92 0.30 2.54 0.47

Anisotropy: ε = 103/106

Initialize Apply Initialize Apply Initialize Apply

BV = AV , V2 44.56 0.98 3.54 0.77 46.60 0.99

BV = AV , V1 34.43 0.88 2.86 0.60 35.08 0.89

BV = I, V1 3.18 0.69 2.74 0.59 3.22 0.70

BV = diagAV , V1 3.29 0.69 2.75 0.59 3.34 0.70

and the bounds are independent of ε and a, whereas in the case of Jacobi precon-
ditioning the spectrum normally contains a number of extremely small eigenvalues,
sometimes well separated from the remainder of the spectrum, which may cause slow
convergence of the PCG algorithm.

The results of our numerical experiments are in strong agreement with the devel-
oped theory. Taking into account that the computational overhead associated with

AUGMENTED MATRIX PRECONDITIONING APPROACH 815

Table 11
Problem D, h = 1

64
, ȳ = 3

8
, PCG iteration count, and the dimension of ImV (in parentheses)

as a function of the coefficient jump a and the anisotropy ratio ε.

Coefficient jump a

10−6 10−3 1 103 106

Anisotropy: ε = 1 (isotropic case)

B̂ = (diagA)−1 292 (-) 259 (-) 239 (-) 602 (-) 984 (-)

BV = AV , V2 240 (17) 244 (17) 239 (1) 178 (17) 205 (17)

BV = AV , V1 299 (14) 299 (14) 239 (0) 183 (14) 203 (14)

BV = I, V1 304 (14) 303 (14) 239 (0) 179 (14) 183 (14)

BV = diagAV , V1 311 (14) 312 (14) 239 (0) 183 (14) 181 (14)

Anisotropy: ε = 103 (anisotropic case)

B̂ = (diagA)−1 2495 (-) 2432 (-) 1548 (-) 3852 (-) 7422 (-)

BV = AV , V2 238 (268) 246 (268) 241 (65) 229 (317) 273 (317)

BV = AV , V1 394 (244) 418 (244) 420 (41) 334 (293) 381 (293)

BV = I, V1 391 (244) 383 (244) 414 (41) 914 (293) 3099 (293)

BV = diagAV , V1 386 (244) 390 (244) 414 (41) 540 (293) 2099 (293)

Anisotropy: ε = 106 (strongly anisotropic case)

B̂ = (diagA)−1 10032 (-) 13016 (-) 4882 (-) 18742 (-) n/a

BV = AV , V2 152 (268) 149 (268) 115 (65) 116 (317) n/a

BV = AV , V1 278 (244) 276 (244) 161 (41) 187 (293) n/a

BV = I, V1 283 (244) 832 (244) 170 (41) 3559 (293) n/a

BV = diagAV , V1 302 (244) 588 (244) 170 (41) 785 (293) n/a

Table 12
Problem D, h = 1

64
, ȳ = 3

8
, relative arithmetic cost needed to construct the preconditioner (12)

(i.e., to compute M , σ̃, V , BV , as well as to factorize BV) and to multiply (12) by a vector as a
function of the coefficient jump a and the anisotropy ratio ε; the arithmetic cost needed to multipy
the stiffness matrix A by a vector is taken as a reference.

Coefficient jump a

10−3/10−6 1 103/106

Anisotropy: ε = 1
Initialize Apply Initialize Apply Initialize Apply

BV = AV , V2 3.63 0.76 3.42 0.68 3.64 0.76
BV = AV , V1 2.19 0.38 1.92 0.30 2.35 0.42
BV = I, V1 2.19 0.38 1.92 0.30 2.35 0.42
BV = diagAV , V1 2.19 0.38 1.92 0.30 2.35 0.42

Anisotropy: ε = 103/106

Initialize Apply Initialize Apply Initialize Apply
BV = AV , V2 68.66 1.06 3.54 0.77 88.77 1.08
BV = AV , V1 30.52 0.90 2.86 0.60 41.94 0.94
BV = I, V1 3.18 0.69 2.74 0.59 3.24 0.70
BV = diagAV , V1 3.30 0.69 2.75 0.59 3.38 0.70

the preconditioner is very low (especially in the case when the matrix BV is chosen
to be diagonal) we conclude that the developed algorithm could be viewed as a viable
option when constructing efficient solvers for the considered class of ill-conditioned
elliptic problems. Note also that the method is even more attractive in a parallel
environment, where it can be a serious competitor to more advanced methods (of
multigrid/multilevel type, for instance) as it requires only a small amount of inter-
processor communications.

816 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

50 100 150 200 250

10
0

10
1

10
2

50 100 150 200 250
10

0

10
2

10
4

10
6

10
8

No preconditioning: B̂ = I

50 100 150 200 250

10
–3

10
–2

10
–1

50 100 150 200 250
10

–8

10
–6

10
–4

10
–2

Diagonal scaling: B̂ = (diagA)−1

50 100 150 200 250

10
–2

10
–1

10
0

50 100 150 200 250

10
–1

10
0

Algorithm (12): B̂ = (diagA)−1 + σV B−1
V V T , BV = AV , V = V2

Fig. 2. Problem D, h = 1/16, ε = 1, ȳ = 3
8
, eigenvalue distribution of B̂A for different

preconditioners B̂ and different values of the coefficient jump a: a = 1 (left) and a = 106 (right).

Acknowledgment. The time invested by Igor Kaporin (Computing Center of
Russian Academy of Sciences) during a number of discussions about the developed
algorithms is very much appreciated.

AUGMENTED MATRIX PRECONDITIONING APPROACH 817

50 100 150 200 250

10
–4

10
–2

10
0

10
2

50 100 150 200 250

10
–4

10
–2

10
0

10
2

10
4

10
6

10
8

No preconditioning: B̂ = I

50 100 150 200 250

10
–8

10
–6

10
–4

10
–2

50 100 150 200 250

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

Diagonal scaling: B̂ = (diagA)−1

50 100 150 200 250
10

–2

10
–1

10
0

50 100 150 200 250
10

–2

10
–1

10
0

Algorithm (12): B̂ = (diagA)−1 + σV B−1
V V T , BV = AV , V = V2

Fig. 3. Problem D, h = 1
16
, ε = 106, ȳ = 3

8
, eigenvalue distribution of B̂A for different

preconditioners B̂ and different values of the coefficient jump a: a = 1 (left) and a = 106 (right).

REFERENCES

[1] O. Axelsson, Stabilization of algebraic multilevel iteration methods; additive methods, Numer.
Algorithms, 21 (1999), pp. 23–47.

[2] O. Axelsson, M. Neytcheva, and B. Polman, An application of the bordering method to
solve nearly singular systems, Vestnik Moskov. Univ. Ser. XV, Vychisl. Mat. Kibernet. 1,
Moscow, 1996, pp. 3–25.

818 ALEXANDER PADIY, OWE AXELSSON, AND BEN POLMAN

[3] O. Axelsson and A. Padiy, On the additive version of the algebraic multilevel iteration method
for anisotropic elliptic problems, SIAM J. Sci. Comput., 20 (1999), pp. 1807–1830.

[4] J. Bramble, J. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math. Comp., 55
(1990), pp. 1–22.

[5] A. Brandt, S. McCormick, and J. Ruge, Algebraic multigrid (AMG) for sparse matrix
equations, in Sparsity and Its Applications, D. Evans, ed., Cambridge University Press,
Cambridge, UK, 1984, pp. 257–284.

[6] J. Dendy, Black box multigrid for nonsymmetric problems, Appl. Math. Comput., 13 (1983),
pp. 261–283.

[7] T. Grauschopt, M. Griebel, and H. Regler, Additive Multilevel Preconditioners Based
on Bilinear Interpolation, Matrix Dependent Geometric Coarsening and Algebraic Multi-
grid Coarsening for Second Order Elliptic PDEs, internal report 342/02/96, University of
München, Germany, 1996.

[8] W. Hackbush, Multigrid Methods and Applications, Springer-Verlag, Berlin, Heidelberg, New
York, 1985.

[9] I. Kaporin, Two-level explicit preconditioning for the conjugate gradient method, Differential
Equations, 28 (1992), pp. 280–289.

[10] L. Mansfield, On the conjugate gradient solution of the Schur complement system obtained
from domain decomposition, SIAM J. Numer. Anal., 27 (1990), pp. 1612–1620.

[11] L. Mansfield, Damped Jacobi preconditioning and coarse grid deflation for conjugate gradient
iteration on parallel computers, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1314–1323.

[12] R. A. Nicolaides, Deflation of conjugate gradients with application to boundary value prob-
lems, SIAM J. Numer. Anal., 24 (1987), pp. 355–365.

[13] Y. Notay and A. van de Velde, Coarse grid acceleration of parallel incomplete precondi-
tioners, in Iterative Methods in Linear Algebra II, S. Margenov and P. Vassilevski, eds.,
IMACS Series in Computational and Applied Mathematics 3, IMACS, New Brunswick,
NJ, 1996, pp. 106–130.

[14] A. Padiy and M. Larin, Model Analysis of a Subspace Correction Technique for Anisotropic
Diffusion Problems, internal report 9818, University of Nijmegen, Nijmegen, The Nether-
lands, 1998.

[15] J. Ruge and K. Stüben, Efficient solution of finite difference and finite element equations by
algebraic multigrid (AMG), in Proceedings of the MG Conference, Bristol, England, 1983,
Inst. Math. Appl. Conf. Ser. New Ser., 3 (1985), pp. 169–212.

[16] K. Stüben and U. Trottenberg,Multigrid methods: Fundamental algorithms, model problem
analysis and applications, in Lecture Notes in Math. 960, Springer-Verlag, New York, 1982,
pp. 1–176.

[17] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992),
pp. 581–613.

[18] J. Xu, The auxiliary space method and optimal multigrid preconditioning techniques for un-
structured grids, Computing, 56 (1996), pp. 215–235.

[19] H. Yserentant, On the multilevel splitting of finite element spaces, Numer. Math., 49 (1986),
pp. 379–412.

[20] P. de Zeeuw, Matrix-dependent prolongations and restrictions in a black-box multigrid solver,
J. Comput. Appl. Math., 33 (1990), pp. 1–27.

[21] X. Zhang, Multilevel Schwarz methods, Numer. Math., 63 (1992), pp. 521–539.

SINGULAR VALUES OF DIFFERENCES OF POSITIVE
SEMIDEFINITE MATRICES∗

XINGZHI ZHAN†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 819–823

Abstract. Let Mn be the space of n×n complex matrices. For A ∈Mn, let s(A) ≡ (s1(A), . . . ,
sn(A)), where s1(A) ≥ · · · ≥ sn(A) are the singular values of A. We prove that if A,B ∈ Mn

are positive semidefinite, then (i) sj(A − B) ≤ sj(A ⊕ B), j = 1, 2, . . . , n, and (ii) the weak log-
majorization relations s(A−|z|B) ≺wlog s(A+zB) ≺wlog s(A+|z|B) hold for any complex number z.
This sharpens some results due to R. Bhatia and F. Kittaneh.

Key words. singular values, positive semidefinite matrices, majorization, unitarily invariant
norms

AMS subject classifications. 15A18, 15A42, 47A63

PII. S0895479800369840

1. Introduction. LetMn be the space of n×n complex matrices. For simplicity
we treat matrices here, but all our results hold for compact operators on a Hilbert
space. Suppose A,B ∈ Mn are positive semidefinite. We shall study the relations
between the singular values of

A−B and

(
A 0
0 B

)

and those of

A− |z|B, A+ zB, and A+ |z|B,

where z is a complex number.
A norm |||·||| onMn is called unitarily invariant if |||UAV ||| = |||A||| for all A and

all unitary U, V. Every unitarily invariant norm is a symmetric gauge function of the
singular values. See [3, 8]. We always denote the singular values of A by s1(A) ≥ · · · ≥
sn(A), and put s(A) ≡ (s1(A), . . . , sn(A)). Familiar examples of unitarily invariant

norms are the Ky Fan k-norms defined by ||A||(k) =
∑k

1 sj(A) and the Schatten p-

norms: ||A||p = (
∑n

1 spj (A))
1/p, p ≥ 1. Note that || · ||∞ is just the operator (spectral)

norm and || · ||2 is the Frobenius norm.
A unitarily invariant norm may be considered as defined on Mn for all orders n

by the rule

|||A||| =
∣∣∣∣
∣∣∣∣
∣∣∣∣
(

A 0
0 0

)∣∣∣∣
∣∣∣∣
∣∣∣∣ ,

i.e., adding or deleting zero singular values does not affect the value of the correspond-
ing symmetric gauge function.

∗Received by the editors March 31, 2000; accepted for publication (in revised form) by R. Bhatia
June 26, 2000; published electronically October 31, 2000. This work was done while the author was
at the Graduate School of Information Sciences, Tohoku University, as a postdoctoral fellow of the
Japan Society for the Promotion of Science.

http://www.siam.org/journals/simax/22-3/36984.html
†Institute of Mathematics, Peking University, Beijing 100871, People’s Republic of China. Current

address: Graduate School of Information Sciences, Tohoku University, Aoba-ku, Sendai 980-8579,
Japan (zhan@math.is.tohoku.ac.jp).

819

820 XINGZHI ZHAN

Given a real vector x = (xi) ∈ R
n, rearrange its components as x[1] ≥ · · · ≥ x[n].

For x = (xi), y = (yi) ∈ R
n, if

k∑
1

x[i] ≤
k∑
1

y[i], k = 1, 2, . . . , n,

then we say x is weakly majorized by y, denoted x ≺w y. If the components of x and
y are nonnegative and

k∏
1

x[i] ≤
k∏
1

y[i], k = 1, 2, . . . , n,

we say x is weakly log-majorized by y, denoted x ≺wlog y. See [7] for a discussion of
this topic.

Denote the block diagonal matrix (A 0
0 B) by A⊕B.

Bhatia and Kittaneh [4, Remark 5] observed that if A,B ∈ Mn are positive
semidefinite, then

|||A−B||| ≤ |||A⊕B|||(1.1)

for every unitarily invariant norm. By the Fan dominance principle [3, 8], (1.1) is
equivalent to s(A − B) ≺w s(A ⊕ B). We shall show that in fact each singular value
of A−B is not greater than the corresponding singular value of A⊕B.

In another paper, Bhatia and Kittaneh [5, Theorem 2.1] proved that for positive
semidefinite A,B ∈Mn and any complex number z

|||A− |z|B||| ≤ |||A+ zB||| ≤ |||A+ |z|B|||(1.2)

for all unitarily invariant norms. Again (1.2) is equivalent to

s(A− |z|B) ≺w s(A+ zB) ≺w s(A+ |z|B).

We shall prove that the corresponding weak log-majorizations hold. Since weak log-
majorization implies weak majorization [7, 8], our result strengthens (1.2).

2. Main results. Our first result sharpens (1.1).
Theorem 2.1. Let A,B ∈Mn be positive semidefinite. Then

sj(A−B) ≤ sj(A⊕B), j = 1, 2, . . . , n.(2.1)

We shall use the fact [6, p. 29] that for G ∈Mn and 1 ≤ j ≤ n

sj(G) = min{||G− E|| : rankE ≤ j − 1, E ∈Mn},(2.2)

where || · || is the operator norm. We use the notation H ≤ K to mean that H,K are
Hermitian and K −H is positive semidefinite.

Proof of Theorem 2.1. Note that s(A⊕B) = s(A)∪s(B). It is easily verified (say,
by using the spectral decompositions of A,B) that for a fixed j with 1 ≤ j ≤ n there
exist H,F ∈Mn satisfying 0 ≤ H ≤ A, 0 ≤ F ≤ B, rankH + rankF ≤ j − 1 and

sj(A⊕B) = ||(A−H)⊕ (B − F)||.

SINGULAR VALUE INEQUALITIES 821

Thus sj(A ⊕ B) = max{||A −H||, ||B − F ||} ≡ γ. Denote by I the identity matrix.
Note that A−H ≥ 0, B − F ≥ 0, rank(H − F) ≤ rankH + rankF ≤ j − 1. By (2.2)
we have

sj(A−B) ≤ ||A−B − (H − F)||
=
∣∣∣
∣∣∣(A−H − γ

2
I
)
−
(
B − F − γ

2
I
)∣∣∣
∣∣∣

≤
∣∣∣
∣∣∣(A−H)− γ

2
I
∣∣∣
∣∣∣+
∣∣∣
∣∣∣(B − F)− γ

2
I
∣∣∣
∣∣∣

≤ γ

2
+

γ

2
= γ = sj(A⊕B).

This proves (2.1).
We can give a second proof of Theorem 2.1 by using the following result due to

Bhatia and Kittaneh [4]: For any X,Y ∈Mn

sj(XY ∗) ≤ 1
2
sj(X

∗X + Y ∗Y), j = 1, . . . , n.(2.3)

Just set

X =

(
A1/2 −B1/2

0 0

)
, Y =

(
A1/2 B1/2

0 0

)

in (2.3).
T. Ando has pointed out that (2.1) is equivalent to the statement that there exists

an n× 2n contraction W (i.e., WW ∗ ≤ I) such that |A−B| =W (A⊕B)W ∗. Such a
W can be obtained explicitly by the Jordan decomposition of the Hermitian matrix
A−B. This gives a third proof of Theorem 2.1.

The following result sharpens (1.2).
Theorem 2.2. Let A,B ∈ Mn be positive semidefinite. Then for any complex

number z

s(A− |z|B) ≺wlog s(A+ zB) ≺wlog s(A+ |z|B).(2.4)

Proof. We first prove the following determinant inequality for positive semidefinite
matrices P,Q of the same order:

|det(P − |z|Q)| ≤ |det(P + zQ)|.(2.5)

Without loss of generality, suppose P is positive definite. The general case follows by
a standard continuity argument. Let the eigenvalues of P−1Q be λ1 ≥ · · · ≥ λk ≥ 0.
Then

|det(P − |z|Q)| = |detP · det(I − |z|P−1Q)| = detP
∏
i

|1− |z|λi|

≤ detP
∏
i

|1 + zλi| = |detP · det(I + zP−1Q)|

= |det(P + zQ)|.

This shows (2.5). Since A − |z|B is Hermitian, for 1 ≤ k ≤ n there exists an n × k

matrix U such that U∗U = I and
∏k
j=1 sj(A − |z|B) = |det[U∗(A − |z|B)U]|. Using

822 XINGZHI ZHAN

(2.5) and the fact that for any G ∈Mn, sj(U
∗GU) ≤ sj(G), j = 1, . . . , k, we have

k∏
j=1

sj(A− |z|B) = |det[U∗(A− |z|B)U]| = |det(U∗AU − |z|U∗BU)|

≤ |det(U∗AU + zU∗BU)| =
k∏
j=1

sj [U
∗(A+ zB)U]

≤
k∏
j=1

sj(A+ zB).

In the third equality above we have used the fact that for any F ∈ Mk, |detF | =∏k
j=1 sj(F). This proves the first part of (2.4).
Recall [3, p. 268] that a continuous complex-valued function f on Mn is said to

be a Lieb function if it satisfies the following two conditions:
(i) f(B) ≥ f(A) ≥ 0 if B ≥ A ≥ 0.
(ii) |f(A∗B)|2 ≤ f(A∗A)f(B∗B) for all A,B.

It is known [9, Theorem 6] that if N,R ∈Mn are normal, then for any Lieb function
f on Mn

|f(N +R)| ≤ f(|N |+ |R|).(2.6)

It is easily verified (see [3, p. 269]) that f(G) ≡ ∏k
j=1 sj(G) is a Lieb function.

Applying (2.6) to this f with N = A, R = zB yields

s(A+ zB) ≺wlog s(A+ |z|B).
This completes the proof.

The special case z = i =
√−1 of Theorem 2.2 says

s(A−B) ≺wlog s(A+ iB) ≺wlog s(A+B).(2.7)

It has been proved in [2] that for positive A,B and p > 1

s(Ap +Bp) ≺w s((A+B)p).(2.8)

When p ≥ 2, the above relation is refined as follows:
s(Ap +Bp) ≺w s((A2 +B2)p/2) ≺w s(|A+ iB|p) ≺wlog s((A+B)p).(2.9)

The first relation in (2.9) follows from (2.8) and the third relation follows from (2.7).
To see the second relation let T = A+ iB. This is the Cartesian decomposition. From
A2 +B2 = (T ∗T + TT ∗)/2 we get

s(A2 +B2) ≺w s(|A+ iB|2).
Note that f(t) = tp/2 is convex and increasing on [0,∞). By a majorization princi-
ple [3, 8], applying this f to the preceding weak majorization yields the second relation
in (2.9).

From (2.7) and the results in [1] and [2] it follows that for 0 < p ≤ 1,
s(Ap −Bp) ≺w s(|A−B|p) ≺wlog s(|A+ iB|p) ≺wlog s((A+B)p)

≺w s(Ap +Bp).

SINGULAR VALUE INEQUALITIES 823

One might wonder whether the weak majorization (2.8) can be replaced by the
stronger log-majorization. The answer is no, even for p = 2. Consider the example

A =

(
1 0
0 0

)
, B =

(
1 1
1 1

)
.

We have det(A2 +B2) = 2 > 1 = det[(A+B)2].

Acknowledgments. The author thanks JSPS for the support and Professor F.
Hiai for helpful discussions.

REFERENCES

[1] T. Ando, Comparison of norms |||f(A) − f(B)||| and |||f(|A − B|)|||, Math. Z., 197 (1988),
pp. 403–409.

[2] T. Ando and X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann.,
315 (1999), pp. 771–780.

[3] R. Bhatia, Matrix Analysis, Springer, Berlin, 1997.
[4] R. Bhatia and F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix

Anal. Appl., 11 (1990), pp. 272–277.
[5] R. Bhatia and F. Kittaneh, Norm inequalities for positive operators, Lett. Math. Phys., 43

(1998), pp. 225–231.
[6] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Opera-

tors, AMS, Providence, RI, 1969.
[7] F. Hiai, Log-majorizations and norm inequalities for exponential operators, in Linear Operators,

Banach Center Publ. 38, 1997, pp. 119–181.
[8] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New

York, 1991.
[9] R. A. Horn and X. Zhan, Inequalities for C-S seminorms and Lieb functions, Linear Algebra

Appl., 291 (1999), pp. 103–113.

A REFINED POLAR DECOMPOSITION: A = UPD∗

TIMO EIROLA†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 824–836

Abstract. A refinement of the polar decomposition of a nonsingular matrix A is considered.
Here A is written as a product of unitary U, Hermitian and positive definite P which has unit
diagonal, and diagonal positive D. It is shown that such a decomposition exists and is unique.
Rectangular and singular cases are also considered. Then a simple fixed point iteration using SVD
is given to compute this decomposition. Also, implementation of the Newton’s method is discussed.
The refined polar decomposition can be used to parameterize the orbit of a matrix with distinct
eigenvalues.

Key words. polar decomposition, orbits of matrices

AMS subject classifications. 15A23, 65F35

PII. S0895479800369219

1. Introduction. The polar decomposition of a matrix A ∈ C
m×n, m ≥ n, is

given as

A = QS,

where Q ∈ C
m×n has orthonormal columns and S ∈ C

n×n is Hermitian and positive
semidefinite. S is unique and, in the case A has rank n, Q is also unique (see, e.g.,
[3], [5]). They are given by

S = (A∗A)1/2, Q = A(A∗A)−1/2,(1.1)

where C1/2 denotes the symmetric positive semidefinite square root of the symmetric
positive semidefinite matrix C.

Here we want to further decompose S = V PD so that this decomposition—with
unitary V and nonnegative diagonal D —would have P Hermitian positive semidef-
inite and the diagonal elements of P would be ones. This leads to the decomposition

A = UPD,(1.2)

where U ∈ C
m×n has orthonormal columns, P ∈ C

n×n is Hermitian and positive
semidefinite with unit diagonal, and D ∈ R

n×n is diagonal and nonnegative. The
requirements on P mean that it is a correlation matrix. For the importance of such
matrices, see [1] and references therein.

There is a result similar to (1.2). Olkin and Pratt show in [6] that every real
symmetric positive definite matrix S can be uniquely decomposed as S = P̃ D̃2P̃ ,
where P̃ is a correlation matrix and D̃ is positive diagonal. For full column rank A
this leads to the unique decomposition A = ŨD̃P̃ , i.e., the order of P and D parts
of (1.2) reversed. A way to convert this result to (1.2) (or vice versa) was not found.

In section 2 it is shown that the decomposition (1.2) always exists. D is unique
and if A does not have columns that are zero, then P is unique, too, and so is U if

∗Received by the editors March 16, 2000; accepted for publication (in revised form) by N. Higham
September 26, 2000; published electronically November 17, 2000.

http://www.siam.org/journals/simax/22-3/36921.html
†Institute of Mathematics, Helsinki University of Technology, FIN-02015 HUT, Espoo, Finland

(Timo.Eirola@hut.fi).

824

A REFINED POLAR DECOMPOSITION: A = UPD 825

A has full rank. As the usual polar factors these factors are also smooth functions of
A in the set of full rank matrices.

Then, in section 3 some methods are considered for computing (1.2). First, a sim-
ple fixed point iteration of the D part is given and is shown to be locally convergent.
Then, two variants of the Newton iteration are discussed.

Finally, an application is considered. This is to parameterize the orbit (set of
similar matrices) of a matrix with distinct eigenvalues.

2. Existence and uniqueness. In this section the main theorem concerning
(1.2) is given. For this, first note that the polar decomposition is real analytic as a
function of full rank A. This is seen from (1.1) and

S = 1
2πi

∫
γ

√
z (zI −A∗A)−1 dz,(2.1)

where γ is a positively oriented simple rectifiable closed curve in the right-hand side
of C strictly enclosing the spectrum of A∗A, and

√
z denotes the root with positive

real part ([5], Thm. 6.2.28; see also [2]). Using the SVD it is then easy to show that
formula (2.1) holds even in the case of singular A, now γ enclosing only the nonzero
eigenvalues. It follows that S is smooth in each of the sets of constant rank matrices.

Notation. |v| denotes the 2-norm of v ∈ C
n, and ‖ ‖ is the corresponding

matrix norm. D ⊂ C
n×n is the set of diagonal matrices, D+ ⊂ DR ⊂ D contain

the ones with, respectively, nonnegative and real entries, and Diag(M) ∈ D is the
diagonal of M ∈ C

n×n and diag(M) ∈ C
n is the corresponding vector. For x ∈ R

n

denote

D(x) =
[x1 ...

xn

]
∈ DR

and let X : DR → R
n be its inverse mapping. A ◦ B will denote the Hadamard

(elementwise) product.

Theorem 2.1 (refined polar decomposition). Assume A ∈ C
m×n, m ≥ n. Then

there exists a decomposition

A = UPD,(2.2)

where U∗U = I, P is Hermitian, positive semidefinite, Diag(P) = I, and D ∈ D+.
D is unique. If A has no zero columns, then P is unique. If rank(A) = n, then U
is also unique and P, D are positive definite.

Proof. First assume that A does not have a zero column.

Existence. For given positive diagonal D let UDPD = AD be a polar decompo-
sition of AD. Then, PD is unique. Set F (D) = Diag(PD). By (2.1) F is continuous.
Then, the existence of (2.2) amounts to solving F (D−1) = I.

Fix a

D =
[
d1 ...

dn

]
∈ D+.

Let a1, . . . , an and p1, . . . , pn, respectively, be the columns of A and PD. These are
nonzero. Set

m = min
j
|aj |, M = max

j
|aj |.

826 TIMO EIROLA

Then, pii ≤ |pi| = |ai|di ≤Mdi. Since PD is Hermitian and positive semidefinite, for
all i, j holds piipjj ≥ |pij |2. Thus, Mdi pjj ≥ |pij |2 and

M

(∑
i

di

)
pjj ≥

∑
i

|pij |2 = |aj |2d2
j ≥ m2d2

j .

Hence,

m2

M

d2
j∑
i di
≤ Fjj(D) ≤Mdj .(2.3)

Fix α ∈ (0, 1/2]. For δ ∈ R
n set

g(δ) = δ + αX(log(F (e−D(δ)))) ∈ R
n.(2.4)

Here log is the principal logarithm (applied to positive diagonal matrices).
Assume δj ∈ [λ,Λ] for all j. Then, inequalities (2.3) imply

gj(δ) ≤ δj + α log(Me−δj) = (1− α)δj + α log(M) ≤ (1− α)Λ + α log(M)

and

gj(δ) ≥ δj + α log(m2e−2δj)− α log
(
M
∑
i e

−δi)
≥ (1− 2α)δj + α log(m2)− α log(Mn) + αλ

≥ (1− α)λ + α log(m
2

Mn).

Choosing

λ = log(m
2

Mn) and Λ = log(M)

we get gj(δ) ∈ [λ,Λ] for all j. Hence g maps the convex cube [λ,Λ]n ⊂ R
n into

itself. Further, g is continuous. Hence, by Brower’s fixed point theorem (see, e.g.,
[7]), there exists δ ∈ DR such that g(δ) = δ and D = eD(δ) solves F (D−1) = I.

Uniqueness. Define f : R
n → R

n as

f(d) = X(F (eD(d))).(2.5)

By Lemma 2.2 below, the derivative f ′(d) ∈ R
n×n is positive definite for all d. Hence,

if f(d̂) = f(d), then

0 = (d̂− d)T (f(d̂)− f(d)) = (d̂− d)T
∫ 1

0

f ′(d + t(d̂− d)) dt (d̂− d)

so that d̂ − d = 0, since the integral is positive definite. Thus, f, and consequently
also F, is an injection. This shows uniqueness of D. Then, uniqueness of P and U
follow from the corresponding properties of the polar decomposition.

If A has q ≥ 1 columns that are zero, then, necessarily, we set the corresponding
elements of D to zero. Let Â ∈ C

m×(n−q) consist of the nonzero columns of A. Take
a refined decomposition Â = Û P̂ D̂ and put elements of these in the corresponding
places of U,P, and D. Fill the rest of P (except diagonal elements) with zeros, and
U with orthonormal columns, orthogonal to Û .

A REFINED POLAR DECOMPOSITION: A = UPD 827

The following lemma was needed above and will be used again when considering
the computation of the refined polar decomposition with Newton’s method.

Lemma 2.2. Assume A has no zero columns. Let UP = AeD(d) be a polar
decomposition, and let P = VD(π)V ∗ be an eigendecomposition of P. Then, the
derivative of f of (2.5) is given by

f ′(d)δ = diag(V (Π ◦ (V ∗D(δ)V))V ∗),(2.6)

where Πij =
π2
i +π2

j

πi+πj
, Πij = 0 if πi + πj = 0. Further, f ′(d) is positive definite.

Proof. We have P = (eD(d)A∗AeD(d))
1
2 , and this is differentiable with respect to

d. This is true even in the case of singular A since eD(d)A∗AeD(d) has constant rank
and formula (2.1) can be applied.

For small δ ∈ R
n we need a Hermitian ∆ such that

(P + ∆)2 = eD(d+δ)A∗AeD(d+δ) + O(δ2 + ∆2),

i.e.,

P∆ + ∆P = D(δ)eD(d)A∗AeD(d) + eD(d)A∗AeD(d)D(δ)

= D(δ)P 2 + P 2D(δ).

Using P = VD(π)V ∗ we get

D(π) V ∗∆V + V ∗∆V D(π) = V ∗D(δ)V D(π)2 + D(π)2 V ∗D(δ)V,

i.e.,

(πi + πj)(V
∗∆V)ij = (π2

i + π2
j)(V ∗D(δ)V)ij .

If πi + πj = 0, we take (V ∗∆V)ij = 0. Hence V ∗∆V = Π ◦ (V ∗D(δ)V) and (2.6)
follows.

Let u = (1, . . . , 1). Positive definiteness is shown by

δT f ′(d)δ = tr(D(δ)V (Π ◦ (V ∗D(δ)V))V ∗)

= tr(V ∗D(δ)V (Π ◦ (V ∗D(δ)V)))

=
∑
i,j

π2
i +π2

j

πi+πj
|(V ∗D(δ)V)ij |2

≥∑i,j
πi+πj

2 |(V ∗D(δ)V)ij |2
= 1

2 tr(V ∗D(δ)V ((πuT + uπT) ◦ (V ∗D(δ)V)))

= 1
2 tr(V ∗D(δ)VD(π)V ∗D(δ)V) + 1

2 tr(V ∗D(δ)V V ∗D(δ)VD(π))

= tr(D(δ)PD(δ)) =
∑
j pjjδ

2
j .

Remark 1. In the proof of the theorem the g-function was defined by (2.4) for
α ∈ (0, 1/2]. Values α ∈ (1/2, 1) also work. Then, the lower bound becomes

gj(δ) ≥ (1− 2α)Λ + αλ + α log(m
2

Mn)

and the choice

λ = 1
1−α ((1− 2α)Λ + α log(m

2

Mn))

828 TIMO EIROLA

works. In the numerical computations we will mostly use α ≈ 2/3.
The following is kind of a dual result for the S = P̃ D̃2P̃ -decomposition of Olkin

and Pratt [6] mentioned in the introduction.
Corollary 2.3. Every Hermitian positive definite matrix S can be uniquely

decomposed as S = DP 2D, where P is a correlation matrix and D is positive diag-
onal.

Proof. This is immediate after decomposing S
1
2 = UPD.

Remark 2. The Π-matrix above is quite interesting: it is positive and has only
one positive eigenvalue. It is negative semidefinite in the subspace orthogonal to u =
(1, . . . , 1) (i.e., −Π is conditionally positive definite; see [5]). This is seen as follows:1

write

π2
i + π2

j

πi + πj
= πi + πj − 2πiπj

πi + πj
.

Thus, the matrix uπT + πuT − Π has entries
2πiπj

πi+πj
, i.e., it is a diagonal scaling of

a Cauchy matrix (see [5, p. 348]) and thus is positive semidefinite. This implies that
f ′(d) is an M -matrix (see Remark 5 below).

Remark 3. From the proof of Lemma 2.2 we see that ‖f ′(d)−1‖ ≥ 1
minj Pjj

.

Further, since
π2
i +π2

j

πi+πj
≤ max(πi, πj) we get ‖f ′(d)‖ ≤ maxj πj = ‖P‖. In practice,

we usually observe ‖f ′(d)‖ ≈ 2.
Finally, for good matrices the decomposition is smooth (real analytic).
Proposition 2.4. In the set of full rank matrices A ∈ C

m×n, m ≥ n, the
factors U,P, and D are real analytic functions of the (real and imaginary parts of
the) elements of A.

Proof. By the implicit function theorem the matrix D that solves F (D−1) = I

depends smoothly on A (F ′ is invertible). Then, P = (D−1A∗AD−1)
1
2 and U =

AP−1D−1 are also smooth.
Remark 4. Consider diagonal scaling of a matrix to reduce its condition number.

A result of van der Sluis [8] says that if P is Hermitian positive definite and has
constant diagonal, then the 2-norm condition number satisfies

κ(P) ≤ n inf
E∈D+

κ(EPE).

Using this one gets from the refined polar decomposition A = UPD the following:2

κ(AD−1) = κ(UP) = κ(P) ≤ n inf
E∈D+

κ(EPE)

= n inf
E∈D+

λmax(EPE)

λmin(EPE)
= n inf

E∈D+

λmax(PE2)

λmin(PE2)

≤ n inf
E∈D+

σmax(PE2)

σmin(PE2)
= n inf

E∈D+

κ(PE) = n inf
E∈D+

κ(AE),

i.e., a suboptimal column scaling. This is only a curiosity since a better result is
obtained,3 just by scaling the columns of AD̃ to have equal norms, since then D̃A∗AD̃
has constant diagonal and the result of van der Sluis gives

κ(AD̃) ≤ √n inf
E∈D+

κ(AE).

1Thanks to the unknown referee.
2Here λmin /max, σmin /max denote the maximal and minimal eigenvalues and singular values.
3Thanks to the editor and a referee.

A REFINED POLAR DECOMPOSITION: A = UPD 829

3. Numerical computation. Here we consider the two obvious approaches to
compute the refined polar decomposition. First, we consider fixed point iterations of
the g-function (2.4). Then, we will apply (2.6) in a Newton scheme and also consider
more economic approximate Newton steps.

3.1. Fixed point iteration. A simple numerical method is obtained by itera-
tion of the map g of (2.4) with α ∈ (0, 1). We use the (economy version) SVD to
compute values of f. From the SVD

QD(π)V ∗ = Ae−D(d)

we get P = V D(π)V ∗ already eigendecomposed (see Lemma 2.2) and

f(−d) = diag(P) = (V ◦ V̄)π.

For MATLAB we can write

function [U,P,D]=UPD_F(A)

% This function computes the refined polar decomposition

% of A using the fixed point iteration.

sz=size(A); n=sz(2); alpha=2/3;

expd=ones(n,1); d=zeros(n,1);

err=1; k=0; tol=10^(-13);

while err > tol,

[Q,E,V]=svd(A*diag(expd),0);

f=log((V.*conj(V))*diag(E));

d=d+alpha*f; expd=exp(-d);

err=norm(f); k=k+1; end

U=Q*V’; P=V*E*V’; D=diag(1./expd);

Note that elementwise log is taken here from a positive vector. This is equivalent to
the principal logarithm of the corresponding diagonal matrix.

For small α local convergence of this iteration is guaranteed.
Proposition 3.1. Given A, without zero columns, the iteration dk+1 = g(dk)

converges from d0 close to d = g(d) provided α ∈ (0, 2
‖P‖), where P is the Hermitian

part of A = UPD.
Proof. This follows directly from g′(d) = I−αf ′(−d) and the positive definiteness

of f ′. Note that by Remark 3 ‖f ′(−d)‖ ≤ ‖P‖ ≤ n.
In Figure 3.1 α varies from 0.2 to 1 and the iteration counts for different matrices

are plotted. The matrices are as follows:
50× 50 random matrix: randn(50,50) (—),
20× 20 Hilbert matrix: hilb(20) (· · ·),
50× 50 random matrix of rank 25: rand(50,25)*rand(25,50) (- - -),
50× 25 random matrix: randn(50,25) (– · – · –).

A rule of thumb is that for S closer to a diagonal matrix, α closer to one gives
fastest convergence.

3.2. Newton iteration. We want to solve f(d) = u, where u = (1, . . . , 1). To
obtain the polar decomposition for computing f(d) we use again the singular value
decomposition QD(π)V ∗ = AeD(d) and f(d) = (V ◦ V̄)π.

830 TIMO EIROLA

0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

iters

α

Fig. 3.1. Iteration counts as functions of α .

Using (2.6) we get the entries of f ′ :

f ′(d)ij = eTi f ′(d) ej

= tr
(
D(ei)V

(
Π ◦ (V ∗D(ej)V)

)
V ∗
)

= tr
(
V ∗D(ei)V

(
Π ◦ (V ∗D(ej)V)

))

= tr
(
viv

∗
i

(
Π ◦ (vjv

∗
j)
))

= (vi ◦ v̄j)∗Π (vi ◦ v̄j),

(3.1)

where vi ’s are the columns of V ∗.
Remark 5. By Remark 2 Π is conditionally negative semidefinite. Thus, for

i �= j we get from (vi ◦ v̄j)∗u = v∗i vj = 0 that f ′(d)ij ≤ 0. Hence, f ′(d) is an
M-matrix.

Remark 6. By Remark 3

cond(f ′(d)) ≤ ‖P‖
minj Pjj

.

At the solution this upper bound is ≤ n. Hence, good conditioning of the Jacobian
and local convergence is guaranteed.

Due to (3.1), the complexity (flop count) is O(n4) per iteration step. On the
other hand, computing f ′ this way parallelizes easily.

In the experiments the initial guess d = 0 seems to work in most cases,4 but for
safety we take first one step of the fixed point iteration of g with α = 2/3 to obtain
d0 = −g(0).

With these remarks Newton’s method for computing the refined polar decompo-
sition can be written as follows:

4In the short series of test problems tried so far just a few cases required a better initial guess.

A REFINED POLAR DECOMPOSITION: A = UPD 831

1 2 3 4 5 6 7
−14

−12

−10

−8

−6

−4

−2

0

2

10
cond()f ’

k

2.0

1.5

1.0

k

kflog (| |)

Fig. 3.2. Error norm and condition number during Newton’s method.

function [U,P,D]=UPD_N(A)

% This function computes the refined polar decomposition

% of A using Newton’s method.

sz=size(A); n=sz(2);

[U,E,V]=svd(A,0);

d=-2/3*log((V.*conj(V))*diag(E));

expd=exp(d); w=ones(n,1); df=zeros(n,n);

err=1; k=0; tol=10^(-13);

[U,E,V]=svd(A*diag(expd),0);

Vc=conj(V); p=diag(E);

f=(V.*Vc)*p-w;

while err > tol,

Pi=(p.^2*w’+w*p’.^2)./(p*w’+w*p’);

for i=1:n , for j=i:n , % these

v=(V(i,:).*Vc(j,:))’; % take

df(i,j)=v’*Pi*v; % O(n^4)

df(j,i)=df(i,j); end, end, % flops

d=d-df\f; expd=exp(d);

[Q,E,V]=svd(A*diag(expd),0);

Vc=conj(V); p=diag(E);

f=real(V.*Vc)*p-w;

err=norm(f); k=k+1; end

U=Q*V’; P=V*E*V’; D=diag(1./expd);

In Figure 3.2 a typical convergence graph is drawn. The solid line is 10-base logarithm
of the norm of f when started from the trivial guess d = 0, and (– · – · –) corresponds
to the better starting value. The dashed line plots cond(f ′). Here A is a random
100× 100 matrix (randn(100)).

3.3. Approximate Newton. In Newton’s method above the computation
of f ′ is the most flops consuming part O(n4). In each Newton step we solve f ′(d)δ =

832 TIMO EIROLA

u− f(d), i.e. (see (2.6)),

diag(V (Π ◦ (V ∗D(δ)V))V ∗) = u− f(d).(3.2)

Let us eigendecompose Π = WΛWT . Π has one positive and many small negative
eigenvalues. We take an approximation

Π ≈ Π̃ =
∑

|λj |>ε
λj wjw

T
j ,

where wj ’s are the columns of W. Using Π̃ in (3.2) we get simplification:

diag
(
V
(
Π̃ ◦ (V ∗D(δ)V)

)
V ∗
)

=
∑

|λj |>ε
λj diag

(
V
(
(wjw

T
j) ◦ (V ∗D(δ)V)

)
V ∗
)

=
∑

|λj |>ε
λj diag

(
(VD(wj)V

∗) D(δ) (VD(wj)V
∗)
)

=
∑

|λj |>ε
λj (Gj ◦ Ḡj) δ,

where Gj = VD(wj)V
∗. Hence,

f ′(d) ≈
∑

|λj |>ε
λj (Gj ◦ Ḡj).

For ε = 0.001 we typically get four to six terms in the sum while the iteration count
stays practically the same as for the genuine Newton method. This takes the Newton
step back to O(n3) as can be seen from the tests of the next section.

The code for this approximate Newton is obtained by replacing the four lines
(“these take O(n^ 4) flops”) by lines

[W,lambda]=eig(Pi); df=zeros(n,n);

for j=1:n ,

if abs(lambda(j,j)) > rtol ,

G=V*diag(W(:,j))*V’;

df=df+lambda(j,j)*(G.*conj(G)); end,end

Remark 7. Here we just use the eig routine to get the eigendecomposition of Π.
Since we want only a couple of largest (in modulus) eigenvalues and the corresponding
eigenvectors, the Lanczos iteration should give extra savings.

3.4. Comparison. In Figure 3.3 we have plotted the flop counts divided by n3

of the three methods: F: the fixed point iteration with α = 2/3 (—), N: the genuine
Newton’s method (- - -), and A: the approximate Newton’s method (– · – · –).

We took 4 series of test problems. In each of these the (column) dimension
(horizontal axis) grows from 10 to 100.

1. Complex random matrices (A=randn(n)+sqrt(-1)*randn(n)).
2. Hilbert matrices (A=hilb(n)).
3. Singular real matrices with rank = n

2 (A=randn(n,n/2)*randn(n/2,n)).
4. Random 2n× n full rank matrices (A=randn(2*n,n)).

A REFINED POLAR DECOMPOSITION: A = UPD 833

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

F

N

A

n

w

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

F

N

Aw

n

Random matrices Hilbert matrices

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

F

N

A

w

n
10 20 30 40 50 60 70 80 90 100

0

200

400

600

800

1000

1200 F

N

A

w

n

Singular matrices: rank(A) = n
2 Random 2n× n full rank matrices

Fig. 3.3. Scaled work w = flops/n3 versus n for different methods.

Methods F and A seem to have O(n3) complexity, while N is clearly O(n4).
Remark 8. The methods above are just simple first approaches. It will be inter-

esting to study how the iterations for the polar decomposition (see, e.g., [4]) can be
adapted to this case.

4. An application.

4.1. Parameterizing the orbit of a diagonalizable matrix. The orbit of a
matrix is the set of matrices similar to it.

4.1.1. Complex case. Let the eigenvalues of A ∈ C
n×n be distinct. Then, A

is diagonalizable:

A = TΛT−1, Λ =
[
λ1 ...

λn

]
∈ D, λi �= λj for i �= j.

The orbit of A is

S(A) =
{
XΛX−1

∣∣X ∈ C
n×n, det(X) �= 0

}
.

If X and Y are nonsingular such that XΛX−1 = Y ΛY −1, then Y −1XΛ = ΛY −1X
and for i �= j, (λi − λj)(Y

−1X)ij = 0 holds. Hence, D̂ = Y −1X is diagonal. Write

any diagonal nonsingular matrix as D̂ = ED, where |Eii| = 1 and Dii > 0 for all i.
Let X = UP, i.e., U is unitary and P ∈ PI , the set of Hermitian positive definite

matrices with unit diagonal. Then, all matrices that transform Λ to the same matrix

834 TIMO EIROLA

as X does are of the form

Y = UPED.

Since E∗PE ∈ PI , too, and X̂ = UEE∗PE also gives X̂ΛX̂−1 = XΛX−1 we still
have to choose E. That means we have to choose coordinates in the set of unitary
matrices modulo unitary diagonal scaling. We do this by requiring that the first
nonzero entry in each column of U is real and positive. Let U denote the set of such
unitary matrices. Then,

S(A) =
{
UPΛP−1U∗ ∣∣U ∈ U , P ∈ PI

}
,

and for each B ∈ S(A) the factors U and P are uniquely defined.
To separate the unitary orbit SU (A) and the transversal part SP(A), take the

refined polar decomposition T = U0P0D with U0 ∈ U . Then,

SU (A) =
{
UP0ΛP−1

0 U∗ ∣∣U∗U = I
}
,

SP(A) =
{
U0PΛP−1U∗

0

∣∣P ∈ PI} .
4.1.2. Real case. For A ∈ R

n×n with distinct eigenvalues one might want to
consider only the real orbit. If the eigenvalues are real, then we can proceed exactly
as in the complex case, now restricting only to real matrices. This way we obtain
unique coordinates for any real matrix in the orbit.

−2
−1

0
1

2

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

M

-
M

12

 2
1

M - M11
 22

12 21

M + M

Fig. 4.1. Orbit of a matrix with real eigenvalues.

In Figure 4.1 the orbit of A =
[

1.0 −0.8
0.1 2.0

]
is drawn. The displayed coordinates

of M ∈ R
2×2 are M11 −M22, M12 + M21, and M12 −M21. The fourth coordinate

trace(M) is not shown, since it is constant on orbits.
A is drawn as a small circle, and Λ = [1.0877 0

0 1.9123] is drawn as a cross. The two
darker circles on the surface form the orthogonal orbit of A:

SO(A) =
{
UAUT

∣∣U ∈ R
n×n, UTU = I

}
.

A REFINED POLAR DECOMPOSITION: A = UPD 835

The two parts correspond to orthogonal matrices with determinant ±1, respectively.
The dashed curve on the surface is the transversal part

SP(A) =
{
U0PΛP−1UT

0

∣∣P ∈ PI ∩ R
n×n} .

If A ∈ R
n×n has distinct eigenvalues, but some of them are complex, then it

admits a real similarity transformation A = TΛT−1 to real block diagonal Λ, where
the blocks are either real numbers or 2× 2 blocks of the form

[
α β
−β α

]
.

Let DΛ denote the set of block diagonal matrices with the same block structure
as Λ has. Now the diagonal matrices do not commute with Λ but those in DΛ do.
Hence, we want to consider refined polar decompositions

X = UPD̃

with orthogonal U, symmetric positive definite P having unit diagonal, and D̃ ∈ DΛ

having nonnegative diagonal. Existence and uniqueness results can be obtained using
similar techniques as in the proof of Theorem 2.1. The idea is to write D̃ = CD,
where C,D ∈ DΛ and C is orthogonal and D is diagonal. This is to first transform
a symmetric positive definite S to S̃ = CTSC, so that the diagonal pairs of S̃
corresponding to the 2× 2 blocks of Λ match: S̃j,j = S̃j+1,j+1. Then, combine this
with diagonal scaling. This combination can then be used5 in F.

An algorithm for computing this is obtained by modifying the fixed point itera-
tion. In the following code, vector z contains the starting indices of the 2× 2 blocks,
i.e., it defines DΛ.

function [U,P,D]=C_UPD(A,z)

% This function computes the refined polar decomposition of A

% A=UPD with D "real C-diagonal" determined by z.

% Here the fixed point iteration is used.

sz=size(A); n=sz(2); alpha=2/3;

expd=ones(n,1); d=zeros(n,1); C=eye(n);

err=1; k=0; tol=10^(-13);

while err > tol,

[U,E,V]=svd(A*diag(expd),0);

for j=z , jj=j:j+1 ;

W=V(jj,:)*E*V(jj,:)’;

fi=atan((W(1,1)-W(2,2))/(2*W(1,2)))/2;

c=cos(fi); s=sin(fi); C(jj,jj)=[c,-s;s,c]; end

V=C*V;

f=log((V.*conj(V))*diag(E));

d=d+alpha*f; expd=exp(-d);

err=norm(f); k=k+1; end

U=U*V’; P=V*E*V’; D=C*diag(1./expd);

5The details are not written here, since more general cases are under investigation.

836 TIMO EIROLA

−8
−6

−4
−2

0
2

4
6

8

−5

0

5

−8

−6

−4

−2

0

2

4

6

8

M

-
M

12

 2
1

M - M11
 22

12 21

M + M

Fig. 4.2. Orbit of a matrix with complex eigenvalues.

In Figure 4.2, the orbit of A =
[−0.7 −1.0

2.5 2.3

]
is drawn. A is shown as a small circle

and Λ =
[

0.8 −0.5
0.5 0.8

]
is on the top of the lower part. The two darker circles on the

surface form again the orthogonal orbit, and the dashed curve is the transversal part.
Remark 9. The orthogonal orbits and transversal parts seem to intersect or-

thogonally (w.r.t. 〈A,B〉 = tr(AB∗)). This is true for 2× 2 matrices, but not
generally.

5. Acknowledgments. The author is very grateful to the editor and the referees
for their excellent work, many points to improve the paper, and for pointing out [6].

REFERENCES

[1] P. I. Davies and N. J. Higham, Numerically stable generation of correlation matrices and their
factors, BIT, 2000, to appear.

[2] L. Dieci and T. Eirola, On smooth decompositions of matrices, SIAM J. Matrix Anal. Appl.,
20 (1999), pp. 800–819.

[3] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,
Baltimore, 1996.

[4] N. J. Higham and R. S. Schreiber, Fast polar decomposition of an arbitrary matrix, SIAM J.
Sci. Statist. Comput., 11 (1990), pp. 648–655.

[5] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New
York, 1991.

[6] I. Olkin and J. W. Pratt, A multivariate Tchebycheff inequality, Ann. Math. Statist., 29
(1958), pp. 226–234.

[7] D. R. Smart, Fixed Point Theorems, Cambridge University Press, London, New York, 1974.
[8] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math., 23

(1969/1970), pp. 14–23.

COMPUTING PROBABILISTIC BOUNDS FOR
EXTREME EIGENVALUES OF SYMMETRIC MATRICES

WITH THE LANCZOS METHOD∗

JOS L. M. VAN DORSSELAER† , MICHIEL E. HOCHSTENBACH† , AND

HENK A. VAN DER VORST†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 837–852

Abstract. We study the Lanczos method for computing extreme eigenvalues of a symmetric
or Hermitian matrix. It is not guaranteed that the extreme Ritz values are close to the extreme
eigenvalues—even when the norms of the corresponding residual vectors are small. Assuming that
the starting vector has been chosen randomly, we compute probabilistic bounds for the extreme
eigenvalues from data available during the execution of the Lanczos process. Four different types of
bounds are obtained using Lanczos, Ritz, and Chebyshev polynomials. These bounds are compared
theoretically and numerically. Furthermore we show how one can determine, after each Lanczos step,
a probabilistic upper bound for the number of steps still needed (without performing these steps) to
obtain an approximation to the largest or smallest eigenvalue within a prescribed tolerance.

Key words. symmetric and Hermitian matrices, eigenvalues, Lanczos method, Ritz values,
computation of probabilistic eigenvalue bounds, misconvergence, Lanczos polynomials, Ritz polyno-
mials

AMS subject classification. 65F15

PII. S0895479800366859

1. Introduction. Knowledge about the extreme eigenvalues of symmetric or
Hermitian matrices is important in many applications. For example, the stability of
processes involving such matrices is often governed by the location of their eigenvalues.
The extreme eigenvalues can also be used to determine condition numbers, the field
of values, and ε-pseudospectra of arbitrary matrices (see, e.g., [1, 12]). For small-
sized matrices the eigenvalues can be computed by the QR-method (see, e.g., [2]), but
this is not feasible for large matrices. A method which is often used in practice to
compute a few extreme eigenvalues of large sparse symmetric or Hermitian matrices
is the Lanczos method (see, e.g., [2, 7, 14]). The approximations of the eigenvalues
obtained with the Lanczos method (the Ritz values) lie between the smallest and
largest eigenvalue of the original matrix and one would like to know whether the largest
(or smallest) Ritz value is sufficiently close to the largest (or smallest) eigenvalue of
that matrix.

The classical a priori error estimates for the Lanczos method, established by
Kaniel, Paige, and Saad (see, e.g., [2, 3, 6, 7, 10]) are not applicable in practice to ob-
tain bounds on the spectrum of Hermitian matrices, because they involve knowledge
about the eigenvalues and angles between the eigenvectors and the starting vector.
Furthermore one should note that small residuals for the Ritz values only imply that
these Ritz values are close to an eigenvalue, but it is not guaranteed that this eigen-
value is indeed the one we are looking for (cf., e.g., [8]). In fact, it is not possible
to derive rigorous bounds on the spectrum from any possible starting vector: if the

∗Received by the editors February 4, 2000; accepted for publication (in revised form) by L. Reichel
July 14, 2000; published electronically December 7, 2000.

http://www.siam.org/journals/simax/22-3/36685.html
†Mathematical Institute, Utrecht University, P.O. Box 80.010, NL-3508 TA Utrecht, The Nether-

lands (dorssela@math.uu.nl, hochsten@math.uu.nl, vorst@math.uu.nl). Part of the research of the
first author was carried out at CWI (Amsterdam, The Netherlands).

837

838 VAN DORSSELAER, HOCHSTENBACH, AND VAN DER VORST

starting vector is perpendicular to the eigenvector (or eigenspace in case of multiple
eigenvalues) corresponding to the largest or smallest eigenvalue, it is impossible to
obtain any information regarding this eigenvalue from the Lanczos process.

In this paper we derive various a posteriori bounds for the spectrum of real sym-
metric matrices using a probabilistic approach. Assuming that the starting vector
of the Lanczos process is chosen randomly from the uniform distribution over the
unit sphere, we derive, using data available while executing the Lanczos process, for
every ε ∈ (0, 1) bounds for the spectrum with probability at least 1− ε. No intrinsic
properties of the matrix (apart from being symmetric) are required to compute our
bounds. Polynomials related to the Lanczos process, namely the Lanczos polynomials
and Ritz polynomials, are used to derive two types of such bounds. For symmetric
positive definite matrices Kuczyński and Woźniakowski [5, Theorem 3] give, for arbi-
trary t > 1, an a priori upper bound for the probability that the largest eigenvalue
is greater than t times the largest Ritz value; Chebyshev polynomials of the second
kind are used to obtain these bounds. This result can be used to compute a poste-
riori probabilistic bounds for the spectrum while executing the Lanczos process, and
bounds based on [5, Theorem 3] can be used for symmetric indefinite matrices as well.
The fourth kind of bounds for the spectrum is obtained with Chebyshev polynomials
of the first kind. The sharpness of the different bounds is analyzed theoretically and
compared numerically. It turns out that the bounds based on Lanczos polynomials
are the sharpest ones in most cases; however, the Ritz polynomials sometimes pro-
vide better bounds when the Lanczos method suffers from a misconvergence (i.e., the
largest (or smallest) Ritz values in consecutive Lanczos steps seem to converge, but
not to an extreme eigenvalue).

Apart from the bounds on the spectrum, we also study probabilistic bounds for
the number of Lanczos steps needed to get an error (or relative error) in the largest
or smallest eigenvalue that is smaller than a given tolerance. In [4, Theorem 4.2] the
authors present a probabilistic upper bound for the number of Lanczos steps needed to
yield a relative error in the largest eigenvalue of a symmetric positive definite matrix
that is smaller than a given tolerance. For this special case numerical experiments
demonstrate that our bound and the one from [4, Theorem 4.2] are almost the same.
Furthermore, we provide upper bounds for the number of Lanczos steps needed to
guarantee with probability at least 1−ε that either the spectrum lies between certain
prescribed bounds, or that a misconvergence has occurred.

The results in this paper deal with the Lanczos process applied to real symmetric
matrices and real starting vectors. This includes the case of Hermitian matrices,
because the Lanczos method applied to a complex Hermitian matrix (with a complex
starting vector) can be written as the application of the Lanczos method to a related
real symmetric matrix of double size with a real starting vector (see Remark 2.1 for
details).

All bounds discussed in this paper are easily implemented and can be computed
with little effort while executing the Lanczos process.

The paper has been organized as follows. In section 2 some notations and defini-
tions are introduced. Bounds based on Lanczos polynomials are presented in section 3,
and bounds obtained with Ritz polynomials can be found in section 4. In section 5
we derive bounds from Chebyshev polynomials. The estimates for the number of
Lanczos steps still to be done for sufficiently accurate approximations can be found in
section 6.1, and the estimates for the number of Lanczos steps needed to obtain pre-
scribed bounds for the spectrum or to detect misconvergence are given in section 6.2.

COMPUTING PROBABILISTIC EIGENVALUE BOUNDS 839

Numerical experiments are presented in section 7, and the conclusions can be found
in section 8.

2. Preliminaries and notation. In this section we introduce some notations
and present relevant properties of the Lanczos method. For an introduction to the
Lanczos method and more details, as well as implementation issues, the reader may
consult, e.g., [2, 7]. Throughout this paper we do not consider the effect of rounding
errors.

The standard inner product on R
n will be denoted by (·, ·), and ‖ · ‖ stands for

the Euclidean norm, and I is the n× n identity matrix.
Let A be a real symmetric n× n matrix with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn.(2.1)

The corresponding normalized eigenvectors xj form an orthonormal basis of R
n. We

use the Lanczos method to approximate one or a few extreme eigenvalues of A. The
unit starting vector is denoted by v1 and can be written as

v1 =

n∑
j=1

γjxj .(2.2)

If v1 is chosen randomly from the uniform distribution with respect to the unit sphere,
the dimension of the Krylov subspace

Kk(A, v1) = span{v1, Av1, . . . , Ak−1v1}
is equal to k with probability one for k less than the number of distinct eigenvalues
of A.

In the Lanczos process vectors vk are generated by the three-term recurrence

δkvk+1 = Avk − αkvk − βk−1vk−1 for k = 1, 2, 3, . . . ,(2.3)

where v0 = 0, β0 = 1, αk = (Avk, vk), βk−1 = (Avk, vk−1), and δk > 0 is chosen
such that ‖vk+1‖ = 1. With this choice one has δk = βk for k ≥ 1. The vectors
v1, v2, . . . , vk form an orthonormal basis of the Krylov subspace Kk(A, v1). Let Vk be
the n×k matrix of which vj is the jth column. The Ritz values occurring in step k of
the Lanczos process are the eigenvalues of the tridiagonal k× k matrix Tk = V T

k AVk,
and are denoted by

θ
(k)
1 < θ

(k)
2 < · · · < θ

(k)
k ;

the Ritz values satisfy θ
(k)
j > λj and θ

(k)
k+1−j < λn+1−j (1 ≤ j ≤ k). We denote the

eigenvectors of Tk by s
(k)
j : Tks

(k)
j = θ

(k)
j s

(k)
j and the Ritz vectors by y

(k)
j = Vks

(k)
j ,

where we assume that these Ritz vectors are normalized. We also introduce the
residuals

r
(k)
j = Ay

(k)
j − θ(k)j y

(k)
j .

Related to the three-term recursion (2.3) are the polynomials pk of degree k defined
by p−1(t) = 0, p0(t) = 1, and

βkpk(t) = (t− αk)pk−1(t)− βk−1pk−2(t) for k = 1, 2, 3,(2.4)

840 VAN DORSSELAER, HOCHSTENBACH, AND VAN DER VORST

From (2.3) with δk = βk and (2.4) it follows that

vk+1 = pk(A)v1 for k = 1, 2, 3,

The polynomials pk are called the Lanczos polynomials with respect to A and v1.

Other polynomials related to the Lanczos method are the Ritz polynomials q
(k)
j of

degree k − 1, which are characterized by the fact that

y
(k)
j = q

(k)
j (A)v1 for j = 1, 2, . . . , k.(2.5)

In the following sections estimates for the eigenvalues of A, based on Lanczos and Ritz
polynomials, will be studied and compared. Therefore it is important to understand
the relation between these polynomials. The polynomial pk is a scalar multiple of the
characteristic polynomial of the matrix Tk (cf., e.g., [7, section 7.3]), which implies

that θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k are the zeros of pk. From [7, section 12.3] it follows that these

Ritz values without θ
(k)
j are the zeros of q

(k)
j . Hence pk(t) = c

(k)
j (t− θ(k)j)q

(k)
j (t) for a

certain constant c
(k)
j .1 Because vk+1 = pk(A)v1 = c

(k)
j (A−θ(k)j I)q

(k)
j (A)v1 = c

(k)
j r

(k)
j ,

we have c
(k)
j = 1/‖r(k)j ‖, which yields the following relation between the Lanczos and

Ritz polynomials:

pk(t) = (t− θ(k)j)q
(k)
j (t) / ‖r(k)j ‖ for j = 1, 2, . . . , k.(2.6)

Remark 2.1. The Lanczos method described above can also be used to determine
a few extreme eigenvalues of a complex Hermitian matrix A. The results in this paper
are only valid for real symmetric matrices, but the Lanczos method for Hermitian
matrices can be formulated in terms of real matrices and vectors. Let ReA and ImA
be the real and imaginary part of A, respectively. The Lanczos method applied to the
2n× 2n real symmetric matrix

B =

(
ReA −ImA
ImA ReA

)

with starting vector (Re v1Im v1
) yields the same tridiagonal matrices Tk as the Lanczos

method applied to A with starting vector v1; this can be seen from taking the real and
imaginary part of the three-term recurrence (2.3). The numbers λ1, λ2, . . . , λn are the
eigenvalues of B, but with multiplicity twice as large as for the matrix A. Therefore
(probabilistic) bounds for the spectrum of B are (probabilistic) bounds for the spectrum
of A as well.

3. Spectral bounds using the Lanczos polynomial. In this section we will
give probabilistic upper and lower bounds for the spectrum of A, based on Lanczos
polynomials. For each step of the Lanczos process we obtain these bounds based on
the information computed so far. No assumptions on the location or separation of the
eigenvalues are required.

The Lanczos polynomials pk are a byproduct of the process. They are usually

small between θ
(k)
1 and θ

(k)
k and increase rapidly outside this interval. We can exploit

1From this relation it follows that q
(k)
j is a scalar multiple of

∏
i�=j(t− θ

(k)
i) and that polynomial

is called a reduced Ritz polynomial in [11]. The relation between these polynomials and (2.5) also
follows from [11, Formula (5.14)].

COMPUTING PROBABILISTIC EIGENVALUE BOUNDS 841

this fact: assuming that the starting vector has components in the direction of x1 and
xn, we can provide upper and lower bounds for the spectrum of A.

From

1 = ‖vk+1‖2 = ‖pk(A)v1‖2 =

n∑
j=1

γ2j pk(λj)
2

and pk(λn) > 0 it follows that

1 ≥ |γn| pk(λn).

If γn is known, this estimate provides an upper bound λup for λn: let λup be the
largest real zero of

fL(t) = pk(t)− 1/|γn|.(3.1)

This number λup exists and satisfies λup > θ
(k)
k because pk is strictly increasing on

(θ
(k)
k ,∞). The number λup can be determined by Newton’s method or bisection. As

a starting point for the Newton process one can take ‖A‖∞ (the maximal row sum of
the absolute values of the entries of A) or a previously computed upper bound for λn.

In practice we do not know γn, but we can determine the probability that |γn| is
smaller than a given (small) constant. Let Sn−1 denote the (n− 1)-dimensional unit
sphere in R

n. We assume that v1 is chosen randomly with respect to the uniform
distribution over Sn−1. Then, as a result, (γ1, γ2, . . . , γn) is also random with respect
to the uniform distribution over Sn−1 (cf., e.g., [4, p. 1116]). In the following lemma
we compute the probability that |γn| is smaller than δ.

Lemma 3.1. Assume that the starting vector v1 has been chosen randomly with
respect to the uniform distribution over the unit sphere Sn−1 and let δ ∈ [0, 1]. Then

P (|γn| ≤ δ) = 2B(n−1
2 , 12)−1 ·

∫ arcsin δ

0

cosn−2 tdt,

where B denotes Euler’s Beta function: B(x, y) =
∫ 1
0
tx−1(1− t)y−1dt.

Proof. Define Sδ = {γ ∈ Sn−1 : |γn| < δ}; we want to determine the ratio of the
areas of the sets Sδ and Sn−1. The image of the map

ϕ : (−π, π) × (−π2 , π2)n−2 → Sn−1

defined by

ϕ :

α
ψ1

ψ2

...
ψn−2

→

cosα cosψ1 cosψ2 · · · cosψn−3 cosψn−2

sinα cosψ1 cosψ2 · · · cosψn−3 cosψn−2

sinψ1 cosψ2 · · · cosψn−3 cosψn−2

...
sinψn−3 cosψn−2

sinψn−2

equals the sphere up to a negligible set. One can check that the associated Euclidean
density is given by

ω(α, ψ1, ψ2, . . . , ψn−2) = cosψ1 · cos2 ψ2 · · · cosn−2 ψn−2.

842 VAN DORSSELAER, HOCHSTENBACH, AND VAN DER VORST

Therefore we can compute the areas of Sδ and Sn−1 by integrating this density over
the respective domains. Taking the ratio of the two results, we get

P (|γn| ≤ δ) = P (|ψn−2| ≤ arcsin δ)

= 2

∫ arcsin δ

0

cosn−2 tdt
/∫ π/2

−π/2
cosn−2 tdt

= 2

∫ arcsin δ

0

cosn−2 tdt
/
B(n−1

2 , 12),

which proves the lemma.

Now suppose we would like to have an upper bound for the spectrum of A that
is correct with probability at least 1− ε. Then we determine the value of δ for which

∫ arcsin δ

0

cosn−2 tdt = ε
2B(n−1

2 , 12)

(
= ε

∫ π/2

0

cosn−2 tdt

)
(3.2)

holds, e.g., by using Newton’s method. The integrals in (3.2) can be computed using
an appropriate quadrature formula. We replace |γn| in (3.1) by the value δ computed

from (3.2) and determine the zero λup > θ
(k)
k . This λup is an upper bound for the

spectrum of A with probability at least 1 − ε, and we call λup a probabilistic upper
bound.

A lower bound λlow for the spectrum of A with probability at least 1− ε can be
obtained in a similar way. (Note that Lemma 3.1 remains valid if |γn| is replaced by
|γ1|.) The only difference is that we have to separate the cases where k, the degree of
pk, is even (pk(t)→ +∞ for t→ −∞) or odd (pk(t)→ −∞ for t→ −∞). Hence we
have proved the following theorem.

Theorem 3.2. Assume that the starting vector v1 has been chosen randomly with
respect to the uniform distribution over Sn−1 and let ε ∈ (0, 1). Then λup, the largest
zero of the polynomial

fL(t) = pk(t)− 1/δ(3.3)

with δ given by (3.2), is an upper bound for the spectrum of A with probability at least
1− ε, and λlow, the smallest zero of

fL(t) = (−1)kpk(t)− 1/δ,(3.4)

is a lower bound for the spectrum of A with probability at least 1− ε.
Note that if we are unlucky in choosing v1, so that |γn| < δ, then the computed

bounds may or may not be correct; see section 7 for an illustration.

The determination of the lower and upper bounds from Theorem 3.2 is rather
cheap in general (compared with a matrix-vector multiplication with A); the compu-
tation of fL(t) (using (2.4)) costs approximately 6k floating point operations. Note
that the Ritz values and vectors are not needed to obtain these bounds of the spec-
trum. For very small k one cannot expect to obtain tight bounds, so it only makes
sense to compute the zeros of (3.3) and (3.4) for k of moderate size. In practice one
could, e.g., compute these zeros only every second or third Lanczos step until the
bounds become sufficiently sharp.

COMPUTING PROBABILISTIC EIGENVALUE BOUNDS 843

4. Spectral bounds using Ritz polynomials. We can also try to obtain prob-
abilistic upper and lower bounds for the spectrum of A using some Ritz polynomials

q
(k)
j . The degree of these polynomials is one less than the degree of pk, but while

pk(θ
(k)
k) = 0, the polynomial q

(k)
k has its last zero in θ

(k)
k−1 and could be a competitor

of pk to give a possibly tighter upper bound. Similarly, q
(k)
1 may be used to obtain

another lower bound.
We write θ

(k)
j as a Rayleigh quotient:

θ
(k)
j = (Ay

(k)
j , y

(k)
j) =

n∑
i=1

λi γ
2
i q

(k)
j (λi)

2.(4.1)

First suppose that A is positive semidefinite. Then set j = k to derive the inequality

θ
(k)
k ≥ λn γ

2
n q

(k)
k (λn)2. Hence the zero λup > θ

(k)
k of

fR(t) = tq
(k)
k (t)2 − θ

(k)
k /γ2n(4.2)

is an upper bound for λn. If γn is not known, one can obtain a probabilistic upper
bound λup of λn with probability at least 1− ε, as in the previous section. (Replace
γn in (4.2) by δ where δ satisfies (3.2).)

As in the previous section, if we happen to choose a v1 so that |γn| < δ, then we
are not certain that the computed upper bound is correct. It can even happen that

the largest zero λup of fR with γn replaced by δ satisfies λup < θ
(k)
k ! See section 7 for

an illustration.
When it is not known whether A is positive definite, we can obtain a probabilistic

upper bound in the following way. Let −σ < 0 be a known lower bound for the
spectrum of A: then the matrix A+ σI is positive semidefinite. We get

θ
(k)
k + σ =

n∑
i=1

(λi + σ) γ2i q
(k)
k (λi)

2

with λi + σ ≥ 0 for all i. The rightmost zero of

fR(t) = (t+ σ)q
(k)
k (t)2 − (θ

(k)
k + σ)/γ2n(4.3)

is an upper bound for the spectrum of A. Again, we can replace γn by the δ that
satisfies (3.2) to compute a probabilistic upper bound.

For a lower bound, we use the polynomial q
(k)
1 . If A is negative semidefinite, it

follows from θ
(k)
1 ≤ λ1 γ

2
1 q

(k)
1 (λ1)2 (cf. (4.1)) that the unique zero λlow < θ

(k)
1 of

fR(t) = tq
(k)
1 (t)2 − θ

(k)
1 /γ21(4.4)

is a lower bound for λ1. Otherwise one has to use a shift τ > 0 such that A − τI
becomes negative semidefinite and modify fR in (4.4) accordingly. Of course the shifts
σ and τ should be chosen as small as possible to get the best results.

The bounds discussed in this section can be determined for example by Newton’s
method or bisection. In order to compute fR(t) one has to know the largest or
smallest Ritz value and the corresponding eigenvector of the tridiagonal matrix Tk.
Apart from that, the computation of fR(t) is cheap. The determination of the bounds
based on Ritz polynomials will be more expensive in general than the determination

844 VAN DORSSELAER, HOCHSTENBACH, AND VAN DER VORST

of the bounds based on the Lanczos polynomials. (The Ritz values and vectors are
not needed in the latter case.)

It is interesting to compare the sharpness of the bounds based on Ritz polynomials
and those based on Lanczos polynomials. For simplicity we assume that A is positive
semidefinite and compare the largest zero of (4.2) with the largest zero of (3.1). (The
other cases, including those where shifts are used, can be analyzed in a similar way.)
Consider the function

g(t) =

√
t/θ

(k)
k q

(k)
k (t) − 1/|γn|;(4.5)

the largest zero of g is the largest zero of fR from (4.2). After some straightforward
calculations, using (2.6) with j = k, one obtains that (with fL as in (3.1) and g as in
(4.5))

fL(t) < g(t) for θ
(k)
k ≤ t ≤ (1 + c) θ

(k)
k

and

fL(t) > g(t) for t ≥ (1 + c+ c2) θ
(k)
k ,

where c = ‖r(k)k ‖/θ(k)k . The quantity c can be interpreted as an approximation of the
relative error for the largest eigenvalue, and c will be small after sufficiently many
Lanczos steps. For small c the Ritz polynomial provides a smaller upper bound for

λn only when this upper bound is very close to θ
(k)
k —but in that case the Lanczos

polynomial yields a very tight upper bound as well. Hence, it is not likely that
the bounds based on Ritz polynomials are sharper than the bounds obtained with
the Lanczos polynomials—unless c is large. Numerical experiments illustrating these
observations can be found in section 7.

5. Spectral bounds using Chebyshev polynomials. Chebyshev polynomi-
als are often used to obtain error bounds for the Lanczos method; cf., e.g., [2, 5, 7].
In this section we explain how these polynomials can be used to obtain probabilis-
tic upper and lower bounds for the spectrum of A, based on computations with the
Lanczos method. One type of bounds follows easily from a result by Kuczyński and
Woźniakowski [5, Theorem 3].

Let cj(t) = cos(j arccos t) be the Chebyshev polynomial (of the first kind) of degree
j, with the usual extension outside the interval [−1, 1]. The polynomial

uj−1(t) = 1
j c

′
j(t)

of degree j − 1 is a Chebyshev polynomial of the second kind (cf. [9, p. 7]).
In [5, Theorem 3], the following result has been derived for symmetric positive

definite matrices. Let t > 1 and v1 be chosen randomly from the uniform distribution
over Sn−1. Then

P (λn ≤ t θ
(k)
k) ≥ 1 − 2

(
B(n−1

2 , 12)
√
t− 1u2(k−1)(

√
t)
)−1

.(5.1)

(B is the Euler Beta function.) The estimate (5.1) can be generalized for symmetric
indefinite matrices by using a shift σ such that A+σI is positive definite. Probability
estimates for lower bounds of λ1 can be obtained similarly. Along these lines we can
derive bounds for the spectrum of A with probability at least 1− ε, and these results
are presented in the following theorem.

COMPUTING PROBABILISTIC EIGENVALUE BOUNDS 845

Theorem 5.1. Let ε ∈ (0, 1) and σ, τ ∈ R be such that A + σI is positive
semidefinite, and A− τI is negative semidefinite. Consider for t ≥ 1 the function

f(t) = ε
2 B(n−1

2 , 12)
√
t− 1u2(k−1)(

√
t) − 1(5.2)

(B is the Euler Beta function) and let tk > 1 be the (unique) zero of f . Furthermore,
let v1 be chosen randomly from the uniform distribution over Sn−1. Then

λup = tk θ
(k)
k + (tk − 1)σ(5.3)

is an upper bound for the spectrum of A with probability at least 1− ε, and

λlow = tk θ
(k)
1 − (tk − 1)τ(5.4)

is a lower bound for the spectrum of A with probability at least 1− ε.
The quantity tk can be determined numerically. The numbers uj(t) can be com-

puted from the three-term recurrence uj(t) = 2tuj−1(t)−uj−2(t) for j ≥ 2, u0(t) = 1,
u1(t) = 2t (see, e.g., [9, p. 40]). From (5.3) and (5.4) it is clear that the shifts σ and
τ should be chosen as small as possible (cf. section 4).

Other bounds for the spectrum of A can be obtained as follows, using Chebyshev
polynomials of the first kind. Let a < b and cj(t; a, b) = cj(1 + 2(t − b)/(b − a)) be
the Chebyshev polynomial of degree j with respect to the interval [a, b]. With σ such

that A+ σI is positive semidefinite, we define the polynomial h(t) = ck−1(t;−σ, θ(k)k)

and the vector x = h(A)v1 ∈ Kk(A, v1). From θ
(k)
k (x, x) ≥ (Ax, x) it follows that2

the largest zero of

fC(t) = (t− θ(k)k)ck−1(t;−σ, θ(k)k)
2 − (θ

(k)
k + σ)/γ2n(5.5)

is an upper bound for λn. With γn replaced by the δ computed from (3.2), as in
the previous sections, one obtains an upper bound λup for the spectrum of A with
probability at least 1 − ε. A lower bound for the spectrum of A can be obtained in

a similar way, using θ
(k)
1 (x, x) ≤ (Ax, x) with x = ck−1(A; θ

(k)
1 , τ)v1, where τ is such

that A− τI is negative semidefinite.
In order to compare the bounds derived along these lines with those obtained

from Theorem 5.1, we first replace γn in (5.5) by δ and scale the interval [−σ, θ(k)k] to

[0, 1]. The largest zero λup of (5.5) satisfies the equality λup = t̂ θ
(k)
k + (t̂− 1)σ, where

t̂ > 1 is the unique zero of

g(t) = δ
√
t− 1 ck−1(t; 0, 1) − 1.

One can show that ck−1(t; 0, 1) = c2(k−1)(
√
t ;−1, 1) (= c2(k−1)(

√
t)) for t > 0. This

means that we have to compare the zeros of (5.2) and those of

g(t) = δ
√
t− 1 c2(k−1)(

√
t) − 1.(5.6)

The relation between δ and ε
2B(n−1

2 , 12) is given by (3.2). One has δ > ε
2B(n−1

2 , 12)
for all ε ∈ (0, 1) and n > 3, but δ ≈ ε

2B(n−1
2 , 12) for ε and n of practical interest. For

2Invoke (2.2): use
∑

γ2j ≤ 1 where the summation is with respect to those j satisfying λj ≤ θ
(k)
k

and h(λj)
2 ≤ 1 for λj ≤ θ

(k)
k .

846 VAN DORSSELAER, HOCHSTENBACH, AND VAN DER VORST

instance, (δ− ε
2B(n−1

2 , 12))/δ ≈ 2.6 · 10−5 for ε = 1.0 · 10−2 and n = 103, 104, 105, 106.
On the other hand one has the relation

u2(k−1)(
√
t) = 2 c2(k−1)(

√
t) + u2(k−2)(

√
t) for t > 0

(cf., e.g., [9, p. 9]) so that u2(k−1)(
√
t) > 2c2(k−1)(

√
t) for t ≥ 1 and this implies,

together with δ ≈ ε
2B(n−1

2 , 12), that the zero of (5.6) is larger than the zero of (5.2)
in most applications. Hence, the upper bound λup from (5.3) is in general smaller
than the upper bound obtained from (5.5), so Theorem 5.1 will produce sharper
bounds than the construction described above. These observations are supported by
numerical experiments in section 7.

6. Upper bounds for the number of Lanczos steps.

6.1. Bounds based on Theorem 5.1. Theorem 5.1 can also be used to com-
pute a probabilistic upper bound for the number of Lanczos steps necessary to obtain
a Ritz value close enough to λn in a relative or absolute sense. These estimates can be
obtained while executing the Lanczos process. First we investigate how many Lanczos
steps are needed to obtain a relative error that is smaller than a prescribed tolerance
tol with probability at least 1− ε.

Suppose k steps of the Lanczos method have been performed and θ
(k)
k > 0; if

θ
(k)
k ≤ 0 the eigenvalue λn can be arbitrarily close to zero and the relative error

(λn − θ
(m)
m)/λn cannot be estimated properly. Let m ≥ k and let tm be the zero of

the function f in (5.2) with k replaced by m. It follows from (5.3) that

λn − θ(m)
m

λn
≤ (tm − 1)(θ

(m)
m + σ)

λn
≤ (tm − 1)(λn + σ)

λn
≤ (tm − 1)(µ+ σ)

µ
(6.1)

holds with probability at least 1 − ε; here µ = θ
(k)
k if σ ≥ 0, and µ ≥ λn (e.g.,

µ = ‖A‖∞; one should not take a probabilistic upper bound for λn) whenever σ < 0;
σ is as in Theorem 5.1. The requirement (tm − 1)(µ + σ)/µ ≤ tol is equivalent to
tm ≤ 1 + tol · µ/(µ+ σ), and the smallest integer m, for which the quantity tm from
(5.2) satisfies

tm ≤ 1 + tol · µ/(µ+ σ),(6.2)

is an upper bound for the number of Lanczos steps necessary to provide an approxi-

mation θ
(m)
m to λn that satisfies (λn− θ(m)

m)/λn ≤ tol with probability at least 1− ε.
Note that in case σ > 0 the right-hand side of (6.2) increases with k, so that the
smallest number m satisfying (6.2) may decrease during the execution of the Lanczos
process.

For symmetric positive definite matrices an upper bound m for the number of
Lanczos steps which yields an approximation to the largest eigenvalue, such that the
relative error is bounded by tol with probability at least 1− ε, has been given in [4,
Theorem 4.2]: the number m should satisfy

1.648
√
n e−(2m−1)

√
tol ≤ ε.(6.3)

Numerical experiments show that (6.3) yields almost the same upper bound as (6.2)
with σ = 0 (in most cases the bounds were exactly the same, while the difference was at
most two steps); this is not surprising in view of the discussion in [5, p. 679]. However,

COMPUTING PROBABILISTIC EIGENVALUE BOUNDS 847

(6.2) can be used for indefinite matrices as well, as long as θ
(k)
k > 0. Furthermore, for

symmetric positive definite matrices smaller numbers m may be obtained when (6.2)
is applied with σ < 0.

To estimate the number of steps, still necessary to have the absolute error λn −
θ
(m)
m ≤ tol with probability at least 1 − ε, we proceed as follows. If m satisfies the

requirement (cf. (6.1))

(tm − 1)(µ+ σ) ≤ tol,(6.4)

with µ ≥ λn (µ should not be a probabilistic upper bound), the equality λn − θ(m)
m ≤

tol holds with probability at least 1− ε. The smallest integer m satisfying (6.4) can

be computed. Note that (6.4) is also valid when θ
(k)
k ≤ 0 and we do not have to

distinguish between the cases σ ≥ 0 and σ < 0.
Estimates for the number of Lanczos steps, to be done so that the (relative) error

in the smallest eigenvalue is less than tol with probability at least 1 − ε, can be
derived in a similar way.

6.2. Upper bounds for the number of Lanczos steps in case of miscon-
vergence. Suppose that after sufficiently many Lanczos steps the largest Ritz value

seems to have converged to an eigenvalue: θ
(k)
k ≈ θ

(k−1)
k−1 for several consecutive k and

‖r(k)k ‖ is small. It is known that |θ(k)k − λj | ≤ ‖r(k)k ‖ for a certain eigenvalue λj (see,
e.g., [7, section 4.5]), and in most cases the largest Ritz value will have converged to

the largest eigenvalue λn, but it may also happen that θ
(k)
k is not close to λn (mis-

convergence); this can happen, e.g., if |γn| is very small. Below we show how one
can determine a probabilistic upper bound for the number of Lanczos steps needed
after which one can conclude that either λn < λ holds for a given constant λ, or a

misconvergence has been detected, i.e., λn > θ
(k)
k + ‖r(k)k ‖.

Let m > k and g be a polynomial of degree m− 1, and x = g(A)v1 ∈ Km(A, v1).

If λn > θ
(k)
k + ‖r(k)k ‖, the inequality

(Ag(A)v1, g(A)v1) >
(
θ
(k)
k + ‖r(k)k ‖

)
(g(A)v1, g(A)v1)(6.5)

is satisfied for a certain m and a suitable polynomial g: the Ritz polynomial q
(m)
m

maximizes the Rayleigh quotient (Ag(A)v1, g(A)v1)/(g(A)v1, g(A)v1) but q
(m)
m is not

available after k steps of the Lanczos process, so we will consider another polynomial
of degree m− 1. Rewriting (6.5) using (2.2) gives

(
λn − (θ

(k)
k + ‖r(k)k ‖)

)
γ2n g(λn)2 >

(
θ
(k)
k + ‖r(k)k ‖ − λn−1

)
γ2n−1 g(λn−1)2

+

n−2∑
j=1

(
θ
(k)
k + ‖r(k)k ‖ − λj

)
γ2j g(λj)

2.
(6.6)

In order to satisfy (6.6) with m as small as possible we search for a polynomial g that

resembles the Ritz polynomial q
(m)
m . We have q

(k)
k to our disposal, and therefore we

take g(t) = q
(k)
k (t)h(t) with h a suitable polynomial of degree m−k. We assume that

|θ(k)k − λn−1| ≤ ‖r(k)k ‖ (with ‖r(k)k ‖ small); this assumption is likely to be realistic in

case of a misconvergence. In order to amplify the effect of q
(k)
k in (6.6) we choose h such

that h is large in λn and small in λ1, . . . , λn−2. Hence h(t) = cm−k(t;λ1, λn−2) would

848 VAN DORSSELAER, HOCHSTENBACH, AND VAN DER VORST

be a proper choice, but λ1 and λn−2 are not known, so we replace both quantities.

Again let −σ ≤ λ1, and assume that λn−2 ≤ θ
(k)
k−1 + ‖r(k)k−1‖; we now define

g(t) = q
(k)
k (t) cm−k

(
t;−σ, θ(k)k−1 + ‖r(k)k−1‖

)
.

If we replace in the right-hand side of (6.6) the quantity θ
(k)
k + ‖r(k)k ‖ − λn−1 by

2 ‖r(k)k ‖, γ2n−1 by 1, g(λn−1) by g(θ
(k)
k + ‖r(k)k ‖), and g(λj) by M , where

M = max { |q(k)k (t)| : −σ ≤ t ≤ θ
(k)
k−1 + ‖r(k)k−1‖ },

then the inequality

(
λn − (θ

(k)
k + ‖r(k)k ‖)

)
g(λn)2 > 2 ‖r(k)k ‖ g

(
θ
(k)
k + ‖r(k)k ‖

)2
/ γ2n

+ M2
(
θ
(k)
k + ‖r(k)k ‖+ σ

)
/ γ2n

(6.7)

implies (6.6) (cf. the derivation of (5.5), which is based on the same ideas). We now
replace λn in (6.7) by the given constant λ and γn by δ, where |γn| ≥ δ holds with
probability 1− ε. We determine the smallest integer m > k such that

(
λ− (θ

(k)
k + ‖r(k)k ‖)

)
g(λ)2 > 2 ‖r(k)k ‖ g

(
θ
(k)
k + ‖r(k)k ‖

)2
/ δ2

+ M2
(
θ
(k)
k + ‖r(k)k ‖+ σ

)
/ δ2

(6.8)

is satisfied and perform m− k Lanczos steps to obtain θ
(m)
m . If θ

(m)
m < θ

(k)
k + ‖r(k)k ‖,

then (6.5) and (6.6) are violated. This implies that (6.7) does not hold if, e.g.,

λn−1 ≤ θ
(k)
k−1 + ‖r(k)k−1‖. (This will be satisfied in most cases.) From the fact that

(6.7) is violated and (6.8) holds we conclude that λn < λ holds with probability at
least 1− ε.

If θ
(m)
m > θ

(k)
k + ‖r(k)k ‖, we know that a misconvergence has occurred and we do

not know whether λn < λ is satisfied or not. In the latter case one may repeat the
above construction with k replaced by m.

These ideas can also be used to investigate whether or not the smallest Ritz value
has converged to λ1.

7. Numerical experiments. In this section we compare the different bounds
derived in the previous sections. All experiments are carried out with Matlab on a
SUN workstation. Without loss of generality we can restrict ourselves to diagonal
matrices A (cf. [4, section 6]): this will reduce the influence of rounding errors on
our computations. For analysis it is also convenient to know the eigenvalues and
eigenvectors of A. The vector v1 is chosen randomly from the uniform distribution
over the unit sphere Sn−1; in [4, p. 1116] it is explained how this can be done.

In our first example we take

n = 1000, A = diag(1, 2, . . . , 1000).(7.1)

Let ε = 0.01, i.e., we are looking for bounds of the spectrum that are 99% reliable.
From (3.2) one obtains δ = 3.97 ·10−4. We checked that our randomly chosen starting
vector v1 satisfied |γ1| > δ and |γn| > δ, so the computed probabilistic bounds are
true bounds for the spectrum of A. We have performed 100 Lanczos steps. The shifts
(see sections 4 and 5) used in our computations are σ = 0 and τ = λn = 1000. The
results are displayed in Figure 7.1.

COMPUTING PROBABILISTIC EIGENVALUE BOUNDS 849

20 40 60 80 100

1000

1020

1040

1060

20 40 60 80 100

−60

−40

−20

0

Fig. 7.1. Probabilistic bounds for the spectrum of A. Solid curves correspond to the bounds
based on Lanczos polynomials, the dashed curves correspond to bounds based on Ritz polynomials,
the dotted curves correspond to bounds obtained from Theorem 5.1, and the dash-dotted curves
correspond to (5.5). The left figure shows the upper bounds and the right figure the lower bounds.
The largest Ritz values (left picture) and smallest Ritz values (right picture) are indicated by small
circles.

We see that the Lanczos polynomials provide the sharpest bounds and (5.5) yields
the worst bounds. In section 4 it has already been explained why the Lanczos polyno-
mials may provide better bounds than the Ritz polynomials. Furthermore, it may not
be a surprise that the Lanczos polynomials produce better bounds than the Cheby-
shev polynomials, because more information regarding the actual Lanczos process is
used in the construction of the Lanczos polynomials. The relationship between the
different bounds based on Chebyshev polynomials is in agreement with the discus-
sion on this topic in section 5. We repeated the same experiment with other random
starting vectors v1, and the bounds behaved similarly as those displayed in Figure 7.1.

We also investigated how many Lanczos steps are needed to obtain an approx-
imation to λn with a relative error less than a prescribed tolerance tol. Again we
set σ = 0, so that (6.2) reduces to tm ≤ 1 + tol; the upper bound m for the num-
ber of Lanczos steps does not depend on the matrix A or the starting vector v1 and
can be computed in advance. The results are displayed in Table 7.1. We see that
the upper bound m from (6.2) is much larger than k1, the actual number of steps
needed to obtain a relative error smaller than tol; this has already been observed in
other examples for the upper bound obtained with (6.3) [4, 5]. We also observe that

m > k2, the number of steps needed to obtain (λup − θ
(k)
k)/λup ≤ tol with λup the

upper bound obtained from the Lanczos polynomial of degree k. This is not surpris-
ing in view of the results from Figure 7.1, because m is related to the upper bound
determined with Theorem 5.1, and these bounds are not as sharp as those based on
Lanczos polynomials. Instead of performing m Lanczos steps, it may be useful in

practice to compute (λup − θ(k)k)/λup while executing the Lanczos method and check
whether this quantity is smaller than tol or not.

We have repeated the experiments described above with ε = 0.001 (instead of
ε = 0.01). The behavior of the bounds is the same as for ε = 0.01, but of course the
bounds are further away from the spectrum of A. In order to compare the different
bounds, let λup be an upper bound corresponding to ε = 0.01 (determined with one

of the four techniques discussed here), and let λ̃up be the upper bound determined
with the same technique but with ε = 0.001. For all four techniques we observed
that 1 < (λ̃up − λn)/(λup − λn) < 2.2 for 20 ≤ k ≤ 100 (k denotes the number

850 VAN DORSSELAER, HOCHSTENBACH, AND VAN DER VORST

Table 7.1
The second column displays the smallest integer m satisfying (6.2) with σ = 0. The smallest

integer k1 for which (λn − θ
(k)
k)/λn ≤ tol is shown in the third column, and the smallest integer

k2 with (λup − θ
(k)
k)/λup ≤ tol, where λup is the upper bound for λn obtained with the Lanczos

polynomial of degree k, is listed in the fourth column of the table.

tol m k1 k2
5.0 · 10−2 20 5 18
1.0 · 10−2 44 11 40
5.0 · 10−3 61 17 55
1.0 · 10−3 136 48 97

40 60 80 100

−50

0

50

100

40 60 80 100

−50

0

50

100

Fig. 7.2. “Upper bounds” for the spectrum of A, obtained with two different starting vectors;
the starting vector for the left picture satisfies |γn| > δ, while |γn| < δ for the starting vector used
to produce the right picture. Solid curves correspond to the bounds based on Lanczos polynomials,
the dashed curves correspond to bounds based on Ritz polynomials, the dotted curves correspond to
bounds obtained from Theorem 5.1, and the dash-dotted curves correspond to (5.5). The largest Ritz
values are indicated by small circles.

of Lanczos steps) and the same holds for (λ1 − λ̃low)/(λ1 − λlow), where the lower

bounds λlow and λ̃low are defined analogously. Hence the behavior of the bounds for
the spectrum of A does not change much when ε is decreased from 0.01 to 0.001, which
is reasonable because the polynomials used to derive the bounds grow fast outside the
spectrum of A.

The second example comes from the discretization of the Laplace operator on the
unit square with homogeneous Dirichlet boundary conditions. When the standard
second order finite difference scheme with uniform meshwidth equal to 1/33 (in both
directions) is used, one obtains a symmetric matrix of order n = 322 = 1024 with
eigenvalues

332(−4 + 2 cos(iπ33) + 2 cos(jπ33)), i, j = 1, 2, . . . , 32(7.2)

(see, e.g., [13, section 6.5]). Let A be the diagonal matrix of order 1024 with these
eigenvalues on its diagonal in increasing order. Note that A is negative definite.

We have computed bounds for the spectrum of A with ε = 0.01 (which yields
δ = 3.92 · 10−4 by (3.2)), σ = −λ1 and τ = 0, using different randomly chosen
starting vectors. For most starting vectors the bounds behave similarly as in the
first example and we will not consider this further. Instead we deal with two different
starting vectors that provide a different behavior for the upper bounds (similar results
can be obtained for lower bounds as well), and the results can be found in Figure 7.2.

COMPUTING PROBABILISTIC EIGENVALUE BOUNDS 851

In the left picture we see what can happen if |γn| is small (|γn| = 5.46 · 10−4 for
this example), but still greater than δ. The Ritz polynomials provide the sharpest
bounds at a certain stage of the Lanczos process. At that stage the misconvergence
behavior of the Lanczos process (cf., e.g., [8]) is discovered: for 37 ≤ k ≤ 49 one has

|λn−1−θ(k)k | ≤ 0.15 (λn−1 = −49.22 · · ·), and the largest Ritz values seem to converge
to a number close to the (double) eigenvalue λn−1. For larger values k the Lanczos
process notices the existence of a larger eigenvalue (λn = −19.72 · · ·) and starts to
converge to this eigenvalue. At the stage of the Lanczos process where the misconver-
gence behavior is discovered, the norm of the residual usually increases strongly (for

example, ‖r(42)42 ‖ = 5.65 and ‖r(55)55 ‖ = 102) and a large residual norm may explain
why the Ritz polynomials provide sharper bounds than the Lanczos polynomials (see
the discussion at the end of section 4). However, for larger k the bounds based on
Lanczos polynomials are again the sharpest ones. The misconvergence of the Lanczos
process also causes a hump in the upper bounds obtained with the Chebyshev polyno-
mials. Finally we note that the upper bounds obtained with the Lanczos polynomials
are much sharper than those obtained with the Chebyshev polynomials.

In the right figure the behavior is shown for a starting vector for which, in contrary
to our assumption, |γn| < δ (|γn| = 3.13 · 10−5). This means that the probabilistic
upper bounds for λn need not to be true bounds, and the right picture in Figure 7.2
shows that at certain stages of the Lanczos process the Lanczos and Ritz polynomials
provide bounds that are actually smaller than λn. The Chebyshev bounds follow the
jump of the Ritz values at the discovering of the misconvergence, as in the left picture.
At that stage the Lanczos bound corrects its value to give a tight bound, but the Ritz
bound fails completely: the upper bound stays far below the largest Ritz value.

In the third example we illustrate the theory of section 6.2. We take

n = 1000, A = diag(1, 2, . . . , 999, 1020).(7.3)

We set σ = −λ1 and the starting vector v1 is chosen as follows: γ1 = γ2 = γn−2 =
γn−1 = c, γj = 10−3c (3 ≤ j ≤ n − 3), γn = 10−6c, and the constant c is such that∑
γ2j = 1. For k = 34 we have θ

(k)
k = λn−1 − 3.20 · 10−5, ‖r(k)k ‖ = 7.3 · 10−2 so that

λn > θ
(k)
k + ‖r(k)k ‖. We now determine the smallest integer m for which (6.8) holds.

We take k = 34, λ = λn, δ = γn = 5.0 ·10−7 and M = 2.11. The smallest m satisfying
(6.8) is m = 69. The Lanczos process finds the largest eigenvalue λn earlier: one

has, e.g., θ
(50)
50 = λn − 2.4 · 10−2, θ

(60)
60 = λn − 5.5 · 10−5 and θ

(69)
69 = λn − 2.4 · 10−7.

This behavior is not surprising: the Ritz polynomial q
(m)
m maximizes the Rayleigh

quotient (Ag(A)v1, g(A)v1)/(g(A)v1, g(A)v1) and several other estimates used in the
derivation of (6.8) may not be sharp as well.

8. Conclusion. Using the fact that the Lanczos, Ritz, and Chebyshev polyno-
mials increase rapidly outside the smallest interval containing the Ritz values, we have
derived probabilistic bounds for the spectrum of a symmetric matrix. These bounds
can be computed while executing the Lanczos process. From theoretical arguments
supported by experiments, we conclude that the bounds obtained with the Lanczos
polynomials are generally sharper than those derived from Chebyshev polynomials.
In most cases the bounds based on Lanczos polynomials are also sharper than the
bounds found with Ritz polynomials—unless the norm of the corresponding residual
is relatively large (which occurs if the Lanczos method suffers from a misconvergence).

The bounds corresponding to the Lanczos polynomials are cheap to compute,
because the Ritz values are not required. When the Ritz values are available, it is

852 VAN DORSSELAER, HOCHSTENBACH, AND VAN DER VORST

useful to compute the bounds based on these polynomials as well, because they might
be sharper; in that case it can indicate a misconvergence of the Lanczos method. The
bounds based on Theorem 5.1, using Chebyshev polynomials of the second kind, may
be determined as well because they can be computed cheaply when the Ritz values
are known. The bounds obtained from Theorem 5.1 are sharper than those derived
from (5.5), which are based on Chebyshev polynomials of the first kind, in all cases
of practical interest; hence it seems not useful to determine the latter ones.

Chebyshev polynomials may also be used to determine probabilistic bounds for
the number of Lanczos steps still to be done to get bounds for the (relative) error
which are smaller than the desired tolerance. However, our experiments suggest that
these bounds are much larger than the actual number of Lanczos steps still necessary
to get an approximation which is sufficiently accurate. From their derivation (6.1) it
is clear that one cannot expect a proper estimation of the number of steps required if
the bounds from Theorem 5.1 are far from sharp.

A combination of Ritz and Chebyshev polynomials can be used to obtain proba-
bilistic bounds for the number of Lanczos steps needed such that one can decide that
either the spectrum lies between certain prescribed bounds or a misconvergence has
occurred.

Acknowledgments. The authors wish to thank Joop Kolk for discussions re-
garding Lemma 3.1 and Gerard Sleijpen for pointing out reference [5].

REFERENCES

[1] T. Braconnier and N. J. Higham, Computing the field of values and pseudospectra using the
Lanczos method with continuation, BIT, 36 (1996), pp. 422–440.

[2] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[3] S. Kaniel, Estimates for some computational techniques in linear algebra, Math. Comp., 20
(1966), pp. 369–378.

[4] J. Kuczyński and H. Woźniakowski, Estimating the largest eigenvalue by the power and
Lanczos algorithms with a random start, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1094–
1122.

[5] J. Kuczyński and H. Woźniakowski, Probabilistic bounds on the extremal eigenvalues and
condition number by the Lanczos algorithm, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 672–691.

[6] C. C. Paige, The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices,
Ph.D. thesis, University of London, London, 1971.

[7] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice–Hall, Englewood Cliffs, NJ,
1980.

[8] B. N. Parlett, H. Simon, and L. M. Stringer, On estimating the largest eigenvalue with
the Lanczos algorithm, Math. Comp., 38 (1982), pp. 153–165.

[9] T. J. Rivlin, Chebyshev Polynomials, 2nd ed., John Wiley, New York, 1990.
[10] Y. Saad, On the rates of convergence of the Lanczos and the block-Lanczos methods, SIAM J.

Numer. Anal., 17 (1980), pp. 687–706.
[11] A. van der Sluis and H. A. van der Vorst, The convergence behavior of Ritz values in the

presence of close eigenvalues, Linear Algebra Appl., 88/89 (1987), pp. 651–694.
[12] L. N. Trefethen, Computation of pseudospectra, Acta Numer., 8 (1999), pp. 247–295.
[13] R. S. Varga, Matrix Iterative Analysis, Prentice–Hall, Englewood Cliffs, NJ, 1962.
[14] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.

ON ACCURATE QUOTIENT SINGULAR VALUE COMPUTATION
IN FLOATING-POINT ARITHMETIC∗

ZLATKO DRMAČ† AND ELIZABETH R. JESSUP‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 853–873

Abstract. This paper presents a new algorithm for floating-point computation of the quotient
singular value decomposition of an arbitrary matrix pair (A,B) ∈ Rm×n × Rp×n. In the case of
full column rank A, the new algorithm computes all finite quotient singular values with high relative
accuracy if min{κ2(AD), D diagonal} is moderate and if an accurate rank revealing LU factorization
of B is possible. Numerical experiments show that in such a case the new algorithm computes the
quotient singular values of all pairs (AD,D1BD2) with nearly the same accuracy, where D, D1, D2

are arbitrary diagonal nonsingular matrices.

Key words. generalized singular value decomposition, generalized eigenvalue problem, Jacobi
method, regularization, relative accuracy, singular value decomposition

AMS subject classifications. 65F15, 65F25, 65G05

PII. S0895479896310548

1. Introduction. In [36], Van Loan introduces a new matrix decomposition of
a general matrix pair (A,B) ∈ Cm×n ×Cp×n (m ≥ n). He proves that there always
exist unitary matrices U , V and a nonsingular matrix X such that U∗AX and V ∗BX
are diagonal matrices, and he defines the B-singular values of A as the elements of
the set {σ ≥ 0 : det(A∗A − σ2B∗B) = 0}. Paige and Saunders [27] remove the
minor constraint m ≥ n and reformulate the original decomposition to avoid the
nonunitary matrix X. They show that there exist unitary matrices U , V , Q, diagonal
matrices ΣA, ΣB , and a nonsingular triangular matrix R such that U∗AQ = ΣA[O, R],
V ∗BQ = ΣB [O, R]. This form is equivalent to Van Loan’s with X = Q(I ⊕ R−1).
In the nomenclature of various generalizations of the singular value decomposition
(SVD) proposed by De Moor and Golub [6], this decomposition is called the quotient
singular value decomposition (QSVD) of (A,B), and the B-singular values of A are
the quotient singular values of (A,B). If B is square and nonsingular, then the QSVD
of (A,B) is equivalent to the SVD of AB−1.

The QSVD is a powerful tool in both theoretical analysis and the numerical
solution of problems like regularization and various types of constrained least squares
[4], [20], [37], [38], [25]. It also arises in the symmetric definite generalized eigenvalue
problem Kx = λMx, where the positive definite matrices K and M are factored as
K = A∗A and M = B∗B, respectively. The quotient singular values of (A,B) are
then the square roots of the eigenvalues of K−λM . An important advantage of using
(A,B) instead of the pencil K − λM is that κ2(A) =

√
κ2(K), κ2(B) =

√
κ2(M).

(Here κ2(A) = ‖A‖2‖A†‖2 is the spectral condition number, where A† is the Moore–
Penrose generalized inverse and ‖ · ‖2 is the matrix norm induced by the Euclidean
vector norm.)

∗Received by the editors October 14, 1996; accepted for publication (in revised form) by F. Luk
July 14, 1999; published electronically December 7, 2000. This research was supported by National
Science Foundation grants ACS-9357812 and ASC-9625912, Department of Energy grant DE-FG03-
94ER25215, the Intel Corporation, and Croatian Ministry of Science and Technology grant 037012.

http://www.siam.org/journals/simax/22-3/31054.html
†Department of Mathematics, University of Zagreb, Zagreb, Croatia (drmac@math.hr).
‡Department of Computer Science, University of Colorado, Boulder, CO 80309-0430 (jessup@cs.

colorado.edu).

853

854 ZLATKO DRMAČ AND ELIZABETH R. JESSUP

In this paper, we propose a new efficient and numerically stable algorithm for
computation of the quotient singular values of a real pair (A,B) ∈ Rm×n × Rp×n

in floating-point arithmetic. To explain the main ideas of the new approach, we
first briefly review some known QSVD algorithms. The first algorithm is based on
the connection between the QSVD and the cosine-sine decomposition (CSD) of a
partitioned orthonormal matrix [31], [32], [39]. This algorithm first computes the QR
factorization G ≡ [AB] = QR and then it computes the CSD of Q = [Q1

Q2
], where Q

is partitioned so that Q1 ∈ Rm×n, Q2 ∈ Rp×n. The main shortcoming of the CSD
approach is that computation with the (m + p) × n matrix G is not efficient and
precludes backward stability.

The second algorithm avoids the use of the matrix G and transforms A and B
separately. It has two phases: (i) using an algorithm of Bai and Zha [3], a general
pair (A,B) is reduced to an equivalent pair of upper triangular matrices (A�, B�) with
nonsingular B�; (ii) using an algorithm of Paige [26], implemented carefully by Bai
and Demmel [2], the procedure completes with the QSVD computation of (A�, B�).
It is shown in [2], [3] that both phases of the algorithm are backward stable in the
Frobenius matrix norm ‖ · ‖F . That is, floating-point computation is equivalent to
exact computation with (A+∆A,B+∆B), where ‖∆A‖F /‖A‖F and ‖∆B‖F /‖B‖F
are of order machine precision u times a moderate function of matrix dimensions. This
algorithm is superior to the CSD approach, and it is implemented as the LAPACK
2.0 [1] procedure SGGSVD().

Both the CSD algorithm and the LAPACK algorithm are designed to use only
orthogonal transformations. This restriction is unnecessary because the quotient sin-
gular values are in fact invariant under the more general transformation (A,B) →
(A′, B′) = (UTAX,V TBX), where U , V are arbitrary orthogonal matrices and X is
an arbitrary nonsingular matrix.

The first method for quotient singular value computation using nonorthogonal
transformations is proposed by Deichmöller and Veselić [8]. It is an implicit variant
of the Falk–Langemeyer method [18] for the diagonalization of matrix pencils. An
error analysis for the full column rank case is given in [7], and the method is further
analyzed and modified in [14].

The second method that is not entirely based on orthogonal transformations is
the tangent algorithm proposed by Drmač [14], [16]. In this method, a pair (A,B)
of full column rank matrices is replaced by an equivalent pair (A′, B′), and the SVD
of the explicitly computed matrix A′B′−1 is computed using the Jacobi SVD method
[21], [12], [15]. An important novelty in the tangent algorithm is that the iterative
part is performed on a single matrix. The computed quotient singular values of (A,B)
approximate the exact values up to an error of (cf. [16])

max
1≤i≤n

|δσi|
σi

≤ g(m,n, p) · u ·Kc(A,B), Kc(A,B) = κ2(AD
−1
A) + κ2(BD

−1
B),

where g(·, ·, ·) is a modestly growing function of matrix dimensions, and DA, DB are
diagonal matrices of Euclidean column norms of A and B, respectively. Furthermore,
the computed quotient singular values correspond to the exact quotient singular val-
ues of a pair (A + δA,B + δB), where, for all i, the values of ‖δAei‖2/‖Aei‖2 and
‖δBei‖2/‖Bei‖2 are small. (Here ei denotes the ith column of the identity matrix I.)
It is a remarkable fact that this method has the same accuracy within the family of
all pairs (AD1, BD2), where D1 and D2 are arbitrary diagonal nonsingular matrices.
This accuracy property is shared neither by the CSD algorithm nor the LAPACK
procedure.

ACCURATE QSV COMPUTATION IN FLOATING-POINT ARITHMETIC 855

Our new algorithm is an improvement and a generalization of the tangent algo-
rithm and it is designed to reduce a general pair (A,B) to a (regular) pair with finite
quotient singular values. We use both orthogonal and nonorthogonal transformations.

The nonorthogonal transformations are introduced in section 2.1, and the new
algorithm is described in detail in section 2.2. In the new algorithm, computation
involving both matrices (A and B or their submatrices) is on the BLAS level 3 [13]
(at most two calls of xTRSM() and one call of xGEMM()). The remaining nontrivial
operations include the LU factorization with complete pivoting, the QR factorization
with column pivoting (which can be implemented using BLAS 3 operations; cf. [30])
and the ordinary SVD of a full rank matrix. This modular structure provides a
solid basis for a high performance QSVD computation on both serial and parallel
computers.

The analysis in section 2.3 shows that the computed regular pair has small back-
ward error (∆A,∆B), where, for all i, ‖∆Aei‖2/‖Aei‖2 is small and ∆B is the back-
ward error from the LU or the QR factorization (with complete pivoting). It is also
shown that the computed quotient singular values have similar small backward error.
That is, the combination of the new reduction algorithm and the tangent algorithm
for regular pairs is backward stable.

In section 2.4, we show that in the case of full column rank A and full rank B,
the relative accuracy of the computed quotient singular values of (A,B) is determined
by the accuracy of the floating-point QR factorization of A and the LU factorization
with complete pivoting of B.

Finally, in section 3 we present the results of rigorous numerical testing that
demonstrate the numerical robustness of our software. The numerical results confirm
the analysis from section 2.4, and they also indicate that, in the case of full column
rank A and full (column or row) rank B, the algorithm computes the quotient singular
values of all pairs {(AD,D1BD2), D,D1, D2 diagonal matrices} with nearly the
same relative accuracy. We recommend our algorithm as the method of choice for
quotient singular value computation in floating-point arithmetic.

2. Reduction algorithm based on the LU factorization. In the LAPACK
2.0 library [1], the procedure SGGSVD() for the QSVD computation has two stages:
(i) reduction of a general pair (A,B) to a regular pair (A′, B′) of upper triangular
matrices; (ii) QSVD computation of the regular pair (A′, B′). (The pair (A′, B′)
is called regular if B′ is a full column rank matrix.) Stage (i) of SGGSVD uses an
algorithm of Bai and Zha [3], while stage (ii) is an implementation of the algorithm
of Paige (see [26], [2]). Working with a regular pair has several advantages in Paige’s
algorithm because its implementation in the case of an irregular triangular pair is
quite complicated [3], [2]. Bai and Zha’s reduction algorithm is based on the QR
factorization and the URV decomposition

A = U

[
O R
O O

]
V T , U, V orthogonal, R triangular nonsingular.

Since Paige’s algorithm is based on plane rotations, the whole process is therefore
completed using solely orthogonal transformations.

In our new algorithm, we adopt a similar two-stage strategy but with different
realizations of the two main stages. The main differences are that (i) we use an
initial column scaling to preserve the numerical stability in subsequent steps; (ii) we
replace the URV factorization with another simple factorization based on certain
nonorthogonal but well-conditioned matrices; (iii) we use an algorithm from [16] to

856 ZLATKO DRMAČ AND ELIZABETH R. JESSUP

compute the QSVD of the regular pair using the SVD of a single matrix instead of
using simultaneous transformations of a pair of matrices.

2.1. QRT and LUT factorizations. The key feature of the new algorithm is
a new simple factorization of a general matrix. It is based on pivoted QR or LU
factorization and, in the case of a full column rank matrix, it reduces to QR or LU,
respectively. In the general case, it provides a simple way to cancel out columns that
are identified in pivoted QR or LU as linearly dependent on the remaining ones.

Theorem 2.1. Let B ∈ Rp×n and rB = rank(B). Then there exist an orthogonal
p × p matrix Q, permutation matrices Π1, Π2, an rB × (n − rB) matrix X, and an
rB × rB upper triangular nonsingular matrix R such that

Π1BΠ2 = Q

[
R O
O O

][
I X
O I

]
.(2.1)

Furthermore, there exist permutation matrices P1, P2, a unit lower trapezoidal p× rB
matrix L, a unit upper triangular rB × rB matrix U , a diagonal nonsingular rB × rB
matrix ∆, and an rB × (n− rB) matrix Y such that

P1BP2 = L∆[U,O]

[
I Y
O I

]
.(2.2)

The factorizations (2.1) and (2.2) define the QRT and the LUT factorizations of B,
respectively.

Proof. Let

Π1BΠ2 = Q

[
R R̂
O O

]
, QTQ = QQT = I

be a rank revealing QR factorization of B, where the row permutation matrix Π1

is optional (to enhance numerical stability) and R is an rB × rB upper triangular
nonsingular matrix. In this work, we use the column pivoting of Golub [19]. Define
X = R−1R̂. Then[

R R̂
O O

][
I −X
O I

]
=

[
R R̂−RX
O O

]
=

[
R O
O O

]
.

Similarly, let P1BP2 = L∆[U, Û] be a rank revealing LU factorization. Define Y =
U−1Û and note that[

U Û
O O

][
I −Y
O I

]
=

[
U Û − UY
O O

]
=

[
U O
O O

]
.

The triangular transformations used in Theorem 2.1 are well-conditioned and easy to
invert.

Proposition 2.1. Let

T ≡ T (X) =

[
I X
O I

]
.(2.3)

Then T (X)−1 = T (−X) and max{‖T (X)‖2, ‖T (X)−1‖2} ≤ 1 + ‖X‖2. Further,
let R, U , X, Y be as in Theorem 2.1, where the QR factorization is computed with
Golub’s column pivoting and the LU factorization is computed with complete pivoting.

ACCURATE QSV COMPUTATION IN FLOATING-POINT ARITHMETIC 857

If DR and DU are diagonal matrices that satisfy |DR| ≥ |diag(R)|, |DU | ≥ |diag(U)|,
where diag(R) = diag(R11, . . . , RrB ,rB), then

‖X‖2 ≤
√
rB(n− rB)‖R−1DR‖2, ‖Y ‖2 ≤

√
rB(n− rB)‖U−1DU‖2.

The values of ‖R−1DR‖2 and ‖U−1DU‖2 are bounded by moderate functions of the
dimensions (cf. Stewart [34]).

2.2. The algorithm. The new algorithm has two stages. We first reduce the
general pair (A,B) to a regular pair that has the same finite quotient singular values
as (A,B). In the second stage, the regular pair is reduced to a single matrix and the
only iterative part in the computation is the ordinary SVD.

Algorithm 2.1 (LU-based QSVD computation).
Input. (A,B) ∈ Rm×n ×Rp×n, rank(A) = rA, rank(B) = rB .

Stage A. Reduction.
Step 0. Scaling. Define DA = diag(‖Aei‖2). If some column of A is zero, then

replace the corresponding diagonal entry in the definition of DA by a
small nonzero scalar. Compute A(0) = AD−1

A , B(0) = BD−1
A . The new

pair (A(0), B(0)) is equivalent to (A,B).
Step 1. Compute the LU factorization with complete pivoting of B(0):

Π1B
(0)Π2 = LU =

[
L(1,1)

L(2,1)

]
[U (1,1), U (1,2)], L(1,1), U (1,1) ∈ RrB×rB ,

where L(1,1) is unit lower triangular and U (1,1) is upper triangular and
nonsingular. Partition A(0)Π2 accordingly:

A(0)Π2 = [A
(0)
11 , A

(0)
12], A

(0)
11 ∈ Rm×rB .

Step 2. Set U (1,1) to IrB and U (1,2) to zero. Compute X = A
(0)
11 (U

(1,1))−1 and

A(1) ≡ [A
(1)
11 , A

(1)
12] = [X,A

(0)
12 −XU (1,2)].

Step 3. If A
(1)
12 is not void (rB < n), compute a rank revealing QR factorization of

A
(1)
12 ,

A
(1)
12 Π3 = Q

(2)
12

[
A

(2)
12 Â

(2)
12

O O

]
, A

(2)
12 ∈ Rr

(1)
A ×r(1)A , r

(1)
A = rank(A

(1)
12),

where A
(2)
12 is upper triangular and nonsingular. Set Â

(2)
12 to zero. Up-

date A
(1)
11 by A

(1)
11 → A

(2)
11 = (Q

(2)
12)

TA
(1)
11 . With suitable row and column

partition the new pair is

(A(2), B(2)) =

([
A

(2)
11,1 A

(2)
12 O

A
(2)
11,2 O O

]
,

[
L(1,1)

L(2,1)

]
[IrB ,O,O]

)
.(2.4)

Set A
(2)
12 to I and A

(2)
11,1 to O. If rB = n, we have A(2) = A

(2)
11,2 = A(1).

Return. At the end of Step 3 the reduced pair of full column rank matrices is

(A
(2)
11,2, L) ∈ R(m−r(1)

A
)×rB ×Rp×rB .(2.5)

858 ZLATKO DRMAČ AND ELIZABETH R. JESSUP

Stage B. QSVD of the regular pair (2.5). Use the tangent algorithm from [16].

Step 0. ComputeD11,2 = diag(‖A(2)
11,2ei‖2) and (A(2)

11,2)c = A
(2)
11,2D

−1
11,2, L1 = LD−1

11,2.

Step 1. Compute the QR factorization with column pivoting, L1Π4 = QL[
RL

O].

Step 2. Compute F = (A
(2)
11,2)cΠ4R

−1
L by solving the equation FRL = (A

(2)
11,2)cΠ4.

Step 3. Compute the SVD of F using the Jacobi SVD algorithm, Σ = V FJT . (V ,
J orthogonal.)

Step 4. Compute the matrices Z = D−1
11,2Π4R

−1
L JT and W = QL(J

T ⊕ Ip−rB).
Return. The QSVD of (A

(2)
11,2, L) is V A

(2)
11,2Z = Σ, WTLZ = [I,O]T . The Paige–

Saunders form is obtained using the RQ factorization Z−1 = RZQZ . Then

V A
(2)
11,2Q

T
Z = ΣRZ , W

TLQT
Z = [IO]RZ . Note that Z

−1 = URLΠ
T
4 D11,2 is

as easy to compute as Z and that κ2(Z) = κ2(L) is moderate.
Output. Assembling all transformations from Stages A and B gives the QSVD of

(A,B). For instance, in the case m ≥ n, rB = p < n, the pair (A,B) is
equivalent to the pair (ΣA,ΣB) with

ΣA =

[
Ip O
O Σ

]
, ΣB = [Op×(n−p), Ip].

The orthogonal form of the QSVD can be obtained from the nonorthogonal
form using the RQ factorization as on Return from Stage B.

Remark 2.1. The LU factorization of B(0) can be replaced with the QR factor-
ization with complete pivoting (see Powell and Reid [29], Björck [4, section 4.4.3],
Cox and Higham [5]). In that case, Stage B is simpler because L is replaced with an

orthogonal matrix and F = A
(2)
11,2. (Generally, the tangent algorithm can be modified

to include row pivoting in the QR factorization in Step 1. A similar comment holds
for the QR factorization in Step 3 of Stage A.) From the numerical point of view, the
difference between the two variants is precisely the difference in accuracy between the
LU and the QR factorization with complete pivoting. For the sake of brevity, in this
paper we analyze only the LU variant of the algorithm. We also note that in Stage A
we can write LU = LDuUd, where Du = diag(U11, . . . , UrB ,rB), and use LDu and Ud
instead L and U , respectively.

Remark 2.2. Computation and stability analysis of the matrices that transform
the pair (A,B) into (ΣA,ΣB) are quite complicated, and in this work we consider
only the quotient singular values.

2.3. Backward stability analysis. We now consider the backward stability of
Algorithm 2.1. In a three-step scheme, we analyze Stage A, then Stage B, and, finally,
we show how the backward errors from Stage B propagate backward into the initial
data.

For ease of notation, we assume that the matrices are permuted so that no row or
column interchanges are necessary in the LU factorization in Step 1. Let D̃A ≈ DA

be the computed diagonal matrix of the Euclidean norms of A’s columns, and let
(A(0), B(0)) denote the computed scaled matrices. Then there exist small elementwise
backward error matrices δA, δB such that |δA| ≤ u|A|, |δB| ≤ u|B| and

A(0) = (A+ δA)D̃−1
A , B(0) = (B + δB)D̃−1

A .(2.6)

The columns of A(0) are nearly of unit Euclidean length, that is, there exists a small
constant η, 0 ≤ η ≤ O(mu), such that for all i, 1 − η ≤ ‖A(0)ei‖2 ≤ 1 + η. (Using
double precision accumulation reduces the bound for η to the order of u+O(mu2).)

ACCURATE QSV COMPUTATION IN FLOATING-POINT ARITHMETIC 859

We also note that the transformation (2.6) is an exact equivalence transformation
between the pairs (A + δA,B + δB) and (A(0), B(0)) so that the perturbation is
merely an elementwise rounding independent of the accuracy of the matrix D̃A.

If L̃Ũ is the computed LU factorization of B(0), then there exists a backward
error δB(0) such that (cf. [23, Chapter 9])

L̃Ũ = B(0)+δB(0), |δB(0)| ≤ εLU |L̃|·|Ũ |, where εLU ≤ min{p, n}u
1−min{p, n}u .(2.7)

(The matrix absolute value and the matrix inequality are understood elementwise.)
Thus, using the matrix L̃Ũ corresponds to an exact computation with the backward
perturbed matrix

L̃(ŨD̃A) = B +∆B,(2.8)

where ∆B = δB + δB(0)D̃A, |∆B| ≤ u|B|+ εLU |L̃| · |ŨD̃A|.
Relation (2.8) suggests that the backward error in B is similar to the backward error
one would have obtained by computing the LU factorization of B. If we consider
(A(0), B(0)) as the initial pair, then the backward error δB(0) is precisely the backward
error in the LU factorization. The computed rank of B is denoted rB and, in the
backward error analysis, we do not analyze whether or not it has been determined
correctly.

The computation in Step 2 of the algorithm involves standard BLAS 3 operations
for triangular systems (xTRSM()) and matrix-matrix multiplication (xGEMM()). The
following two propositions analyze the backward stability of Step 2.

Proposition 2.2. Let Ã
(1)
11 be the solution of the matrix equation XŨ (1,1) = A

(0)
11

computed by substitutions in any ordering. Then there exist a backward error δA
(0)
11

and a small constant εTS, 0 ≤ εTS ≤ rBu/(1 − rBu), such that Ã
(1)
11 = (A

(0)
11 +

δA
(0)
11)(Ũ

(1,1))−1, and

|δA(0)
11 | ≤ εTS |A(0)

11 | · |(Ũ (1,1))−1| · |Ũ (1,1)|(I − εTS |(Ũ (1,1))−1| · |Ũ (1,1)|)−1.(2.9)

The value of εTS, which is assumed to be less than one, can be as small as u +
O(rBu

2) if one uses double precision accumulation of the dot product in a row-oriented
triangular system solver.

Proof. There exist matrices δŨ
(1,1)
k , 1 ≤ k ≤ m, such that (cf. [23, Theorem 8.5])

eTk Ã
(1)
11 (Ũ

(1,1) + δŨ
(1,1)
k) = eTkA

(0)
11 , |δŨ (1,1)

k |ij ≤ εTS |Ũ (1,1)|ij , 1 ≤ i ≤ j ≤ rB .(2.10)

The matrix δA
(0)
11 is defined by the relation Ã

(1)
11 Ũ

(1,1) −A(0)
11 = δA

(0)
11 . Relation (2.9)

is obtained using (2.10) and the fact that I − εTS |(Ũ (1,1))−1| · |Ũ (1,1)| is an M -matrix
for εTS < 1.

The bound (2.9) is invariant under row scaling of Ũ (1,1). Furthermore, since (due
to pivoting) |Ũ (1,1)|ii ≥ |Ũ (1,1)|ij , j > i, it holds for all j ≥ i that (|(Ũ (1,1))−1| ·
|Ũ (1,1)|)ij ≤ 2j−i; see [22, Lemma 3.1]. In practice, the matrix |(Ũ (1,1))−1| · |Ũ (1,1)| is
of moderate size with norm bounded by a moderate polynomial of its dimension. A
similar behavior has the matrix |(Ũ (1,1))−1| · |Ũ (1,2)| which determines the size of the

backward error in the computation of the matrix A
(1)
12 .

Proposition 2.3. Let Ã
(1)
12 = fl(A

(0)
12 − Ã

(1)
11 Ũ

(1,2)) be the matrix computed

in floating-point arithmetic. Then there exists a backward error δA
(0)
12 and a small

860 ZLATKO DRMAČ AND ELIZABETH R. JESSUP

constant εMP such that 0 ≤ εMP ≤ rBu/(1− rBu), Ã(1)
12 = A

(0)
12 + δA

(0)
12 − Ã(1)

11 Ũ
(1,2)

and

|δA(0)
12 | ≤ u|A(0)

12 |+ (u+ εMP + uεMP)|A(0)
11 | · |(Ũ (1,1))−1| · |Ũ (1,2)|

+ (u+ εMP + uεMP)|δA(0)
11 | · |(Ũ (1,1))−1| · |Ũ (1,2)|.

The value of εMP is reduced to the order of u+O(rBu
2) if one uses double precision

accumulation of the dot product.

Proof. Since fl(Ã
(1)
11 Ũ

(1,2)) = Ã
(1)
11 Ũ

(1,2)+E1, |E1| ≤ εMP |Ã(1)
11 | · |Ũ (1,2)|, we have

fl(A
(0)
12 − fl(Ã

(1)
11 Ũ

(1,2))) = A
(0)
12 − Ã(1)

11 Ũ
(1,2) − E1 + E2,

where |E2| ≤ u|A(0)
12 − Ã

(1)
11 Ũ

(1,2) − E1|. Now define δA
(0)
12 = E2 − E1 and apply

Proposition 2.2 and the triangle inequality to estimate |Ã(1)
11 | · |Ũ (1,2)|.

From Propositions 2.2 and 2.3, it follows that the computed matrix Ã(1) =

[Ã
(1)
11 , Ã

(1)
12] can be obtained in exact computation using the matrices [A

(0)
11 +δA

(0)
11 , A

(0)
12 +

δA
(0)
12] and [Ũ (1,1), Ũ (1,2)]. Next, we show that a similar result holds for the computed

matrices in relations (2.4) and (2.5).

Theorem 2.2. Let (Ã
(2)
11,2, L̃) be the computed approximation of the matrix pair

(2.5) in Algorithm 2.1 and let ∆B be as in relation (2.8). Then there exist a backward

error ∆A and moderate polynomials ℘1(m,n, p), ℘2(m,n, p) such that (Ã
(2)
11,2, L̃) can

be computed in an exact computation (similar to Algorithm 2.1) with the input pair
(A+∆A,B +∆B) and such that, for all i,

‖∆Aei‖2
‖Aei‖2 ≤ ηi, where(2.11)

ηi ≤ ℘1u‖ |(Ũ (1,1))−1| · |Ũ (1,1)|ei ‖1 + ℘2u‖ |(Ũ (1,1))−1| · |Ũ (1,2)|ei ‖1.(2.12)

The matrix pair (Ã
(2)
11,2, L̃) can also be computed in exact computation using (A(0) +

∆A(0), B(0) + δB(0)), where δB(0) is as in relation (2.7) and ‖∆A(0)ei‖2/‖A(0)ei‖2 ≤
ηi, 1 ≤ i ≤ n.

Proof. It remains to analyze the QR factorization of Ã
(1)
12 . For the computed

upper trapezoidal matrix [Ã
(2)
12 ,

˜̂
A

(2)

12], there exists a backward error δÃ
(1)
12 such that

(cf. [23, Chapter 18])

Q̂
(2)
12

[
Ã

(2)
12

˜̂
A

(2)

12

O O

]
= (Ã

(1)
12 + δÃ

(1)
12)Π3, |δÃ(1)

12 | ≤ εQRG|Ã(1)
12 |,

G =
1

m
eeT (e = (1, . . . , 1)T),(2.13)

where Q̂
(2)
12 is a certain orthogonal matrix, close to the computed nearly orthogonal

matrix Q̃
(2)
12 . The quantity εQR is bounded by u times a modestly growing function of

matrix dimensions. The matrix Ã
(2)
11 can be computed simultaneously with Ã

(2)
12 (using

the same sequence of elementary orthogonal matrices) and there exists a backward

perturbation δÃ
(1)
11 such that

Q̂
(2)
12 Ã

(2)
11 = Ã

(1)
11 + δÃ

(1)
11 , |δÃ(1)

11 | ≤ εQRG|Ã(1)
11 |.(2.14)

ACCURATE QSV COMPUTATION IN FLOATING-POINT ARITHMETIC 861

(A similar relation holds if we use the matrix-matrix product (Q̃
(2)
12)

T Ã
(1)
11 .) Partition-

ing Ã
(2)
11 yields

[
Ã

(2)
11,1 Ã

(2)
12

˜̂
A

(2)

12

Ã
(2)
11,2 O O

]
= (Q̂

(2)
12)

T [Ã
(1)
11 + δÃ

(1)
11 , Ã

(1)
12 + δÃ

(1)
12](I ⊕Π3).(2.15)

If we let the perturbations δÃ
(1)
11 and δÃ

(1)
12 propagate backward into A

(0)
11 and A

(0)
12 ,

respectively, we obtain

Ã
(1)
11 + δÃ

(1)
11 = (A

(0)
11 + δA

(0)
11 + δÃ

(1)
11 Ũ

(1,1))(Ũ (1,1))−1,(2.16)

Ã
(1)
12 + δÃ

(1)
12 = A

(0)
12 + δA

(0)
12 + δÃ

(1)
11 Ũ

(1,2) + δÃ
(1)
12 − (Ã

(1)
11 + δÃ

(1)
11)Ũ

(1,2).(2.17)

Using ∆A
(0)
11 = δA

(0)
11 +δÃ

(1)
11 Ũ

(1,1) and ∆A
(0)
12 = δA

(0)
12 +δÃ

(1)
11 Ũ

(1,2)+δÃ
(1)
12 , we obtain

the backward error ∆A(0) = [∆A
(0)
11 ,∆A

(0)
12] such that

[
Ã

(2)
11,1 Ã

(2)
12

˜̂
A

(2)

12

Ã
(2)
11,2 O O

]
= (Q̂

(2)
12)

T (A(0)+∆A(0))

[
(Ũ (1,1))−1 −(Ũ (1,1))−1Ũ (1,2)

O I

]
(I⊕Π3).

(2.18)
The matrix ∆A(0) can be estimated columnwise using Propositions 2.2 and 2.3, rela-
tions (2.13) and (2.14), and the fact that the columns of A(0) are, up to the order of
u, of unit norm. It holds that

‖∆A(0)
11 ei‖2 ≤ (εTS + εQR)‖ |(Ũ (1,1))−1| · |Ũ (1,1)|ei ‖1 +O(u2),(2.19)

‖∆A(0)
12 ei‖2 ≤ u+ εQR + (εMP + εQR)‖ |(Ũ (1,1))−1| · |Ũ (1,2)|ei ‖1(2.20)

+ εQR‖ |(Ũ (1,1))−1| · |Ũ (1,1)|ei ‖1 +O(u2).(2.21)

(A variant of Algorithm 2.1 (cf. Remark 2.1) can be used to also obtain a rowwise
bound for ∆A(0). We omit the details for the sake of brevity.) Finally, note that
relation (2.18) and

L̃[IrB ,O,O] = L̃[Ũ (1,1), Ũ (1,2)]

[
(Ũ (1,1))−1 −(Ũ (1,1))−1Ũ (1,2)

O I

]
(I ⊕Π3)(2.22)

imply that the computed approximation (Ã
(2)
11,2, L̃) of the pair (2.5) corresponds to an

exact computation with the initial pair (A(0) + ∆A(0), L̃Ũ). The latter is obtained
using column scaling of the pair (A+∆A,B+∆B), where ∆A = δA+∆A(0)D̃A and
∆B is as in relation (2.8).

Hence, the computation of the pair (Ã
(2)
11,2, L̃) is backward stable, provided that

the matrices (Ũ (1,1))−1Ũ (1,1) and (Ũ (1,1))−1Ũ (1,2) are moderate. The upper theoret-
ical bounds for these matrices are functions of the dimensions, independent of the
initial matrices. Although the theoretical bounds are exponential, these matrices are
usually moderate in practice and their spectral norms are typically of the order of the
dimensions (cf. Stewart [34], [33]).

Since the matrix L̃ is well-conditioned (L̃ is computed in Gaussian elimination
with complete pivoting), the QR factorization with column pivoting of L̃ is accurate
and the computed matrix R̃L ≈ RL is well-conditioned. In particular, the matrix

862 ZLATKO DRMAČ AND ELIZABETH R. JESSUP

|R̃−1
L | · |R̃L| is moderate. This observation is important in the following backward

stability analysis of Stage B of Algorithm 2.1.
Proposition 2.4. Let Q̃L, J̃ , Ṽ , Σ̃ be the computed matrices in Stage B of

Algorithm 2.1. Then there exist backward errors ∆Ã
(2)
11,2, ∆L̃, a nonsingular matrix

Ẑ, and exactly orthogonal matrices V̂ ≈ Ṽ , Q̂L ≈ Q̃L such that

V̂ (Ã
(2)
11,2 +∆Ã

(2)
11,2)Ẑ = Σ̃,

[
J̃ O
O I

]
Q̂T
L(L̃+∆L̃)Ẑ =

[
I
O

]
.(2.23)

It holds that |∆L̃| ≤ u|L̃|+(1+u)εQRG|L̃|, where εQR, G are defined analogously as
in (2.13). Further, there exists a moderate polynomial ℘3 of the dimensions such that

it holds, for all i, that ‖∆Ã(2)
11,2ei‖2 ≤ ℘3u‖ |R̃−1

L | · |R̃L| ‖1‖ Ã(2)
11,2ei‖2 +O(u2). (Here

‖ · ‖1 denotes the matrix norm induced by the vector ,1 norm.)
Proof. To prove this backward stability result, we follow [16]. For the sake of

simplicity, we consider only the first-order bounds. Let D11,2 denote the computed

scaling matrix and let (Ã
(2)
11,2)c, L̃1 be the computed scaled matrices in Step 0 of

Stage B. This computation introduces only small elementwise rounding errors. For

instance, it holds that (Ã
(2)
11,2)c = (Ã

(2)
11,2 + δÃ

(2)
11,2)D

−1
11,2, where |δÃ(2)

11,2| ≤ u|Ã(2)
11,2|,

and that L̃1 = (L̃+ δL̃)D−1
11,2 with |δL̃| ≤ u|L̃|.

If R̃L is the computed triangular matrix in Step 1, then there exist a backward
error δL̃1 and an orthogonal matrix Q̂L such that

Q̂T
L(L̃1 + δL̃1)Π4 =

[
R̃L

O

]
, |δL̃1| ≤ εQRG|L̃1|.

The computed matrix F̃ satisfies (cf. Proposition 2.2)

F̃ = ((Ã
(2)
11,2)c + δ(Ã

(2)
11,2)c)Π4R̃

−1
L ,

|δ(Ã(2)
11,2)c| ≤ εTS |(Ã(2)

11,2)c| ·Π4 · |R̃−1
L | · |R̃L| ·ΠT

4 +O(u2).

Let J̃ , Ṽ , Σ̃ be the matrices computed by the Jacobi SVD algorithm. Then there
exist a backward error δF̃ and an orthogonal matrix V̂ ≈ Ṽ such that (cf. [16], [17])

V̂ (F̃ + δF̃) = Σ̃J̃ , |δF̃ | ≤ ℘Ju(G+ Γ)|F̃ |+O(u2)|F̃ |,

where ℘J is a modest polynomial of the dimensions, G is as in relation (2.13) and

maxi,j |Γij | ≤ 1. Thus, if we define ∆Ã
(2)
11,2 = δÃ

(2)
11,2 + (δ(Ã

(2)
11,2)c + δF̃ R̃LΠ

T
4)D11,2

and ∆L̃ = δL̃+ δL̃1D11,2, then relation (2.23) holds with Ẑ = D−1
11,2Π4R̃

−1
L J̃−1. The

bounds for ∆Ã
(2)
11,2 and ∆L̃ are straightforward. We finally note that relation (2.23) is

not the QSVD because the matrix J̃ is only nearly orthogonal (up to O(rBu)). The
QSVD can be obtained by computing the QL (or the QR) factorization

[
J̃ O
O I

]
Q̂T
L = Q′

L(I + E), ‖E‖2 ≤ O(rBu)

and replacing L̃+∆L̃ with (I + E)(L̃+∆L̃) = L̃+∆L̃+ EL̃+ E∆L̃.

It remains to analyze how the perturbations ∆Ã
(2)
11,2 and ∆L̃ propagate backward

into the initial pair (A(0), B(0)) (or (A,B)). It is easily seen that ∆L̃ is obtained by

ACCURATE QSV COMPUTATION IN FLOATING-POINT ARITHMETIC 863

replacing L̃Ũ with (I +∆L̃L̃†)L̃Ũ = (I +∆L̃L̃†)(B(0) + δB(0)). This is a multiplica-
tive backward error in L̃Ũ (committed as additive error in L̃) and it introduces a
relative uncertainty of order ‖∆L̃L̃†‖2 in the quotient singular values of (A(0), B(0))
(see section 2.4).

Creating a backward history of ∆Ã
(2)
11,2 is more technical. One can easily check that

it suffices to update ∆A
(0)
11 and ∆A

(0)
12 by adding Q̂

(2)
12 [

O
∆Ã

(2)
11,2

]Ũ (1,1) and Q̂
(2)
12 [

O
∆Ã

(2)
11,2

]Ũ (1,2),

respectively. Further, for a columnwise bounds for these new errors, one needs only

to analyze ∆Ã
(2)
11,2Ũ

(1,1) and ∆Ã
(2)
11,2Ũ

(1,2). Let α = maxi ‖∆Ã(2)
11,2ei‖2/‖Ã(2)

11,2ei‖2 and
let Ũ (1,1) = DuŨ

(1,1)
d , where Du is diagonal scaling with the diagonal of Ũ (1,1). From

Proposition 2.4, it follows that α is a small multiple of u. The matrix Ũ
(1,1)
d is well-

conditioned, that is, its inverse is small in norm (cf. [34]). From relation (2.15), it

follows that, for all i, ‖∆Ã(2)
11,2ei‖2 ≤ α‖Ã(1)

11 + δÃ
(1)
11 ‖2 and we obtain

‖∆Ã(2)
11,2Ũ

(1,1)ei‖2 ≤ α(1 + εQR)

i∑
k=1

‖Ã(1)
11 ek‖2|Ũ (1,1)|ki

≤ α(1 + εQR)

i∑
k=1

‖(A(0)
11 + δA

(0)
11)(Ũ

(1,1)
d)−1ek‖2|Ũ (1,1)

d |ki

≤ α

i∑
k=1

|Ũ (1,1)
d |ki‖(Ũ (1,1)

d)−1ek‖1 +O(u2) (with |Ũ (1,1)
d |ki ≤ 1).

A similar bound holds for the matrix ∆Ã
(2)
11,2Ũ

(1,2), and we conclude that Stage A
and Stage B in Algorithm 2.1 can be glued together while preserving backward sta-
bility. The upper bounds for the backward errors depend on the sizes of the matrices

(Ũ
(1,1)
d)−1 and |R̃−1

L | · |R̃L|. Due to pivoting, the norms of these matrices are al-
ways bounded by a function of the dimensions. In practice, the bounds are modest
polynomials.

Remark 2.3. Ifm� n, then using the QR factorization A = QARA and replacing
A with the n×n matrix RA increases the efficiency of Algorithm 2.1. It can be shown
that such a modification does not essentially change the columnwise structure of the
backward error in the matrix A.

Remark 2.4. A similar analysis can be done for the variant of Algorithm 2.1 with
the LU factorization replaced with the QR factorization with complete pivoting (cf.
Remark 2.1).

2.4. The accuracy of the computed singular values. In this section, we
analyze the accuracy of the computed singular values. Since we are interested in
cases where all finite quotient singular values can be computed with relative accuracy,
we restrict our analysis in this section to the full rank case rA = n, rB = min{p, n}.

For simplicity, we consider only the case rB = p and assume that the matrices are
previously pre- and postmultiplied by suitable permutation matrices so that no row
or column interchanges are necessary in the LU factorization of B(0). We also assume
that rA and rB are well-determined in the presence of backward errors described in
section 2.3.

It suffices to estimate the difference between the singular values of the pairs
(A(0), B(0)) and (A(0) + ∆A(0), B(0) + δB(0)). The desired bound is derived in a
two-step scheme. First, we compare the quotient singular values σ′

1 ≥ · · · ≥ σ′
p of

864 ZLATKO DRMAČ AND ELIZABETH R. JESSUP

(A(0), B(0)) and the corresponding values σ′′
1 ≥ · · · ≥ σ′′

p of (A(0), B(0) + δB(0)). Then
we compare the σ′′

i s with the corresponding quotient singular values σ′′′
1 ≥ · · · ≥ σ′′′

p

of the pair (A(0) +∆A(0), B(0) + δB(0)).
To derive a forward error bound for the quotient singular values of (A(0), B(0) +

δB(0)), we use the following two observations: (i) If A(0) = QR is the QR factorization
of A, then the nonzero quotient singular values of (A(0), B(0)) are the inverses of the
nonzero singular values of the matrix S = BR−1; (ii) If S̃ = D∗

1SD2, whereD1, D2 are
nonsingular matrices, then the ordered singular values ξ1 ≥ ξ2 ≥ · · · and ξ̃1 ≥ ξ̃2 ≥ · · ·
of S and S̃, respectively, satisfy for all i (cf. [24, Theorem 5.2])

d(ξ̃i, ξi) ≡ |ξ̃i − ξi|√
ξ̃iξi

≤ E(D1, D2) ≡ 1

2

‖D∗
1 −D−1

1 ‖2 + ‖D∗
2 −D−1

2 ‖2
1− (1/32)‖D∗

1 −D−1
1 ‖2‖D∗

2 −D−1
2 ‖2

,(2.24)

provided that ‖D∗
1 −D−1

1 ‖2‖D∗
2 −D−1

2 ‖2 < 32. (Note that d(ξ̃i, ξi) = d(ξi, ξ̃i) =
d(1/ξ̃i, 1/ξi).)

Proposition 2.5. Let B(0) = LU and B(0) + δB(0) = L̃Ũ be the exact and
the computed LU factorization of B(0), respectively, and let A(0) = QR be the QR
factorization of A(0). Let EL, EU be such that L̃ = (I + EL)L, Ũ = U(I + EU).
Then, for 1 ≤ i ≤ p,

d(σ′′
i , σ

′
i) ≤ E(I + ET

L , I +REUR
−1)(2.25)

≤ ‖EL‖2 + ‖REUR−1‖2 +O(‖EL‖22) +O(‖REUR−1‖22).
Proof. Compare the singular values of BR−1 and (I + EL)BR

−1(I +REUR
−1),

using relation (2.24).
Thus, the bound for d(σ′′

i , σ
′
i) depends on the accuracy of the LU factorization

(with complete pivoting) of B(0) and on the value of κ2(A
(0)). (Recall that the

columns of A(0) are, up to a small O(u) error, of unit norm.) To complete the bound
in Proposition 2.5, we need an estimate of EL and EU .

Theorem 2.3. Let B(0) = LU be of full row rank and let B(0) = [B
(0)
(1,1), B

(0)
(1,2)],

U = [U (1,1), U (1,2)], where B
(0)
(1,1) = LU (1,1) is the leading p× p submatrix of B(0). Let

δB(0) = [δB
(0)
(1,1), δB

(0)
(1,2)], and let B(0)+δB(0) = L̃Ũ be the perturbed LU factorization.

If the spectral radius of EB = |L̃−1δB
(0)
(1,1)(Ũ

(1,1))−1| is less than 1, there exist a strictly

lower triangular EL and an upper triangular EU such that

L̃ = (I + EL)L, Ũ = U(I + EU), EU =

[
E

(1,1)
U E

(1,2)
U

O O

]
.(2.26)

Further, it holds that

|EL| ≤ |L̃| · tril ((I − EB)−1EB) · |L−1|,(2.27)

|E(1,1)
U | ≤ |(U (1,1))−1| · triu (EB(I − EB)−1) · |Ũ (1,1)|,(2.28)

|E(1,2)
U | ≤ |(U (1,1))−1L̃−1δB(1,2)|+ |(U (1,1))−1L̃−1δL U (1,2)|,(2.29)

where tril (·) and triu (·) denote, respectively, the strictly lower triangular part and
the upper triangular part of a matrix.

Proof. The proof is based on the following two equations.

B(1,1) + δB(1,1) = L̃Ũ (1,1), δU (1,2) = L̃−1(δB(1,2) − δL U (1,2)).(2.30)

ACCURATE QSV COMPUTATION IN FLOATING-POINT ARITHMETIC 865

An application of [35, Theorem 5.1] to the first equation in (2.30) yields the estimates

(2.27), (2.28) with EL ≡ δL L−1 and E
(1,1)
U ≡ (U (1,1))−1δU (1,1). To estimate EU , we

use the relation

[Ũ (1,1), Ũ (1,2)] = [U (1,1), U (1,2)]

[
I + E

(1,1)
U E

(1,2)
U

O I

]
, E

(1,2)
U ≡ (U (1,1))−1δU (1,2),

and the second equation in relation (2.30).
In our algorithm, the error matrix δB(0) satisfies (cf. relation (2.7)) B(0)+δB(0) =

L̃Ũ , |δB(0)| ≤ εLU |L̃| · |Ũ |. This structure allows an improvement of the result of
Theorem 2.3. Let B(0) = D1CD2, where D1, D2 are diagonal nonsingular matrices,
and let δC be defined by the relation B(0) + δB(0) = D1(C + δC)D2. Then the LU
factorizations C = LCUC and C + δC = L̃CŨC are, respectively,

C = (D−1
1 LD1)(D

−1
1 UD−1

2), C + δC = (D−1
1 L̃D1)(D

−1
1 ŨD−1

2),

and, as in relation (2.7), it holds that

L̃CŨC = C + δC, |δC| ≤ εLU |L̃C | · |ŨC |.
Hence, the analysis from Theorem 2.3 can be applied to C and C + δC, with EC
defined analogously as EB . If L̃C = (I + ELC

)LC , ŨC = UC(I + EUC
), then using,

e.g., relation (2.27) (with LC , L̃C , EC) and the Neumann expansion for (I −EC)−1,
we obtain

|ELC
| ≤ εLU |L̃C | · tril (|L̃−1

C | · |L̃C | · |Ũ (1,1)
C | · |(Ũ (1,1)

C)−1|)|L−1
C |+O(u2).

(Analogously for EUC
.) Suppose that in the factorization B(0) = D1CD2 the diago-

nals of D1 and D2 are nonincreasingly ordered and that the matrices LC and UC are
well-conditioned, so that ELC

and EUC
are small. From the relation

L̃ = (I +D1ELC
D−1

1)L, Ũ = U(I +D−1
2 EUC

D2)(2.31)

it follows that |EL| ≤ |ELC
|, |EU | ≤ |EUC

|, and, thus, that EL and EU are also small.
The role of pivoting is then to ensure that B(0) is of the form D1CD2, where D1 and
D2 have diagonals graded from large to small (or nearly graded) and C admits stable
LU factorization with well-conditioned LC and UC .

Hence, the forward error in the quotient singular values depends on the accuracy
of the computed LU factorization with complete pivoting of B(0). If the matrix B(0)

has some additional properties (special zero or sign patterns, for example), then it
is possible to construct algorithms for forward stable computation of L and U . In
that case, much sharper error bounds hold, and the LU approach is numerically more
attractive than the QR approach (cf. Remark 2.1). For more details, see [10], [9], [23,
Chapter 9], [28].

Proposition 2.6. Let A(0)+∆A(0) = Q̃R̃ be the QR factorization of A(0)+∆A(0)

and let R = (I + ER)R̃, where R is the triangular QR factor of A(0). Then, for
1 ≤ i ≤ p,

d(σ′′′
i , σ

′′
i) ≤ E(I, (I + ER)

−1) ≤ ‖ER‖2 +O(‖ER‖22),(2.32)

where for ‖∆A(0)R−1‖F + ‖∆A(0)R̃−1‖F < 1 and ‖∆A(0)‖F ‖(A(0))†‖2 < 1 it holds
that

‖ER‖2 ≤ 2‖∆A(0)‖F ‖(A(0))†‖2
1− ‖∆A(0)‖F ‖(A(0))†‖2

.

866 ZLATKO DRMAČ AND ELIZABETH R. JESSUP

Proof. We consider the singular values of (B(0)+δB(0))R̃−1(I+ER)
−1 and apply

relation (2.24). To estimate ER, we use [35, Theorem 4.1].
Finally, combining Propositions 2.5 and 2.6, we obtain, for 1 ≤ i ≤ p,

d(σ′′′
i , σ

′
i) ≤ d(σ′′

i , σ
′
i)(1 + d(σ′′′

i , σ
′′
i)) + d(σ′′′

i , σ
′′
i)(1 + d(σ′′

i , σ
′
i))(2.33)

≤ ‖EL‖2 + κ2(A
(0))‖EU‖2 + ‖ER‖2 +O(u2).(2.34)

Thus, the accuracy of the values σ′′′
i is determined by the sensitivity of the triangular

factor of A(0) and by the accuracy of the LU factorization with complete pivoting of
B(0). The errors from stage B are easily included into the forward error analysis by
updating ∆A(0) and replacing L̃Ũ with (I + ∆L̃L̃†)L̃Ũ (cf. Proposition 2.4 and the
discussion after its proof).

3. Numerical experiments. Software implementation of Algorithm 2.1 effi-
ciently uses the benefits of an optimized BLAS 3 [13] library. The QR factorization
with column pivoting is a BLAS 3 version from [30] and the matrix operations in
Stage A are implemented using the XTRSM() and XGEMM() subroutines. Currently,
the LU factorization with complete pivoting and the Jacobi SVD are less optimized
and this will be the subject of our future work. In the QR variant of Algorithm 2.1,
the QR factorization with complete pivoting (used instead of the LU factorization)
can be implemented as a combination of an initial row sorting (cf. Remark 2.1) and
the BLAS 3 version of the QR factorization with column pivoting. Recent results [17]
indicate that we can expect development of a high-performance implementation of the
Jacobi SVD algorithm. Thus, the efficiency of our approach will improve with better
implementations of the BLAS 3 and the Jacobi SVD algorithm. We also expect that
the modular structure of our algorithm will make it possible to develop efficient and
stable QSVD subroutines for modern parallel architectures.

The output of our algorithm is the QSVD of (A,B) in Van Loan’s form. That
is, we compute orthogonal matrices V and W and a nonsingular matrix X such that
V TAX and WTBX are in diagonal form. An interesting feature of our algorithm is
an option to return V and W in factored forms, using products of the Householder
reflections. In that case, the information necessary to retrieve the reflections that
define V and W is overwritten on the arrays A and B, respectively. Hence, we can
compute and use V and W without additional square arrays. This saves m2 + p2

memory locations which is attractive if m� n or p� n. However, in this paper we
do not analyze the accuracy of the computed matrices V , W , X.

3.1. The results. We use several different types of test pairs. The first type is
taken from [16] and contains full column rank matrices with controlled spectral condi-
tion number κ2((·)c) of the column equilibrated matrix. For the reader’s convenience,
we give a detailed description of the test pair generation.

Example 3.1. We generate random full column rank matrices Ac and Bc with
nearly unit columns and with given κ2(Ac) and κ2(Bc) and apply scalings A = Ac∆A,
B = Bc∆B , where ∆A, ∆B are random diagonal, nonsingular matrices with given
spectral condition numbers.

Each 4-tuple (κ2(Ac), κ2(∆A), κ2(Bc), κ2(∆B)) is chosen from a four-dimensional
mesh of condition numbers,

C = {κijkl = (10i, 10j , 10k, 10l) : (i, j, k, l) ∈ I × J ×K × L ⊂ N4
}
,

where I,J ,K,L are determined at the very beginning of the test and kept fixed. For
each fixed κijkl, we generate Ac, ∆A, Bc, ∆B using different distributions of their

ACCURATE QSV COMPUTATION IN FLOATING-POINT ARITHMETIC 867

singular values. We use all admissible values of the parameter MODE in LAPACK’s
DLATM1() test procedure [11]. Hence, for each 4-tuple (Ac,∆A, Bc,∆B) we can choose
the singular value distribution modes from the set

M = {µi′j′k′l′ = (µi′ , µj′ , µk′ , µl′)} ⊆ {±1, . . . ,±6}4.
For each fixed (κijkl, µi′j′k′l′) we generate random pairs using different random number
generators as specified by the parameter IDIST in DLATM1() procedure. Thus, our set
of random number distributions is D ⊆ {U(−1, 1),U(0, 1),N (0, 1)}, where U(−1, 1),
U(0, 1) are uniform distributions on (−1, 1) and (0, 1), respectively, and N (0, 1) is the
normal distribution. For each fixed distribution χ ∈ D we generate a set Eχκijkl,µi′j′k′l′
of different pairs, where the cardinality of Eχκijkl,µi′j′k′l′ is fixed at the very beginning

of the test. This process makes a total of

τ ≡ |I| |J | |K| |L| |M|
different classes and τ

∏
χ∈D |Eχκijkl,µi′j′k′l′ | different matrix pairs, generated in a se-

quence of nested loops controlled by the indices from I,J ,K,L,M.
Each test pair is generated in double precision and its quotient singular values are

computed using a double precision procedure. The quotient singular values computed
by the double precision procedure are then taken as reference for the single precision
procedure run on the original pair rounded to single precision.

For a test pair (A,B) with well-conditioned Ac and Bc, the value of

ζ1(A,B) = umax{κ2(Ac), κ2(Bc)}
gives a good estimate of relative errors in the quotient singular values computed by
the tangent algorithm from [16]. Our numerical experiments show that ζ1 is equally
good in Algorithm 2.1 as long κ2(Bc) is moderate.

Following the analysis in section 2.4, we compute another a priori relative error
estimate in the following way. For computed triangular factors L̃, Ũ of Π1BΠ2, we
compute the residual δB = L̃Ũ − Π1BΠ2 and, in the case of square nonsingular L̃,
Ũ , the values

ε̃L(B) = ‖ |L̃| tril(|L̃−1δBŨ−1|) |L̃−1| ‖1,
ε̃U (B) = ‖ |Ũ−1| triu(|L̃−1δBŨ−1|) |Ũ | ‖1,

(cf. (2.27) and (2.28) in Theorem 2.3) and

ζ2(A,B) = max{ uκ2(Ac), ε̃L(B), ε̃U (B) }.
(If L̃ and Ũ are not square, the quantities ε̃L(B) and ε̃U (B) are defined using the
leading square submatrices L̃(1,1), Ũ (1,1). We use the matrix ,1 norm ‖ · ‖1 instead
of ‖ · ‖2 because ‖ · ‖1 is easier to compute. Note that computation of ζ1, ζ2 is not
error-free.) If ζ1(A,B) and ζ2(A,B) are realistic and sharp enough to be used in the
practice, then the values of

θ1(A,B) =
maxσ∈σ(A,B)

|δσ|
σ

ζ1(A,B)
, θ2(A,B) =

maxσ∈σ(A,B)
|δσ|
σ

ζ2(A,B)

should be bounded by a moderate function of m, n, p and should not be much less
than 1. (A value of θi(A,B) that is below 1 means that ζi(A,B) overestimates the
actual relative error.)

868 ZLATKO DRMAČ AND ELIZABETH R. JESSUP

We also use the following measure for the accuracy of our algorithm:

ε(i, k) = max
κ2(Ac)=10i,κ2(Bc)=10k

max
σ∈σ(A,B)

|δσ|
σ
, (i, k) ∈ I × K,

that is, we compute the maximal relative error over all quotient singular values of all
matrix pairs with fixed κ2(Ac) = 10i, κ2(Bc) = 10k. Note that − log10 ε(i, k) gives
an approximate minimal number of correct digits in the computed approximations
of the quotient singular values of the test pairs with fixed “coordinates” (i, k) ∈
I ×K. According to the theory from [16], we can expect − log10 ε(i, k) to be roughly
7−max{i, k}, independent of the column scalings ∆A, ∆B .

To inspect the values of some relevant condition numbers, we also compute

θ3(B) =
κ2(Bc)

max{ε̃L(B), ε̃U (B)}/u , θ4(B) = ‖ |U−1| · |U | ‖1.

The value of θ3(B) is a comparison of κ2(Bc) and the condition number that deter-
mines the accuracy of the LU factorization of B. The quantity θ4(B) is an important
factor in the bound for the backward error in the columns of the matrix A and it
should be of the order of the matrix dimensions.

In this example, the input data are m = n = p = 100 and

I = {2, . . . , 7}, K = I,
J = {4, 8, 10, 12, 14, 16}, L = J ,
M = {(5, 4,−5, 3), (3,−4, 5,−3), (4, 5, 3,−4)}, D = {U(−1, 1)} .

For each node of C ×M×R we performed one test on a randomly generated pair.
As a reference, we use the double precision tangent algorithm from [16], because it
computes the singular values to approximately 15−max{i, k} correct decimal places.
The measured values of θ1 and θ2 are bounded by 1.24 and 113, respectively, which
means that the accumulated round-off enters the error linearly in matrix dimensions.
Both ζ1 and ζ2 provide good relative error estimates. The number of correct digits
shown in Figure 1 corresponds to the predicted theoretical behavior. The values of θ3
are between 0.0042 and 539, which shows that, in this example, the condition numbers
κ2(Bc) and max{ε̃L(B), ε̃U (B)}/u differ by a factor on the order of the dimensions
of the problem. This means that in this example both quantities are a good estimate
of the condition number related to perturbations in the matrix B. Finally, the values
of θ4 are, as expected, at most of order of the dimension (below 99), which confirms
that the relative backward error in the columns of the matrix A is small.

In the next example we test the stability of Algorithm 2.1 in the presence of heavy
row and column weighting of the matrix B.

Example 3.2. In this example, the test matrix generator follows the scheme
described in Example 3.1 and additionally scales the rows of each generated B by a
diagonal ill-conditioned matrix D. That is, we first generate a random matrix BS

in the same way as we generated the matrix Bc in Example 3.1. Then we generate

diagonal matrices ∆B , ∆
(1)
B with the same spectral condition number and compute

B = ∆
(1)
B BS∆B . In this way we obtain a matrix B such that the matrix Bc, obtained

by equilibrating the columns of B, has high κ2(Bc). However, since BS is well-
scaled, the value of κ2(BS) controls the accuracy of the LU factorization of B. (If

BS = LSUS is the LU factorization of BS , then from the relations B†
S = U†

SL
−1
S , L =

ACCURATE QSV COMPUTATION IN FLOATING-POINT ARITHMETIC 869

2
3

4
5

6
7

2

3

4

5

6

7
−6

−5

−4

−3

−2

−1

0

i=log10(condition A_c)k=log10(condition B_c)

lo
g1

0(
ep

s(
i,k

))
 m=n=p=100

Fig. 1. The values of log10 ε(i, k), (i, k) ∈ I × K in Example 3.1. Observe that − log10 ε(i, k)
behaves like 7−max{i, k} (roughly).

BSU
†
S , U

†
S = B†

SLS , it follows that ‖B†
S‖2 ≤ ‖L−1

S ‖2‖U†
S‖2, ‖L−1

S ‖2 ≤ ‖B†
S‖2‖US‖2,

‖U†
S‖2 ≤ ‖B†

S‖2‖LS‖2.) For this reason, we use κ2(BS) instead of κ2(Bc) in the
definition of ε(i, k).

Tests with LAPACK’s SGGSVD() and with the tangent algorithm show that nei-
ther of those procedures is capable of achieving high relative accuracy with such a

matrix. Since we use κ2(∆
(1)
B) up to 1016, we cannot use the double precision tangent

algorithm as a reference. We use a double precision implementation of Algorithm 2.1
instead. (Numerical experiments show that the tangent algorithm improves if the QR
factorization is computed with complete pivoting (cf. Remark 2.1).)

The input data in this example are the same as in Example 3.1. The test results
are given in Figures 2 and 3. The values of θ2 are at most of the order of 100, while the
values of θ1 are much smaller. This indicates a rather pessimistic estimate if we use
ζ1, and together with large values of θ3, it shows that κ2(Bc) is not a good estimate
of the condition number related to the perturbations of the matrix B. The number
of correct digits, shown in Figure 3, confirms that κ2(BS) performs much better.

Example 3.3. In this example we first generate an m× n matrix A and an n× p
matrix C in the same way as A and B, respectively, in Example 3.1. Then we define
B = CT . In this way we control the size of κ2(Br), where Br is obtained from B by
scaling its rows to have unit Euclidean norm. Note that in this example κ2(Br) is
used instead of κ2(Bc) in the definitions of ζ1(A,B) and θ3(B). Also note that the
algorithm from [16] is not applicable because B does not have full column rank. We
choose m = 300, n = 150, p = 50, and I = K = {2, . . . , 6}, J = L = {8, 12, 14, 16}.
For simplicity, we display only the values of ε(i, k) (Figure 4), where in the definition
of ε(i, k) we replace κ2(Bc) with κ2(Br) (cf. comments on κ2(BS) in Example 3.2).

870 ZLATKO DRMAČ AND ELIZABETH R. JESSUP

0 500 1000 1500 2000 2500 3000 3500 4000
10

−4

10
−2

10
0

10
2

10
4

th
et

a
2

Test pairs (A,B)

0 500 1000 1500 2000 2500 3000 3500 4000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

 m=n=p=100
th

et
a

1

Fig. 2. The values of θ1(·, ·) and θ2(·, ·) in Example 3.2.

2
3

4
5

6
7

2

3

4

5

6

7
−5

−4

−3

−2

−1

0

1

i=log10(condition A_c)k=log10(condition B_S)

lo
g1

0(
ep

s(
i,k

))

 m=n=p=100

Fig. 3. The values of log10 ε(i, k), (i, k) ∈ I × K in Example 3.2.

ACCURATE QSV COMPUTATION IN FLOATING-POINT ARITHMETIC 871

2
3

4
5

6

2

3

4

5

6
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

i=log10(condition A_c)k=log10(condition B_r)

lo
g1

0(
ep

s(
i,k

))
 m=300, n=150, p=50

Fig. 4. The values of log10 ε(i, k), (i, k) ∈ I × K in Example 3.3.

We can see the minimal number of correct digits shows the same behavior as in the
previous examples.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenny, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, 2nd ed., SIAM, Philadelphia, PA, 1995.

[2] Z. Bai and J. Demmel, Computing the Generalized Singular Value Decomposition, LAPACK
Working Note 46, Department of Computer Science, University of Tennessee, Knoxville,
TN, 1992.

[3] Z. J. Bai and H. Y. Zha, A new preprocessing algorithm for the computation of the generalized
singular value decomposition, SIAM J. Sci. Comput., 14 (1993), pp. 1007–1012.

[4] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[5] A. J. Cox and N. J. Higham, Stability of Householder QR factorization for weighted least

squares problems, in Numerical Analysis 1997, Proceedings of the 17th Dundee Biennial
Conference, D. F. Griffiths, D. J. Higham, and G. A. Watson, eds., Pitman Res. Notes
Math. Ser. 380, Longman, Harlow, Essex, UK, 1998, pp. 57–73.

[6] B. L. R. De Moor and G. H. Golub, Generalized Singular Value Decompositions: A Pro-
posal for a Standardized Nomenclature, Technical report NA–89–04, Computer Science
Department, Stanford University, Stanford, CA, 1989.

[7] A. Deichmöller, Über die Berechnung verallgemeinerter singulärer Werte mittels Jacobi–
änlicher Verfahren, Ph.D. thesis, Lehrgebiet Mathematische Physik, Fernuniversität Ha-
gen, Hagen, Germany, 1991.

[8] A. Deichmöller and K. Veselić, Two Algorithms for Computing the Symmetric Positive
Definite Generalized Eigenvalue Problem and the Generalized Singular Values of Full Col-
umn Rank Matrices, preprint, Lehrgebiet Mathematische Physik, Fernuniversität Hagen,
Hagen, Germany, 1991.

[9] J. Demmel, Accurate SVDs of Structured Matrices, LAPACK Working Note 130, Technical re-

872 ZLATKO DRMAČ AND ELIZABETH R. JESSUP

port UT–CS–97–375, Department of Computer Science, University of Tennessee, Knoxville,
TN, 1997.

[10] J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač, Computing
the singular value decomposition with high relative accuracy, Linear Algebra Appl., 299
(1999), pp. 21–80.

[11] J. Demmel and A. McKenney, A Test Matrix Generation Suite, LAPACK Working Note 9,
Courant Institute, New York University, New York, 1989.

[12] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 1204–1245.

[13] J. J. Dongarra, J. J. D. Croz, I. Duff, and S. Hammarling, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1–17.

[14] Z. Drmač, Computing the Singular and the Generalized Singular Values, Ph.D. thesis, Lehrge-
biet Mathematische Physik, Fernuniversität Hagen, Hagen, Germany, 1994.

[15] Z. Drmač, Implementation of Jacobi rotations for accurate singular value computation in
floating point arithmetic, SIAM J. Sci. Comput., 18 (1997), pp. 1200–1222.

[16] Z. Drmač, A tangent algorithm for computing the generalized singular value decomposition,
SIAM J. Numer. Anal., 35 (1998), pp. 1804–1832.

[17] Z. Drmač, A posteriori computation of the singular vectors in a preconditioned Jacobi SVD
algorithm, IMA J. Numer. Anal., 19 (1999), pp. 191–213.

[18] S. Falk and P. Langemeyer, Das Jacobische Rotationsverfahren für reellsymmetrische Ma-
trizenpaare I, II, Elektronische Datenverarbeitung, 1960, pp. 30–43.

[19] G. H. Golub, Numerical methods for solving linear least squares problems, Numer. Math., 7
(1965), pp. 206–216.

[20] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1989.

[21] M. R. Hestenes, Inversion of matrices by biorthogonalization and related results, J. Soc.
Indust. Appl. Math., 6 (1958), pp. 51–90.

[22] N. J. Higham, The accuracy of solutions to triangular systems, SIAM J. Numer. Anal., 26
(1989), pp. 1252–1265.

[23] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[24] R.-C. Li, Relative Perturbation Theory: (I) Eigenvalue and Singular Value Variations, Tech-

nical report, Mathematical Science Section, Oak Ridge National Laboratory, Oak Ridge,
TN, 1996.

[25] C. C. Paige, The general linear model and the generalized singular value decomposition, Linear
Algebra Appl., 70 (1985), pp. 269–284.

[26] C. C. Paige, Computing the generalized singular value decomposition, SIAM J. Sci. Statist.
Comput., 7 (1986), pp. 1126–1146.

[27] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM
J. Numer. Anal., 18 (1981), pp. 398–405.

[28] J. M. Peña, Backward stability of a pivoting strategy for sign–regular linear systems, BIT, 37
(1997), pp. 910–924.

[29] M. J. D. Powell and J. K. Reid, On applying Householder transformations to linear least
squares problems, in Information Processing 68, Proceedings of the International Federation
of Information Processing Congress, Edinburgh, 1968, North–Holland, Amsterdam, 1969,
pp. 122–126.

[30] G. Quintana-Ort́i, X. Sun, and C. H. Bischof, A BLAS-3 version of the QR factorization
with column pivoting, SIAM J. Sci. Comput., 19 (1998), pp. 1486–1494.

[31] G. W. Stewart, Computing the CS decomposition of a partitioned orthonormal matrix, Nu-
mer. Math., 40 (1982), pp. 297–306.

[32] G. W. Stewart, A method for computing the generalized singular value decomposition, in
Matrix Pencils, Lecture Notes in Math. 973, Springer-Verlag, New York, 1983, pp. 207–
220.

[33] G. W. Stewart, On the perturbation of LU and Cholesky factors, Technical report TR–3535,
Department of Computer Science and Institute for Advanced Computer Studies, University
of Maryland, College Park, MD, 1995.

[34] G. W. Stewart, The Triangular Matrices of Gaussian Elimination and Related Decompo-
sitions, Technical report TR–3533, Department of Computer Science and Institute for
Advanced Computer Studies, University of Maryland, College Park, MD, 1995.

[35] J.-G. Sun, Componentwise perturbation bounds for some matrix decompositions, BIT, 32
(1992), pp. 702–714.

[36] C. F. Van Loan, Generalized Singular Values with Algorithms and Applications, Ph.D. thesis,
University of Michigan, Ann Arbor, MI, 1973.

ACCURATE QSV COMPUTATION IN FLOATING-POINT ARITHMETIC 873

[37] C. F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal., 13
(1976), pp. 76–83.

[38] C. F. Van Loan, A generalized SVD analysis of some weighting methods for equality con-
strained least squares, in Matrix Pencils, Lecture Notes in Math. 973, Springer-Verlag,
New York, 1983, pp. 245–262.

[39] C. F. Van Loan, Computing the CS and the generalized singular value decomposition, Numer.
Math., 46 (1985), pp. 479–491.

POLYNOMIAL INSTANCES OF THE POSITIVE SEMIDEFINITE
AND EUCLIDEAN DISTANCE MATRIX COMPLETION PROBLEMS∗

MONIQUE LAURENT†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 874–894

Abstract. Given an undirected graph G = (V,E) with node set V = [1, n], a subset S ⊆ V ,
and a rational vector a ∈ QS∪E , the positive semidefinite matrix completion problem consists of
determining whether there exists a real symmetric n × n positive semidefinite matrix X = (xij)
satisfying xii = ai (i ∈ S) and xij = aij (ij ∈ E). Similarly, the Euclidean distance matrix
completion problem asks for the existence of a Euclidean distance matrix completing a partially
defined given matrix. It is not known whether these problems belong to NP. We show here that
they can be solved in polynomial time when restricted to the graphs having a fixed minimum fill-
in, the minimum fill-in of graph G being the minimum number of edges needed to be added to G
in order to obtain a chordal graph. A simple combinatorial algorithm permits us to construct a
completion in polynomial time in the chordal case. We also show that the completion problem is
polynomially solvable for a class of graphs including wheels of fixed length (assuming all diagonal
entries are specified). The running time of our algorithms is polynomially bounded in terms of n
and the bitlength of the input a. We also observe that the matrix completion problem can be solved
in polynomial time in the real number model for the class of graphs containing no homeomorph
of K4.

Key words. positive semidefinite matrix, Euclidean distance matrix, matrix completion, chordal
graph, minimum fill-in, order of a graph, polynomial algorithm, bit model, real number model

AMS subject classifications. 05C50, 15A48, 15A57, 90C25

PII. S0895479899352689

1. Introduction.

1.1. The matrix completion problem. This paper is concerned with the
completion problem for positive semidefinite and Euclidean distance matrices. The
positive semidefinite matrix completion problem (P) is defined as follows:

Given a graph G = (V,E), a subset S ⊆ V , and a rational vector a ∈ QS∪E,
determine whether there exists a real matrix X = (xij)i,j∈V satisfying

X � 0 and xii = ai (i ∈ S), xij = aij (ij ∈ E).(1.1)

(The notation X � 0 means that X is a symmetric positive semidefinite matrix or, for
short, a psd matrix.) In other words, problem (P) asks whether a partially specified
matrix can be completed to a psd matrix, the terminology of graphs being used as
a convenient tool for encoding the positions of the specified entries. When problem
(P) has a positive answer, one says that a is completable to a psd matrix; a matrix X
satisfying (1.1) is called a psd completion of a and a positive definite (pd) completion
when X is positive definite. We let (Ps) denote problem (P) when S = V , i.e., when
all diagonal entries are specified. If one looks for a pd completion, then one can
assume without loss of generality that all diagonal entries are specified (cf. Lemma
2.5); this is, however, not obviously so if one looks for a psd completion (although this
can be shown to be true when restricting the problem to the class of chordal graphs;
cf. the proof of Theorem 3.5).

∗Received by the editors February 26, 1999; accepted for publication (in revised form) by
L. El Ghaoui June 5, 2000; published electronically December 20, 2000.

http://www.siam.org/journals/simax/22-3/35268.html
†CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands (monique@cwi.nl).

874

POSITIVE SEMIDEFINITE AND DISTANCE MATRIX COMPLETIONS 875

A matrix Y = (yij)
n
i,j=1 is called a Euclidean distance matrix (a distance matrix,

for short) if there exist vectors u1, . . . , un ∈ Rk (for some k ≥ 1) such that

yij = ‖ui − uj‖2 for i, j = 1, . . . , n.(1.2)

(Here, ‖u‖ denotes the Euclidean norm of vector u ∈ Rk.) A set of vectors ui satisfying
(1.2) is called a realization of Y . Note that all diagonal entries of a distance matrix
are equal to zero. The Euclidean distance matrix completion problem (D) is defined
as follows:

Given a graph G = (V,E) and a rational vector d ∈ QE, determine whether there
exists a real matrix Y = (yij)i,j∈V satisfying

Y is a distance matrix and yij = dij(ij ∈ E).(1.3)

Hence problem (D) asks whether a partially specified matrix can be completed to a
distance matrix.

As will be recalled in section 2.3, psd matrices and distance matrices are closely
related and, thus, their associated completion problems can often be treated in an
analogous manner. These matrix completion problems have many applications, e.g., to
multidimensional scaling problems in statistics (cf. [29]), to the molecule conformation
problem in chemistry (cf. [11], [18]), and to moment problems in analysis (cf. [5]).

1.2. An excursion to semidefinite programming. The psd matrix com-
pletion problem is obviously an instance of the general semidefinite programming
feasibility problem (F):

Given integral n×n symmetric matrices Q0, Q1, . . . , Qm, determine whether there
exist real numbers z1, . . . , zm satisfying

Q0 + z1Q1 + · · ·+ zmQm � 0.(1.4)

The complexity status of problem (F) is a fundamental open question in the
theory of semidefinite programming; this is true for both the Turing machine model
and the real number model, the two most popular models of computation used in
complexity theory. In particular, it is not known whether there exists an algorithm
solving (F) whose running time is polynomial in the size L of the data, that is, the
total space needed to store the entries of the matrices Q0, . . . , Qm.

The Turing machine model (also called rational number model, or bit model; cf.
[13]) works on rational numbers and, more precisely, on their binary representations;
in particular, the running time of an elementary operation (+,−,×,÷) depends on
the length of the binary representations of the rational numbers involved. Hence, the
size L of the data of problem (F) in this model can be defined as mn2L0, where L0

is the maximum number of bits needed to encode an entry of a matrix Qi. On the
other hand, the real number model (introduced in [10]) works with real numbers and
it assumes that exact real arithmetic can be performed; in particular, an elementary
operation (+,−,×,÷) between any two real numbers takes unit time. Hence, the size
L of the data of (F) in this model is equal to mn2.

Semidefinite programming (SDP) deals with the decision problem (F) and its
optimization version:

max cT z
subject to Q0 + z1Q1 + · · ·+ zmQm � 0,

(1.5)

876 MONIQUE LAURENT

where c ∈ Qm. SDP can be seen as a generalization of linear programming (LP),
obtained by replacing the nonnegativity constraints of the vector variable in LP by
the semidefiniteness of the matrix variable in SDP. Information about SDP can be
found in the handbook [42]; cf. also the survey [40] and [3], [17] with an emphasis on
applications to discrete optimization.

A standard result in LP is that every feasible linear system Ax ≤ b with rational
coefficients has a solution whose size is polynomially bounded in terms of the size
of A and b (cf. [38], Corollary 3.2b). This implies that the problem of testing the
feasibility of an LP program belongs to NP in the bit model. (This fact is obvious
for the real number model.) Moreover, any LP optimization problem can be solved in
polynomial time in the bit model using the ellipsoid algorithm of Khachiyan [23] or
the interior-point method of Karmarkar [22]; it is an open question whether LP can
be solved in polynomial time in the real number model (cf. [43, p. 60]).

The feasibility problem (F) belongs to NP in the real number model (since one can
test in polynomial time whether a matrix is psd, for instance, using Gaussian elimina-
tion; in fact, for a rational matrix the running time is polynomial in its bitlength (cf.
[16, p. 295])). However, it is not known whether problem (F) belongs to NP in the
bit model. Indeed, in contrast with LP, it is not true that if a solution exists then one
exists which is rational and has a polynomially bounded size. Consider, for instance,
the following matrix:

X :=

2x 2 0 0
2 x 0 0
0 0 2 x
0 0 x 1

 .(1.6)

Then, x =
√
2 is the unique real for which X � 0; hence, this is an instance where

there is a real solution but no rational solution. Consider now the following matrix
(taken from [35]):

X =

x1 − 2 0 0 . . . 0 0 . . . 0 0
0 1 x1 . . . 0 0 . . . 0 0
0 x1 x2 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
0 0 0 . . . 1 xi . . . 0 0
0 0 0 . . . xi xi+1 . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 0 . . . 0 0 . . . 1 xn−1

0 0 0 . . . 0 0 . . . xn−1 xn

.

Then, X � 0 if and only if x1 ≥ 2 and xi+1 ≥ x2
i for i = 1, . . . , n − 1; hence,

xn ≥ 22n−1

and thus any rational solution has exponential bitlength. More examples
of “ill-conditioned” semidefinite problems can be found in [35].

However, Ramana [35] has developed an exact duality theory for SDP which
enables him to show the following results: Problem (F) belongs to NP ∩ co-NP in the
real number model. In the bit model, (F) belongs to NP if and only if it belongs to
co-NP; hence, (F) is not NP-complete nor co-NP complete unless NP = co-NP.

Algorithms have been found that permit us to solve the optimization problem
(1.5) approximatively in polynomial time; they are based on the ellipsoid method (cf.
[16]) and interior-point methods (cf. [32], [3]).

POSITIVE SEMIDEFINITE AND DISTANCE MATRIX COMPLETIONS 877

More precisely, set K := {z ∈ Rm | Q0 +
∑m

i=1 ziQi � 0} and, given ε > 0, set
S(K, ε) := {y | ∃z ∈ K with ‖z− y‖ < ε} (“the points that are in the ε-neighborhood
of K”) and S(K,−ε) := Rm \ S(Rm \K, ε) (“the points that are at distance at least
ε from the border of K”). Let L denote the maximum bit size of the entries of the
matrices Q0, . . . , Qm. Assume that we know a constant R > 0 such that either K = ∅
or ∃ z ∈ K with ‖z‖ ≤ R. Then, the ellipsoid based algorithm, given rational ε > 0,
either finds y ∈ S(K, ε) for which cT z ≤ cT y + ε for all z ∈ S(K,−ε), or asserts that
S(K,−ε) = ∅. Its running time is polynomial in n, m, L, and log ε and this algorithm
is polynomial in the bit model.

Assume that we know a constant R > 0 such that ‖z‖ ≤ R for all z ∈ K and
a point z∗ ∈ K for which Q0 +

∑m
i=1 z

∗
i Qi � 0 (z∗ is “strictly feasible”). There

is an interior-point algorithm which finds y ∈ K strictly feasible such that cT y ≥
maxz∈K cT z− ε in time polynomial in n, m, L, log ε, logR, and in the bitlength of z∗.
Note, however, that no polynomial bound has been established for the bitlengths of
the intermediate numbers occurring in the algorithm.

Khachiyan and Porkolab have shown that problem (F) and its analogue in rational
numbers can be solved in polynomial time in the bit model for a fixed number m of
variables.

Theorem 1.1.
(i) [33] Problem (F) can be solved in polynomial time for any fixed m.
(ii) [24] The following problem can be solved in polynomial time for any fixed m:

Given n× n integral symmetric matrices Q0, Q1, . . . , Qm, find rational num-
bers z1, . . . , zm satisfying (1.4) or determine that no such numbers exist.

The result from Theorem 1.1 (ii) extends to the context of semidefinite program-
ming the result of Lenstra [30] on the polynomial solvability of integer LP in fixed
dimension.

1.3. Back to the matrix completion problem. Since the matrix completion
problem is a special instance of SDP, it can be solved approximatively in polyno-
mial time; specific interior-point algorithms for finding approximate psd and distance
matrix completions have been developed, e.g., in [20], [11], [2], [31]. However, such
algorithms are not guaranteed to find exact completions in polynomial time. This
motivates our study in this paper of some classes of matrix completion problems that
can be solved exactly in polynomial time.

As mentioned earlier, one of the difficulties in the complexity analysis of SDP
arises from the fact that a rational SDP problem might have no rational solution.
(Recall the example from (1.6).) This raises the following question in the context of
matrix completion: If a rational partial matrix has a psd completion, does a rational
completion always exist?

We do not know of a counterexample to this statement. On the other hand,
we will show that the answer is positive, e.g., when the graph of specified entries is
chordal or has minimum fill-in 1 (cf. Lemma 4.2). (Note that the answer is obviously
positive if a pd completion exists.)

Motivated by the above discussion, let us define for each of the problems (P) and
(D) its rational analogue (PQ) and (DQ). Problem (PQ) is defined as follows:

Given a graph G = (V,E), a subset S ⊆ V , and a rational vector a ∈ QS∪E, find
a rational matrix X satisfying (1.1) or determine that no such matrix exists.

When S = V (i.e., all diagonal entries are specified), we denote the problem as
(PQ

s). Problem (DQ) is defined as follows:

878 MONIQUE LAURENT

Given a graph G = (V,E) and a rational vector d ∈ QE, find a rational matrix
Y satisfying (1.3) or determine that no such matrix exists.

The complexity of the problems (P), (D), (PQ), and (DQ) is not known; in par-
ticular, it is not known whether they belong to NP in the bit model (they do trivially
in the real number model). In this paper, we present some instances of graphs for
which the completion problems can be solved in polynomial time. All our complexity
results apply for the bit model (unless otherwise specified, as in section 5.3).

Recall that a graph is said to be chordal if it does not contain a circuit of length
≥ 4 as an induced subgraph. Then, the minimum fill-in of graph G is defined as
the minimum number of edges needed to be added to G in order to obtain a chordal
graph. Note that computing the minimum fill-in of a graph is an NP-hard problem
[44]. The following is the main result of sections 3 and 4.

Theorem 1.2. For any integer m ≥ 0, problems (P), (PQ), (D), and (DQ) can
be solved in polynomial time (in the bit model) when restricted to the class of graphs
whose minimum fill-in is equal to m.

The essential ingredients in the proof of Theorem 1.2 are the subcase m = 0
(chordal case), Theorem 1.1, and the link (exposed in section 2.3) between psd ma-
trices and distance matrices. In the chordal case, a simple combinatorial algorithm
permits to solve the completion problem in polynomial time.

The psd matrix completion problem for chordal graphs has been extensively stud-
ied in the literature (cf. the survey of Johnson [19] for detailed references). In some
sense, this problem has been solved by Grone et al. [15] who, building upon a result of
Dym and Gohberg [12], have characterized when a vector a indexed by the nodes and
edges of a chordal graph admits a psd completion; cf. Theorem 3.1. From this follows
the polynomial time solvability of problem (Ps) for chordal graphs. In fact, the result
from Theorem 3.1 is proved in [15] in a constructive manner and, thus, yields an
algorithm permitting to solve problem (PQ

s) for chordal graphs. This algorithm has
a polynomial running time in the real number model; however, it has to be modified
in order to achieve a polynomial running time in the bit model.

To summarize, the result from Theorem 1.2 also holds in the real number model
for chordal graphs (m = 0); it would hold for all graphs having fixed minimum fill-in
m ≥ 1 if the result from Theorem 1.1 would remain valid in the real number model.1

We present in section 5.1 another class of graphs for which the matrix completion
problem (Ps) can be solved in polynomial time (in the bit model). This class contains
(generalized) circuits and wheels having a fixed length (and fatness); these graphs arise
naturally when considering the polar approach to the psd matrix completion problem.
Then, section 5.2 contains a brief description of this polar approach, together with
some open questions and remarks. In the final section 5.3, we consider the matrix
completion problem for the class of graphs containing no homeomorph of K4. (It
contains circuits.) Then a condition characterizing existence of a psd or distance
matrix completion exists which permits us to obtain a simple combinatorial algorithm
solving the existence and construction problems in polynomial time in the real number
model.

2. Preliminaries. We recall here some basic facts about Schur complements
and Euclidean distance matrices that will be needed in the paper, and we make a few
observations about psd completions.

1L. Porkolab [34] claims to have a proof of this fact.

POSITIVE SEMIDEFINITE AND DISTANCE MATRIX COMPLETIONS 879

2.1. Schur complements. For a symmetric matrix M , set In(M) := (p, q, r),
where p (resp., q, r) denotes the number of positive (resp., negative, zero) eigenvalues
of M . When M � 0, a maximal nonsingular principal submatrix ofM is a nonsingular
principal submatrix of M of largest possible order, thus equal to the rank of M .

Lemma 2.1. Let M =
(
A B
BT C

)
be a symmetric matrix, where A is nonsingular.

Then,

In(M) = In(A) + In(C −BTA−1B);

the matrix C−BTA−1B is known as the Schur complement of A in M . In particular,
M � 0 if and only if A � 0 and C − BTA−1B � 0. Moreover, if M � 0 and if A is
a maximal nonsingular principal submatrix of M , then C = BTA−1B.

As a direct application, we have the following results which will be used at several
occasions in the paper.

Lemma 2.2. Let X be a symmetric matrix having the block decomposition

X =

$ n m

$ T RT ZT

n R A S
m Z ST D

,(2.1)

where T , R, Z, A, S, D are rational matrices of suitable orders; all entries of X
being specified except those of Z that have to be determined in order to obtain X � 0.
Assume that

X1 :=

(
T RT

R A

)
� 0, X2 :=

(
A S
ST D

)
� 0.

In the case when n ≥ 1 and A �= 0, let A0 be a maximal nonsingular principal
submatrix of A, and let

A =

(
A0 B
BT C

)
, X =

T RT
0 RT

1 ZT

R0 A0 B S0

R1 BT C S1

Z ST
0 ST

1 D

denote the corresponding block decompositions of A and X. Then, X � 0 if we set

Z := ST
0 A−1

0 R0(2.2)

when n ≥ 1 and A �= 0, and Z := 0 otherwise.
Proof. The result follows using Lemma 2.1 after noting that the Schur complement

of A0 in X is given by

 T RT

1 ZT

R1 C S1

Z ST
1 D

−

RT

0

BT

ST
0

A−1

0 (R0 B S0)

=

 T −RT

0 A−1
0 R0 RT

1 −RT
0 A−1

0 B ZT −RT
0 A−1

0 S0

R1 −BTA−1
0 R0 C −BTA−1

0 B S1 −BTA−1
0 S0

Z − ST
0 A−1

0 R0 ST
1 − ST

0 A−1
0 B D − ST

0 A−1
0 S0

880 MONIQUE LAURENT

=

T −RT

0 A−1
0 R0 0 ZT −RT

0 A−1
0 S0

0 0 0
Z − ST

0 A−1
0 R0 0 D − ST

0 A−1
0 S0

 .

Indeed, the Schur complement C − BTA−1
0 B of A0 in A is equal to 0 since A � 0

and A0 is a maximal nonsingular principal submatrix of A; as X1, X2 � 0 this implies
that R1 −BTA−1

0 R0 = S1 −BTA−1
0 S0 = 0.

Lemma 2.3. Let X be a symmetric matrix of the form

X =

(
T RT

R A

)
,

where A � 0 and T is a symmetric matrix of order $ whose diagonal entries are all
equal to some scalar N . Let A0 be a maximal nonsingular principal submatrix of A
and let

A =

(
A0 B
BT BTA−1

0 B

)
, X =

 T RT

0 RT
1

R0 A0 B
R1 BT BTA−1

0 B

denote the corresponding block decompositions of A and X. Then, X � 0 if and only
if (i) R1 = BTA−1

0 R0 and (ii) T −RT
0 A−1

0 R0 � 0. In particular, X is pd if and only
if A and T − RTA−1R are pd. Moreover, T − RT

0 A−1
0 R0 is psd for N large enough

(namely, for N greater or equal to the largest eigenvalue of RT
0 A−1

0 R0−T0, where T0

has zero diagonal entries and as off-diagonal entries those of T).

2.2. Some observations about psd completions. Given a graph G = (V,E),
a subset S ⊆ V , a vector a ∈ QS∪E , and a scalar N > 0, let aN ∈ QV ∪E denote the
extension of a obtained by setting ai := N for all i ∈ V \ S.

Lemma 2.4. a is completable to a psd matrix if and only if aN is completable to
a psd matrix for some N > 0 (and then for all N ′ ≥ N).

Therefore, if one can “guess” a value N to assign to the unspecified diagonal
entries, then one can reduce the problem to the case when all diagonal entries are
specified. This can be done when the graph G of specified off-diagonal entries is
chordal as we see later or if we look for a pd completion as the next result shows.

Lemma 2.5. Given a ∈ QS∪E, let b := (ai(i ∈ S), aij(ij ∈ E, i, j ∈ S)) denote
its restriction to the subgraph induced by S. Then, a has a pd completion if and only
if b has a pd completion.

Proof. Apply Lemma 2.3.
This result does not extend to psd completions (which contradicts a claim from

[15] (psd case in Proposition 1)). Indeed, the partial matrix
 ? 1 −1

1 1 1
−1 1 1

has no psd completion while its lower principal 2× 2 submatrix is psd.
A final observation is that if a partial matrix contains a fully specified row, then

the completion problem can be reduced to considering a matrix of smaller order.
Indeed, suppose that A = (aij) is a partial symmetric matrix whose first row is fully
specified. If a11 < 0, then A is not completable. If a11 = 0, then A is completable if
and only if its first row is identically zero and its lower principal submatrix of order
n− 1 is completable. If a11 > 0 then one can reduce to a problem of order n− 1 by
considering the Schur complement of a11 in A.

POSITIVE SEMIDEFINITE AND DISTANCE MATRIX COMPLETIONS 881

2.3. Euclidean distance matrices. The following connection (2.4) between
psd and distance matrices has been established by Schoenberg [37]. Let Y = (yij)i,j∈V
be a square symmetric matrix with zeros on its main diagonal and whose rows and
columns are indexed by a set V , and let i0 be a given element of V . Then, ϕi0(Y)
denotes the square symmetric matrix X = (xij)i,j∈V \{i0} whose rows and columns
are indexed by set V \ {i0} and whose entries are given by

xij =
1

2
(yi0i + yi0j − yij) for i, j ∈ V \ {i0}.(2.3)

Then,

Y is a distance matrix ⇐⇒ ϕi0(Y) � 0.(2.4)

(Indeed, a set of vectors ui (i ∈ V) forms a realization of the matrix Y if and only
if ϕi0(Y) is the Gram matrix of the vectors ui − ui0 (i ∈ V \ {i0}), which means
that its (i, j)th entry is equal to (ui − ui0)

T (uj − ui0).) Thus, ϕi0 establishes a linear
bijection between the set of distance matrices of order |V | and the set of psd matrices
of order |V |−1. Relation (2.4) has a direct consequence for the corresponding matrix
completion problems. Let G = (V,E) be a graph and assume that i0 ∈ V is a universal
node, i.e., that i0 is adjacent to all other nodes of G. Then, an algorithm permitting
to solve the psd matrix completion problem for graph G\i0 can be used for solving
the distance matrix completion problem for graph G and vice versa. Indeed,

Y is a distance matrix completion of d ∈ RE

⇐⇒ ϕi0(Y) is a psd completion of ϕi0(d).
(2.5)

(For the definition of ϕi0(d), use (2.3) restricted to the pairs ij with i, j ∈ V \ {i0},
i = j, or i �= j with ij edge of G.) For more information about connections between
the two problems, see [21], [27].

3. The matrix completion problem for chordal graphs. We consider here
the matrix completion problems for chordal graphs. First, we recall results from [15]
and [4] yielding a good characterization for the existence of a completion; then, we
see how they can be used for constructing a completion in polynomial time.

3.1. Characterizing existence of a completion. Let G = (V,E) be a graph
and let a ∈ QV ∪E be a vector; in the distance matrix case, the entries of a indexed by
V (corresponding to the diagonal entries of a matrix completion) are assumed to be
equal to zero. If K ⊆ V is a clique in G (i.e., any two distinct nodes in K are joined
by an edge in G), the entries aij of vector a are well-defined for all nodes i, j ∈ K;
then, we let a(K) denote the |K| × |K| symmetric matrix whose rows and columns
are indexed by K and with ijth entry aij for i, j ∈ K. Obviously, if a is completable
to a psd matrix, then a satisfies

a(K) � 0 for every maximal clique K in G.(3.1)

Similarly, if a is completable to a distance matrix, then a satisfies

a(K) is a distance matrix for every maximal clique K in G.(3.2)

The conditions (3.1) and (3.2) are not sufficient in general for ensuring the existence
of a completion. For instance, if G = (V,E) is a circuit and a ∈ QV ∪E has all its

882 MONIQUE LAURENT

entries equal to 1 except one entry on an edge equal to −1, then a satisfies (3.1) but
a is not completable to a psd matrix. However, if G is a chordal graph, then (3.1)
and (3.2) suffice for ensuring the existence of a completion.

Theorem 3.1. Let G = (V,E) be a chordal graph and let a ∈ RV ∪E. If a
satisfies (3.1), then a is completable to a psd matrix [15]; if a satisfies (3.2), then a is
completable to a distance matrix [4]; moreover, if a is rational valued, then a admits
a rational completion.

As the maximal cliques in a chordal graph can be enumerated in polynomial time
[39] (cf. below) and as one can check positive semidefiniteness of a rational matrix in
polynomial time (cf. [16, p. 295]), one can verify whether (3.1) holds in polynomial
time when G is chordal; in view of (2.4), one can also verify whether (3.2) holds in
polynomial time when G is chordal. This implies the next theorem.

Theorem 3.2. Problems (Ps) and (D) can be solved in polynomial time for
chordal graphs.

The proof given in [15], [4] for Theorem 3.1 is constructive; thus, it provides an
algorithm for constructing a completion and, as we see below, a variant of it can
be shown to have a polynomial running time. The proof is based on the following
properties of chordal graphs. Let G = (V,E) be a graph.

Then, G is chordal if and only if it has a perfect elimination ordering; moreover,
such an ordering can be found in polynomial time [36]. An ordering v1, . . . , vn of
the nodes of a graph G = (V,E) is called a perfect elimination ordering if, for every
j = 1, . . . , n−1, the set of nodes vk with k > j that are adjacent to vj induces a clique
in G. For j = 1, . . . , n−1, let Kj denote the clique consisting of node vj together with
the nodes vk (k > j) that are adjacent to vj ; then the cliques K1, . . . ,Kn−1 comprise
all maximal cliques of a chordal graph G.

If G is chordal and not a clique, then one can find (in polynomial time) an edge
e �∈ E for which the graph H := G+e (obtained by adding e to G) is chordal. (Indeed,
let i be the largest index in [1, n] for which there exists j > i such that vi and vj are
not adjacent in G; then we can choose for e the pair ij as v1, . . . , vn remains a perfect
elimination ordering for H.)

If G is chordal then, for any e �∈ E, there exists a unique maximal clique in G+ e
containing edge e [15] (easy to check).

Therefore, if G is complete and not a clique, we can order the missing edges in
G as e1, . . . , ep in such a way that the graph Gq := (V,E ∪ {e1, . . . , eq}) is chordal
for every q = 1, . . . , p. For q = 1, . . . , p, let Kq be the unique maximal clique in Gq

containing edge eq. Given a ∈ QV ∪E satisfying (3.1), set G0 := G and x0 := a. We
execute the following step for q = 1, . . . , p.

Find zq ∈ Q for which the vector xq := (xq−1, zq) of Q
V ∪E(Gq) satisfies

xq(Kq) � 0.(3.3)

This can be done in view of Lemma 2.2 (case $ = m = 1) applied to the matrix
X := xq(Kq) and one can choose for zq the rational value given by (2.2). Then, the
final vector xp = (a, z1, . . . , zp) provides a rational psd completion of a. This shows
Theorem 3.1 in the psd case (the Euclidean distance matrix case being similar).

As mentioned earlier, the preprocessing step (find the suitable ordering e1, . . . , ep
of the missing edges and the cliques Kq) can be done in polynomial time. Then,
one can construct the values z1, . . . , zp yielding a psd completion of a in p ≤ n2

steps. Therefore, the algorithm is polynomial in the real number model. In order
to show polynomiality in the bit model, one has to verify that the encoding sizes

POSITIVE SEMIDEFINITE AND DISTANCE MATRIX COMPLETIONS 883

of z1, . . . , zp remain polynomially bounded in terms of n and the encoding size of a.
This is, however, not clear. Indeed, both R0 and S0 in the definition of zq via (2.2)
may involve some previously defined zh for h < q (the same may hold for A0); then,
we have a quadratic dependence between zq and the previously defined z1, . . . , zq−1

which may cause a problem when trying to prove that the encoding size of zq remains
polynomially bounded. However, as we see below, the above algorithm can be modified
to obtain a polynomial running time. The basic idea is that, instead of adding the
missing edges one at a time, one adds them by “packets” consisting of edges sharing
a common end node. Then, in view of Lemma 2.2, one can specify simultaneously all
the entries on these edges, which permits to achieve a linear dependency among the
zq’s.

3.2. Constructing a psd completion in polynomial time. Let G = (V,E)
be a chordal graph and let 1, . . . , n denote a perfect elimination ordering of its nodes.
For i ∈ [1, n], set

J(i) := {j ∈ [1, n] : j > i and ij �∈ E}

and let i1 > · · · > iL denote the elements i ∈ [1, n] for which J(i) �= ∅. For $ =
1, . . . , L, set F� := {i�j | j ∈ J(i�)} and let G� denote the graph with node set V and
edge set E ∪ F1 ∪ · · · ∪ F�. Hence, we have a sequence of graphs

G0 := G ⊆ G1 ⊆ · · · ⊆ G� ⊆ · · · ⊆ GL,(3.4)

where each G� is chordal (since 1 . . . n remains a perfect elimination ordering of its
nodes) and GL is the complete graph. We now show that G� has only one maximal
clique which is not a clique in G�−1.

Lemma 3.3. For $ = 1, . . . , L, there is a unique maximal clique K� in G� which
is not a clique in G�−1. Moreover, J(i�) ∪ {i�} ⊆ K�, the set K� \ {i�} is a clique in
G�−1, and the set K� \ J(i�) is a clique in G.

Proof. Let K be a maximal clique in G� which is not a clique in G�−1; then,
i� ∈ K and K ∩ J(i�) �= ∅; we first show that J(i�) ⊆ K. For this, assume that
j, j′ ∈ J(i�) with j ∈ K and j′ �∈ K. By maximality of K, there exists an element
i ∈ K such that i and j′ are not adjacent in G�. Then, i < i� since the set [i�, n] is
a clique in G�. Therefore, the pairs ij and ii� are edges of G� and, thus, of G. Since
the ordering of the nodes is a perfect elimination ordering for G, this implies that i�
and j must be adjacent in G, yielding a contradiction.

Suppose now that K,K ′ are two distinct maximal cliques in G� such that i� ∈
K ∩K ′ and J(i�) ⊆ K ∩K ′. Then, there exist nodes i ∈ K \K ′, i′ ∈ K ′ \K that are
not adjacent in G�. Given a node j ∈ J(i�), one can easily verify that (i, i�, i

′, j) is
an induced circuit in G�−1, which contradicts the fact that G�−1 is chordal and, thus,
shows unicity of the clique K�. It is obvious that K� \ {i�} is a clique in G�−1. We
now verify that K� \ J(i�) is a clique in G. For this, note first that i� is adjacent to
every node of K� \ (J(i�) ∪ {i�}) in G� and, thus, in G. Suppose now that x �= y are
two nodes in K� \ (J(i�) ∪ {i�}) that are not adjacent in G. Then, as xy is an edge
of G�−1, we have x = ih, y ∈ J(ih) for some h ≤ $ − 1 and, thus, i� < x, y. As i�
is adjacent to both x and y in G this implies that x and y must be adjacent in G,
yielding a contradiction.

We now describe the modified algorithm. Let G = (V,E) be a chordal graph
and let a ∈ QV ∪E satisfying (3.1). Setting x0 := a, we execute the following step for
$ = 1, . . . , L.

884 MONIQUE LAURENT

Find z� ∈ QF� for which the vector x� := (x�−1, z�) ∈ QV ∪E(G�) satisfies

x�(K�) � 0.(3.5)

Then, the final vector xL = (a, z1, . . . , zL) provides a rational psd completion of a.
For instance, we can choose for z� the value given by relation (2.2), applying Lemma
2.2 to the matrix X := x�(K�). (Indeed, in view of Lemma 3.3, X1 = a(K�\J(i�)) � 0
and X2 = x�−1(K� \ {i�}); thus, X2 � 0 can be verified by induction.)

We verify that the encoding sizes of z1, . . . , zL are polynomially bounded in terms
of n and the encoding size of a. For this, we note that z1, . . . , zL are determined by
a recurrence of the form

z� = ST
� A−1

� R� for $ = 1, . . . , L,(3.6)

where R�, A�, S� are matrices of (appropriate) orders ≤ n. A crucial observation is
that all entries of R� and A� belong to the set, denoted as A, of entries of a (as
K� \ J(i�) is a clique in G, by Lemma 3.3), while the entries of S� belong to the set
A ∪ Z�−1, where Z�−1 denotes the set of entries of (z1, . . . , z�−1).

For r ∈ Q, let 〈r〉 denote the encoding size of r, i.e., the number of bits needed
to encode r in binary notation and, for a vector x = (x1, . . . , xp) ∈ Qp, set s(x) :=
max(〈x1〉, . . . , 〈xp〉). One can verify that, for two vectors x, y ∈ Qp, 〈xT y〉 ≤ 〈n〉 +
s(x) + s(y). Let Sa denote the maximum encoding length of the entries of vector a
and, for $ = 1, . . . , L, set S� := max(〈z〉 | z ∈ Z�). We derive from (3.6) that

S� ≤ 〈n〉+ s(A−1
� R�) + Sa + S�−1

for all $ (setting S0 := 0). This implies that

SL ≤ L(Sa + 〈n〉) +
L∑

�=1

s(A−1
� R�).

As L ≤ n, we obtain that all encoding sizes of z1, . . . , zL are polynomially bounded
in terms of n and the encoding size of a. (We also use here the fact that the entries
of A−1

� are polynomially bounded in the input size; cf. [16, Chapter 1.3].) Thus, we
have shown the following theorem.

Theorem 3.4. Problem (PQ
s) can be solved in polynomial time for chordal

graphs.
We finally indicate how to solve the general problem when some diagonal entries

are unspecified.
Theorem 3.5. Problems (P) and (PQ) can be solved in polynomial time for

chordal graphs.
Proof. Let G = (V,E) be a chordal graph, let S ⊆ V , and let a ∈ QS∪E

satisfying a(K) � 0 for each maximal clique K ⊆ S. (Else, we can conclude that
a is not completable.) Following Lemma 2.4, we search for a scalar N > 0 such
that a is completable if and only if its extension aN ∈ QV ∪E (assigning value N to
the unspecified diagonal entries) is completable or, equivalently, aN (K) � 0 for all
maximal cliquesK in G. Note that each matrix aN (K) has the same form as matrixX
from Lemma 2.3. Therefore, such N exists if and only if the linear condition (i) from
Lemma 2.3 holds for each clique K and an explicit value for N can be constructed as
indicated in Lemma 2.3. Once N has been determined, we proceed with completing
aN by applying the algorithm presented above.

To conclude note that the algorithm presented in this section outputs a pd com-
pletion if one exists.

POSITIVE SEMIDEFINITE AND DISTANCE MATRIX COMPLETIONS 885

3.3. Constructing a distance matrix completion. The distance matrix com-
pletion problem for chordal graphs can be solved in an analogous manner. Namely,
let G = (V,E) be a chordal graph, let

G0 := G ⊆ · · · ⊆ G� ⊆ · · · ⊆ GL

be the sequence of chordal graphs from (3.4), let K� ($ = 1, . . . , L) be the cliques
constructed in Lemma 3.3, and let a ∈ QE satisfying (3.2). Setting a0 := a, we
execute the following step for $ = 1, . . . , L:

Find z� ∈ QF� for which the vector x� := (a�−1, z�) ∈ QE(G�) satisfies

x�(K�) is a distance matrix.(3.7)

Then, the final vector xL = (a, z1, . . . , zL) provides a distance matrix completion
of a. The above step can be performed as follows. If K� = J(i�) ∪ {i�}, then we
let z� be defined by z�(j) := x�−1(j0, j) for j ∈ J(i�), where j0 is a given element of
J(i�). Otherwise, let j0 ∈ K� \ (J(i�) ∪ {i�}); then j0 is a universal node in G[K�],
the subgraph of G induced by K�. Therefore, in view of relation (2.5), we can find z�
satisfying (3.7) by applying Lemma 2.2. The polynomial running time of the above
algorithm follows from the polynomial running time of the corresponding algorithm
in the psd case. Thus, we have shown the following theorem.

Theorem 3.6. Problem (DQ) can be solved in polynomial time for chordal
graphs.

4. The matrix completion problem for graphs with fixed minimum fill-
in. In this section we describe an algorithm permitting us to solve problems (P),
(PQ), (D), and (DQ) in polynomial time for the graphs having minimum fill-in m,
where m ≥ 1 is a given integer. This algorithm is based on Theorems 1.1, 3.1, 3.2,
3.4, and 3.6.

Let G = (V,E) be a graph with minimum fill-in m, let S ⊆ V and let a ∈ QS∪E

be given. (Again we assume that ai = 0 for i ∈ V in the distance matrix case.) We
first execute the following step.

Step 0. Find edges e1, . . . , em �∈ E for which the graph H := (V,E∪{e1, . . . , em})
is chordal and find the maximal cliquesK1, . . . ,Kp inH. (Such edges exist since G has
minimum fill-in m and they can be found in polynomial time, simply by enumeration
as m is fixed. The maximal cliques in H can also be enumerated in polynomial time
since H is chordal and, moreover, p ≤ n.)

Then, we perform step x in order to solve problem (x) for x = P, PQ, D, DQ.
Step P. Determine whether there exist real numbers z1, . . . , zm, zm+1 for which

the vector x ∈ QV ∪E(H) defined by xi := ai (i ∈ S), xi := zm+1 (i ∈ V \S), xij = aij
(ij ∈ E), and xeh := zh (h = 1, . . . ,m) satisfies

x(K1) � 0, . . . , x(Kp) � 0.(4.1)

Step D. Determine whether there exist real numbers z1, . . . , zm for which the
vector x ∈ QE(H) defined by xij = aij (ij ∈ E), and xeh := zh (h = 1, . . . ,m)
satisfies

x(K1), . . . , x(Kp) are distance matrices.(4.2)

Then, a has a completion if and only if the answer in Step P or D is positive.
Step PQ. Find rational numbers z1, . . . , zm, zm+1 for which (4.1) holds or deter-

mine that no such numbers exist; if they exist, find a rational psd completion of x.

886 MONIQUE LAURENT

Step DQ. Find rational numbers z1, . . . , zm for which (4.2) holds or determine
that no such numbers exist; if they exist, find a rational distance matrix completion
of x.

Steps P and PQ can be executed in the following manner. Let M denote the
block diagonal matrix with the p matrices x(K1), . . . , x(Kp) as diagonal blocks (and
zeros elsewhere). Hence, M has order |K1| + · · · + |Kp| ≤ n2 and (4.1) holds if and
only if M � 0. Clearly, the matrix M can be written under the form

M = Q0 + z1Q1 + · · ·+ zm+1Qm+1,

where Q1, . . . , Qm+1 are symmetric matrices with (0,1)-entries and Q0 is a symmetric
matrix whose nonzero entries belong to the set of entries of a. Therefore, in view
of Theorem 1.1, one can determine the existence of z1, . . . , zm+1 satisfying (4.1) in
polynomial time. Then, finding a rational psd completion of x in Step PQ can be
done in polynomial time in view of Theorem 3.4.

In the distance matrix case, we use the following construction for distance matri-
ces. For a = 1, . . . , p, let Da be a square symmetric matrix whose rows and columns
are indexed by set Va and let ia be a given element of Va. We construct a new matrix
D, denoted as D1⊕· · ·⊕Dp, whose rows and columns are indexed by set V1∪ · · ·∪Vp
and whose entries are given by

D(i, j) =

{
Da(i, j) if i, j ∈ Va, a ∈ [1, p],
Da(i, ia) +Db(j, ib) if i ∈ Va, j ∈ Vb, a �= b ∈ [1, p].

(4.3)

Lemma 4.1. D1 ⊕ · · · ⊕ Dp is a distance matrix if and only if D1, . . . , Dp are
distance matrices.

Proof. The “only if” part is obvious. Conversely, assume that D1, . . . , Dp are
distance matrices; we show that D := D1⊕· · ·⊕Dp is a distance matrix. For a ∈ [1, p],
let uai ∈ Rna (i ∈ Va) be vectors providing a realization of Da; we can assume
without loss of generality that uaia = 0. Then, we construct a sequence of vectors
wi ∈ Rn1+···+np (i ∈ ⋃p

a=1 Va) by setting wi := (0n1 , . . . , 0na−1 , u
a
i , 0na+1 , . . . , 0np) for

i ∈ Va. (0n denotes the zero vector in Rn.) One can easily verify that the vectors wi

provide a realization of D.
Steps D and DQ can be performed as follows. Let M := x(K1) ⊕ · · · ⊕ x(Kp)

denote the matrix indexed by K1∪ · · ·∪Kp constructed as indicated in relation (4.3).
Clearly, M can be written under the form

M = Q0 + z1Q1 + · · ·+ zmQm,

where Q1, . . . , Qm are symmetric matrices with entries in {0, 1} and Q0 is a symmetric
matrix whose nonzero entries are sums of at most two entries of a. Let i0 be a given
element of K1 ∪ · · · ∪Kp. Then,

ϕi0(M) = ϕi0(Q0) + z1ϕi0(Q1) + · · ·+ zmϕi0(Qm).

Hence, (4.2) holds if and only if matrix M is a distance matrix (by Lemma 4.1)
or, equivalently, if and only if ϕi0(M) is positive semidefinite (by relation (2.4)).
Therefore, in view of Theorems 3.2 and 3.6, Steps D and DQ can be executed in
polynomial time. This completes the proof of Theorem 1.2.

Lemma 4.2. When the minimum fill-in m is equal to 1, existence of a completion
implies existence of a rational one.

POSITIVE SEMIDEFINITE AND DISTANCE MATRIX COMPLETIONS 887

Proof. To see it, suppose first that all diagonal entries are specified; then, Steps
P and PQ can be executed in an elementary manner. Indeed, each matrix x(Ki)
(i = 1, . . . , p) has at most one unspecified entry z1. Hence, the set of scalars z1

for which x(Ki) � 0 is an interval of the form Ii = [βi − √αi, βi +
√
αi] where

αi, βi ∈ Q (easy to see from Lemma 2.2). Therefore, (4.1) holds if and only if
z1 ∈

⋂p
i=1 Ii = [u, v], where u := maxi(βi−√αi) and v := mini(βi+

√
αi). Moreover,

if there is a completion (i.e., if u ≤ v), then one can find one with z1 rational. This is
obvious if u < v and, if u = v, this follows from the fact (easy to verify) that

β −√α = β′ +
√
α′, α, α′, β, β′ ∈ Q =⇒ √α,

√
α′ ∈ Q.

Suppose now some diagonal entries are unspecified. If there is a completion with
value z2 at the unspecified diagonal entries, then we can assume that z2 is rational
(replacing if necessary z2 by a larger rational number). Then, by the above discussion,
the off-diagonal unspecified entry z1 can also be chosen to be rational.

5. Further results and open questions. We present in section 5.1 another
class of graphs for which the completion problem can be solved in polynomial time
(in the bit model). Then, we discuss in section 5.2 some open questions arising when
considering a polar approach to the psd completion problem. Finally, we describe
in section 5.3 a simple combinatorial algorithm permitting us to solve the comple-
tion problem in polynomial time (in the real number model) for the class of graphs
containing no homeomorph of K4.

5.1. Another class of polynomial instances. We present here another class
of graphs for which the psd matrix completion problem (Ps) can be solved in polyno-
mial time. Given two integers p, q ≥ 1, let Gp,q be the class consisting of the graphs
G = (V,E) satisfying the following properties. There exist two disjoint subsets V1, V2

of V such that min(|V1|, |V2|) = p, the set F := {ij | i ∈ V1, j ∈ V2} is disjoint from
E, the graph

H := (V,E ∪ F)

is chordal, and H has q maximal cliques that are not cliques in G.
Theorem 5.1. Given integers p, q ≥ 1, the psd completion problem (Ps) can be

solved in polynomial time (in the bit model) over the class Gp,q.
Examples of graphs belonging to class Gp,q arise from circuits, wheels, and some

generalizations. A generalized circuit of length n is defined in the following manner:
its node set is U1 ∪ · · · ∪Un with two nodes u ∈ Ui, v ∈ Uj being adjacent if and only
if i = j or j = i+1 (modulo n); a generalized wheel of length n is obtained by adding
a set U0 (the center of the wheel) of pairwise adjacent nodes to a generalized circuit
of length n and making each node in U0 adjacent to each node in U1∪· · ·∪Un. Call a
generalized circuit or wheel p-fat if min(|Ui| : i = 1, . . . , n) = p. Cf. Figure 5.1 for an
example. Then, any p-fat generalized circuit or wheel of length q+ 2 belongs to Gp,q.
We will see in section 5.2 that generalized circuits and wheels arise as basic objects
when studying the matrix completion problem on graphs of small order.

The proof of Theorem 5.1 is based on the following result of Barvinok [8], which
shows that one can test feasibility of a system of quadratic equations in polynomial
time for any fixed number of equations.2

2In [8] Barvinok considers the homogeneous case, where each equation is of the form fi(x) =
xTAix = 0 for some symmetric matrix Ai. However, the general nonhomogeneous case can be
derived from it [9].

888 MONIQUE LAURENT

 (a) (b)

Fig. 5.1. (a) The wheel of length 4; (b) a 2-fat generalized wheel of length 4.

Theorem 5.2. For i = 1, . . . ,m, let fi(x) = xTAix + bTi x + ci be a quadratic
polynomial in x ∈ Rn, where Ai is an n× n symmetric matrix, bi ∈ Rn, and ci ∈ R.
One can test feasibility of the system fi(x) = 0 for i = 1, . . . ,m in polynomial time
(in the bit model) for any given m.

Proof of Theorem 5.1. Let G = (V,E) be a graph in class Gp,q and let a ∈ RV ∪E

be given. We are also given the sets V1 and V2 for which, say, p = |V1| ≤ |V2| and
adding to G all edges in F := {ij | i ∈ V1, j ∈ V2} creates a chordal graph H. We
show that deciding whether a can be completed to a psd matrix amounts to testing
the feasibility of a system of m quadratic polynomials where m depends only on p
and q. As H is chordal, a is completable to a psd matrix if and only if there exists a
matrix Z of order V2×V1 for which x := (a, Z) ∈ RV ∪E∪F satisfies x(K) � 0 for each
maximal clique K in H. We assume that x(K) = a(K) � 0 for each maximal clique
K of H contained in G. (Else, we can conclude that a is not completable.) Consider
now a maximal clique K of H which is not contained in G. Then, x(K) has the form

x(K) =

V1 ∩K V0 ∩K V2 ∩K

V1 ∩K T RT ZT
K

V0 ∩K R A S
V2 ∩K ZK ST D

,

setting V0 := V \ (V1 ∪ V2) and ZK := Z[V2 ∩K,V1 ∩K], the submatrix of Z with
row indices in V2 ∩ K and column indices in V1 ∩ K. With the notation of Lemma
2.2, we obtain that x(K) � 0 if and only if the following matrix

MK :=

(
T −RT

0 A−1
0 R0 ZT

K −RT
0 A−1

0 S0

ZK − ST
0 A−1

0 R0 D − S0A
−1
0 S0

)

is psd. (We have assumed that A � 0.) We can apply again a Schur decomposition to
matrix MK in order to reformulate the condition on Z. Setting TK := T −RT

0 A−1
0 R0,

Z ′ := ZK − ST
0 A−1

0 R0, and D′ := D − S0A
−1
0 S0, we have that MK =

(
TK Z′T

Z′ D′
)
. Let

POSITIVE SEMIDEFINITE AND DISTANCE MATRIX COMPLETIONS 889

D′
0 be a largest nonsingular submatrix of D′ and let

D′ =
(

D′
0 E

ET F

)
, MK =

TK Z ′T

0 Z ′T
1

Z ′
0 D′

0 E
Z ′

1 ET F

denote the corresponding block decompositions of D′ and MK . Taking the Schur
complement of D′

0 in MK , we obtain that MK � 0 if and only if

D′ � 0, TK − Z ′T
0 D′−1

0 Z ′
0 � 0, and Z ′

1 − ETD′−1
0 Z ′

0 = 0.

Let YK := Z[V2, V1 ∩ K] denote the column submatrix of Z with column indices in
V1 ∩K and set

VK :=

(V1 ∩K

V2 ∩K ST
0 A−1

0 R0

V2 \K 0

)
, QK :=

(
D−1

0 0
0 0

)
, GK := (−ETD′−1

0 I 0) .

Then,

TK − Z ′T
0 D′−1

0 Z ′
0 = TK − (YK − VK)TQK(YK − VK),

Z ′
1 − ETD′−1

0 Z ′
0 = GK(YK − VK).

Therefore, the condition x(K) � 0 can be rewritten as the system

{
(1K) TK − (YK − VK)TQK(YK − VK) � 0,
(2K) GK(YK − VK) = 0,

where TK , VK , QK are matrices depending on input data a. We can reformulate
condition (1K) as an equation by introducing a new square matrix SK of order V1∩K
as “slack variable”; namely, rewrite (1K) as

(1′K) TK − (YK − VK)TQK(YK − VK)− ST
KSK = 0.

Now, let z1, . . . , zp ∈ RV2 denote the columns of matrix Z, and let sKi (for i ∈ V1∩K)
denote the columns of matrix SK for each clique K. Then, condition (1′K) can be

expressed as a system of
(|V1∩K|+1

2

)
equations of the form

f(z1, . . . , zp, s
K
i (i ∈ V1 ∩K)) = 0,

where f is a quadratic polynomial, similarly for condition (2K). The total number of
quadratic equations obtained in this manner depends only on p and q. Therefore, in
view of Theorem 5.2, one can check feasibility of this system in polynomial time when
p and q are fixed.

Let G′p,q denote the subclass of Gp,q consisting of the graphs G for which every
maximal clique of H (the chordal extension of G) which is not a clique of G is not
contained in V1 ∪ V2. Then, the Euclidean distance matrix completion problem can
be solved in polynomial time over the class G′p,q for any fixed p and q. The proof is
similar to that of Theorem 5.1, since we can get back to the psd case using relation
(2.4) (a matrix and its image under ϕi0 having the same pattern of unknown entries if
i0 belongs to V \ (V1 ∪ V2)). In particular, the Euclidean distance matrix completion

890 MONIQUE LAURENT

?

?

?

?

Fig. 5.2. The matrix completion problem for generalized circuits of length 4.

problem can be solved in polynomial time for generalized circuits of length 4 and
fixed fatness, or for generalized wheels (with a nonempty center) of fixed length and
fatness.

The complexity of the psd completion problem for generalized wheels and circuits
is not known; in fact, in view of the remark made at the end of section 2.2, it suffices
to consider circuits. In view of Theorem 5.1, the problem is polynomial if we fix
the length and the fatness of the circuit. It would be particularly interesting to
determine the complexity of the completion problem for generalized circuits of length
4 and unrestricted fatness. This problem can be reformulated as follows: Determine
whether and how one can fill the unspecified entries in the blocks marked “?” of the
matrix X shown in Figure 5.2, so as to obtain X � 0. (All entries are assumed to
be specified in the grey blocks.) Indeed, as will be seen in section 5.2, these graphs
constitute in some sense the next case to consider after chordal graphs.

5.2. A polar approach to the completion problem. Given a graph G =
(V,E), consider the cone CG consisting of the matrices X = (xij)i,j∈V satisfying
X � 0 and xij = 0 for all i �= j such that ij �∈ E. Call X ∈ CG extremal if X lies
on an extremal ray of the cone CG (i.e., X = Y + Z with Y,Z ∈ CG implies that
Y = αX for some α ≥ 0) and define the order of G as the maximum rank of an
extremal matrix X ∈ CG. It is shown in [1] that a ∈ RV ∪E is completable to a psd
matrix if and only if a satisfies

∑
ij∈E

aijxij +
∑
i∈V

aixii ≥ 0(5.1)

for every extremal matrix X = (xij) ∈ CG. One might suspect that the psd matrix
completion problem is somewhat easier to solve for graphs having a small order since
the extremal matrices in CG have then a small rank. Indeed, the graphs of order 1 are
precisely the chordal graphs for which the problem is polynomially solvable. On the
other hand, a circuit of length n has order n − 2 which is the highest possible order
for a graph on n nodes. Moreover, if i0 is a universal node in a graph G, then both
graphs G and G \ i0 have the same order, which corroborates the observation made

POSITIVE SEMIDEFINITE AND DISTANCE MATRIX COMPLETIONS 891

Fig. 5.3. A homeomorph of K4.

at the end of section 2.2. A natural question concerns the complexity of the problem
for graphs of order 2.

The graphs of order 2 have been characterized in [28]. It is shown there that, up to
a simple graph operation (clique-sum), they belong to two basic classes G1 and G2. All
the graphs in G1 have minimum fill-in at most 3; hence, the problem is polynomially
solvable for them (by Theorem 1.2). The graphs in class G2 are the generalized wheels
of length 4 (and unrestricted fatness). Hence, if the psd matrix completion problem
is polynomially solvable for generalized wheels of length 4, then the same holds for all
graphs of order 2.

5.3. The matrix completion problem for graphs with no homeomorph
of K4. We now discuss the matrix completion problem for the class H consisting
of the graphs containing no homeomorph of K4 as a subgraph; a homeomorph of
K4 being obtained from K4 by replacing its edges with paths; cf. Figure 5.3 for an
example. (Graphs in H are also known as series parallel graphs.) Clearly, H contains
all circuits. The case of circuits is certainly interesting to understand since circuits
are the most simple nonchordal graphs.

Similarly to the chordal case, a condition characterizing existence of a psd com-
pletion is known for the graphs in H. Namely, the following is shown in [25] (using a
result of [7]). Given a graph G = (V,E) in H and a ∈ RV ∪E satisfying ai = 1 for all
i ∈ V , then a has a psd completion if and only if the scalars xe :=

1
π arccos ae (e ∈ E)

satisfy the inequalities

∑
e∈F

xe −
∑

e∈C\F
xe ≤ |F | − 1 for all F ⊆ C with C circuit in G, |F | odd.(5.2)

Proposition 5.3 (see [6]). Given x ∈ [0, 1]E, one can test in polynomial time
whether x satisfies the linear system (5.2).

Proof. Consider the graph G̃ := (V ∪ V ′, Ẽ) where V ′ := {i′ | i ∈ V } and Ẽ

consists of the pairs ij, i′j′, ij′, i′j for ij ∈ E. Define z ∈ RẼ by zij = zi′j′ = xij
and zi′j = zij′ = 1−xij for ij ∈ E. Then, it is easy to see that x satisfies (5.2) if and

only if z(P) ≥ 1 for every path P from i to i′ in G̃ and every i ∈ V . The result now
follows as one can compute shortest paths in polynomial time.

892 MONIQUE LAURENT

Therefore, problem (Ps) is polynomial time solvable in the real number model
for graphs in H. It is not clear how to extend this result to the bit model since the
scalars xe :=

1
π arccos ae are in general irrational and, thus, one encounters problems

of numerical stability when trying to check whether (5.2) holds.
Moreover, there is a simple combinatorial algorithm (already briefly mentioned

in [26]) permitting us to construct a psd completion in polynomial time in the real
number model. Let G = (V,E) be a graph in H and let a ∈ RV ∪E be given satisfying
ai = 1 for all i ∈ V . The algorithm performs the following steps.

1. Set xe :=
1
π arccos ae for e ∈ E and test whether x satisfies (5.2). If not, one

can conclude that a has no psd completion. Otherwise, go to step 2.
2. Find a set F of edges disjoint from E for which the graph H := (V,E ∪ F) is

chordal and contains no homeomorph of K4.
3. Find an extension y ∈ [0, 1]E∪F of x satisfying the linear system (5.2) with

respect to graph H.
4. Set be := cos(πye) for e ∈ E ∪ F and bi := 1 for i ∈ V . Then, b is completable

to a psd matrix (since y satisfies (5.2) and H has no homeomorph of K4) and one
can compute a psd completion X of b with the algorithm of section 3.2 (since H is
chordal). Then, X is a completion of a.

All steps can be executed in polynomial time. This follows from earlier results for
steps 1 and 4; for step 2 use a result of [41] and, for step 3, one can use an argument
similar to the proof of Proposition 5.3. Namely, given x ∈ [0, 1]E satisfying (5.2), in
order to extend x to [0, 1]E∪{e} in such a way that (5.2) remains valid with respect to
G+ e, one has to find a scalar α ∈ [0, 1] satisfying L1 ≤ α ≤ L2, where

L1 := max
C,F |e∈C\F

(x(F)− x(C \ (F ∪ {e}))− |F |+ 1),

L2 := min
C,F |e∈F

(x(C \ F)− x(F \ e) + |F | − 1).

We have L1 ≤ L2 (since x satisfies (5.2)) and L1 ≤ 1, L2 ≥ 0 (since x ∈ [0, 1]E); thus,
[L1, L2] ∩ [0, 1] �= ∅. With the notation of the proof of Proposition 5.3, one finds that

L1 = 1−min(z(P) | P is an ab′-path in G̃),

L2 = min(z(P) | P is an ab-path in G̃).

Hence one can compute α in polytime. One can then determine the extension y of x
to H by iteratively applying this procedure.

The distance matrix completion problem for graphs in H can be treated in a
similar manner. Indeed, given G = (V,E) in H and a ∈ RE

+, set xe :=
√
ae for

e ∈ E. Then, a is completable to a distance matrix if and only if x satisfies the linear
inequalities

xe −
∑

f∈C\e
xf ≤ 0 for all circuits C in G and all e ∈ C(5.3)

(cf. [27]). Again one can test in polynomial time whether x ≥ 0 satisfies (5.3). (Simply,
test for each edge e = ab ∈ E whether xe ≤ min(x(P) | P is an ab-path in G).) An
algorithm analogous to the one exposed in the psd case permits us to construct a
distance matrix completion. Therefore, we have shown the following theorem.

POSITIVE SEMIDEFINITE AND DISTANCE MATRIX COMPLETIONS 893

Theorem 5.4. One can construct a real psd (distance matrix) completion or
decide that none exists in polynomial time in the real number model for the graphs
containing no homeomorph of K4.

It is an open question whether the above result extends to the bit model of
computation, even for the simplest case of circuits.

Acknowledgments. We are grateful to A. Barvinok for providing us insight
about Theorem 5.2, to L. Porkolab for bringing [24] to our attention, and to A. Schri-
jver for discussions about section 3. We also thank the referees for their careful
reading and for their suggestions which helped us improve the presentation of the
paper.

REFERENCES

[1] J. Agler, J. W. Helton, S. McCullough, and L. Rodman, Positive semidefinite matrices
with a given sparsity pattern, Linear Algebra Appl., 107 (1988), pp. 101–149.

[2] A. Y. Alfakih, A. Khandani, and H. Wolkowicz, Solving Euclidean distance matrix comple-
tion problems via semidefinite programming, Comput. Optim. Appl., 12 (1998), pp. 13–30.

[3] F. Alizadeh, Interior point methods in semidefinite programming with applications in combi-
natorial optimization, SIAM J. Optim., 5 (1995), pp. 13–51.

[4] M. Bakonyi and C. R. Johnson, The Euclidean distance matrix completion problem, SIAM
J. Matrix Anal. Appl., 16 (1995), pp. 646–654.

[5] M. Bakonyi and G. Naevdal, On the matrix completion method for multidimensional moment
problems, Acta Sci. Math. (Szeged), 64 (1998), pp. 547–558.

[6] F. Barahona and A. R. Mahjoub, On the cut polytope, Math. Programming, 36 (1986),
pp. 157–173.

[7] W. Barrett, C. R. Johnson, and P. Tarazaga, The real positive definite completion problem
for a simple cycle, Linear Algebra Appl., 192 (1993), pp. 3–31.

[8] A. I. Barvinok, Feasibility testing for systems of real quadratic equations, Discrete Comput.
Geom., 10 (1993), pp. 1–13.

[9] A. I. Barvinok, personal communication, 1998.
[10] L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the

real numbers: NP-completeness, recursive functions and universal machines, Bull. Amer.
Math. Soc., 21 (1989), pp. 1–46.

[11] G. M. Crippen and T. F. Havel, Distance Geometry and Molecular Conformation, Research
Studies Press, Taunton, Somerset, England, 1988.

[12] H. Dym and I. Gohberg, Extensions of band matrices with band inverses, Linear Algebra
Appl., 36 (1981), pp. 1–24.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, New York, 1979.

[14] M. C. Golumbic, Algorithmic Theory and Perfect Graphs, Academic Press, New York, 1980.
[15] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, Positive definite completions of

partial Hermitian matrices, Linear Algebra Appl., 58 (1984), pp. 109–124.
[16] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial

Optimization, Springer-Verlag, Berlin, 1988.
[17] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, An interior-point method

for semidefinite programming, SIAM J. Optim., 6 (1996), pp. 342–361.
[18] B. Hendrickson, The molecule problem: Exploiting structure in global optimization, SIAM J.

Optim., 5 (1995), pp. 835–857.
[19] C. R. Johnson, Matrix completion problems: A survey, in Matrix Theory and Applications 40,

Proc. Sympos. Appl. Math., C. R. Johnson, ed., AMS, Providence, RI, 1990, pp. 171–198.
[20] C. R. Johnson, B. Kroschel, and H. Wolkowicz, An interior-point method for approximate

positive semidefinite completions, Comput. Optim. Appl., 9 (1998), pp. 175–190.
[21] C. R. Johnson and P. Tarazaga, Connections between the real positive semidefinite and

distance matrix completion problems, Linear Algebra Appl., 223/224 (1995), pp. 375–391.
[22] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4

(1984), pp. 373–395.
[23] L. Khachiyan, A polynomial algorithm in linear programming, Soviet Mathematics Doklady,

20 (1979), pp. 191–194.

894 MONIQUE LAURENT

[24] L. Khachiyan and L. Porkolab, Computing integral points in convex semi-algebraic sets, in
38th Annual IEEE Symposium on Foundations of Computer Science, Miami, FL, 1997,
pp. 162–171.

[25] M. Laurent, The real positive semidefinite completion problem for series-parallel graphs, Lin-
ear Algebra Appl., 252 (1997), pp. 347–366.

[26] M. Laurent, Cuts, matrix completions, and graph rigidity, Math. Programming, 79 (1997),
pp. 255–283.

[27] M. Laurent, A connection between positive semidefinite and Euclidean distance matrix com-
pletion problems, Linear Algebra Appl., 273 (1998), pp. 9–22.

[28] M. Laurent, On the order of a graph and its deficiency in chordality, Combinatorica, to
appear.

[29] J. de Leeuw and W. Heiser, Theory of multidimensional scaling, in Handbook of Statistics,
Vol. 2, P. R. Krishnaiah and L. N. Kanal, eds., North Holland, 1982, pp. 285–316.

[30] H. W. Lenstra, Jr., Integer programming with a fixed number of variables, Math. Oper. Res.,
8 (1983), pp. 538–548.

[31] J. J. Moré and Z. Wu, Distance geometry optimization for protein structures, J. Global
Optim., 15 (1999), pp. 219–234.

[32] Y. E. Nesterov and A. S. Nemirovsky, Interior Point Polynomial Algorithms in Convex
Programming: Theory and Algorithms, SIAM, Philadelphia, 1994.

[33] L. Porkolab and L. Khachiyan, On the complexity of semidefinite programs, J. Global Op-
tim., 10 (1997), pp. 351–365.

[34] L. Porkolab, private communication, 2000.
[35] M. V. Ramana, An exact duality theory for semidefinite programming and its complexity

implications, Math. Programming, 77 (1997), pp. 129–162.
[36] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on

graphs, SIAM J. Comput., 5 (1976), pp. 266–283.
[37] I. J. Schoenberg, Remarks to M. Fréchet’s article “Sur la définition axiomatique d’une classe

d’espaces vectoriels distanciés applicables vectoriellement sur l’espace de Hilbert,” Ann. of
Math., 36 (1935), pp. 724–732.

[38] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, New York,
1986.

[39] R. E. Tarjan, Decomposition by clique separators, Discrete Math., 55 (1985), pp. 221–232.
[40] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.
[41] J. A. Wald and C. J. Colbourn, Steiner trees, partial 2-trees and minimum IFI networks,

Networks, 13 (1983), pp. 159–167.
[42] H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds., Handbook of Semidefinite Program-

ming: Theory, Algorithms, and Applications, Kluwer Academic Publishers, Dordrecht,
The Netherlands, 2000.

[43] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1996.
[44] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic Discrete

Methods, 2 (1981), pp. 77–79.

INCOMPLETE MULTILEVEL CHOLESKY FACTORIZATIONS∗

J. C. DIAZ† AND K. KOMARA†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 895–911

Abstract. Adaptive in-time local grid refinement techniques use multilevel local discretizations
designed to achieve local accuracy. The changing nature of the matrix structure of the linear systems
arising from the multilevel local discretizations requires flexible approximate factorizations that focus
on local components and coordinate their interaction. The solution of these composite grid systems
with Krylov solvers is considered. The selection of an adequate preconditioner is crucial. The
incomplete Cholesky (IC) factorization of the composite matrix and the inexact BEPS preconditioner
are two such potential preconditioners. The inexact BEPS preconditioner can be constructed and
applied with significantly more flexibility than the IC factorizations of the composite multilevel grid
matrix.

An extension of the IC factorizations for matrices arising from discretizations of self-adjoint PDEs
on multilevel composite grids is proposed. The resulting factorization is referred to as the incomplete
multilevel Cholesky (IMC) factorization. The IMC factorization is spectrally equivalent to the IC
factorization of the matrix of the composite grid system.

IMC factorization can be constructed with the same flexibility as the inexact BEPS precondi-
tioner. The application of IMC factorization is achieved via a multilevel LLT -cycle consisting of
a forward elimination pass proceeding downward on the grids from fine to coarse followed by an
reverse-order upward back substitution pass.

The application of multilevel factorization as a preconditioner requires roughly one-half as many
operations as the inexact BEPS preconditioner. The numerical results illustrate the potential of the
method.

Key words. Krylov methods, multilevel methods, sparse linear systems, incomplete factoriza-
tions, preconditioning

AMS subject classifications. Primary, 86A60, 65N55; Secondary, 65C20

PII. S0895479896311128

1. Introduction. Adaptive local grid refinement techniques are used to solve
time-dependent PDE problems whose solutions exhibit changing localized phenomena
[6, 10, 15, 16, 18, 19]. Multilevel local discretizations are designed to achieve more
accuracy in the regions where the solution’s local behavior may have a significant
impact on the entire domain. A composite grid can be thought of as a collection of
nested grids which may change from time to time. It contains one coarse and some
local nested finer grids for regions of the computational domain selected for refinement
[6, 15, 16, 18, 19].

The resulting multilevel systems of linear equations are solved using Krylov meth-
ods with preconditioning. One important issue is the changing nature of the structure
of the matrices of the multilevel systems of linear equations as the grid is adapted
in time. Hence, the data structure used to store the individual matrices has to be
flexible enough to work with the constantly changing shape of the matrix. The com-
posite grid matrix should not be assembled. The factorization should focus on the
components and coordinate their interaction. This paper discusses issues relating to
efficient factorizations that can be used as preconditionings for the multilevel systems.

∗Received by the editors October 25, 1996; accepted for publication (in revised form) by J. Liu
March 28, 1998; published electronically December 20, 2000. This research was partly supported by
Oklahoma Center for Advancement of Science and Technology grants RB9-008 (3748) and ARO-36
(3910).

http://www.siam.org/journals/simax/22-3/31112.html
†Center for Parallel and Scientific Computing, University of Tulsa, 600 S. College Ave., Tulsa,

OK 74104-3189 (diaz@utulsa.edu).

895

896 J. C. DIAZ AND K. KOMARA

Incomplete LLT factorizations are extended to matrices arising from discretiza-
tions of self-adjoint PDEs on composite grids. The proposed incomplete multilevel
LLT factorization is derived from the incomplete Cholesky (IC) factorization matrices
of the discretizations on the coarse and local grids. The existence of the incomplete
multilevel Cholesky (IMC) factorization depends on the existence of IC factorizations
of the grid matrices which have been extensively studied [2, 3, 4, 7, 13, 20]. The
flexible construction of the IMC factorization allows more parallelism than would be
allowed by the IC factorization of the assembled composite grid matrix.

This paper considers multilevel linear systems of equations with symmetric pos-
itive definite M -matrices [5]. The main result of this paper is to prove that the
IMC factorization is spectrally equivalent to the IC factorization of the assembled
composite grid matrix. Further, the condition number of the composite grid matrix
preconditioned by the IMC factorization is shown to be bounded by a constant times
the condition number of the composite grid matrix preconditioned by the IC factor-
ization. This implies that the IMC factorization is as robust as the IC factorization
for preconditioning the composite grid matrix. Flexibility has been achieved without
sacrificing stability.

There is a similarity between the IMC factorization and the inexact BEPS pre-
conditioner [15, 18, 16]. The application of either on a vector requires a downward
pass followed by a upward pass on the nested levels. During each cycle, downward and
upward, the inexact BEPS preconditioner performs a forward and a backward solve
at each level. However, the IMC preconditioner requires only a forward elimination
at each level for the downward pass and a backward substitution in the upward pass.
Therefore, the action of IMC as a preconditioning on a vector requires nearly half the
operations of the inexact BEPS preconditioner. The incomplete multilevel IC has the
familiar feel of an LLT factorization consisting of a forward elimination pass followed
by a backward substitution pass.

The factorizations are introduced in section 2, which includes a brief review of
the IC factorizations considered herein. That section considers approximate factor-
izations for the composite grid matrix for a two-level grid system including the IC
factorizations, the inexact BEPS preconditioner, and the construction of IMC. The
cost complexity of the application of the inexact BEPS preconditioner and IMC fac-
torization are compared for a multilevel grid system. The stability analysis of the IMC
factorization is investigated in section 3. Comparative experiments that illustrate the
potential of IMC factorizations used as preconditionings are presented in section 4.
Finally, section 5 includes a summary of the main results presented in this paper.

2. The factorizations. The three factorizations for the composite grid ma-
trix are introduced. Section 2.1 presents a brief overview of the IC factorizations
considered herein. A two-level grid is presented in section 2.2, which also includes
a presentation of the composite and coarse grid systems. Section 2.3 presents the
composite grid matrix and its IC factorization for a two level-system. The inexact
BEPS preconditioner is reviewed in section 2.4. The IMC factorization is presented
in section 2.5. Like the inexact BEPS preconditioner, the IMC factorization can be
defined for multiple levels. A simple comparison of the complexity of the application
of the inexact BEPS preconditioner and the IMC factorization for multiple levels is
presented in section 2.6.

2.1. IC factorizations. This section provides a brief overview of IC factoriza-
tions. The matrices obtained from finite difference discretizations of two-dimensional
self-adjoint PDEs on rectangular regions are symmetric positive definite M -matrices.

INCOMPLETE MULTILEVEL CHOLESKY FACTORIZATIONS 897

Let A = L+DA + LT be an M -matrix of order n, where DA is the diagonal (or
block diagonal) of A. The IC factorization of the matrix A considered herein has the
form

Q = (L+D)D−1(D + LT),(1)

where L is the strictly lower (block) triangular part of A, and D is a (block) diagonal
matrix. The diagonal or block diagonal matrix D is usually different from DA. When
both are diagonals, the factorization is a point factorization of A. Otherwise, it is a
block factorization. Point and block IC factorizations are well defined for symmetric
positive definite M -matrices [1, 2, 3, 4, 7, 9, 13, 20, 21].

The point factorization of the matrixA is determined by the condition diagonal(A−
Q) = 0. Let A = (ai,j) and D = diagonal(di). Then the diagonal elements of D are
computed as follows:

d1,1 = a1,1,

di,i = ai,i −
i−1∑
s=1

ai,sd
−1
s,sas,i for i = 2, . . . , n.

The IC factorization defined in this manner is usually referred to as DKR (Dupont–
Kendall–Rachford) factorization [13], the IC(0) [14], or the standard IC factorization
(with no fill-in) [12].

The block factorization assumes the matrix A = blocktrid(Ai−1,i, Ai,i, Ai,i+1),
i = 1, . . . ,m, to have a block tridiagonal form where the square diagonal blocks Ai,i
are tridiagonal, and Ai−1,i and Ai,i+1 are diagonal. Let D = blockdiag(Di,i); then
the diagonal elements of D are given by

D1,1 = A1,1,

Di,i = Ai,i −Ai,i−1Xi−1,i−1Ai−1,i for i = 2, . . . ,m,

where Xi−1,i−1 is an approximate inverse of Di−1,i−1. Different choices for the selec-

tion of Xi,i exist. In this paper, the consideration is limited to Xi,i =
[
D−1
i,i

](p)
, where[

D−1
i,i

](p)
is a matrix with half bandwidth p whose elements inside the band coincide

with those of D−1
i,i . This IC factorization Q is referred to as INV(1) factorization

when p = 1 and INV(2) factorization when p = 2 [7, 9].

2.2. Two-level grid. Consider a composite grid with two grids, one coarse and
one fine. Let the computational domain Ω be a rectangular subregion ofR2. Introduce
the coarse grid ω̃ in Ω with spacing hc. The subregion selected for refinement is Ω(f).
Introduce the fine grid ωf in Ω(f) with spacing hf . Ω\Ω(f) is the unrefined subregion
of Ω. Let ωu denote the set of coarse grid points in the unrefined subregion. Similarly
let ωr denote the set of coarse grid points in the refined region Ω(f). Thus, ω̃ = ωr∪ωu.
The composite grid is the set of grid points in ωf ∪ ωu and is denoted by ω. Figure 1
illustrates a cell-centered composite grid.

Let A be the composite grid matrix on ω, and let Ã be the coarse grid matrix on ω̃.
Assume a natural ordering. Partition a vector in ω by ordering first the components
in ωf and then the components in ωu. Then partition the composite grid system
Ax = b in a 2× 2 block form:

Ax =

[
Af,f ATu,f
Au,f Au,u

] [
xf
xu

]
=

[
bf
bu

]
= b.(2)

898 J. C. DIAZ AND K. KOMARA

Fig. 1. Two-level composite grid. Grid points are labeled � for coarse and • for fine.

Similarly, the coarse system Ãx̃ = b̃ can also be partitioned in a 2× 2 block form:

Ãx̃ =

[
Ãr,r ÃTu,r
Ãu,r Ãu,u

] [
x̃r
x̃u

]
=

[
b̃r
b̃u

]
= b̃.(3)

Consider the splittings Ai,i = Li,i + DAi,i + L
T
i,i for i = f, u, where Li,i is the

strictly (block) lower part of Ai,i and DAi,i is the (block) diagonal part of Ai,i. Also

consider similar splittings for Ãi,i for i = r, u. Let Ii be the identity matrix on the
grid ωi for i = f, r, u.

The submatrices Au,u and Ãu,u act on the same grid points, the unrefined portion
of the coarse grid. The off-diagonal entries account for discrete relations among grid
points in the unrefined grid. Hence, L̃u,u = Lu,u. However, the diagonals of Ãu,u and

Au,u differ because Ãu,u also accounts for discrete relations with grid points in ωr,
whereas Au,u must also account for discrete relations with grid points in ωf .

2.3. IC factorizations of the composite matrix. The incomplete factoriza-
tions of Ã and A, and therefore that of Af,f , exist because they are assumed to be
symmetric positive definite M -matrices [2, 3, 4, 7, 13, 20, 21].

The IC factorization of the composite grid matrix A is given by

Q
IC =

[
Lf,f +Df,f 0

Au,f Lu,u +Du,u

] [
D−1
f,f 0

0 D−1
u,u

] [
Df,f + L

T
f,f ATu,f

0 Du,u + L
T
u,u

]
,

(4)
where Qf,f = (Lf,f + Df,f)D

−1
f,f (Df,f + LTf,f) is the IC factorization of Af,f and

[Df,f

0
0

Du,u
] is a (block) diagonal matrix. Df,f and Du,u are diagonal matrices with

positive diagonal elements for point incomplete factorizations [13, 20, 21]. Note that
(Lu,u + Du,u)D

−1
u,u(D

−1
u,u + LTu,u) is an IC factorization of Au,u − χ, where χ is the

INCOMPLETE MULTILEVEL CHOLESKY FACTORIZATIONS 899

diagonal or block diagonal of Au,fQ
−1
f,fA

T
u,f . For block incomplete factorizations Df,f

and Du,u are symmetric positive definite block diagonal M -matrices, [4, 3, 2, 7].

Similarly, the IC factorization of the coarse grid matrix Ã is given by

Q̃ =

[
L̃r,r + D̃r,r 0

Ãu,r Lu,u + D̃u,u

][
D̃−1
r,r 0

0 D̃−1
u,u

][
D̃r,r + L̃

T
r,r ÃTu,r

0 D̃u,u + L
T
u,u

]
,

(5)

where [D̃r,r

0
0

D̃u,u
] is a (block) diagonal matrix. Again, D̃r,r and D̃u,u are diagonal

matrices with positive diagonal elements for point incomplete factorizations and are
symmetric positive definite block diagonal M -matrices for block incomplete factor-
izations. Let Q̃r,r = (L̃r,r + D̃r,r)D̃

−1
r,r (D̃r,r + L̃Tr,r). Note that Q̃u,u = (Lu,u +

D̃u,u)D̃
−1
u,u(D̃

−1
u,u+L

T
u,u) is an IC factorization of Ãu,u−χ, where χ is the diagonal or

block diagonal of Ãu,rQ̃
−1
r,r Ã

T
u,r.

2.4. Inexact BEPS preconditioners. This section reviews the BEPS precon-
ditioner [15, 16, 18]. Let Ã, Af,f , and A be the partitioned matrices given in (2) and
(3). The BEPS preconditioner is given by

QBEPS =

[
Af,f 0
Au,f Su,u

] [
If A−1

f,fA
T
u,f

0 Iu

]
,(6)

where Su,u = Ãu,u − Ãu,rÃ−1
r,r Ãr,u is the Schur complement of Ãr,r in Ã. The action

of the inverse of Su,u on a vector bu on ωu is obtained by solving a problem of the
form

Ãx̃ = Ã

[∗
xu

]
=

[
0
bu

]
= b̃.

The inexact BEPS considered here consists of replacingAf,f and Ã with respective

IC factorizations. Using the IC factorizations of Af,f and Ã given in section 2.5, the
inexact BEPS preconditioner is defined by

Q
IBEPS

=

[
Qf,f 0

Au,f Q̃u,u

] [
If Q−1

f,fA
T
u,f

0 Iu

]
,(7)

where Qf,f is the IC factorization of Af,f and Q̃u,u is determined from the IC fac-

torization Q̃ of Ã such that the solution of Q̃u,uxu = bu is obtained by solving the
problem

Q̃x̃ = Q̃

[∗
xu

]
=

[
0
bu

]
= b̃.(8)

Together, (7) and (8) define the inexact BEPS preconditioner.

Note that the ordering used to compute the factorization Q̃ for (8) does not need

to coincide with the ordering implicit in the partition of Ã in (3). Therefore, Q̃ can
be computed for the coarse grid ω̃ independently of where the region of refinement
ωr is to be located. Hence, inexact BEPS provides more flexibility than IC of the
composite grid matrix.

The construction of the inexact BEPS requires the IC factorizations of the fine
grid matrix Af,f and the whole coarse grid matrix Ã. The action of the inexact

900 J. C. DIAZ AND K. KOMARA

BEPS preconditioner on a composite grid vector requires more work than the IC
preconditioner. Inexact BEPS requires a forward and a backward solve for each level
of the downward and upward passes. Inexact BEPS is applied first on a downward pass
on the grids from fine to coarse followed by a reverse-order upward pass. The action
of the IC preconditioner is obtained by performing a downward forward elimination
pass followed by an upward back substitution pass.

2.5. IMC factorizations. This section introduces the IMC factorization. Con-
structing Q

IMC requires the IC factorizations of the fine grid matrix Af,f and the

whole coarse grid matrix Ã. As with the inexact BEPS method, the factorizations of
Af,f and Ã can be done independently.

The IMC factorization of A is obtained by replacing the matrix Du,u with the

matrix D̃u,u in the IC factorization of Ã. Thus, it is explicitly given by

Q
IMC =

[
Lf,f +Df,f 0

Au,f Lu,u + D̃u,u

][
D−1
f,f 0

0 D̃−1
u,u

] [
Df,f + L

T
f,f Au,f

0 D̃u,u + L
T
u,u

]
.

(9)

The action of Q
IMC on a composite grid vector requires the action of the Schur

complement in Q̃ obtained after eliminating the submatrix associated with the grid
points in ωr. This Schur complement is Q̃u,u = (Lu,u + D̃u,u)D̃

−1
u,u(D̃u,u + L

T
u,u). As

was the case for the inexact BEPS, the solution of Q̃u,uxu = bu is obtained by solving
(8). Together, (9) and (8) define the IMC factorization Q

IMC .

As was the case for the inexact BEPS, the ordering used to compute the factor-
ization Q̃ in (8) does not need to coincide with the ordering implicit in the partition

of Ã in (3). Q̃ can be computed for the coarse grid ω̃ independently of where the
region of refinement ωr is to be located.

Using inexact BEPS, QIMC , and Q
IC

as preconditionings in conjunction with
Krylov solvers requires the action of the preconditioners on a vector. A central fea-
ture of the IMC factorization is that its action on a vector can be carried out by a
downward forward elimination pass followed by an upward back substitution pass. In
the downward pass, fine to coarse, forward eliminations are performed on the fine and
coarse grids. In the upward pass, coarse to fine, back substitutions are performed in
the reverse order on the coarse and fine grids.

The construction of the inexact BEPS and the IMC preconditioners requires the
same amount of work. They both need the IC factorizations of the fine grid matrix
Af,f and the coarse grid matrix Ã. The action of the inexact BEPS preconditioner on
a composite grid vector, however, requires more work than the IMC preconditioner.

It must be noted here that other forms of inexact BEPS preconditioner exist
where Qf,f and Q̃ in (7) and (8) are not IC factorizations. Whereas in some cases
corresponding IMC factorizations exist, these are not discussed herein.

2.6. Multilevel complexity. Like the inexact BEPS preconditioner, the IMC
factorization can be defined for multilevels and for non-self-adjoint problems. Their
construction requires only the construction of approximate Cholesky factors of the
matrices at each level [11, 19], under the assumption that the refined subregions are
nested. The construction for the two-level case is the recursive step for the multi-
level case. The factorization is constructed proceeding through the nested levels of
refinement starting from the finest and ending at the coarsest level. In order to ex-
tend the factorization from two levels to a third level, the current coarse level acts as

INCOMPLETE MULTILEVEL CHOLESKY FACTORIZATIONS 901

Fig. 2. Computational flow of the action of BEPS and IMC on a composite grid vector.

the fine level and the third level acts as the coarse level. In fact, all the subdomain
factorizations are computed independently for each level.

The actions of the inexact BEPS preconditioner and the IMC preconditioner on
a composite grid vector are visualized in Figure 2, where the lower and upper (block)
triangular matrices, Lk and LTk , are the approximate Cholesky factors of the grid
matrix on level k. The arrows in the figure signify movement of information from fine
to coarse grid and vice versa.

During the downward and upward passes, the inexact BEPS preconditioner solves
an LLT system for each level. The IMC solves only one triangular linear system on
each level during the downward pass (forward elimination) and only one triangular
linear system during the upward pass (back substitution). The complexity of IMC
preconditioners is nearly half of that of the inexact BEPS preconditioner.

The outline of the cycle given in Figure 2 can be used to visualize the extension
of application of IMC. The presentation in section 2.5 assumes that the factorizations
can be put into the form given by (1). There are indeed many such approximate
factorizations where the L of (1) does not coincide with the strictly lower part of A.
These factorizations can be applied to each subdomain resulting on an inexact BEPS
which still has the same cycle as the one given in Figure 2. As long as the precondi-
tioning applied at each grid level has the form of an LLT factorization, IMC is equally
applicable as depicted in Figure 2. IMC factorizations can easily be incorporated with
only minor changes in existing preconditioned iterative methods using inexact BEPS
preconditioners.

3. Stability analysis. This section considers the properties of the incomplete
multilevel factorization and compares them with those of the IC factorization. The
main results of this section are the spectral equivalence of Q

IC and QIMC and a relation
between the condition numbers of Q−1

IC
A and Q−1

IMC
A. These are summarized in two

theorems in the following section. Their proofs are presented in section 3.2.

3.1. Equivalence of QIMCand QIC . The following theorem establishes the
spectral equivalence of the factorizations QIMC and QIC . The proof of this theorem is
presented in section 3.2.

Theorem 1. The matrices Q
IMC and QIC are spectrally equivalent; therefore, for

any nonzero vector x of the composite grid ω = ωf ∪ ωu, it follows that

γ1x
TQ

IMC
x ≤ xTQ

IC
x ≤ γ2xTQIMC

x,(10)

902 J. C. DIAZ AND K. KOMARA

where γ1 and γ2 are constants such that 0 < γ1 ≤ 1 ≤ γ2.
The following theorem derives a relation between κ(Q−1

IMC
A) and κ(Q−1

IC
A). This

relation provides an insight on the performances of Q
IMC and QIC when used as

preconditionings in conjunction with Krylov solvers.
Theorem 2. For the IMC preconditioner Q

IMC and the IC preconditioner QIC of
the composite grid matrix A, there exists a constant C

γ
≥ 1 such that

κ(Q−1
IMC

A) ≤ Cγκ(Q
−1
IC
A) and Cγ =

γ2
γ1
,(11)

where γ1 and γ2 are constants given in Theorem 1.
Proof. Rewrite Q−1

IMC
A as

Q−1
IMC
A = Q−1

IMC
Q

IC
Q−1

IC
A.

It then follows that

κ(Q−1
IMC
A) ≤ κ(Q−1

IMC
Q

IC
) · κ(Q−1

IC
A).

From Theorem 1 and Lemma 4 (see section 3.2), it follows that κ(Q−1
IMC
Q

IC) ≤ γ2/γ1.
Because 0 < γ1 ≤ γ2, the γ2/γ1 ≥ 1. Let C

γ
= γ2/γ1 and use the last two inequalities

to complete the proof of the theorem.
If A is a symmetric positive definite matrix and the linear system Ax = b is solved

using the preconditioned conjugate gradient (PCG) [8] method with a symmetric
positive definite preconditioner M , then the number of PCG iterations needed to

reduce A−1-norm of the initial residual by a factor ε is O(κ(M−1A)
1/2

ln(1
ε)) [1].

From Theorem 2 and the convergence properties of the PCG method, it follows that
the preconditioner Q

IMC will be a good substitute for the preconditioner QIC if the
constant C

γ of Theorem 2 is independent of the average discretization mesh size and
is not too large.

3.2. Spectral equivalence. This is a very technical section intended to prove
Theorem 1. On a first reading the reader may want to skip to section 4 for the nu-
merical results. The main result of this section is the proof of the spectral equivalence
of Q

IC and QIMC .
The Schur complements of Qf,f = (Lf,f +Df,f)(If +D

−1
f L

T
f,f) in QIC and QIMC

are given by

S
IC = (Lu,u +Du,u)D

−1
u,u(Du,u + L

T
u,u)

and

S
IMC = (Lu,u + D̃u,u)D̃

−1
u,u(D̃u,u + L

T
u,u),

where Du,u and D̃u,u are symmetric positive definite M -matrices.
The spectral equivalence of S

IC
and SIMC will be presented first. From this the

spectral equivalence of Q
IC and QIMC is established.

First recall that if G is a symmetric positive definite block diagonal matrix and
L a nonsingular block strictly lower triangular matrix, then the matrix LGLT is
symmetric positive definite. This property guarantees that matrices of the form (G+
L)G−1(G + LT), where G is symmetric positive definite and L is lower triangular,
are symmetric positive definite. Therefore, the matrices SIC

, S
IMC

, Q
IC
, and Q

IMC
are

INCOMPLETE MULTILEVEL CHOLESKY FACTORIZATIONS 903

symmetric positive definite. The following technical result will be used to establish
the spectral equivalence of the Schur complements SIC and SIMC .

Lemma 1. Let G1 and G2 be two symmetric positive definite block diagonal
matrices of order n, and let L be a strictly block lower triangular matrix of order n
such that L ≤ 0. If there exist constants 0 < α ≤ β such that for any n-vector x the
inequalities

αxTG2x ≤ xTG1x ≤ βxTG2x

hold, then the matrices

F1 = (G1 + L)G
−1
1 (G1 + L

T) and F2 = (G2 + L)G
−1
2 (G2 + L

T)

are spectrally equivalent; that is, there exist constants 0 < γ1 ≤ 1 ≤ γ2 such that for
any n-vector x

γ1x
TF2x ≤ xTF1x ≤ γ2xTF2x.(12)

Proof. Let σ = max(β, 1/α). Define

Vi = G
−1/2
i (I + LG−1

i)−1(−L− LT)(I +G−1
i L

T)−1G
−1/2
i , i = 1, 2,

ρi = max
x�=0

xTVix

xTx
, i = 1, 2,

γ1 = (σ + (σ − 1)ρ1)
−1,

γ2 = σ + (σ − 1)ρ2.

Let x �= 0 be an n-vector. The quotients xTF1x/x
TF2x and xTF2x/x

TF1x
have to be bounded above by constants. Note first that 0 < α ≤ β and there-
fore σ ≥ 1. By using similarity transformations, it can be easily shown that for
all n-vector z the inequalities αzTG2z ≤ zTG1z ≤ βzTG2z implies the inequalities
1
β z

TG−1
2 z ≤ zTG−1

1 z ≤ 1
αz

TG−1
2 z. From the inequalities zTG1z ≤ βzTG2z and

zTG−1
1 z ≤ 1

αz
TG−1

2 z for all n-vector z, an upper bound for xTF1x/x
TF2x is obtained

from

xTF1x

xTF2x
=
xT (G1 + L)G

−1
1 (G1 + L

T)x

xT (G2 + L)G
−1
2 (G2 + LT)x

=
xTG1x+ (LTx)TG−1

1 (LTx) + xT (L+ LT)x

xT (G2 + L)G
−1
2 (G2 + LT)x

≤ βx
TG2x+

1
αx

TLG−1
2 LTx+ xT (L+ LT)x

xT (G2 + L)G
−1
2 (G2 + LT)x

≤ σx
TG2x+ σx

TLG−1
2 LTx+ xT (L+ LT)x

xT (G2 + L)G
−1
2 (G2 + LT)x

=
σxT (G2 + LG

−1
2 LT + L+ LT)x+ (1− σ)xT (L+ LT)x

xT (G2 + L)G
−1
2 (G2 + LT)x

= σ + (σ − 1)
xT (−L− LT)x

xT (G2 + L)G
−1
2 (G2 + LT)x

≤ σ + (σ − 1)max
y �=0

{
yT (−L− LT)y

yT (G2 + L)G
−1
2 (G2 + LT)y

}
.

904 J. C. DIAZ AND K. KOMARA

Let z = G
− 1

2

2 (G2 + L
T)y. Then,

xTF1x

xTF2x
≤ σ + (σ − 1)max

z �=0

zTV2z

zT z
= σ + (σ − 1)ρ2,

which gives the desired upper bound. It remains to find an upper bound for xTF2x/
xTF1x. Similarly, from the inequalities zTG2z ≤ 1

αz
TG1z and zTG−1

2 z ≤ βzTG−1
1 z

for all n-vector z, an upper bound for xTF2x/x
TF1x can be derived. It is given by

xTF2x

xTF1x
≤ σ + (σ − 1)max

z �=0

zTV1z

zT z
= σ + (σ − 1)ρ1.

Combining the last two inequalities completes the proof of the lemma.
The spectral equivalence of Lemma 1 can also be achieved with upper bounds of

the largest eigenvalues ρ1 and ρ2 of V1 and V2.
Let L = Lu,u ≤ 0, G1 = Du,u, and G2 = D̃u,u and let α and β be the smallest and

largest eigenvalues of D̃−1
u,uDu,u, respectively. From Lemma 1, it follows that there

exist constants 0 < γ1 ≤ 1 ≤ γ2 such that for any vector xu on the grid ωu

γ1x
T
uSIMC

xu ≤ xTuSIC
xu ≤ γ2xTuSIMC

xu.(13)

Hence the Schur complements SIMC and SIC are spectrally equivalent.
Lemma 2. Let G1, G2, L, F1, and F2 be as in Lemma 1 and V1 and V2 be as

defined above. If Wi = G
−1/2
i ViG

+1/2
i is irreducible, Gi is an M -matrix, ‖ G−1

i L ‖∞<
1, and ‖ G−1

i L
T ‖∞< 1 for i = 1, 2, then the matrices F1 and F2 are spectrally

equivalent. Then there exist constants 0 < γ1 ≤ 1 ≤ γ2 such that for any n-vector x
γ1x

TF2x ≤ xTF1x ≤ γ2xTF2x.(14)

Proof. First show that Wi is a nonnegative matrix, and then use the theory of
nonnegative matrices to conclude the proof. Note that ρ1 and ρ2 are the largest eigen-
values of V1 and V2, respectively. Consequently, they are also the largest eigenvalues
of W1 and W2.

Recall that −L is a nonnegative matrix by assumption and G−1
i is a nonnegative

because Gi is a positive definite M -matrix by assumption. From the inequalities
G−1
i ≥ 0, −L ≥ 0, and ‖ G−1

i L ‖∞< 1, it follows that the Neumann expansion of
(I+G−1

i L)
−1 exists and is nonnegative. Therefore (I+G−1

i L)
−1 is also nonnegative.

Similarly it can also be shown that (I + G−1
i L

T)−1 is nonnegative. Note that Wi is
the product of nonnegative matrices and is therefore a nonnegative matrix.

From the theory of nonnegative matrices it follows that ρi, the largest eigenvalue
of Wi, coincides with the spectral radius of Wi which is smaller than or equal to in
magnitude ‖ Wi ‖∞= max1≤j≤n(Wie)j , where e is the n-vector whose components
are all 1’s. Since ‖ G−1

i L ‖∞< 1 and ‖ G−1
i L

T ‖∞< 1, it follows from the Neumann
expansions of (I +G−1

i L)
−1 and (I +G−1

i L
T)−1 that

‖ (I +G−1
i L)

−1 ‖∞≤
1

1− ‖ G−1
i L ‖∞

and

‖ (I +G−1
i L

T)−1 ‖∞≤
1

1− ‖ G−1
i L

T ‖∞
.

INCOMPLETE MULTILEVEL CHOLESKY FACTORIZATIONS 905

Therefore

ρi ≤ ‖Wi ‖∞
≤ ‖ (I +G−1

i L)
−1 ‖∞‖ G−1

i (L+ LT) ‖∞‖ (I +G−1
i L

T)−1 ‖∞
≤ ‖ G−1

i L ‖∞ + ‖ G−1
i L

T ‖∞
(1− ‖ G−1

i L ‖∞)(1− ‖ G−1
i L

T ‖∞)
.

From Lemma 1 and the above inequalities, it follows that for a n-vector x �= 0

xTF2x

xTF1x
≤ σ + (σ − 1)ρ1 ≤ σ + (σ − 1) ‖W1 ‖∞= γ1,

xTF1x

xTF2x
≤ σ + (σ − 1)ρ2 ≤ σ + (σ − 1) ‖W2 ‖∞= γ2.

Similarly, it follows that for a n-vector x �= 0

xTF2x

xTF1x
≤ σ + (σ − 1)ρ1 ≤ σ + (σ − 1)

‖ G−1
1 L ‖∞ + ‖ G−1

1 LT ‖∞
(1− ‖ G−1

1 L ‖∞)(1− ‖ G−1
1 LT ‖∞)

= γ1,

xTF1x

xTF2x
≤ σ + (σ − 1)ρ2 ≤ σ + (σ − 1)

‖ G−1
2 L ‖∞ + ‖ G−1

2 LT ‖∞
(1− ‖ G−1

2 L ‖∞)(1− ‖ G−1
2 LT ‖∞)

= γ2.

Combining the above inequalities completes the proof.
The conditions required to bound the largest eigenvalues ofW1 andW2 in Lemma

2 are not very severe. These conditions can easily be satisfied for matrices arising from
the IC factorizations of M -matrices.

In practice, the diagonal matrices Du,u and D̃u,u can be constructed such that the

inequalities −D−1
u,uL

T
u,ue < e, −D−1

u,uLu,ue < e, −D̃−1
u,uL

T
u,ue < e, and −D̃−1

u,uLu,ue <
e hold [2, 3, 4, 7, 13, 20, 21]. Therefore Lemma 2 can be applied to S

IMC
and S

IC
.

The proof of Theorem 1 can now proceed. It establishes the spectral equivalence
of the preconditioners QIMC and QIC .

Proof of Theorem 1. The proof of this theorem is similar to [18]. Let x be a vector
on the composite grid ω = ωf ∪ ωu. Partition x = [xf

xu
], where xf is a vector in ωf

and xu is a vector in ωu. Hence

xTQICx = xTQ
IMCx+ x

T (QIC −QIMC)x

= xTQIMCx+ x
T
u (SIC

− S
IMC

)xu.

From (13) it follows that xTuSIC
xu ≤ γ2xTuSIMC

xu. Hence

xTQ
ICx ≤ xTQIMCx+ (γ2 − 1)xTuSIMCxu.

Using Lemma 3, it follows that

xTuSIMC
xu = inf

xf

xTQ
IMC
x ≤ xTQ

IMC
x.

Finally,

xTQICx ≤ γ2xTQIMCx.

Similarly,

xTQIMCx = xTQICx+ x
T
u (SIMC − SIC)xu.

906 J. C. DIAZ AND K. KOMARA

Again from (13), it follows that xTuSIMC
xu ≤ 1

γ1
xTuSIC

xu yielding

xTQIMCx ≤ xTQICx+

(
1

γ1
− 1

)
xTuSIC

xu.

Since Lemma 3 implies

xTuSIC
xu = inf

xf

xTQ
IC
x ≤ xTQ

IC
x,

it can be concluded that

xTQIMCx ≤
1

γ1
xTQ

IC
x or γ1x

TQIMCx ≤ xTQIC
x.

The next two lemmas summarize properties of symmetric positive definite matri-
ces that are used in the proof of Theorem 1; see, for instance, [18].

Lemma 3. Let C = [C1,1

C2,1

C1,2

C2,2
] be a symmetric positive definite matrix and S

C
=

C2,2 − C2,1C
−1
1,1C1,2 be the Schur complement of C1,1 in C. Then for any vector

x = [x1

x2
] consistently partitioned with C, it follows that

xT2 SC
x2 = inf

x1

xTCx.

Lemma 4. Let E and F be symmetric positive definite matrices of order n.
Assume that there exist constants 0 < α ≤ β such that for any n-vector x �= 0

αxTEx ≤ xTFx ≤ βxTEx;
then the condition number of E−1F satisfies

κ(E−1F) ≤ β
α
.

4. Numerical experiments. The illustration of the potential of the method is
done through the solution of some sample problems. First a two-level self-adjoint case
is presented. Then a multilevel non-self-adjoint case is presented.

4.1. Two-level self-adjoint problem. The system of linear equations is gen-
erated by a 5-point cell-centered finite difference discretization of Poisson’s equation:

−∂
2u

∂x2
− ∂

2u

∂y2
= f(x, y) in Ω,

u = 0 in ∂Ω,

where Ω = [0, 1] × [0, 1] is the unit square. The function f(x, y) is chosen such that
u(x, y) = x(1− x)y(1− y) is the exact solution.

The system of linear equations is obtained using a cell-centered discretization of
the PDE on the composite grid ω = ωf ∪ ωu. For the test, the region Ω is divided
into two rectangular subregions Ω(f) = [0, 1] × [0, s] and Ω \ Ω(f), with six different
values of s in (0, 1). See Figure 1 for an illustration of the composite grid.

For each fixed value of s, a cell-centered coarse grid is introduced with uniform
spacing hc in Ω, and a cell-centered fine grid with uniform spacing hf = hc/3 in Ω(f)

is introduced for values 1/32 and 1/64 of hc. The composite grid points are ordered
using the natural ordering. The symmetric cell-centered approximation of [16, 17] is

INCOMPLETE MULTILEVEL CHOLESKY FACTORIZATIONS 907

Table 1
Comparing IC and IMC with point factorization.

hc = 1/32 hc = 1/64
N IC IMC Cγ N IC IMC Cγ

2945 48 47 5.35 12033 93 92 5.35
3937 56 56 5.35 16065 107 107 5.35
4929 62 62 5.34 20097 123 123 5.35
5921 70 70 5.28 24129 135 135 5.35
6913 73 73 4.93 28161 143 143 5.34
7905 73 73 3.29 32193 143 143 4.93

used because it yields a symmetric composite grid matrix A. The iterative solver is
the PCG method [8].

The number of iterations and the CPU time spent in the PCG is reported. The
numerical calculations were carried out in double precision arithmetic on a Sun work-
station. Three preconditioners are tested—the IMC preconditioner Q

IMC , the IC
preconditioner Q

IC , and the inexact BEPS preconditioner QIBEPS . The stopping cri-
teria is rTi ri ≤ 10−12rT0 r0, where ri = b−Axi is the ith residual vector and xi is the
ith approximation to the solution x. The initial guess is x0 = Q−1b, where Q is the
preconditioning matrix for A. The preconditioners are the IC(0) [12, 13, 21] for point
IC factorizations and the INV(1) and INV(2) [7, 9, 22] for block IC factorizations.
Two different experiments were carried out.

The first experiment compares the performance of the IMC preconditioner against
that of the IC preconditioner. The IC preconditioner used for this test is the IC(0)
factorization of the composite grid matrix A. Further, the constant C

γ
= γ2/γ1 of

Theorem 2 is computed. The numerical results for the first experiment are presented
in Table 1, which gives the number of iterations taken by the PCG with the IMC
and IC preconditioner. The results show that both preconditioners require similar
numbers of iterations. Further, it illustrates that the constant C

γ
has a reasonable

size and is independent of the grid size.

The second experiment compares the performance of the IMC preconditioner
against that of the inexact BEPS preconditioner. Both point and block factorizations
of the coarse and fine grid matrices are considered for the IMC and inexact BEPS
preconditioners. Table 2 presents the results of the second set of experiments. In
Table 2, hc is the coarse grid spacing, N represents the number of unknowns in
the linear system of equations, itr is the number of PCG iterations using the given
preconditioning, and time gives the CPU time in seconds required by PCG with the
given preconditioning.

The second experiment shows that for IC(0) factorizations, the PCG with the
IMC and the PCG with the inexact BEPS preconditioners take similar numbers of
iterations (see Table 2). The IMC preconditioner, however, requires less CPU time.
The same observation is true for the inexact BEPS and the IMC preconditioners
derived from INV(1) and INV(2) factorizations (see Table 2).

4.2. Non-self-adjoint multilevel systems. An extension of the IMC factor-
izations to non-self-adjoint multilevel problems can be achieved simply by replacing
LT with U in the appropriate places throughout section 2. The solution of more
difficult sample problems further illustrates the potential of the method.

The system of linear equations is generated by a 5-point cell-centered finite dif-

908 J. C. DIAZ AND K. KOMARA

Table 2
Comparing IMC and inexact BEPS with point and block factorizations.

IC(0) factorization INV(1) factorization INV(2) factorization
IMC IBEPS IMC IBEPS IMC IBEPS

N itr time itr time itr time itr time itr time itr time
hc = 1/32

2945 47 3.7 47 4.9 18 1.2 18 1.5 14 0.9 14 1.1
3937 56 5.9 55 7.9 22 2.1 22 2.7 17 1.6 17 2.0
4929 62 8.4 62 11.3 26 3.2 26 4.0 19 2.2 19 2.8
5921 70 11.1 69 15.2 27 4.0 27 5.0 20 2.9 20 3.6
6913 73 13.5 73 18.8 31 5.6 31 7.0 22 3.8 22 4.9
7905 73 15.5 73 21.6 31 6.4 31 8.0 23 4.6 23 5.8

hc = 1/64
12033 92 30.1 92 39.0 37 11.4 37 13.6 27 8.1 27 9.7
16065 107 46.0 108 62.5 41 17.0 41 20.9 31 12.5 31 15.3
20097 123 66.7 123 90.1 50 26.4 50 32.5 38 19.5 38 24.2
24129 135 87.7 134 119.0 54 34.6 54 42.9 40 25.0 40 31.1
28161 143 107.2 143 153.7 61 46.9 61 58.6 45 33.9 45 42.2
32193 143 122.5 143 171.2 63 54.7 63 67.9 46 39.4 46 48.8

ference discretization of the non-self-adjoint PDE:

−∂
2u

∂x2
− ∂

∂y

(
∂u

∂y
− 100u

)
= f(x, y) in Ω,

u = g(x, y) in ∂Ω,

where Ω = [0, 1]×[0, 1] is the unit square. The functions f(x, y) and g(x, y) are chosen
such that u(x, y) = x(1− x)(exp(10(1− y))− 1) is the exact solution.

The system of linear equations is obtained using a cell-centered discretization of
the PDE on the composite grid. Up to four levels are used. The coarsest grid, ω(1),
is a 5× 5 grid. The other grids are constructed recursively by refining a few blocks of
the last fine grid. The grid at level k is obtained by refining the blocks of ω(k−1) in
[1, Nk−1]× [1, 2(k−1)], where Nk−1 is number of grid blocks in the x-direction in grid
ω(k−1).

A cell-centered coarse grid is introduced with uniform spacing h1 = 1/6 in Ω.
For the grid at level k, a cell-centered grid with uniform grid spacing hk = hk−1/5 is
introduced. Hence, each coarse grid block is subdivided by 5 to obtain the fine grid
blocks.

The symmetric cell-centered approximation of [17, 16] is used to approximate the
symmetric part of the PDE. The first derivatives are approximated using upwinded
difference approximations. The unknowns on each local grid were ordered using nat-
ural ordering which results in a block tridiagonal local grid matrix. The size of the
submatrices of the grid matrix is equal to the number of grid blocks in the x-direction
in the corresponding grid. The resulting composite grid matrix A is a nonsingular
M -matrix for each problem. The linear system of equations resulting from the dis-
cretization of the model problem is solved using the preconditioned GMRES [23] and
Bi-CGSTAB [24] methods. Two different preconditioners are considered—the IMC
and the inexact BEPS preconditioners. Each grid matrix is a block tridiagonal matrix
with block diagonal entries being tridiagonal matrices and block off-diagonal entries
being square diagonal matrices. The block ILU factorization for the local grid ma-
trices was used. The entries of the block diagonal matrix constructed from the block
ILU factorization are tridiagonal.

INCOMPLETE MULTILEVEL CHOLESKY FACTORIZATIONS 909

Table 3
Non-self-adjoint multilevel problems—inexact BEPS and IMC.

Inexact BEPS IMC
GMRES(20) Bi-CGSTAB GMRES(20) Bi-CGSTAB

N level itr time itr time itr time itr time
265 1 4 0.046 2 0.040 4 0.036 2 0.028

2665 2 10 1.165 5 0.89 10 1.08 5 0.76
26665 3 34 52.04 18 34.79 34 47.45 18 26.05

266665 4 131 2285.47 67 1398.28 131 2008.27 70 1125.61

The stopping criterion is rTi ri ≤ 10−12rT0 r0 where ri = b−Axi is the ith residual
vector and xi is the ith approximation to the solution x. The initial guess is x0 =
Q−1b, where Q is the preconditioning matrix for A.

The number of iterations and the CPU time spent in the preconditioned GMRES
and Bi-CGSTAB are reported. The results gathered are presented in Table 3. The
column labels of the tables are N for the number of unknowns in the composite grid
problem, level for the number of levels, itr for the number of iterations taken by
the iterative solver, and time for CPU the time spent in the solver. The numerical
calculations were carried out in double precision arithmetic on a Sun workstation.

The experiments show that GMRES(20) took the same number of iterations with
the IMC and the inexact BEPS. The preconditioned Bi-CGSTAB also took the same
number of iterations with these preconditioners except for the largest problem, where
the solver with the IMC needed a few extra iterations. The inexact BEPS needed more
CPU time because it solves two local grid problems for each grid at each evaluation,
except for the coarsest grid. The sparsity of the systems presented herein is very low,
a five point star. When denser discretizations are used, the relative performance of
IMC over BEPS should be even more accentuated.

The analysis of section 3 does not extend so simply to the non-self-adjoint case.
The IMLU, a refinement of the IMC for non-self-adjoint multilevel problems, is in-
troduced in [11, 19]. The IMLU is analyzed there for non-self-adjoint M-matrices.
Extensive numerical results are also contained therein.

5. Conclusion. The construction of the IMC factorization requires the IC fac-
torization for each grid level. The IMC is spectrally equivalent to the IC factorization
of the assembled composite grid system. The IMC factorization has the familiar feel
of an LLT factorization consisting of a forward elimination pass followed by a back-
ward substitution pass. Therefore, the IMC factorization is a natural extension of
the IC factorization for systems arising from the discretization of PDEs on multilevel
composite grids. The sparsity of the systems considered in section 4 is a five point
star. The relative performance of IMC over BEPS should be even more sharp when
denser discretizations are considered.

Other forms of inexact BEPS preconditioner exist where the local domain pre-
conditioners are not IC factorizations. Whereas in some cases corresponding IMC
factorizations exist, these are not discussed here. The extent of application of IMC
goes beyond incomplete factorizations where the L of (1) coincides with the strictly
lower part of A. These factorizations can be applied to each grid level resulting on
an inexact BEPS which follows the same downward-upward cycle. So long as the
preconditioning applied at each grid level has the form of an LLT factorization, IMC
is equally applicable. IMC can easily be incorporated with only minor changes in
existing preconditioned iterative methods using inexact BEPS preconditioners with

910 J. C. DIAZ AND K. KOMARA

approximate LLT factorizations at each grid level.

The experiments illustrate that the IMC performs as well as the inexact BEPS
preconditioner in terms of the number iterations required by the preconditioned it-
erative solvers. Its construction allows as much parallelism as the inexact BEPS.
However, the application of the IMC factorization requires less computing time than
the application of the inexact BEPS preconditioner. This leads to a better perfor-
mance in CPU time for the overall computing time required by the preconditioned
iterative solvers.

Acknowledgments. The authors would like to express their appreciation to the
referees for their very helpful comments. Their very thorough reading and insightful
comments helped the authors significantly improve the presentation. The authors
would also like to thank J. L. Hensley, who patiently read several versions of this
manuscript.

REFERENCES

[1] O. Axelsson, A class of iterative methods for finite element equations, Comput. Methods
Appl. Mech. Engrg., 9 (1976), pp. 123–137.

[2] O. Axelsson, Incomplete block matrix factorization preconditioning methods: The ultimate
answer?, J. Comput. Appl. Math., 12/13 (1985), pp. 3–18.

[3] O. Axelsson and S. Brinkkemper, On some versions of incomplete block-matrix factorization
iterative methods, Linear Algebra Appl., 58 (1984), pp. 3–15.

[4] O. Axelsson and B. Polman, On approximate factorization methods for block-matrices suit-
able for vector and parallel processors, Linear Algebra Appl., 77 (1986), pp. 3–26.

[5] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Aca-
demic Press, New York, 1979.

[6] L. Chu, J. C. Díaz, M. Komara, and A. C. Reynolds, Local Grid Refinement for Reservoir
Simulation Applications, Tech. report 98-3SC, University of Tulsa, Tulsa, OK, 1998.

[7] P. Concus, G. Golub, and G. Meurant, Block preconditioning for the conjugate gradient
method, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 220–252.

[8] P. Concus, G. H. Golub, and P. D. O’Leary, A generalized conjugate gradient method for the
numerical solution of elliptic partial differential equations, in Sparse Matrix Computations,
J. R. Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp. 309–332.

[9] P. Concus and G. Meurant, On computing INV block preconditionings for the conjugate
gradient method, BIT, 26 (1986), pp. 493–504.

[10] J. C. Díaz, J. L. Hensley, and M. Komara, Multilevel LU factorization for modeling multi-
phase contaminant transport, in Proc. Second Internat. Petroleum Environmental Confer-
ence, K. L. Sublette, ed., New Orleans, LA, October 25–27, 1995, pp. 689–699.

[11] J. C. Díaz and M. Komara, Incomplete Multilevel LU Factorizations, Tech. report 98-5SC,
University of Tulsa, Tulsa, OK, 1998.

[12] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Solving Linear
Systems on Vector and Shared Memory Computers, SIAM, Philadelphia, 1991.

[13] T. Dupont, R. Kendall, and H. Rachford, An approximate procedure for solving self-adjoint
elliptic difference equations, SIAM J. Numer. Anal., 5 (1968), pp. 559–573.

[14] D. J. Evans, Preconditioning Methods: Analysis and Applications, Gordon and Breach Science,
New York, 1983.

[15] R. E. Ewing, Domain decomposition techniques for efficient adaptive local grid refinement,
in Domain Decomposition Methods, T. F. Chan, R. Glowinski, J. Periaux, and O. B.
Widlund, eds., SIAM, Philadelphia, 1989, pp. 192–206.

[16] R. E. Ewing and R. D. Lazarov, Adaptive local grid refinement, SPE 17806, in Proc. Rocky
Mountain Regional Meeting, Casper, WY, May 11–13, 1988.

[17] R. E. Ewing, R. D. Lazarov, and P. S. Vassilevski, Finite difference schemes on grids with
local refinement in time and in space for parabolic problems, I. Derivation, stability and
error analysis, Computing, 45 (1990), pp. 193–215.

[18] R. E. Ewing, R. D. Lazarov, J. E. Pasciak, and P. S. Vassilevski, Domain decomposition
type iterative techniques for parabolic problems on locally refined grids, SIAM J. Numer.
Anal., 31 (1993), pp. 1537–1557.

INCOMPLETE MULTILEVEL CHOLESKY FACTORIZATIONS 911

[19] M. Komara, Incomplete Multilevel LU Factorizations, Ph.D. dissertation, Center for Parallel
and Scientific Computing, University of Tulsa, Tulsa, OK, 1996.

[20] J. A. Meijerink and H. A. van der Vorst, An iterative method for linear systems of which
the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148–162.

[21] J. A. Meijerink and H. A. van der Vorst, Guidelines for the usage of incomplete decompo-
sitions in solving sets of linear equations as they occur in practical problems, J. Comput.
Phys., 44 (1981), pp. 134–155.

[22] G. Meurant, The block preconditioned conjugate gradient method on vector computers, BIT,
24 (1984), pp. 623–633.

[23] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[24] H. A. van der Vorst, Bi–CGSTAB: A fast and smoothly converging variant of Bi–CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

A STEPWISE APPROACH FOR THE GENERALIZED
EIGENSTRUCTURE ASSIGNMENT PROBLEM∗

GEORGE MIMINIS†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 912–924

Abstract. The DEscriptor Multi-input Eigenstructure Assignment problem using State feed-
back (DEMESAS) is considered. It is pointed out, by referring to the relevant literature, that in
many situations the final step of the DEMESAS is (or can be) the solution of the matrix equation

(A−BF)X = EXL⇐⇒ BFX = AX − EXL(0.1)

with respect to F . Little attention has been paid, up to now, on deriving a numerically sound
algorithm for the computation of F . Consequently, a straightforward approach has often been used.
We show that this approach has numerical problems, and we introduce a new approach for the
solution of (0.1). We illustrate the reasons that make the new approach numerically better than the
straightforward approach, and we present two numerical examples that support our claim.

Key words. eigenstructure assignment, descriptor systems, state feedback, complete controlla-
bility, robust control, singular pencils

AMS subject classifications. 93C05, 93C45, 93B40, 93B55, 93B52, 93B55, 65F05, 15A24,
15A22

PII. S0895479899298484

1. Preliminaries. Real and complex numbers will be represented by R and C,
respectively. Scalars will be represented by Greek letters, matrices by upper case
Roman, while vectors and indices by lower case Roman. A superscript T will rep-
resent transposition, R(A), N (A) will denote the column and the null spaces of A,
respectively, and λ(A) will denote the set of eigenvalues of A. The zero and the
identity matrices will be represented by O and I, respectively, the zero vector will be
denoted by o, and ei will denote the ith column of I. Finally χ(A) = ‖A‖∥∥A−1

∥∥ is
the condition number of A with respect to inversion.

The paper is organized as follows. In the introduction the problem is defined and
its significance with respect to other control problems is pointed out. In sections 3 and
4 we introduce algorithms for the solution of (0.1), based on a new stepwise approach
and in section 5 we point out why the algorithms in sections 3 and 4 are numerically
better than a straightforward algorithm that is commonly used for the solution of
(0.1). In the same section we suggest some heuristics that improve the numerical
properties of the algorithms in sections 3, 4 and we present a numerical example that
supports our claims regarding the numerical properties of the new approach. We
finish with our conclusion in section 6. The paper is a complete version of [19].

2. Introduction and literature discussion. Consider the continuous time-
invariant descriptor system

Eẋ(t) = Ax(t) +Bu(t),(2.1)

where E ∈ R
n×n, A ∈ R

n×n is the open-loop system matrix, B ∈ R
n×m is the control

influence matrix, x(t) ∈ R
n is the state of the system at time t, and u(t) ∈ R

m is the

∗Received by the editors July 20, 1999; accepted for publication (in revised form) by V. Mehrmann
July 5, 2000; published electronically December 28, 2000. This work was supported by NSERC grant
OGP0944.

http://www.siam.org/journals/simax/22-3/29848.html
†Department of Computer Science, Memorial University of Newfoundland, St. John’s, NF,

Canada, A1B 3X5 (miminis@cs.mun.ca, http://www.cs.mun.ca/˜george)

912

A STEPWISE APPROACH FOR EIGENSTRUCTURE ASSIGNMENT 913

input or control of the system. System (2.1) is said to be completely controllable if
and only if

{∀λ ∈ C =⇒ rank(B,A− λE) = n} ∧ {rank(B,E) = n} .
For definitions on the controllability of descriptor systems, see, for example, [4]. An
important problem in control theory is to guarantee the stability of (2.1) by choosing
u(t). One way to accomplish this is by using the state feedback u(t) = −Fx(t) ,
withF ∈ R

m×n, which gives the closed-loop system

Eẋ(t) = (A−BF)x(t).(2.2)

It can be proven that when E is not singular, (2.2) is stable if all the eigenvalues of
the pencil [(A−BF) , E] have negative real parts. The above discussion also applies
to discrete time systems. The only difference is that all the eigenvalues of the corre-
sponding pencil should be less than 1 in absolute value. A method that is concerned
with placing the eigenvalues at the right points is that of eigenvalue assignment. Ac-
cording to this method, we are given a completely controllable system (E,A,B) and
a self-conjugate set Λ of at most n scalars, an F may then be computed such that
λ[(A−BF) , E] − {−∞,∞} ⊆ Λ. This definition takes into consideration the pos-
sibility of a singular E and it guarantees that the resulting pencil [(A−BF) , E] is
regular (λ[(A−BF) , E] = C). It may be shown that when m > 1 (multi-input case)
there is no unique F that accomplishes eigenvalue assignment (actually F is unique
if and only if m = 1 and E nonsingular). It appears that the freedom in the choice
of F was first identified, for the case E = I, in [20], and it was associated with free-
dom in the selection of the corresponding eigenvectors (closed-loop eigenvectors) that
were implicitly assigned along with the given eigenvalues. More elaborate discussions
on the subject may be found in [11] for the case E = I and in [12] for the case
E = I, where it is shown that an eigenvector xi is feasible (assignable) if and only if
xi ∈ N

[
PT (A− λiE)

]
, with P being orthonormal and R(P) = N (BT). Given now

that normally the plant (“machinery” that is mathematically modeled by (2.1) and
designed for a specific task) is known with some uncertainty, it is natural to ask how
to use the freedom in the choice of F in order to design a control system that satisfies
various stability and performance specifications in the face of plant uncertainty. This
gives rise to the eigenstructure assignment problem. Actually the computation of a
feedback that will satisfy various robustness criteria (stability and/or performance)
is the central subject of robust control, where along with eigenstructure assignment,
other methods have also been developed, like linear quadratic regulator (LQR) and
linear quadratic gaussian (LQG) optimal control, H∞ optimal control, adaptive con-
trol, etc. Among these methods, eigenstructure assignment is probably the simplest,
and since it also appears to be fairly successful, it has naturally become the subject of
extensive research, as well as the method of choice for a good number of applications.
On the other hand, eigenstructure assignment has had its share of criticism (see, for
example, [10], [14], [15]). The main criticism of this method is that it becomes ill con-
ditioned as n increases and m decreases. The remedy for this, suggested, for example,
in [10], is to solve a linear quadratic problem (LQ) instead and/or to place the eigen-
values in regions instead of simply points. Solid evidence, however, that the remedy
will cure the problem has not been demonstrated to this point. Furthermore, research
suggests that being able to choose eigenvalue locations and eigenvector shapes (easily
accomplished by eigenstructure assignment) is necessary in certain applications. See,
for example, [16], where eigenstructure assignment is used along with LQ to form a

914 GEORGE MIMINIS

hybrid method for the design of aircraft stability augmentation systems. Improving,
therefore, algorithms related to eigenstructure assignment is clearly useful.

Next we give a brief account of a sample from the respective literature, including
various robustness criteria that researchers have attempted to satisfy via eigenstruc-
ture assignment. From this discussion our motivation follows.

In some references, for example, [6], [7], [8], the eigenvalue assignment problem
is solved via the eigenstructure assignment problem. This, however, is not advisable
from a numerical point of view since eigenvalue assignment may be accomplished
without the explicit assignment of a specific set of closed-loop eigenvectors. See [2],
[17], [18], [21], [22] and for a counterexample, see [17]. In [20] the output y(t) = Cx(t)
(with C ∈ R

p×n) of the system is also considered and the closed-loop eigenvectors are
chosen so that a desired distribution of the modes (eλit) among the components of
the output y(t), is achieved. To see this, let (λi, xi) be a closed-loop eigenpair and zi
the corresponding left closed-loop eigenvector, then the output vector may be given
by

y(t) =
n∑
i=1

Cxi
(
zTi x(0)

)
eλit.

If now xi is chosen such that, for example, Cxi = (2, 1, 0, . . . , 0)
T
, the ith mode will

appear in the first two components of y(t) and it will be twice as large in the first
component than in the second. In [13] the assignment of principal closed-loop eigen-
vectors is considered. [20], [13] are mathematical treatments of the subject and along
with [25] include a considerable number of interesting results that were actually redis-
covered more recently. In [5] a parametric approach to the eigenstructure assignment
problem is proposed and good numerical properties are claimed for the algorithms
within; however, no evidence of the latter is given. In [23] a set of desired, but
not necessarily feasible, closed-loop eigenvectors are given along with the closed-loop
eigenvalues. Since, however, the desired eigenvectors may not be feasible, a number
of least squares problems are solved so that the “closest” feasible eigenvectors to the
corresponding desired eigenvectors may be found. In [24] the freedom in the choice of
F is used to minimize the index

J =
n∑
i=1

ωi ‖Fei‖22 ,

with ωi being desired “weights.” It is interesting to observe that the weights may be
chosen so that the state feedback will effectively result into a specific output feedback
(u = −Ky for some matrix K). To see this, consider the example given in [24], where
n = 19, and choose ωi = 1 for i ∈ {1, 2, 7, 12, 14} and ωi = 100 for the remaining i, so
that only columns 1, 2, 7, 12, 14 of F are significant. Then with y(t) = Cx(t), where

C = (e1, e2, e7, e12, e14)
T
and K = FCT , we have

u = −Fx ≈ −Ky.
In [1] the freedom in the choice of the closed-loop eigenvectors is used for the opti-
mization of the following problem:

min

u=−Fx

∫ ∞

t0

(
xTQx+ uTRu

)
dt

subject to λ(A−BF) = Λ

 ,

A STEPWISE APPROACH FOR EIGENSTRUCTURE ASSIGNMENT 915

where Q is symmetric positive semidefinite and R is symmetric positive definite. By
far, however, the most extensively studied robustness criterion is that of optimizing the
condition number of the eigenproblem of the pencil [(A−BF) , E]. See, for example,
[3], [11], [12], [26], [27].

In general, when the freedom in the choice of the eigenvectors is to be used in
order to solve a control problem beyond simply eigenvalue assignment, the following
“two-step process” may be considered:

(i) A suitable set of eigenvectors is computed so that the control problem beyond
eigenvalue assignability is solved.

(ii) These eigenvectors along with the corresponding given eigenvalues are as-
signed.

Although at first glance it may not be obvious that this process may be used in all
of the problems described in the above references, often the algorithms within can be
customized to suit the “two-step process.” In this paper we will only be interested in
the second step of the “two-step process”; the reason is twofold. Initially the second
step may be common to a large number of applications despite which robustness
criterion the first step attempts to satisfy. Therefore a numerically sound solution of
this step may be welcome. The lack of such a numerical solution provides the second
reason. The efficient numerical solution of (0.1) has not received much attention
due to the fact that at first glance, it does not appear to hide any surprises. Thus
far the methods employed for its solution are variations of the following three-step
straightforward approach.

(i) Compute G = AX − EXL.
(ii) Solve the system BY = G with respect to Y .
(iii) Solve FX = Y with respect to F .

Clearly, the above process makes the accuracy of F depend on the condition numbers
of B and X. Also, if E is singular, the above approach proceeds in such a way that
the resulting pencil [(A−BF) , E] is always singular, even if the system is completely
controllable, where theory dictates that singularity of the closed-loop pencil can be
avoided. This point will become obvious in section 3 from (3.8), (3.10). To overcome
this problem, the following two-step “fix” has been recommended in [8].

(i) Compute an orthonormal matrix N that spans the null space of E. Then
compute a matrix D such that E +ANNT +BDNT is nonsingular.

(ii) Solve BF (X,N) = (AX − EXL,D) with respect to F .
In the next section we will present an algorithm that computes F in a stepwise ap-
proach. The algorithm assigns one real eigenpair at a time in a single step or one
complex conjugate eigenpair at a time in a double step. The stepwise approach is
advantageous over the above three-step approach accompanied by the two-step fix,
in two points. First, when it is possible, the stepwise approach will make the task of
producing a regular pencil [(A−BF) , E] straightforward. Second, the accuracy of
the computed F will not depend on the condition number of the entire X.

3. Initial reduction and a stepwise algorithm for the DEMESAS. Our
algorithm computes F such that

(A−BF)X = EXL,(3.1)

is satisfied, where L is a diagonal matrix with the desired eigenvalues on its diagonal
and X an n × n matrix with the corresponding feasible eigenvectors on its columns;
rank(B) = m will be assumed throughout, if this does not initially hold it can easily be
arranged. The algorithm begins by separating the uncontrollable part of the system

916 GEORGE MIMINIS

(E,A,B) from the completely controllable part. It then assigns a desirable set of
eigenpairs to the resulting completely controllable system. The decoupling of the
uncontrollable part is accomplished by an algorithm presented in [18]. According to
this algorithm, orthogonal matrices U, V , and W are computed such that

UTAV =

(
A1 Â

O Ã

)
, UTEV =

(
E1 Ê

O Ẽ

)
, UTBW =

(
B1

O

)
,

where all the uncontrollable eigenvalues have been accumulated in (Ã, Ẽ). It is rather
straightforward to show that, if X consists of a set of feasible eigenvectors, then

V TX =

(
X1 X̂

O X̃

)
,

with X̃

{
= O if λ(Ã, Ẽ) does not include desired eigenvalue,

= O if λ(Ã, Ẽ) includes desired eigenvalue(s).

If we take now (F1, F̃) =W
TFV and L =

(
L1 O

O L̃

)
, (3.1) is equivalent to

(
(A1 −B1F1)X1 (A1 −B1F1) X̂ +

(
Â−B1F̃

)
X̃

O ÃX̃

)

=

(
E1X1L1 E1X̂L̃+ ÊX̃L̃

O ẼX̃L̃

)
.(3.2)

If X̃ = O, we need only to solve

(A1 −B1F1)X1 = E1X1L1(3.3)

for F1, and since the desired set of eigenvectors is feasible, (3.2) will be compatible.

In this case F̃ may assume any convenient value. If, however, X̃ = O, meaning that
some of the uncontrollable eigenvalues are also desired, we first solve (3.3) and then

(A1 −B1F1) X̂ +
(
Â−B1F̃

)
X̃ = E1X̂L̃+ ÊX̃L̃(3.4)

with respect to F̃ . Since the desired eigenvectors are feasible, (3.2) will be compatible.
The latter means that we may change (assign) the eigenvector of an uncontrollable
eigenvalue so long as the desired eigenvector is feasible. This is of course a well-
known result (see, for example, [20], [25]); the difference here is that it appears in an
algorithmic way which facilitates its computer solution. We will consider the solution
of (3.4) when an algorithm for (3.3) has been developed.

We should now observe that if the pencil (Ã, Ẽ) is singular, so is [(A−BF) , E]
for every F1. If, however, (Ã, Ẽ) is regular but (A1, E1) is singular, (3.3) suggests
that there may be a way to change this property in [(A1 −B1F1) , E1] by choosing
the right F1, and eventually produce a regular pencil [(A−BF) , E]. In the subse-
quent discussion we will see that this is possible, and we will show how it can be
accomplished.

The problem of assigning eigenpairs to a completely controllable system (E1, A1, B1)
will occupy us immediately, hence its formal definition follows.

A STEPWISE APPROACH FOR EIGENSTRUCTURE ASSIGNMENT 917

Problem 3.1. Given a completely controllable system (E1, A1, B1) ∈ R
n×n ×

R
n×n × R

n×m, with rank(B1) = m, and a desired self-conjugate set of eigenvalues
{λ1, . . . , λr}, with r = rank(E1) and also given a feasible set of corresponding eigen-
vectors {x1, . . . , xr}, that is, xi ∈ N

[
PT (A− λiE)

]
, with P being orthonormal and

R(P) = N (BT), an m× n matrix F1 must be computed, so that

(A1 −B1F1)X1 = E1X1L1,

where L1 = diag(λ1, . . . , λr,∞, . . . ,∞︸ ︷︷ ︸
n−r

), X1 = (x1, . . . , xr, X∞) with X∞ ∈ R
n×n−r

and such that X1 is nonsingular. Furthermore [(A1 −B1F1) , E1] should form a reg-
ular pencil.

The following two observations will be implemented in the algorithm. First, we see
that if complex eigenpairs are to be assigned, (3.3) may produce a complex F1. Since,
however, such an F1 may not be useful in practice, we can slightly change the problem
in order to address this important issue. To accomplish this, we will first assume that
complex conjugate eigenpairs appear successively in L1 and X1. Furthermore, if
µ1 ± iν1 are two desired complex conjugate eigenvalues, they should appear on the

diagonal of L1 as a 2× 2 block

(
µ1 ν1
−ν1 µ1

)
. If also x1 ± ix2 are the corresponding

desired eigenvectors, the two vectors x1, x2 should appear in the respective columns
of X1 instead. The latter is justifiable since R(x1, x2) = R(x1 + ix2, x1 − ix2).
The second observation is that assigning eigenvalues of multiplicity greater than m
to [(A1 −B1F1) , E1] will make these eigenvalues become defective. See [11], [25] for
the E = I case and [12] for the E = I case. It is well known, however, that defective
eigenvalues are sensitive to perturbations in the data, therefore unless it is absolutely
necessary, we should avoid multiplicities greater than m. Next we present a stepwise
algorithm for the solution of (3.3) that takes into consideration the two restrictions
we just described. For simplicity B1 will be assumed to be n×m and E1, A1, X1 n×n
each, E1 will be allowed to be singular.

Let Ṽ and Ũ be the orthogonal matrices of the QR decompositions of X1 and
E1Ṽ , respectively. Consider also the following partitioning:

X1 ≡ Ṽ TX1 =

(
X11 X12

O X3

)
, ŨT

(
E1Ṽ

)
=

(
E11 E12

O E3

)
,(3.5)

ŨTA1Ṽ =

 A12

A11

A3

 , B1 ≡ ŨTB1 =

(
B11

B3

)
, L1 =

(
L11 O
O L3

)
,(3.6)

with A11 and B11 being n× 2 and 2×m, respectively, and

X11 =

(
ξ11 ξ12
0 ξ22

)
, E11 =

(
ε11 ε12
0 ε22

)
.

The algorithm may then attempt to assign the eigenpairs (µ1 ± iν1, x1 ± ix2) by com-

puting the m× 2 matrix F11 in F1Ṽ = (F11, F3) as follows:

(A1 −B1F1)X1 = E1X1L1

⇐⇒ ŨT (A1 −B1F1) Ṽ Ṽ
TX1 = ŨTE1Ṽ Ṽ

TX1L1

⇐⇒

 ×

(A11 −B1F11)X11

(A3 −B3F3)X3

 =

(
E11X11L11 ×

O E3X3L3

)
.(3.7)

918 GEORGE MIMINIS

From the first two columns of (3.7) we derive the equation

B1F11X11 = A11X11 −
(
H
O

)
,(3.8)

where if E11 is nonsingular, we take H = E11X11L11 and by solving (3.8) with
respect to F11 the complex eigenpair (µ1 ± iν1, x1 ± ix2) is assigned. If, however, E11

is singular, the assignment cannot proceed. In this case we make certain that the
computed F11 will not cause singularity of the pencil [(A1 −B1F1) , E1]. This may
be accomplished by taking H in (3.8) to be any nonsingular 2 × 2 matrix. To avoid
unnecessary numerical problems we may choose ‖H‖ comparable to the magnitude of
our data. If, alternatively, a real eigenpair (λ1, x1) is to be assigned,

B1f11ξ11 = a11ξ11 −
(
η
o

)
(3.9)

needs to be solved instead of (3.8), where f11, a11 are m × 1 and n × 1, respectively.
If now ε11 = 0, we take η = ε11ξ11λ1 in (3.9) and solve

B1f11 = a11 −
(
ε11λ1

o

)
(3.10)

with respect to f11. If, however, ε11 = 0, then (λ1, x1) cannot be assigned and as with
the complex case f11 should be chosen so as to avoid singularity in [(A1 −B1F1) , E1].
This may be achieved by taking η = 0 and solving

B1f11 = a11 −
(
η
o

)
.(3.11)

In this case too, |η| must be comparable to the magnitude of our data. Once (3.8) or
(3.9) is solved, (3.7) takes the form

(
H ×
O (A3 −B3F3)X3

)
=

(
E11X11L11 ×

O E3X3L3

)
.(3.12)

It is now clear why a nonsingular H (or a nonzero η) will have the desired effect
regarding the regularity of the closed-loop pencil [(A1 −B1F1) , E1]. Note here that
the straightforward approach would not have been capable of choosing a nonzero η or
a nonsingular H, with obvious results. The algorithm continues in a similar manner
with the next assignment by considering the equation (A3 −B3F3)X3 = E3X3L3.

We may now observe that after each assignment, the number of states, say n, of
the next system (for example, (E3, A3, B3) above) becomes one or two less than the
number of states of its predecessor system (for example, (E1, A1, B1) above), depend-
ing on whether a real or a complex conjugate eigenpair was assigned, respectively.
Since at the same time the number of inputs m remains the same, the algorithm
reaches one of the following two stages.

• n = m,
• n = m+ 1 and only complex conjugate eigenpairs to be assigned.

At this point (3.8) or (3.9) are not adequate to determine all the elements of
F1, therefore a modification of the above process needs to be introduced which is
described next.

A STEPWISE APPROACH FOR EIGENSTRUCTURE ASSIGNMENT 919

Assume that (µ1 ± ν1, x1 ± ix2) is to be assigned, with n = m. The same parti-
tioning as in (3.5), (3.6) will be considered, only that the following partitioning of a

QR-like decomposition of ŨTB1 will be employed:

ŨTB1W̃ =

(
B11 B12

O B3

)
as well as W̃TF1Ṽ =

 F12

F11

F3

 .

In this case B11 is a 2× 2 upper triangular matrix, and F12 is 2× (n− 2). Once F11

is computed by solving (3.8) the following equation may be formed:(
H HX−1

11 X12 + (A12 −B11F12 −B12F3)X3

O (A3 −B3F3)X3

)

=

(
E11X11L11 (E11X12 + E12X3)L3

O E3X3L3

)
,(3.13)

where F12 and F3 still need to be computed. It is apparent from (3.13) that F3 should
be computed first and then F12 may be computed from the equation

B11F12 =
[
HX−1

11 X12 − (E11X12 + E12X3)L3

]
X−1

3 +A12 −B12F3.(3.14)

The computation of F3 will also involve steps like the above. Therefore, in this case
the algorithm has in fact two parts; the forward part, where for all i, Fii or fii is
computed by solving equations of the kind (3.8) or (3.9) and the backward part,
where Fi,i+1 or fi,i+1 is computed by solving equations of the kind (3.14) (F12 in our
presentation).

Once F1 has been computed, F may be obtained by applying the history of
orthogonal transformations. To see this, assume for the sake of presentation that the
process begins with n > m, and after a specific number of steps we reach Fr for some
r, with Fr being square. Assume also that throughout the process only double steps
were applied. We may now compute F̃r = W̃ (Frr, . . . , Fn−1,n−1) and F is finally
obtained by

F =W
[(
F11, F33, . . . , Fr−2,r−2, F̃r

)
Ṽ T , F̃

]
V T .

Recall that F̃ originates at (3.2) where the separation of the uncontrollable part of

the system took place. In the case X̃ = O, F̃ can assume any convenient value,
it may, for example, become zero. If, however, X̃ = O, (3.4) must be solved with

respect to F̃ . This may be accomplished in a way similar to that of solving (3.3) and

we briefly describe it next. A useful observation is that X̃ may have zero columns
which correspond to uncontrollable eigenvalues that are not desired. In view of this,

let X̃ = P

(
O X̃1

O O

)
be the QR decomposition of X̃ and consider the partitioning

F̃P = (F̃1, F̃2) as well as L̃ =

(× O

O L̃1

)
. Equation (3.4) may then be written as

B1F̃ X̃ = ÂX̃ − ÊX̃L̃+
[
(A1 −B1F1) X̂ − E1X̂L̃

]
︸ ︷︷ ︸

D

⇐⇒ B1

(
F̃P

)(
PT X̃

)
=

(
ÂP

)(
PT X̃

)
−

(
ÊP

)(
PT X̃

)
L̃+D

⇐⇒ B1F̃1X̃1 = Â1X̃1 − Ê1X̃1L̃1 +D1,(3.15)

920 GEORGE MIMINIS

where Â1, Ê1 are the relevant parts of ÂP , ÊP , respectively, and D1 is the relevant
part of D. Once F̃1 is computed from (3.15) and F̃2 is given any desired value, F̃

may be computed as F̃ = (F̃1, F̃2)P
T . It remains now to solve (3.15) with respect to

F̃1. The fundamental difference between (3.15) and (3.3) is the factor D1. Therefore
a similar method may be employed, with the relevant columns of D1 being included
as additional terms in the corresponding equations.

4. The bottom-up algorithm. The development of the stepwise approach in
the last section facilitates the presentation of a more efficient algorithm, which we
term bottom-up. Consider the general case n > m+1 and assume for simplicity that
only double steps have been performed (assume, for the sake of presentation,

⌈
n−m

2

⌉
such steps), until ñ and m̃, with [ñ, m̃] = size (Bk), satisfy ñ = m̃ or ñ = m̃ + 1.

Equation (A1 −B1F1)X1 = E1X1L1 may then be partitioned as follows:

×
(A11 − B1F11) X11 ×

(A33 − B3F33) X33

.

.

.

. . .

(
Ak−2,k−2 − Bk−2Fk−2,k−2

)
Xk−2,k−2 ×(

Ak − BkFk

)
Xk

=

E11X11L11 ×
E33X33L33 ×

.
.
.

.

.

.
Ek−2,k−2Xk−2,k−2Lk−2,k−2 ×

EkXkLk

 ,(4.1)

where k =

{
n−m+ 1 if n−m is even, in this case ñ = m̃,
n−m if n−m is odd, in this case ñ = m̃+ 1.

From (4.1) we see that equations of the type (3.8) and (3.9) can be solved in-
dependently and thus in any order (even in parallel). Similarly, if the case n =
m or n = m + 1 is considered,

⌈
n
2

⌉
double steps will take place and equation

(A1 −B1F1)X1 = E1X1L1 may be partitioned as follows:

HX−1
11 X12 + (A12 −B11F12 −B12F3)X3

(A11 −B1F11)X11 HX−1
33 X34 + (A34 −B33F34 −B34F5)X5

(A33 −B3F33)X33

...
· · · (Aq −BqFq)Xq

=

E11X11L11 (E11X12 + E12X3)L3

E33X33L33 (E33X34 + E34X5)L5

. . .
...

EqXqLq

 ,(4.2)

with q =

{
n if n is odd,
n− 1 if n is even.

The inherent flexibility of the algorithm regarding the order with which equations of
the kind (3.8) and (3.9) can be solved (even in parallel) can be efficiently exploited
by adopting a bottom-up approach. According to this approach (Aq −BqFq)Xq =
EqXqLq is solved first, moving towards (A11 −B1F11)X11 = E11X11L11. In this way
the QR decomposition of B1, which is useful for the solution of (3.8) and (3.9), needs

A STEPWISE APPROACH FOR EIGENSTRUCTURE ASSIGNMENT 921

to be computed only once and gradually. For example, suppose B1 is a 7× 3 matrix.
Initially the QR decomposition of the 3× 3 bottom part of B1 is computed as

× × ×
× × ×
× × ×
× × ×
× × ×
× ×
×

≡

× × ×
× × ×
× × ×
× × ×

Bk

 .

The triangular form of Bk may then be used in (4.1) or (4.2) for the solution of
equations of the type (3.8), (3.9), and (3.14) in order to eventually compute Fk in
(Ak −BkFk)Xk = EkXkLk. Assuming now that the algorithm continues with a
double step, reduce to

× × ×
× × ×
× × ×
× × ×
× × ×
× ×
×

−→

× × ×
× × ×
× × ×
× ×
×

O

≡

× × ×
× × ×

Bk−2

O

 ,

compute Fk−2,k−2, and proceed in a similar way until the computation of F11 takes
place. Finally the computation of F is performed in a way similar to that described
in section 3.

5. Discussion of the algorithm, heuristics, and numerical examples.
The advantage of the algorithms presented in sections 3 and 4, over the three-step
approach accompanied by the two-step fix, is twofold. First, when it is possible, the
stepwise approach makes the task of producing a regular pencil [(A1 −B1F1) , E1]
straightforward. See (3.8), (3.11), (3.12). Second, it is apparent from (3.8), (3.10),
(3.11), and (3.14) that the computed F depends on χ(B1), the condition numbers of
certain 2 × 2 diagonal blocks of X1, as well as the condition number of the m ×m
south-east block of X1, whereas the straightforward approach depends on χ(B1) and
the condition number of the entire X1. This may be visualized by the following
example where we take n = 9, m = 3, and a desired set of eigenvalues denoted by
{c, c̄, r, r, c, c̄,×,×,×}. The notation (c, c̄) stands for a complex conjugate pair of
eigenvalues, r for a real eigenvalue, and × any eigenvalue. With X1 given as

X1 =

• • × × × × × × ×
• × × × × × × ×
× × × × × × ×
× × × × × ×
• • × × ×
• × × ×
• • •
• •
•

,

the computed F1 will depend on the condition numbers of only those blocks with •
elements, as well as χ(B1).

922 GEORGE MIMINIS

A few heuristics will now be presented that will attempt to make the relevant
blocks of X1 well conditioned, even if X1 is not. In view of this, when computing the
QR decomposition of X1, an attempt should be made to hide any possible closeness
of X1 to rank deficiency. If this is impossible, an attempt should be made to associate
any relatively small diagonal elements of X1 with real eigenpairs, so that they are
cancelled out (see (3.10)). To this end, the desired QR decomposition of X1 may be
computed in two-stages as follows.

In the first stage the QR decomposition of X1 with minimum norm column piv-
oting is computed. Unlike the maximum norm column pivoting which can be used in
revealing the rank of a matrix (see, for example, [9, p. 248]), the minimum norm col-
umn pivoting tends to have the opposite effect. Consider, for example, the well-known
n× n matrix

X1 =

1 −γ −γ · · · −γ
σ −γ · · · −γ

σ2 · · · −γ
. . .

...
σn−1

,(5.1)

where γ2 + σ2 = 1. If we take n = 10 and γ = 0.7, then χ(X1) ≈ 107. QR with
minimum norm column pivoting, however, does not change X1 and since, for the
given case, the smallest diagonal element of X1 is σn−1 ≈ 0.048, this example appears
to bring our point forward. Note that maximum norm column pivoting produces a
triangular matrix with smallest diagonal element ≈ 10−7. Since column pivoting is
required here, it is worth pointing out that those pairs of columns in X1 that span
2-dimensional eigenspaces corresponding to complex conjugate eigenvalues should re-
main in consecutive positions so that our algorithms work properly. Therefore, if such
a column is to be relocated, its “companion” column should follow as well.

In the second stage we are looking for relatively small elements on the diagonal
of X1. If such an element is found outside the m×m south-east diagonal block and
it is associated with a real eigenvalue, it will not affect the accuracy of the algorithm;
therefore nothing needs to be done in this case. If, however, it is associated with a
complex eigenvalue, we find the columns with which the current column is almost
linearly dependent, within a given tolerance. If one of these columns is associated
with a real eigenvalue, we make an exchange similar to the exchange in the first
stage and we update the slightly distorted upper triangular form of X1. As a result
the small diagonal element is now associated with a real eigenvalue, and it will be
cancelled out. Finally if a small diagonal element is found within them×m south-east
diagonal block, we proceed as above in an attempt to first bring it outside this block
and then associate it with a real eigenvalue.

Next we give two numerical examples to demonstrate the performance of the
bottom-up algorithm equipped with the heuristics we just described. The accuracy of
the computed solution will be compared against that of the three-step straightforward
approach.

For the first example consider the case n = 10, m = 2 and take X1 as in (5.1)
with γ = 0.7. Compute random B1, E1 (make sure E1 has full rank) and L1 of
appropriate forms. Also compute A1 so that the equation A1X1 = E1X1L1 is satisfied.
Then from (A1 −B1F1)X1 = E1X1L1, obviously F1 = O, since E1 has full rank.
The choice of X1 suggests that the three-step approach should demonstrate a loss of
accuracy, up to seven significant digits (recall that χ(X1) ≈ 107). Using MATLAB

A STEPWISE APPROACH FOR EIGENSTRUCTURE ASSIGNMENT 923

(which uses an accuracy of approximately 16 significant digits) on a Pentium processor
which is equipped with the IEEE floating point standard of arithmetic, the bottom-up
algorithm produced an F1 with ‖F1‖2 ≈ 10−15. The three-step approach produced an
F1 with ‖F1‖2 ≈ 10−10. The bottom-up algorithm, performed as well as was expected
given MATLAB’s accuracy, whereas the three-step approach clearly indicated loss of
accuracy.

For the second example take

E1 =

 5 3 7

0 4
1

 , A1 =

 1 2 3

4 5 6
7 8 9

 , B1 =

 3

6
1

 , L1 = diag (5, 1, 3) ,

then the matrix of the feasible eigenvectors is given by

X =

 −0.6756 −0.3353 0.5833
−0.0528 −0.5340 0.2419
0.7354 0.7762 −0.7754

 .

The bottom-up algorithm produced F1 =
(
20.9532 12.5300 17.1445

)
, which

gave λ (A1 −B1F1, E1) = {∞, 5, 1}. The three-step approach produced F1 =(−12 −13.5 −15)
; using MATLAB’s function eig for the computation of the

eigenvalues of pencils we get eig (A1 −B1F1, E1) = {−2.0265, 1.7765,∞}, which sug-
gests that apart from ∞ the other eigenvalues could be any complex numbers, that
is, the resulting pencil is singular.

The MATLAB programs implementing the bottom-up algorithm are part of the
MATLAB toolbox PolePack developed by the author and it can be found at the
author’s home page.

6. Conclusion. We have pointed out, by referring to the relevant literature, that
the solution of the matrix equation (A1 −B1F1)X1 = E1X1L1, with respect to F1,
is (or can be) a key point in eigenstructure assignment. We presented a new stepwise
approach for its solution and we demonstrated that the new approach is numerically
better than a three-step straightforward method that has been used up to now.

Acknowledgment. I wish to express my sincere thanks to the referees for their
thorough reviews.

REFERENCES

[1] A. T. Alexandridis and G. D. Galanos, Optimal pole-placement for linear multi-input con-
trollable systems, IEEE Trans. Circuits and Systems, 34 (1987), pp. 1602–1604.

[2] M. Arnold and B. N. Datta, An algorithm for the multi-input eigenvalue problem, IEEE
Trans. Automat. Control, 35 (1990), pp. 1149–1152.

[3] R. K. Cavin III and S. P. Bhattacharyya, Robust and well-conditioned eigenstructure as-
signment via Sylvester’s equation, Optimal Control Appl. Methods, 4 (1983), pp. 205–212.

[4] E. K.-W. Chu, Controllability of descriptor systems, Internat. J. Control., 46 (1987), pp. 1761–
1770.

[5] G. R. Duan, Solutions of the equation AV +BW = V F and their application to eigenstructure
assignment in linear systems, IEEE Trans. Automat. Control, 38 (1993), pp. 276–280.

[6] M. M. Fahmy and J. O’Reilly, On eigenstructure assignment in linear multivariable systems,
IEEE Trans. Automat. Control, 27 (1982), pp. 690–693.

[7] M. M. Fahmy and H. S. Tantawy, Eigenstructure assignment via linear state-feedback control,
Internat. J. Control, 40 (1984), pp. 161–178.

[8] L. R. Fletcher, J. Kautsky, and N. K. Nichols, Eigenstructure assignment in descriptor
systems, IEEE Trans. Automat. Control, 31 (1986), pp. 1138–1141.

924 GEORGE MIMINIS

[9] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[10] C. He, A. Laub, and V. Mehrmann, Placing Plenty of Poles is Pretty Preposterous, preprint
SPC 95-17, Forschergruppe Scientific Parallel Computing, Fakultät für Mathematik, Tech-
nische Universität, Chemnitz-Zwickau, Germany.

[11] J. Kautsky, N. K. Nichols, and P. VanDooren, Robust pole assignment in linear state
feedback, Internat. J. Control. 41 (1985), pp. 1129–1155.

[12] J. Kautsky, N. K. Nichols, and E. K.-W. Chu, Robust pole assignment in singular control
systems, Linear Algebra Appl., 121 (1989), pp. 9–37.

[13] G. Klein and B. C. Moore, Eigenvalue generalized eigenvector assignment with state feedback,
IEEE Trans. Automat. Control, 22 (1977), pp. 140–141.

[14] V. Mehrmann and H. Xu, An analysis of the pole placement problem. I. The single-input case,
Electron. Trans. Numer. Anal., 4 (1996), pp. 138–157.

[15] V. Mehrmann and H. Xu, An analysis of the pole placement problem. II. The multi-input
case, Electronic Transactions on Numerical Analysis, 5 (1997), pp. 77–97.

[16] G. Mengali, Mixed linear-quadratic/eigenstructure strategy for the design of stability augmen-
tation systems, AIAA Journal of Guidance, Control and Dynamics, 19 (1996), pp. 1231–
1238.

[17] G. S. Miminis and C. C. Paige, A direct algorithm for pole assignment of time-invariant
multi-input linear systems using state feedback, Automatica, 24 (1988), pp. 343–356.

[18] G. S. Miminis, Deflation in eigenvalue assignment of descriptor systems using state feedback,
IEEE Trans. Automat. Control, 38 (1993), pp. 1322–1336.

[19] G. S. Miminis, Improving the performance of certain algorithms in eigenstructure assignment,
Proceedings of the 3rd IEEE Mediterranean Symposium on New Directions in Control and
Automation, Limassol Cyprus I, 1995, IEEE, Piscataway, NJ, 1995, pp. 171–178.

[20] B. C. Moore, On the flexibility offered by state feedback in multivariable systems beyond closed
loop eigenvalue assignment, IEEE Trans. Automat. Control, 21 (1976), pp. 689–692.

[21] R. V. Patel and P. Misra, Numerical algorithms for eigenvalue assignment by state feedback,
Proc. IEEE, 72 (1984), pp. 1755–1764.

[22] P. Petkov, N. Christov, and M. Konstantinov, A computational algorithm for pole assign-
ment of linear multi-input systems, IEEE Trans. Automat. Control, 31 (1986), pp. 1044–
1047.

[23] S. Pradhan, V. J. Modi, M. S. Bhat, and A. K. Misra, Matrix method for eigenstructure
assignment: The multi-input case with application, AIAA Journal of Guidance, Control
and Dynamics, 17 (1994), pp. 983–989.

[24] G. Roppenecker, On parametric state feedback design, Internat. J. Control, 43 (1986), pp. 793–
804.

[25] V. Sinswat and F. Fallside, Eigenvalue eigenvector assignment by state-feedback, Internat.
J. Control, 26 (1977), pp. 389–403.

[26] V. L. Syrmos and F. L. Lewis, Robust eigenvalue assignment for generalized systems, Auto-
matica, 28 (1992), pp. 1223–1228.

[27] C.-C. Tsui, On the solution to matrix equation TA− FT = LC and its applications, SIAM J.
Matrix Anal. Appl., 14 (1993), pp. 33–44.

A MULTILEVEL DUAL REORDERING STRATEGY FOR ROBUST
INCOMPLETE LU FACTORIZATION OF INDEFINITE MATRICES∗

JUN ZHANG†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 925–947

Abstract. A dual reordering strategy based on both threshold and graph reorderings is intro-
duced to construct robust incomplete LU (ILU) factorization of indefinite matrices. The ILU matrix
is constructed as a preconditioner for the original matrix to be used in a preconditioned iterative
scheme. The matrix is first divided into two parts according to a threshold parameter to control
diagonal dominance. The first part with large diagonal dominance is reordered using a graph-based
strategy, followed by an ILU factorization. A partial ILU factorization is applied to the second part
to yield an approximate Schur complement matrix. The whole process is repeated on the Schur com-
plement matrix and continues for a few times to yield a multilevel ILU factorization. Analyses are
conducted to show how the Schur complement approach removes small diagonal elements of indefinite
matrices and how the stability of the LU factor affects the quality of the preconditioner. Numerical
results are used to compare the new preconditioning strategy with two popular ILU preconditioning
techniques and a multilevel block ILU threshold preconditioner.

Key words. reordering strategies, sparse matrices, incomplete LU factorization, multilevel
incomplete LU preconditioner

AMS subject classifications. 65F10, 65N06

PII. S0895479899354251

1. Introduction. This paper is concerned with reordering strategies used in
developing robust preconditioners based on incomplete LU (ILU) factorization of the
coefficient matrix of sparse linear system of the form

Au = b,(1.1)

where A is an unstructured matrix of order n. In particular, we are interested in
ILU preconditioning techniques for which A is an indefinite matrix, i.e., a matrix
with an indefinite symmetric part. Indefinite matrices arise frequently from finite
element discretizations of coupled partial differential equations in computational fluid
dynamics and from other applications.

ILU preconditioning techniques have been successful for solving many nonsym-
metric and indefinite matrices, despite the fact that their existence in these applica-
tions is not guaranteed. However, their failure rates are still too high for them to
be used as blackbox library software for solving general sparse matrices of practical
interests [9, 25]. In fact, the lack of robustness of preconditioned iterative methods is
currently the major impediment for them to gain acceptance in industrial applications,
in spite of their intrinsic advantage for large scale problems.

For indefinite matrices, there are at least two reasons that make ILU factorization
approaches problematic [9]. The first problem is due to small or zero pivots [26].

∗Received by the editors April 14, 1999; accepted for publication (in revised form) by E. Ng
September 6, 2000; published electronically January 5, 2001. The work of this author was supported
in part by the U.S. National Science Foundation under grants CCR-9902022, CCR-9988165, and
CCR-0043861, and in part by the University of Kentucky Center for Computational Sciences and by
the University of Kentucky College of Engineering.

http://www.siam.org/journals/simax/22-3/35425.html
†Laboratory for High Performance Scientific Computing and Numerical Simulation, Depart-

ment of Computer Science, University of Kentucky, 773 Anderson Hall, Lexington, KY 40506-0046
(jzhang@cs.uky.edu, http://www.cs.uky.edu/∼jzhang).

925

926 JUN ZHANG

Pivots in an indefinite matrix can be arbitrarily small. This may lead to unstable and
inaccurate factorizations. In such cases, the size of the elements in the LU factors
may be very large, and these large size elements lead to inaccurate factorization.
The second problem is due to unstable triangular solutions [18]. The incomplete
factors of an indefinite matrix are usually not diagonally dominant. An indication of
unstable triangular solutions is when ‖L−1‖ and ‖U−1‖ are extremely large while the
offdiagonal elements of L and U are reasonably bounded. Such problems are usually
caused by very small pivots. They may sometimes happen without a small pivot. A
statistic, condest, was introduced by Chow and Saad [9] to measure the stability of
triangular solutions. It is defined to be ‖(LU)−1e‖∞, where e is a vector of all ones.
This statistic is useful when its value is very large, e.g., on the order of 1015.

Small pivots are usually related to small or zero diagonal elements. It can be
argued that by restricting the magnitude of the diagonal elements, we may be able
to alleviate, if not eliminate, these two problems of ILU factorizations to a certain
degree. Such restrictions can be seen in the form of full or partial pivoting strategies
in Gaussian elimination. In ILU factorization, column pivoting strategy has been im-
plemented with Saad’s ILU threshold (ILUT), resulting in an ILU threshold pivoting
(ILUTP) variant [35]. However, ILUTP has not always been helpful in dealing with
nonsymmetric matrices [3, 9]. As Chow and Saad pointed out [9], a poor pivoting se-
quence can occasionally trap a factorization into a zero pivot, even if the factorization
would have succeeded without pivoting. In addition, existing pivoting strategies for
incomplete factorization cannot guarantee that a nonzero pivot will always be found,
unlike the case with Gaussian elimination [9].

Another obvious strategy for dealing with small pivots is to replace them by a
larger value. The ILU factorization can continue, and the resulting preconditioner
may be well conditioned. In such a way, the ILU factorization is said to be stabilized.
However, this strategy alters the values of the matrix, and the quality of the resulting
preconditioner may be deteriorated. Thus, the choice of the replacing value for the
small pivots is critical for good performance, and a good choice is usually problem
dependent [26]. Too large a value will result in a stable but less accurate factorization;
too small a value will result in an unstable factorization. A similar strategy is to factor
a shifted matrix A+αI, where α is a positive scalar so that A+αI is well conditioned
[30, 47]. Such a strategy too obviously has a tradeoff between stable and accurate
factorization. For more studies on the stability of ILU factorizations, we refer to
[19, 32, 45, 13, 48].

It is also possible to reorder the rows of the matrix so that their diagonal dom-
inance in a certain sense is in decreasing order. In this way, small pivots are in the
last rows of the matrix and may not be used in an ILU factorization. This strategy
also has some problems since the values of the pivots are modified in an unpredictable
way and small pivots may still affect the ILU factorization. In addition, the effect of
standard reordering schemes applied to general nonsymmetric sparse matrices is still
an unsettled issue [17, 27, 46].

This paper follows the above idea of moving the rows with small diagonal elements
to the last few rows. However, these small diagonal elements will never be used in the
ILU factorization. Instead, these rows form the rows of a Schur complement matrix,
and the values of the diagonal elements are modified in a systematic way. This process
is continued for a few times until all small diagonal elements are removed, or until
the last Schur complement matrix is small enough that a full pivoting strategy can be
implemented inexpensively. With this reordering strategy, we can expect to obtain a

MULTILEVEL DUAL REORDERING STRATEGY AND ILU 927

stable and accurate ILU factorization. We also implement a graph-based reordering
strategy (nondecreasing degree algorithm) to reduce the fill-in amount during the
stable ILU factorization.

This paper is organized as follows. The next section introduces a dual reordering
strategy based on both the values and the graph of the matrix. Section 3 discusses
a partial ILU factorization technique to construct the Schur complement matrix im-
plicitly. Section 4 gives analyses on the values of the diagonal elements of the Schur
complement matrix and shows how the stability of the LU factor affects the quality
of a preconditioner. Section 5 outlines the multilevel dual reordering algorithm. Sec-
tion 6 contains numerical experiments. Concluding remarks are included in section 7.

2. A dual reordering strategy. Most reordering strategies are originally de-
veloped for the direct solution of sparse matrices based on Gaussian elimination. They
are mainly used to reduce fill-in elements in the Gaussian elimination process or to
extract parallelism from LU factorizations [15, 24]. They have also been used in ILU
preconditioning techniques for almost the same reasons [16, 20, 33]. Various reorder-
ing strategies were first studied for preconditioned conjugate gradient methods, i.e.,
for the cases where the matrix is symmetric positive definite [1, 4, 5, 10, 11, 29, 34].
They were then extended for treating nonsymmetric problems [2, 7, 12, 14]. Most
of these strategies are based on the adjacency graph but not on the values of the
matrices. They are robust for general sparse matrices only if used with suitable piv-
oting strategies, which are based on the values of the matrices, to prevent unstable
factorizations. Hence, reordering strategies based on matrix values are needed to yield
robust stable ILU factorizations [11]. Such an observation has largely been overlooked
in ILU techniques for some time, partly because the early ILU techniques were mainly
developed to solve sparse matrices arising from finite difference discretizations of par-
tial differential equations [31]. In such cases, the diagonal elements of the matrices
usually have nonzero values.

In this paper, we introduce a dual reordering strategy for robust ILU factorization
for solving general sparse indefinite matrices. To this end, we first introduce a strategy
to determine the row diagonal dominance of a matrix.1 We actually compute a certain
measure to determine the relative strength of the diagonal element with respect to
a certain norm of the row in question. Algorithm 2.1 is an example of computing a
diagonal dominance measure for each row of the matrix and was originally introduced
in [43] as a diagonal threshold strategy in a multilevel ILU factorization.

Algorithm 2.1. Computing a measure for each row of a matrix.
1. For i = 1, . . . , n, do
2. ri =

∑
j∈Nz(Ai)

|aij |
3. If ri �= 0, then
4. t̃i = |aii|/ri
5. End if
6. End do
7. T = maxi{t̃i}
8. For i = 1, . . . , n, do
9. ti = t̃i/T
10. End do

1The reference to row diagonal dominance is due to the assumption that our matrix is stored
in a row-oriented format, such as in the compressed sparse row format [37]. The proposed strategy
works equally well if the matrix is stored in a column-oriented format with the reference to column
diagonal dominance.

928 JUN ZHANG

In line 2 of the Algorithm 2.1 the set Nz(Ai) is defined as Nz(Ai) = {j : aij �=
0, 1 ≤ i, j ≤ n}, i.e., the nonzero row pattern for the row i. A row with a small
absolute diagonal value will have a small ti measure. A row with a zero diagonal
value will have an exact zero ti measure.

Let G = (V,K) denote the adjacency (directed) graph of the matrix A, where
V = {v1, v2, . . . , vn} is the set of vertices and K is the set of edges. Let (vj , vk) denote
an edge from vertex vj to vertex vk. Since a node in the adjacency graph of a matrix
corresponds to a row of the matrix, we will use the term node and row of a matrix
interchangeably. Given a diagonal threshold tolerance ε > 0, we divide the nodes of
A into two parts, V1 and V2, such that ti ≥ ε → vi ∈ V1, otherwise vi ∈ V2. It is
obvious that V = V1 ∪ V2 and V1 ∩ V2 = ∅. (For ensuring fast reduction of matrix
size, it is important that the size of V1 be large enough, e.g., larger than n/2. Hence,
a very large value of ε is not suitable. However, there is no restriction on the size of
V1 explicitly implemented in this paper.)

For convenience, we assume that a symmetric permutation is performed so that
the nodes in V1 are listed first, followed by the nodes in V2. Since the nodes in V1

are “good” for ILU factorization in terms of stability, we may further improve the
quality of the ILU factorization by implementing a graph-based reordering strategy.
The following nondecreasing degree reordering algorithm is just one example of such
graph-based reordering strategies.

We denote by deg(vi) the degree of the node vi, which equals the number of
nonzero elements of the ith row minus one, i.e., deg(vi) = Nz(Ai) − 1 = Nz(vi) − 1.
The set of the degrees of the rows of the matrix A can be conveniently computed
when Algorithm 2.1 is run to compute the diagonal dominance measure of A. For
example, in line 2 of Algorithm 2.1, the number of nonzero elements of the ith row
will be counted.

After the first reordering based on the threshold tolerance ε, we perform a second
reordering based on the degrees of the nodes. But the second reordering is only
performed with respect to the nodes in V1. To be more precise, we reorder the nodes
in V1 in a nondecreasing degree fashion; i.e., the nodes with smaller degrees are listed
first and those with larger degrees are listed last. After the two steps of reorderings,
we have

A ∼ PgPtAPTt PTg =

(
D F
E C

)
,(2.1)

where Pt and Pg are the permutation matrices corresponding to the threshold toler-
ance reordering and to the nondecreasing degree reordering, respectively. We use Pg
here to emphasize that it is just a graph-based reordering strategy and is not necessar-
ily restricted to the nondecreasing degree reordering. Other graph-based reordering
strategies such as the Cuthill-McKee or reverse Cuthill-McKee algorithms [28] may
be used to replace the nondecreasing degree strategy. However, their meaning may
be slightly changed since not all neighboring nodes of a node in V1 belong to V1; some
of them may be in V2. Also, these graph reordering algorithms are implemented in
a prereordered fashion, not in a dynamic fashion. Thus, the ordering is not updated
during the factorization process. For simplicity, we use A to denote both the original
and the permuted matrices in what follows so that the permutation matrices will no
longer appear explicitly. We also refer to the two reordering strategies as threshold
reordering and graph reordering for short.

MULTILEVEL DUAL REORDERING STRATEGY AND ILU 929

3. Partial ILU factorization. An ILU factorization process with a double
dropping strategy (ILUT) is first applied to the upper part (D F) of the reordered
matrix A in (2.1). The ILUT algorithm uses two parameters p and τ to control the
amount of fill-in elements caused by the Gaussian elimination process and is described
in detail in [35]. ILUT builds the preconditioning matrix row by row. For each row
of the LU factors, ILUT first drops all computed elements whose absolute values are
smaller than τ times the average nonzero absolute values of the current row. After an
(incomplete) row is computed, ILUT performs a search with respect to the computed
current row such that the largest p elements in absolute values are kept and the rest of
the nonzero elements are dropped again. Thus, the resulting ILUT factorization has
at most p elements in each row of the L and U parts. The use of a double dropping
strategy ensures that the memory requirement be met. It is easy to see that the total
storage cost for ILUT is bounded by 2pn for a matrix of order n.

The ILUT process is continued to the second part of the matrix A in (2.1) with
respect to the (E C) submatrix. However, the elimination process is only performed
with respect to the columns in E, and linear combinations for columns in C are
performed accordingly. In other words, the elements corresponding to the C submatrix
are not eliminated. (This can be done by modifying the ILUT algorithm of Saad [37]
and restricting the elimination process to the columns corresponding to V1, when the
row index is greater than the size of V1.) Such a process is called a partial Gaussian
elimination or a partial LU factorization in [41]. Note that, due to the partial Gaussian
elimination, all rows in the (E C) submatrix can be processed independently (in
parallel). This is because all nodes in the E submatrix that are to be eliminated use
only the computed (I)LU factorization of the (D F) part. Note also that the diagonal
values of the rows of the C submatrix are never used as pivots. It can be shown [41]
that such a partial Gaussian elimination process modifies C into the (incomplete)
Schur complement of A. In exact arithmetic, C would be changed into

A1 = C − ED−1F = C − EU−1L−1F,(3.1)

where LU is the standard LU factorization of the D submatrix. We point out that
A1 is constructed by updating C row by row with drop tolerance applied even on
updates. Hence, this method constructs the Schur complement indirectly, in contrast
to some alternative methods, e.g., the multilevel block ILU (BILUM) preconditioner
in [40], in which the Schur complement is constructed explicitly by matrix-matrix
multiplications. Sparsity and computation costs are kept low by adapting the dual
dropping strategy of ILUT with respect to the computation of each row of A1. In
particular, small size fill-in with respect to τ is dropped as soon as it is computed in
each update. The maximum number of nonzeros kept in a row of A1 is limited to p
after the row is computed.

The partial ILU factorization process just described yields a block LU factoriza-
tion of the matrix A of the form(

D F
E C

)
=

(
L 0

EU−1 I

)(
U L−1F
0 A1

)
,(3.2)

where I and 0 are generic identity and zero matrices, respectively. If the factorization
is exact and if we can solve the Schur complement matrix A1, the solution of the
original linear system (1.1) can be found by a backward substitution.

The partial ILU factorization process is the backbone of a domain-based mul-
tilevel ILU preconditioning technique (BILUTM) described in [41]. Such an ILU

930 JUN ZHANG

factorization with a suitable block independent set ordering yields a preconditioner
(BILUTM) that is highly robust and possesses a high degree of parallelism. However,
in this paper, the parallelism due to block independent set ordering is not our concern,
so we restrict our attention to the robustness of multilevel ILU factorization resulting
from removing small pivots.

We can heuristically argue that the ILU factorization resulting from applying the
above partial ILU factorization to the reordered matrix is likely to be more stable than
that which would be generated by applying ILUT directly to the original matrix. This
is because the factorization is essentially performed with respect to the nodes in V1

that have a relatively good diagonal dominance. The partial ILU factorization with
respect to the nodes in V2 never needs to divide any pivot elements. So there is no
reason that large size elements should be produced.

As remarked previously, if we can solve the Schur complement matrix A1 in
(3.1) to a certain degree of accuracy, we can develop a two level preconditioner for
the matrix A. An alternative is based on the observation that A1 is another sparse
matrix and we can apply the same procedures to A1 that have been applied to A to
yield an even smaller Schur complement A2. This is the philosophy of multilevel ILU
preconditioning techniques developed in [36, 40, 41]. However, for the moment, we
only discuss the possible construction of a two level preconditioner.

A two level preconditioner. The easiest way to construct a two level preconditioner
is to apply the ILUT factorization technique to the matrix A1. One question will be
naturally asked. Is the ILUT factorization more stable when applied to A1 than when
applied to A?

Notice that since the nodes with good (large) diagonal dominance have all been
factored out, we tend to think that the nodes of A1 are not good for a stable ILUT
factorization. This may not always be true, since the measure of diagonal dominance
computed in Algorithm 2.1 is relative to a certain norm of the row in question. We
need to examine relative changes in size of the diagonal value when a node is considered
as a node in A and when it is considered as a node in A1.

4. Analyses.

Diagonal submatrix D. For the ease of analysis, unless otherwise indicated ex-
plicitly, we assume that the partial LU factorization described above is exact; i.e.,
no dropping strategy is enforced. We also assume that, in the reordered matrix, the
D submatrix is diagonal. Such a reordering can be achieved by an independent set
search as in a multielimination strategy of Saad [36, 40]. Thus, the factorization (3.2)
is reduced to

(
D F
E C

)
=

(
I 0

ED−1 I

)(
D F
0 A1

)
.(4.1)

We now assume that all indices are local to individual submatrices. In other words,
when we say the ith row of the matrix F , we mean the ith row of the submatrix F ,
not the ith row of the matrix A, original or permuted. For convenience we assume
that D is of dimension m and A1 is of dimension l = n−m. We also use the following
notations:

D = diag[d1, . . . , dm], F = (fij)m×l, E = (eij)l×m, C = (cij)l×l, A1 = (sij)l×l.

MULTILEVEL DUAL REORDERING STRATEGY AND ILU 931

row i

E C

FD

eik

dkrow k -1

m l

m

lcij

fkj

Fig. 4.1. An illustration of the partial LU factorization to eliminate eik in the E submatrix.

It can be shown [24, 41] that, with the partial LU factorization without dropping, an
arbitrary element of the Schur complement matrix A1 is

sij = cij −
m∑
k=1

eikfkj/dk.(4.2)

Since we assume that the nodes with large diagonal dominance measure are in V1 and
the nodes in V2 have small or zero diagonal dominance measure, we are interested in
knowing how the diagonal value of a node of A may change when it becomes a node
in A1.

The following proposition is obvious from (4.2) and from Figure 4.1.

Proposition 4.1. If either the jth column of the submatrix F or the ith row of
the submatrix E is a zero vector, then sij = cij.

Definition 4.2. A node vi of the vertex set V is said to be independent from a
subset VI of V if and only if

aij = 0 and aji = 0 for all vj ∈ VI .

An immediate consequence of the independence is the following corollary that is
first proved in [42].

Corollary 4.3. If a node vi in V2 is independent from all the nodes in V1, then
sii = cii; i.e., the values of the ith row of C will not be modified in the partial LU
factorization.

We now modify our threshold tolerance reordering strategy slightly to a diagonal
threshold strategy, similar to that discussed in [42]. We assume that the node vi is
in V1 if |aii| ≥ ε and D is still a diagonal matrix. With such a modification, we have
|di| ≥ ε for 1 ≤ i ≤ m. Denote by M = max1≤i,j≤n{|aij |} the size of the largest
elements in absolute value of A.

Proposition 4.4. The size of the elements of the Schur complement matrix A1

is bounded by M(1 +mM/ε).

932 JUN ZHANG

Proof. Starting from (4.2)

|sij | ≤ |cij |+
m∑
k=1

|eik||fkj |/|dk| ≤M +

m∑
k=1

MM/ε =M(1 +mM/ε).

Proposition 4.4 shows that the size of the elements of the Schur complement
matrix cannot grow uncontrollably if ε is large enough. This result indicates that our
first level (I)LU factorization is stable.

As we hinted previously, we will be interested in recursively applying our strategy
to the successive Schur complement matrices. We may assume that the matrix A is
presparsified so that small nondiagonal elements are removed. To be more specific,
for the parameter τ used in the ILUT factorization, we assume min1≤i,j≤n{|aij |} ≥ τ
for all nonzero elements of A, except for possibly the diagonal elements. With some
additional assumptions, we can have a lower bound on the variation of the diagonal
values of the Schur complement matrix A1.

Proposition 4.5. Suppose |aij | ≥ τ for all nonzero offdiagonal elements of
the matrix A, and suppose that either eikfki/dk ≥ 0 or eikfki/dk ≤ 0 holds for all
1 ≤ k ≤ m. Then

|sii − cii| ≥ card (Nz(Ei) ∩Nz(Fi)) τ
2

M
,

where Nz(Ei) and Nz(Fi) are the index sets of the nonzero elements of the ith row of
the E submatrix and the ith column of the F submatrix, respectively. card(V) denotes
the cardinality of a set V .

Proof. If either eikfki/dk ≥ 0 or eikfki/dk ≤ 0 holds for all 1 ≤ k ≤ m, we have

∣∣∣∣∣
m∑
k=1

eikfki/dk

∣∣∣∣∣ =
m∑
k=1

|eikfki/dk|.(4.3)

The kth term in the right-hand side sum of (4.3) is nonzero if and only if both eik
and fki are nonzero. This happens if and only if k ∈ Nz(Ei) ∩Nz(Fi).

Note that |eik| ≥ τ, |fki| ≥ τ and |dk| ≤M for all 1 ≤ k ≤ m. It follows that

|sii − cii| =
m∑
k=1

|eikfki/dk| ≥ card (Nz(Ei) ∩Nz(Fi)) τ
2

M
.

It is implicitly assumed that ε < M . In practice, ε is small so that the set V1

may be large enough to avoid constructing a large Schur complement matrix. (We
consider a reduction of matrix size large if card(V1) ≥ card(A)/2.) Denote

∆i =
card (Nz(Ei) ∩Nz(Fi)) τ

2

M
.

By the motivation of the diagonal threshold strategy, the value of |cii| is zero or very
small. Thus, the size of |sii| can be considered as being close to ∆i.

Corollary 4.6. Under the conditions of the Proposition 4.5, if cii = 0, then
|sii| ≥ ∆i.

Corollary 4.6 shows that if the ith diagonal element of A1 is zero in A and if the
set Nz(Ei)∩Nz(Fi) is nonempty, then the size of the ith diagonal element is nonzero
in the Schur complement. Thus, under these conditions, a zero pivot is removed. In

MULTILEVEL DUAL REORDERING STRATEGY AND ILU 933

fact, the cardinality of Nz(Ei) ∩ Nz(Fi) seems to be the key factor to remove zero
diagonal elements.

It is difficult to derive more useful bounds for general sparse matrices. If certain
conditions are given to restrict the class of matrices under consideration, it is possible
to obtain more realistic bounds to characterize the size of the elements of the Schur
complement matrix, especially the size of its diagonal elements.

General submatrix D. For general submatrixD corresponding to the factorization
(3.2), it is easy to see that, if the jth column of the submatrix F is zero, the jth column
of the submatrix L−1F is zero. Hence, Proposition 4.1 carries over to the general case.

At this moment, we are unable to show results analogous to Propositions 4.4 and
4.5 for general submatrix D. However, it can be argued heuristically that, if D is
not a diagonal matrix, the cardinality of the set Nz(Ei)∩Nz((L−1F)i) is likely to be
larger than that of Nz(Ei) ∩Nz(Fi).

Size of ‖(LU)−1‖. Most authors discuss the quality of preconditioning techniques
with respect to condition number of the preconditioned matrix (LU)−1A, which is very
difficult to obtain for general sparse matrices. We choose to consider the quality of
preconditioning in a nonstandard way [26, 42]. Denote by

R = A− LU(4.4)

the error (residual) matrix of the ILU factorization. At each iteration, the precondi-
tioning step solves for w̄ the system

LUw̄ = r,(4.5)

where r is the residual of the current iterate. In a certain sense, we can consider w̄
as an approximate to the correction term of the current iterate. The quality of the
preconditioning step (4.5) can be judged by comparing (4.5) with the exact or perfect
preconditioning step

Aw = r.(4.6)

If (4.6) could be solved to yield the exact correction term w, the preconditioned
iterative method would converge in one step. Of course, solving (4.6) is as hard as
solving the original system (1.1). However, we can measure the relative difference in
the correction term when approximating (4.6) by (4.5). This difference may tell us
how good the preconditioning step (4.5) approximates the exact preconditioning step
(4.6). The following proposition is motivated by the work of Kershaw [26].

Proposition 4.7. Suppose the matrix A and the factor LU from the incomplete
LU factorization are nonsingular; then the following inequality holds:

‖w − w̄‖
‖w‖ ≤ ‖(LU)−1‖ ‖R‖(4.7)

for any consistent norm ‖ · ‖.
Proof. It is obvious that r �= 0, otherwise the iteration would have converged.

The nonsingularity of A implies that w �= 0. Note that w̄ = (LU)−1r. From (4.6), we
have

w − w̄ = w − (LU)−1r = w − (LU)−1Aw =
(
I − (LU)−1A

)
w = −(LU)−1Rw.

It follows that, for any consistent norm,

‖w − w̄‖ = ‖(LU)−1Rw‖ ≤ ‖(LU)−1‖ ‖R‖ ‖w‖.

934 JUN ZHANG

The desired result (4.7) follows immediately by dividing ‖w‖ on both sides.

It is well known that the size of the error matrix R directly affects the convergence
rate of the preconditioned iterative methods [16]. Proposition 4.7 shows that the
quality of a preconditioning step is directly related to the size of both (LU)−1 and R.
A high quality preconditioner must be accurate; i.e., it must have an error matrix that
is small in size. A high quality preconditioner must also have a stable factorization and
stable triangular solutions; i.e., the size of (LU)−1 must be small. Since the condition
estimate, condest = ‖(LU)−1e‖∞, is a lower bound for ‖(LU)−1‖∞, it should provide
some information about the quality of the preconditioner and may be used to measure
the stability of the LU factorization and of the triangular solutions.

If D is diagonal, the Schur complement approach is similar to the red-black or-
dering applied to certain matrices, followed by one step cyclic reduction. The reduced
system A1 may be better conditioned than the original matrix A and thus may be a
better starting point for constructing a better preconditioner [21, 22].

When D is diagonal, both BILUM [40] and BILUTM [41] of Saad and Zhang may
encounter stability problems if the diagonal values are not restricted. This shows the
advantage of our first threshold-based reordering strategy. Of course, the precondi-
tioners proposed in this paper rarely result in a submatrix D that is diagonal. The
assumption of the diagonal property of D is made for convenience in the analysis.

5. Multilevel dual reordering and ILU factorization. Based on our previ-
ous analyses, the size of a diagonal element of the matrix A1 is likely to be larger than
that of the same element in A.2 We can apply Algorithm 2.1 to A1 and repeat on A1

the procedures that were applied to A. (The measure of diagonal dominance has to
be recomputed for the rows in A1, but A1 is not recomputed.) This process may be
repeated for a few times until all small diagonal elements are modified to large values,
or until the last Schur complement matrix is small enough that an ILU factorization
with a full pivoting strategy can be implemented inexpensively. Since the number of
small or zero pivots in the last Schur complement matrix is small, a third strategy
is to replace them by a larger value. This will not introduce too much error to the
overall factorization. Given a maximum level L and denoting A0 = A, the multilevel
dual reordering strategy and ILU factorization can be formulated as Algorithm 5.1.

Algorithm 5.1. Multilevel dual reordering and ILU factorization.

1. Given the parameters τ, p, ε,L
2. For j = 0, 1, . . . ,L − 1, do:
3. Run Algorithm 2.1 with ε to find permutation matrices Pjt and Pjg
4. Perform matrix permutation Aj = P

T
jg
PTjtAjPjtPjg

5. If no small pivot has been found, then
6. Apply ILUT(p, τ) to Aj and exit
7. Else
8. Apply a partial ILU factorization to Aj
9. to yield a Schur complement matrix Aj+1

10. End if
11. End do
12. Apply ILUTP or a stabilized ILUT to AL if AL exists

The ILU preconditioner constructed by Algorithm 5.1 is structurally similar to
the BILUTM preconditioner in [41]. The difference is that we do not construct a block

2This is obviously false for an M-matrix. However, there will be no Schur complement matrix at
all if A is an M-matrix, since V1 = V for some ε > 0.

MULTILEVEL DUAL REORDERING STRATEGY AND ILU 935

independent set for the Dj submatrix. Instead, we set up a diagonal measure con-
straint and employ a graph reordering scheme to increase preconditioning robustness.
The emphasis of this paper is on solving indefinite matrices by removing small pivots.
The emphasis of BILUM [40] and BILUTM [41] is to extract potential parallelism
from ILU factorizations, although both BILUM and BILUTM have been shown to be
much more robust than standard ILU preconditioners. We have departed from a fun-
damental multilevel concept of treating different error components on different levels,
and we have considered preconditioning strategies in a sense closer to constructing
approximate direct solvers.

It can be seen, if L levels of reduction are performed, that the resulting ILU
preconditioner has the following structure:

L0U0 L−1
0 F0

E0U
−1
0

L1U1 L−1
1 F1

E1U
−1
1

. . .

(
LL−1UL−1 L−1

L−1FL−1

EL−1U
−1
L−1 LLUL

)

 .

The application of the preconditioner can be done by a level-by-level forward elimina-
tion, followed by a level-by-level backward substitution. There are also permutations
and inverse permutations to be performed; specific procedures depend on implemen-
tations. For detailed descriptions, we refer the reader to [40, 41].

6. Numerical experiments. Standard implementations of multilevel precondi-
tioning methods have been described in detail in [36, 40, 41]. We used full GMRES as
the accelerator [38]. We tested four preconditioners: standard ILUT of [35], a column
pivoting variant ILUTP [35], a domain-based multilevel block ILUT preconditioner
(BILUTM) [41], and the multilevel dual reordering preconditioner designed in this
paper, abbreviated as MDRILU (multilevel dual reordering ILU factorization). All
preconditioners used a safeguard (stabilization) procedure by replacing a zero pivot
with (0.0001 + τ)ri, where ri was computed as the average nonzero values of the row
in question. They were used as right preconditioners for GMRES [37]. The main
parameters used in all four preconditioners are the pair (p, τ) in the double dropping
strategy. ILUTP needs another parameter 0 ≤ σ ≤ 1 to control the actual pivoting.
A nondiagonal element aij is a candidate for a permutation only when σ|aij | > |aii|.
It is suggested that reasonable values of σ are between 0.5 and 0.01, with 0.5 being the
best in many cases [37, p. 295]. MDRILU also needs another parameter ε to enforce
the diagonal threshold reordering as in Algorithm 5.1. The block size of BILUTM was
chosen equal to p. The maximum possible level number in MDRILU and BILUTM
was L = 10. If after 10 levels of dual reorderings the Schur complement A10 is not
empty, a stabilized ILUT factorization was employed to factor A10.

3

For all linear systems, the right-hand side was generated by assuming that the
solution is a vector of all ones. The initial guess was a vector of some random numbers.
The iteration was terminated when the 2-norm of the residual was reduced by a factor
of 107. We also set an upper bound of 100 for the full GMRES iteration. A symbol
“–” indicates lack of convergence.

In all tables with numerical results, “iter” shows the number of preconditioned
GMRES iterations; “spar” shows the sparsity ratio which is the ratio between the

3We found stabilized ILUT was better than ILUTP for solving the last system. We did not
implement an ILUT factorization with a full pivoting strategy.

936 JUN ZHANG

number of nonzero elements of the preconditioner to that of the original matrix; “prec”
shows the CPU time in seconds spent in constructing the preconditioners; “totl” is
the total CPU time in seconds, including the preconditioner construction time and
the solution (iteration) time; “cond” = ‖(LU)−1e‖∞ is the condition estimate of the
preconditioners as introduced in section 1. Since these ILU preconditioners approach
direct solvers as p → n and τ → 0, we compare their robustness with respect to
the memory cost (sparsity ratio). We remark that our codes were not optimized
and they computed and printed information such as the number of zero diagonals,
smallest pivots, etc. Consequently, the CPU times reported in this paper have only
relative meaning. Note that the solution time at each iteration is mainly the cost of
the matrix vector products (both A and the preconditioner) and is thus proportional
to the product of the iteration count and the sparsity ratio, i.e., solution time ∼
iter ∗ (1 + spar).

The numerical experiments were conducted on a Power-Challenge XL Silicon
Graphics workstation equipped with 512 MB of main memory, one 190 MHz R10000
processor, and 1 MB secondary cache. We used Fortran 77 programming language in
64 bit arithmetic computation.

Test matrices. Three test matrices were selected from different applications. Ta-
ble 6.1 contains simple descriptions of the first three test matrices. They have been
used in several other papers [6, 9, 42, 50]. None of the three matrices has a zero
diagonal.

Table 6.1
Simple descriptions of the test matrices.

Matrix Order Nonzeros Description
RAEFSKY4 19 779 1 328 611 Buckling problem for container model
UTM5940 5 940 83 842 Nuclear fusion plasma simulation
WIGTO966 3 864 238 252 Euler equation model

WIGTO966 matrix. The WIGTO966 matrix4 was supplied by L. Wigton from
Boeing Company. It is solvable by ILUT with large values of p [6]. This matrix
was also used to compare BILUM with ILUT in [39] and BILUTM with ILUT in
[41], and to test point and block preconditioning techniques in [8, 9]. Since ILUT
requires a very large amount of fill-in to converge, the WIGTO966 matrix is ideal
to test alternative preconditioners and to show the least memory that is required
for convergence. For example, BILUM (with GMRES(10)) was shown to be six times
faster than ILUT with only one-third of the memory required by ILUT [39]. BILUTM
(with GMRES(50)) converged almost five times faster and used just about one-fifth of
the memory required by ILUT [41]. Table 6.2 lists results from several runs to compare
MDRILU and ILUT. It shows that MDRILU could converge with low sparsity ratios,
as low as 0.94. The threshold parameter ε was in a fixed range when the other
parameters p and τ changed. For all the values of p and τ tested in Table 6.2, ILUT
did not converge. We found that there was no very small pivot; the size of the smallest
pivot in all tests in Table 6.2 was 1.19e-5. But the condition estimates for ILUT were
very large and the smallest condest value is 1.1e+82, indicating unstable triangular
solutions had resulted during the factorization and solution processes.

We further compared ILUTP and ILUT using large values of p, and we list the
results in Table 6.3. We see that ILUTP is more robust than ILUT for solving the

4The WIGTO966 matrix is available from the author.

MULTILEVEL DUAL REORDERING STRATEGY AND ILU 937

Table 6.2
Comparison of MDRILU and ILUT for solving the WIGTO966 matrix.

MDRILU ILUT
p τ ε iter prec totl spar cond iter prec totl spar cond
25 2.0e-2 0.40 94 1.62 8.05 0.94 9.2e+5 – – – – 4.9e+149
30 1.0e-3 0.37 64 3.32 8.46 1.48 1.4e+6 – – – – 1.7e+99
40 1.0e-3 0.38 31 4.10 6.82 1.82 1.5e+5 – – – – 1.1e+82
40 1.0e-4 0.38 33 5.99 9.14 2.05 2.9e+4 – – – – 3.1e+97
50 1.0e-3 0.38 27 4.92 7.58 2.17 4.4e+4 – – – – 9.9e+116
50 1.0e-4 0.38 25 7.48 10.21 2.55 2.7e+4 – – – – 2.7e+91

Table 6.3
Comparison of ILUTP and ILUT using large values of p for solving the WIGTO966 matrix.

ILUTP (original ordering) ILUT (original ordering)
p τ σ iter totl prec spar cond iter prec totl spar cond
50 1.0e-3 0.50 – – – – 7.7e+6 – — – – 9.9e+116
50 1.0e-4 0.50 – – – – 3.7e+8 – – – – 2.7e+91
100 1.0e-3 0.50 49 18.17 24.88 3.06 1.3e+3 – – – – 9.1e+101
100 1.0e-4 0.50 34 22.90 27.48 3.08 2.3e+5 – – – – 3.0e+69
300 1.0e-3 0.10 9 44.98 47.31 7.39 1.2e+4 74 51.52 71.49 7.91 1.3e+8
340 1.0e-4 0.10 7 72.3 74.99 8.90 9.4e+3 45 69.93 81.92 9.14 3.4e+7

WIGTO966 matrix. ILUT required high sparsity ratios to converge. For those con-
verged cases, ILUTP was able to converge with fewer iterations. When we chose
p = 200, τ = 1.0e-4, ILUT failed to converge, but ILUTP converged in 49 iterations
with a sparsity ratio 3.06. Notice that both ILUTP and ILUT did not converge with
p = 50, τ = 1.0e-3, while MDRILU could converge with these parameters (see Ta-
ble 6.2). In addition, both ILUT and ILUTP are much more expensive than MDRILU
to construct. We point out that the condition estimates of ILUTP are much smaller
than those of ILUT. This implies that ILUTP did stabilize the ILU factorization pro-
cess with a column pivoting strategy, although there was no very small pivot in the
factorization. The results of Table 6.3 also show that the additional cost of imple-
menting ILUTP (relative to ILUT) is not high in this test. However, as far as solving
the WIGTO966 matrix is concerned, computing an MDRILU preconditioner is much
cheaper than computing either an ILUT or an ILUTP preconditioner.

The test statistics in Tables 6.2 and 6.3 clearly indicate that MDRILU is more
efficient and robust than both ILUT and ILUTP in terms of preconditioner quality
and memory cost for solving the WIGTO966 matrix. Since MDRILU combines a dual
reordering strategy with multilevel recursive factorization, it would be interesting to
see how the dual reordering strategy of MDRILU affects the (single level) ILUT and
ILUTP. To this end, we prereordered the WIGTO966 matrix using the first level
dual ordering of MDRILU corresponding to the parameters used in Table 6.2. We
then applied ILUT and ILUTP on the reordered matrix. The test results are given
in Table 6.4. It is found that the dual reordering strategy did improve the quality
(condition) of both ILUT and ILUTP (and reduced memory cost), although ILUT
did not converge in any case. Convergence was obtained for ILUTP for several sets of
parameters. However, the performance of ILUTP is still poorer than that of MDRILU
as shown in Table 6.2. We also see that ILUTP took much more time than MDRILU
to construct for solving the WIGTO966 matrix.

Table 6.5 shows the performance statistics of BILUTM of Saad and Zhang [41] for

938 JUN ZHANG

Table 6.4
Performance of ILUTP and ILUT for solving the WIGTO966 matrix, using the first level dual

ordering strategy of MDRILU in Table 6.2.

ILUTP (MDRILU ordering) ILUT (MDRILU ordering)
p τ ε iter prec totl spar cond iter prec totl spar cond
25 2.0e-2 0.40 – – – – 1.7e+8 – – – – 1.4e+88
30 1.0e-3 0.37 86 14.57 20.39 0.89 4.5e+5 – – – – 2.0e+49
40 1.0e-3 0.38 – – – – 8.2e+5 – – – – 1.1e+53
40 1.0e-4 0.38 98 32.64 40.29 1.19 8.9e+4 – – – – 1.3e+62
50 1.0e-3 0.38 78 17.92 24.38 1.44 4.8e+5 – – – – 6.3e+52
50 1.0e-4 0.38 81 28.07 34.86 1.47 2.4e+8 – – – – 3.6e+66

Table 6.5
Test results of BILUTM for solving the WIGTO966 matrix using parameters corresponding to

those in Table 6.2.

BILUTM
p τ iter prec totl spar cond
25 2.0e-2 – – – – 3.1e+10
30 1.0e-3 – – – – 3.4e+7
40 1.0e-3 – – – – 2.7e+8
40 1.0e-4 94 3.54 12.91 2.07 2.2e+6
50 1.0e-3 81 4.35 13.00 2.40 1.0e+8
50 1.0e-4 94 4.64 14.96 2.47 7.7e+6

solving the WIGTO966 matrix with the parameters used by MDRILU in Table 6.2.
Although BILUTM converged for the last three sets of parameters, it did not converge
for the first three sets of parameters. MDRILU is more robust than BILUTM for
solving the WIGTO966 matrix. BILUTM is also more expensive than MDRILU
to construct. Thus the dual reordering strategy does have advantages in multilevel
factorizations.

RAEFSKY4 matrix. The RAEFSKY4 matrix5 was supplied by H. Simon from
Lawrence Berkeley National Laboratory (originally created by A. Raefsky from Cen-
tric Engineering). This is probably the hardest one in the total of 6 RAEFSKY
matrices. Figure 6.1 shows the convergence history of the 4 preconditioners with
p = 50 and τ = 1.0e-4. The other parameters were ε = 0.4 for MDRILU and σ = 0.03
for ILUTP. We see that both ILUT and ILUTP did not have much convergence in
100 iterations. BILUTM converged in 94 iterations. MDRILU converged in only 13
iterations and is clearly faster than the other three preconditioners.

In Figure 6.2 we plotted the iteration counts (left part) and the values of condi-
tion estimate (right part) of the MDRILU preconditioner with different values of the
threshold parameter ε, keeping p = 50, τ = 1.0e-4 fixed. We found that the iteration
count and the condition estimate were linked to each other. A large value of condition
estimate is usually accompanied by a large iteration count of MDRILU. We also see
that the convergence rates of MDRILU are not very sensitive to the choice of the
value of ε. For 0.38 ≤ ε ≤ 0.78, MDRILU gave very similar performance.

5The RAEFSKY4 matrix is available online from the University of Florida Sparse Matrix Col-
lection at http://www.cise.ufl.edu/∼davis/sparse.

MULTILEVEL DUAL REORDERING STRATEGY AND ILU 939

0 10 20 30 40 50 60 70 80 90 100
10

4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

2-
no

rm
 r

es
id

ua
l

iterations (p = 50, tau = 1.0e-4)

RAEFSKY4 Matrix

MDRILUMDRILU (dashed line)

ILUTP (dashdot line)

ILUT (solid line)

BILUTM (dotted line)

Fig. 6.1. Convergence history of preconditioned GMRES for solving the RAEFSKY4 matrix.

0.2 0.4 0.6 0.8
10

20

30

40

50

60

70

80

90

100
RAEFSKY4 Matrix

ite
rat

ion
s

epsilon
0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

co
nd

es
t

epsilon

RAEFSKY4 Matrix

Fig. 6.2. Iteration counts (left) and condition estimates (right) of MDRILU with different
values of ε for solving the RAEFSKY4 matrix.

UTM5940 matrix. The UTM5940 matrix6 is the largest matrix from the TOKA-
MAK collection and was provided by P. Brown of Lawrence Livermore National Labo-
ratory. Table 6.6 contains a few runs with MDRILU and ILUT with different sparsity
ratios. It is clear that MDRILU is more efficient than ILUT when the sparsity ra-
tios are low. The results are also consistent with other test results, indicating that
MDRILU is able to solve this problem with less storage cost than ILUT. If sufficient
memory space is available, ILUT may be efficient in certain cases. Note that if both
MDRILU and ILUT converge with similar iteration counts, MDRILU is more expen-
sive than ILUT to construct. But the total CPU times for MDRILU are less than
those for ILUT in most cases.

6The UTM5940 matrix is available online from the MatrixMarket of the National Institute of
Standards and Technology at http://math.nist.gov/MatrixMarket.

940 JUN ZHANG

Table 6.6
Comparison of MDRILU and ILUT for solving the UTM5940 matrix, and ILUTP and ILUT

using the first level of MDRILU ordering.

MDRILU ILUT (original ordering)
p τ ε iter prec totl spar cond iter prec totl spar cond
15 1.0e-3 0.40 82 1.44 5.94 2.26 3.1e+6 – – – – 1.7e+14
30 1.0e-3 0.30 63 2.48 6.56 3.66 7.4e+6 – – – – 1.3e+11
30 1.0e-4 0.30 60 4.43 8.47 4.00 9.7e+6 82 1.97 8.08 3.50 1.5e+6
50 1.0e-2 0.30 63 1.36 5.28 3.42 2.9e+7 94 0.62 7.45 3.35 1.6e+6
50 1.0e-3 0.30 45 3.83 7.46 5.56 3.4e+7 78 2.08 9.26 5.22 1.7e+7
50 1.0e-4 0.30 42 7.49 11.16 6.26 2.2e+7 86 3.67 12.19 5.72 1.3e+7

ILUTP (MDRILU ordering) ILUT (MDRILU ordering)
p τ ε iter prec totl spar cond iter prec totl spar cond
15 1.0e-3 0.40 94 1.30 6.07 1.58 4.4e+6 – – – – 1.5e+7
30 1.0e-3 0.30 – – – – 3.9e+7 – – – – 1.1e+8
30 1.0e-4 0.30 – – – – 2.9e+7 – – – – 1.2e+10
50 1.0e-2 0.30 – – – – 5.4e+6 – – – – 1.3e+8
50 1.0e-3 0.30 93 4.98 12.64 4.48 3.7e+8 89 3.39 10.61 4.42 3.4e+8
50 1.0e-4 0.30 96 10.66 19.04 4.87 1.7e+10 73 6.98 13.02 4.84 4.2e+7

Table 6.7
Test results of BILUTM for solving the UTM5940 matrix using parameters corresponding to

those in Table 6.6.

BILUTM
p τ iter prec totl spar cond
15 1.0e-3 98 1.27 7.41 2.44 1.1e+7
30 1.0e-3 72 2.45 7.67 4.10 2.5e+6
30 1.0e-4 51 2.72 6.57 4.73 2.6e+7
50 1.0e-2 86 1.74 7.58 3.41 9.3e+6
50 1.0e-3 38 3.35 6.35 5.26 2.0e+7
50 1.0e-4 25 4.43 6.70 6.48 5.7e+6

The lower part of Table 6.6 contains test data of ILUT and ILUTP using the first
level dual reordering strategy of MDRILU corresponding to the parameters in the
upper part of Table 6.6. This time, we see that the dual reordering strategy did not
improve the quality of ILUT and ILUTP. Although ILUTP converged with the first
set of parameters, the overall robustness of ILUTP is still inferior to that of MDRILU.

We also used BILUTM of Saad and Zhang [41] to solve the UTM5940 matrix with
the parameters corresponding to those in Table 6.6. Comparing data in Tables 6.6
and 6.7, we see that MDRILU and BILUTM performed comparably for solving this
matrix. MDRILU did better when memory cost was low. BILUTM converged faster
when more memory space was allowed.

Figure 6.3 shows the convergence history of MDRILU with different values of
dropping tolerance τ to solve the UTM5940 matrix, keeping p = 30 and ε = 0.3 fixed.
We note that the number of iterations did not change very much when τ changed
from 1.0e-2 to 1.0e-5 and the sparsity ratio changed from 2.67 to 4.15. It seems that
MDRILU worked quite well with a relatively strict dropping tolerance.

FIDAP matrices. The FIDAP matrices7 were extracted from the test problems
provided in the FIDAP package [23]. They were generated by I. Hasbani of Fluid

7All FIDAP matrices are available online from the MatrixMarket of the National Institute of
Standards and Technology at http://math.nist.gov/MatrixMarket.

MULTILEVEL DUAL REORDERING STRATEGY AND ILU 941

0 10 20 30 40 50 60 70 80
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

2-
no

rm
 r

es
id

ua
l

iterations (p = 30, epsilon = 0.3)

UTM5940 Matrix

solid line: tau = 1.0e-2

dashed line: tau = 1.0e-3

dashdot line: tau = 1.0e-4

dotted line: tau = 1.0e-5

Fig. 6.3. Convergence history of MDRILU with different values of dropping tolerance τ for
solving the UTM5940 matrix.

Dynamics International and B. Rackner of Minnesota Supercomputer Center. The
matrices were resulted from modeling the incompressible Navier–Stokes equations
and were generated using whatever solution method was specified in the input decks.
However, if the penalty method was used, there is usually a corresponding FIDAPM
matrix, which was constructed using a fully coupled solution method (mixed u-p
formulation). The penalty method gives very ill-conditioned matrices, whereas the
mixed u-p method gives indefinite, larger systems (they include pressure variables).

Many of these matrices contain small or zero diagonal values.8 The zero diag-
onals are due to the incompressibility condition of the Navier–Stokes equations [9].
The large amount of zero diagonals makes these matrices indefinite. It is remarked
in [6] that the FIDAP matrices are difficult to solve with ILU preconditioning tech-
niques, which require high level of fill-in to be effective, and the performance of the
preconditioners is unstable with respect to the amount of fill-in. Many of them can-
not be solved by the standard BILUM preconditioner and in some cases even the
construction of BILUM failed due to the occurrence of very ill-conditioned blocks.
Nevertheless, some of them may be solved by the enhanced version of BILUM using
singular value decomposition-based regularized inverse technique and variable block
size [44].

The details of all of the largest 31 FIDAP matrices (n > 2000) are listed in
Table 6.8 and the corresponding test results are given in Table 6.9. The second
column of Table 6.9 lists the number of zero diagonals of the given matrix. In our
tests, we first set p = 20, τ = 1.0e-4 and tested ε = 0.5, 0.3, 0.1, 0.01. If none of these
ε values showed any promise, we increased the p value or decreased the τ value. If for
a given pair of (p, τ), MDRILU with a certain value of ε converged or showed some
convergence, we adjusted the value of ε to get improved convergence rates if possible.
However, there was no effort made to find the best parameters. We stopped refining
the parameters when we found the iteration count was reasonable and the sparsity
ratio was not high, or the computations took too much time in case of large matrices.

8The FIDAP matrices have structural zeros added on the offdiagonals to make them structurally
symmetric. Structural zeros were also added to the diagonals.

942 JUN ZHANG

Once MDRILU was tested, the same pair (p, τ) was used to test ILUTP and ILUT.
For ILUTP, we varied the value of σ analogously to what we did to choose the value
of ε.

Table 6.8
Description of the largest 31 FIDAP matrices.

Matrix Order Nonzeros Description
FIDAP008 3 096 106 302 Developing flow in a vertical channel
FIDAP009 3 363 99 397 Jet impingment cooling
FIDAP010 2 410 54 816 2D flow over multiple steps in a channel
FIDAP011 16 614 1 091 362 3D steady flow, heat exchanger
FIDAP012 3 973 80 151 Flow in lid-driven wedge
FIDAP013 2 568 75 628 Axisymmetric poppet valve
FIDAP014 3 251 66 647 Isothermal seepage flow
FIDAP015 6 867 96 421 Spin up of a liquid in an annulus
FIDAP018 5 773 69 335 2D turbulent flow over a backward-facing step
FIDAP019 12 005 259 863 Developing pipe flow, turbulent
FIDAP020 2 203 69 579 Attenuation of a surface disturbance
FIDAP024 2 283 48 733 Unsymmetric forward roll coating
FIDAP026 2 163 93 749 Surface tension, thermal convection
FIDAP028 2 603 77 653 Two merging liquids with an interior interface
FIDAP029 2 870 23 754 Turbulent flow in axisymmetric U-bend
FIDAP031 3 909 115 299 Dilute species deposition on a heated plate
FIDAP035 19 716 218 308 Turbulent flow in a heated channel
FIDAP036 3 079 53 851 Chemical vapor deposition
FIDAP037 3 565 67 591 Flow of plastic in a profile extrusion die
FIDAP040 7 740 456 226 3D die-swell (square die Re = 1, Ca =∞)
FIDAPM03 2 532 50 380 Flow past a cylinder in free stream (Re = 40)
FIDAPM07 2 065 53 533 Natural convection in a square enclosure
FIDAPM08 3 876 103 076 Developing flow in a vertical channel
FIDAPM09 4 683 95 053 Jet impingment cooling
FIDAPM10 3 046 53 842 2D flow over multiple heat sources in a channel
FIDAPM11 22 294 623 554 3D steady flow, heat exchanger
FIDAPM13 3 549 71 975 Axisymmetric poppet valve
FIDAPM15 9 287 98 519 Spin up of a liquid in an annulus
FIDAPM29 13 668 186 294 Turbulent flow is axisymmetric U-bend
FIDAPM33 2 353 23 765 Radiation heat transfer in a square cavity
FIDAPM37 9 152 765 944 Flow of plastic in a profile extrusion die

Table 6.9 shows that MDRILU can solve 27 out of the 31 largest FIDAP matrices,
in which “levl” indicates the actual number of levels of dual reorderings of MDRILU.
To the best of our knowledge, this is the first time that so many FIDAP matrices
were solved by a single iterative technique. (20 were solved in [44], 18 in [50], 9 in
[42], and 8 in [9].) In Table 6.9 the term “unstable” means that convergence was not
reached in 100 iterations and the condition estimate was greater than 1015. Similarly
the term “inaccurate” means that convergence was not reached, but the condition
estimate did not exceed 1015. They are categorized according to Chow’s and Saad’s
arguments [9]. We remark that the results of “inaccurate” or “unstable” in Table 6.9
do not indicate that ILUT or ILUTP can or cannot solve the given matrices with
different parameters. The results only mean that they did not converge with the
parameters that made MDRILU converge. It is worth pointing out that, in several
tests, we observed that ILUTP encountered zero pivots when ILUT did not. As we
remarked in section 1, the reason is that a poor pivoting sequence can occasionally
trap a factorization into zero pivot even if the factorization would have succeeded
without pivoting, as observed by Chow and Saad [9]. However, statistically ILUT

MULTILEVEL DUAL REORDERING STRATEGY AND ILU 943

Table 6.9
Solving the FIDAP matrices by MDRILU, ILUTP, and ILUT.

MDRILU ILUTP ILUT
Matrix zero-d p τ ε iter totl spar levl iter spar iter spar

FIDAP008 0 90 2.0e-4 0.20 76 3.57 1.46 4 unstable inaccurate
FIDAP009 0 90 3.0e-4 0.35 14 0.53 0.48 3 unstable unstable
FIDAP010 220 90 1.0e-3 0.20 44 0.78 0.92 3 unstable inaccurate
FIDAP011 0 50 1.0e-4 0.10 unstable inaccurate inaccurate
FIDAP012 1134 30 1.0e-4 0.10 50 2.94 2.75 3 unstable unstable
FIDAP013 0 300 2.0e-6 0.01 80 3.13 1.61 2 unstable unstable
FIDAP014 900 200 1.0e-9 0.30 87 15.92 8.91 4 40 7.89 9 6.55
FIDAP015 0 50 1.0e-4 0.10 unstable unstable inaccurate
FIDAP018 0 50 1.0e-4 0.10 unstable unstable unstable
FIDAP019 0 500 6.0e-6 0.30 60 19.64 4.02 7 unstable unstable
FIDAP020 600 20 1.0e-4 0.20 24 0.83 1.11 3 94 1.23 inaccurate
FIDAP024 648 20 1.0e-4 0.10 46 0.97 1.62 3 45 1.82 inaccurate
FIDAP026 457 20 1.0e-4 0.30 84 2.63 0.77 4 unstable unstable
FIDAP028 750 30 1.0e-4 0.20 21 1.56 1.80 3 55 1.96 59 1.94
FIDAP029 0 10 1.0e-4 0.10 4 0.20 2.15 2 3 2.20 3 2.20
FIDAP031 630 20 1.0e-4 0.20 30 0.20 1.10 3 29 1.30 20 1.30
FIDAP018 0 50 1.0e-4 0.10 unstable unstable inaccurate
FIDAP036 504 20 1.0e-4 0.10 23 1.01 1.75 3 83 1.91 unstable
FIDAP037 0 20 1.0e-4 0.01 6 0.55 0.90 2 5 1.01 5 1.01
FIDAP040 1824 70 1.0e-4 0.30 40 40.12 2.43 3 33 2.35 33 2.35
FIDAPM03 711 20 1.0e-4 0.01 32 1.18 1.72 3 57 1.65 unstable
FIDAPM07 432 300 1.0e-4 0.20 78 7.75 6.66 2 80 7.71 inaccurate
FIDAPM08 780 20 1.0e-4 0.10 25 2.25 1.70 3 78 2.22 unstable
FIDAPM09 438 60 1.0e-5 0.50 32 4.57 3.74 3 unstable unstable
FIDAPM10 636 20 1.0e-4 0.10 28 1.21 1.79 4 29 2.13 inaccurate
FIDAPM11 5680 300 1.0e-3 0.10 83 217.45 10.31 3 16 12.89 16 12.79
FIDAPM13 981 50 1.0e-4 0.001 24 3.33 3.69 3 34 3.29 inaccurate
FIDAPM15 2420 50 1.0e-4 0.50 43 11.35 7.51 7 21 7.37 unstable
FIDAPM29 2760 200 1.0e-4 0.001 28 78.80 14.38 3 11 7.47 13 7.46
FIDAPM33 620 20 1.0e-4 0.23 43 1.16 3.61 3 unstable unstable
FIDAPM37 0 500 1.0e-5 0.15 31 660.91 9.20 4 7 4.14 6 4.13

had more zero pivots than ILUTP did for solving all the 31 FIDAP matrices.

Although we allowed 10 levels of maximum dual reorderings to be performed,
there were very few cases that 10 levels of reorderings were actually needed. With
only 2 exceptions, 2 to 4 levels of dual reorderings were performed for the FIDAP
matrices. Note that no case was reported for MDRILU with less than 2 levels of dual
reorderings. This observation seems to suggest that the multilevel dual reordering is
necessary for MDRILU to achieve good performance. In many cases, the first Schur
complement matrix did not have any zero diagonal, even if the original matrix A did
have many zero diagonals. We listed in Table 6.10 those matrices that did have zero
diagonals in their Schur complement matrices. For all the FIDAP matrices solved
by MDRILU, only the FIDAP026 matrix had 12 zero diagonals in the last Schur
complement A4. The test results show that the multilevel dual reordering strategy
does have the effect of removing small and zero pivots from ILU factorizations.

Table 6.10
Number of zero diagonals in the Schur complement matrices.

Matrix A0 A1 A2 A3 A4

FIDAP026 457 44 12 12 12
FIDAPM09 1320 886 438 0
FIDAPM10 636 4 4 0
FIDAPM15 2420 742 0

944 JUN ZHANG

Remark. Ironically, the four matrices FIDAP011, FIDAP015, FIDAP018, and
FIDAP035 that were not solved by MDRILU do not have any zero diagonals. (In Ta-
ble 6.9, we just listed one set of parameters and the reasons why the preconditioners
failed using these parameters.) They may be solved by ILUT with small values of
τ . Some of them may even be solved by GMRES without preconditioning if enough
iterations are allowed. We think this is because these matrices are very nonsymmetric
and the preconditioned matrices were worse conditioned than the original matrices,
causing GMRES iteration to converge extremely slowly. Our strong feeling in these
numerical experiments is that, in general, MDRILU does not seem to work well when
τ is very small. Large values of p usually improve convergence. This observation can
be seen in Figure 6.4, which depicts the convergence history of MDRILU for solving
the largest FIDAP matrix, FIDAPM11. We used p = 300, ε = 0.1 and tested two
values of τ = 1.0e-2 and τ = 1.0e-3. It is clear that more accurate (in terms of drop-
ping tolerance) ILU factorization does not help and sometimes hampers convergence.
Good values for the parameter ε are between 0.1 and 0.5. For most problems, the
performance of MDRILU is not very sensitive to the choice of ε, as long as it is in the
range of 0.1 and 0.5.

0 10 20 30 40 50 60 70 80 90 100
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

2-
no

rm
 r

es
id

ua
l

iterations (p = 300, epsilon = 0.1)

FIDAPM11 Matrix

solid line: tau = 1.0e-2

dashed line: tau = 1.0e-3

Fig. 6.4. Convergence history of MDRILU with different values of dropping tolerance τ for
solving the FIDAPM11 matrix.

7. Conclusion. We have proposed a multilevel dual reordering strategy for con-
structing robust ILU preconditioners for solving general sparse indefinite matrices.
This reordering strategy is combined with a partial ILU factorization procedure to
construct recursive Schur complement matrices. The preconditioner is a multilevel
ILU preconditioner. However, the constructed preconditioner (MDRILU) is differ-
ent from all existing multilevel preconditioners in a fundamental concept [40, 49].
MDRILU never intends to utilize any traditional multilevel property; it uses the Schur
complement approach solely for the purpose of removing small pivots. The idea used
in this paper departs from traditional concepts of multilevel treatment of different
error components. Thus preconditioners constructed from multilevel dual reordering
strategies are more like approximate direct solvers. It is our understanding that a
preconditioned iterative scheme absorbs strength from both iterative method (Krylov
subspace accelerators) and direct method (preconditioners). Our idea of constructing

MULTILEVEL DUAL REORDERING STRATEGY AND ILU 945

preconditioners from the point of view of a direct solver is therefore justified. Such
a viewpoint directly pinpoints the major weakness of current iterative methods, i.e.,
their lack of robustness. As Gilbert and Toledo remarked [25], current iterative solvers
are not as robust as the state-of-the-art direct solvers to be used as blackbox solvers.
More robust preconditioners may be developed by extracting robustness strength from
strategies used in modern direct solvers.

We conducted analyses on simplified model problems to find out how the size
of the small diagonal elements and other elements is modified when these elements
become the elements of the Schur complement matrix. We gave an upper bound
on the size of general elements of the Schur complement matrix to show that their
size will not grow uncontrollably if a suitable threshold reordering strategy based on
the diagonal dominance measure is implemented. We also showed that under certain
conditions, a zero or very small diagonal element is likely to be modified to favor a
stable ILU factorization by the Schur complement procedure.

We further studied the quality of a preconditioning step. We showed that the
quality of a preconditioning step is directly related to the size of both (LU)−1 and
R (the error matrix). Hence, a high quality preconditioner must have a stable ILU
factorization and stable triangular solutions, as well as a small size error matrix. In
other words, both accuracy and stability affect the quality of a preconditioner.

We performed numerical experiments to compare MDRILU with two popular
ILU preconditioners [37] and a multilevel block ILUT preconditioner (BILUTM) [41].
Our numerical results show that MDRILU is much more robust than both ILUT
and ILUTP for solving most indefinite matrices under current consideration. It also
outperformed BILUTM in some tests. The most valuable advantage of MDRILU is
that it can construct a sparse high quality preconditioner with low storage cost. The
preconditioners computed by MDRILU are more stable than those computed by ILUT
and ILUTP, thanks to the ability of MDRILU to remove small diagonal values.

Both analytic and numerical results strongly support our conclusion that the
multilevel dual reordering strategy developed in this paper is a very useful strategy
to construct robust ILU preconditioners for solving general sparse indefinite matrices.
Due to the time and space limit, we have not tested other graph reordering algorithms
in the multilevel dual reordering algorithm. Some of the popular reordering strategies
such as Cuthill-McKee and reverse Cuthill-McKee algorithms may be useful in such
applications to further improve the quality of the ILU preconditioner. However, we feel
the robustness of MDRILU is mainly a result of using threshold tolerance reordering
strategy and partial ILU factorization to remove small pivots. The difference arising
from using different graph algorithms may be significant in terms of the number of
iterations, but such a difference is unlikely to alter the stability problem in a systematic
manner in the ILU factorization.

REFERENCES

[1] G. A. Behie and P. A. Forsyth, Comparison of fast iterative methods for symmetric systems,
IMA J. Numer. Anal., 3 (1983), pp. 41–63.

[2] G. A. Behie and P. A. Forsyth, Jr., Incomplete factorization methods for fully implicit
simulation of enhanced oil recovery, SIAM J. Sci. Statist. Comput, 5 (1984), pp. 543–561.

[3] M. Benzi, D. B. Szyld, and A. van Duin, Orderings for incomplete factorization precondi-
tioning of nonsymmetric problems, SIAM J. Sci. Comput., 20 (1999), pp. 1652–1670.

[4] C. I. W. Brand, An incomplete-factorization preconditioning using red-black ordering, Numer.
Math., 61 (1992), pp. 433–454.

946 JUN ZHANG

[5] T. F. Chan, C.-C. J. Kuo, and C. Tong, Parallel elliptic preconditioners: Fourier analysis
and performance on the Connection machine, Comput. Phys. Comm., 53 (1989), pp. 237–
252.

[6] A. Chapman, Y. Saad, and L. Wigton, High-order ILU preconditioners for CFD problems,
Internat. J. Numer. Methods Fluids, 33 (2000), pp. 767–788.

[7] M. P. Chernesky, On preconditioned Krylov subspace methods for discrete convection-
diffusion problems, Numer. Methods Partial Differential Equations, 13 (1997), pp. 321–330.

[8] E. Chow and M. A. Heroux, An object-oriented framework for block preconditioning, ACM
Trans. Math. Software, 24 (1998), pp. 159–183.

[9] E. Chow and Y. Saad, Experimental study of ILU preconditioners for indefinite matrices, J.
Comput. Appl. Math., 86 (1997), pp. 387–414.

[10] S. S. Clift and W.-P. Tang, Weighted graph based ordering techniques for preconditioned
conjugate gradient methods, BIT, 35 (1995), pp. 30–47.

[11] E. F. D’Azevedo, P. A. Forsyth, and W.-P. Tang, Ordering methods for preconditioned
conjugate gradient methods applied to unstructured grid problems, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 944–961.

[12] M. A. Delong and J. M. Ortega, SOR as a preconditioner, Appl. Numer. Math., 18 (1995),
pp. 431–440.

[13] G. Di Lena and D. Trigiante, Stability and spectral properties of incomplete factorization,
Japan J. Appl. Math., 7 (1990), pp. 145–163.

[14] S. Doi, On parallelism and convergence of incomplete LU factorizations, Appl. Numer. Math.,
7 (1991), pp. 417–436.

[15] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Clarendon
Press, New York, 1986.

[16] I. S. Duff and G. A. Meurant, The effect of reordering on preconditioned conjugate gradients,
BIT, 29 (1989), pp. 635–657.

[17] L. C. Dutto, The effect of reordering on the preconditioned GMRES algorithm for solving
the compressible Navier-Stokes equations, Internat. J. Numer. Methods Engrg., 36 (1993),
pp. 457–497.

[18] H. C. Elman, A stability analysis of incomplete LU factorization, Math. Comp., 47 (1986),
pp. 191–217.

[19] H. C. Elman, Relaxed and stabilized incomplete factorization for nonselfadjoint linear systems,
BIT, 29 (1989), pp. 890–915.

[20] H. C. Elman and E. Agron, Ordering techniques for the preconditioned conjugate gradient
method on parallel computers, Comput. Phys. Comm., 53 (1989), pp. 253–269.

[21] H. C. Elman and G. H. Golub, Iterative methods for cyclically reduced nonselfadjoint linear
systems, Math. Comp., 54 (1990), pp. 671–700.

[22] H. C. Elman and G. H. Golub, Iterative methods for cyclically reduced nonselfadjoint linear
systems. II, Math. Comp., 56 (1991), pp. 215–242.

[23] M. Engelman, FIDAP: Examples Manual, Revision 6.0, Tech. report, Fluid Dynamics Inter-
national, Evanston, IL, 1991.

[24] J. A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[25] J. R. Gilbert and S. Toledo, An assessment of incomplete-LU preconditioners for nonsym-
metric linear systems, Tech. report, Xerox Palo Alto Research Center, Palo Alto, CA,
1997.

[26] D. S. Kershaw, On the problem of unstable pivots in the incomplete LU-conjugate gradient
method, J. Comput. Phys., 38 (1980), pp. 114–123.

[27] H. P. Langtangen, Conjugate gradient methods and ILU preconditioning of non-symmetric
matrix systems with arbitrary sparsity patterns, Internat. J. Numer. Methods Fluids, 9
(1989), pp. 213–233.

[28] J. W.-H. Liu and A. H. Sherman, Comparative analysis of the Cuthill-McKee and the reverse
Cuthill-McKee ordering algorithms for sparse matrices, SIAM J. Numer. Anal., 13 (1976),
pp. 198–213.

[29] M.-M. Magolu, Ordering strategies for modified block incomplete factorizations, SIAM J. Sci.
Comput., 16 (1995), pp. 378–399.

[30] T. A. Manteuffel, An incomplete factorization technique for positive definite linear systems,
Math. Comput., 34 (1980), pp. 473–497.

[31] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of
which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148–
162.

MULTILEVEL DUAL REORDERING STRATEGY AND ILU 947

[32] A. Messaoudi, On the stability of the incomplete LU-factorization and characterizations of
H-matrices, Numer. Math., 69 (1995), pp. 321–331.

[33] Y. Notay, Ordering Methods for Approximate Factorization Preconditioning, Tech. Report
IT/IF/14-11, Universite Libre de Bruxelles, Brussels, Belgium, 1993.

[34] J. M. Ortega, Orderings for conjugate gradient preconditionings, SIAM J. Optim., 1 (1991),
pp. 565–582.

[35] Y. Saad, ILUT: A dual threshold incomplete LU preconditioner, Numer. Linear Algebra Appl.,
1 (1994), pp. 387–402.

[36] Y. Saad, ILUM: A multi-elimination ILU preconditioner for general sparse matrices, SIAM
J. Sci. Comput., 17 (1996), pp. 830–847.

[37] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, New York, 1996.
[38] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[39] Y. Saad, M. Sosonkina, and J. Zhang, Domain decomposition and multi-level type tech-

niques for general sparse linear systems, in Domain Decomposition Methods 10, J. Mandel,
C. Farhat, and X. Cai, eds., Contemp. Math. 218, AMS, Providence, RI, 1998, pp. 174–190.

[40] Y. Saad and J. Zhang, BILUM: Block versions of multielimination and multilevel ILU precon-
ditioner for general sparse linear systems, SIAM J. Sci. Comput., 20 (1999), pp. 2103–2121.

[41] Y. Saad and J. Zhang, BILUTM: A domain-based multilevel block ILUT preconditioner for
general sparse matrices, SIAM J. Matrix Anal. Appl., 21 (1999), pp. 279–299.

[42] Y. Saad and J. Zhang, Diagonal threshold techniques in robust multi-level ILU preconditioners
for general sparse linear systems, Numer. Linear Algebra Appl., 6 (1999), pp. 257–280.

[43] Y. Saad and J. Zhang, A multi-level preconditioner with applications to the numerical simu-
lation of coating problems, in Iterative Methods in Scientific Computing II, D. R. Kincaid
and A. C. Elster, eds., IMACS, New Brunswick, NJ, 1999, pp. 437–449.

[44] Y. Saad and J. Zhang, Enhanced multilevel block ILU preconditioning strategies for general
sparse linear systems, J. Comput. Appl. Math., to appear.

[45] S. A. Sauter, On the stability of the incomplete Cholesky decomposition for a singular per-
turbed problem, where the coefficient matrix is not an M-matrix, Numer. Linear Algebra
Appl., 2 (1995), pp. 17–28.

[46] H. D. Simon, Incomplete LU preconditioners for conjugate-gradient-type iterative methods,
in Proceedings of the 1985 SPE Resevoir Simulation Symposium, Richardson, TX, 1985,
Society of Petroleum Engineers, pp. 387–396.

[47] H. A. van der Vorst, Iterative solution methods for certain sparse linear systems with a non-
symmetric matrix arising from PDE-problems, J. Comput. Phys., 44 (1981), pp. 1–19.

[48] H. A. van der Vorst, Stabilized incomplete LU-decompositions as preconditionings for the
Tchebycheff iteration, in Preconditioning Methods: Analysis and Applications, in Topics
in Comput. Math. 1, Gordon and Breach, New York, 1983, pp. 243–263.

[49] J. Zhang, A grid based multilevel incomplete LU factorization preconditioning technique for
general sparse matrices, Appl. Math. Comput., to appear.

[50] J. Zhang, Preconditioned Krylov subspace methods for solving nonsymmetric matrices from
CFD applications, Comput. Methods Appl. Mech. Engrg., 189 (2000), pp. 825–840.

CONVERGENCE OF PSEUDOCONTRACTIONS AND
APPLICATIONS TO TWO-STAGE AND ASYNCHRONOUS

MULTISPLITTING FOR SINGULAR M-MATRICES∗

YANGFENG SU† AND AMIT BHAYA‡

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 948–964

Abstract. Pseudocontractions, which are generalizations of paracontractions in the linear case,
are introduced in this paper in order to study the convergence of nonstationary iterative methods
for linear systems in which the coefficient matrices are singular M -matrices. A general convergence
theorem for pseudocontractions is developed. This theorem is used to analyze the convergence of two
nonstationary parallel iterations: two-stage multisplitting iterations and asynchronous multisplitting
iterations for singular M -matrices, without other contractivity conditions on the iteration matrices.

Key words. pseudocontractions, paracontractions, two-stage iteration, asynchronous iteration,
multisplitting, nonnegative matrices, singular M -matrices

AMS subject classifications. 15A48, 65F10, 65Y05

PII. S0895479898339414

1. Introduction. Singular M -systems, which are linear systems of equations
Ax = b, with A a singular M -matrix, may appear in many applications such as
elliptic equations with periodic boundary conditions, finite Markov chains, etc. [6].
Stationary iterative methods to solve singular M -systems have been well studied; see,
e.g., [6, 36]. For nonstationary iterative methods, in which the iteration operators
change during the iterative procedure, for example, two-stage iterative methods and
asynchronous iterative methods (see sections 3 and 4 below, respectively, for details),
some assumptions on these operators have been made in the literature to guarantee
the convergence. Bru, Elsner, and Neumann [11] assumed that the iterative operators
are paracontractive, Migallón, Penadés, and Szyld [30] assumed that the operators are
uniformly contractive.

In this paper, a new property of operators, called pseudocontractivity, is proposed.
It is shown that pseudocontractivity is a generalization of the paracontractivity prop-
erty in the linear case. A general convergence theorem for pseudocontractive iterations
is proved in section 2. In section 3 it is proved that the product of iteration matri-
ces associated with a class of stationary iterative methods is pseudocontractive and
therefore that this class of methods is convergent. In sections 4 and 5, this theory is
used to analyze two parallel nonstationary iterative methods for singular M -systems,
specifically, nonstationary two-stage multisplitting methods and asynchronous multi-
splitting methods, and, under reasonable conditions, convergence results are obtained.
No other contractivity condition on the iteration operators is required.

∗Received by the editors May 29, 1998; accepted for publication (in revised form) by I. Ipsen
October 2, 2000; published electronically January 19, 2001. This research was partially supported by
CNPq, the Brazilian National Council for Scientific and Technological Research, as well as a grant
from the PRONEX Program of MCT.

http://www.siam.org/journals/simax/22-3/33941.html
†Department of Mathematics, Fudan University, Shanghai, China (yfsu@fudan.edu.cn). This

research was carried out while the first author was visiting the second on a fellowship awarded by
CNPq, the Brazilian National Council for Scientific and Technological Research.

‡Federal University of Rio de Janeiro, Department of Electrical Engineering, PEE/COPPE/
UFRJ, P.O. Box 68504, RJ 21945-970, Brazil (amit.bhaya@na-net.ORNL.gov). The second author
was supported by CNPq, PRONEX, and CAPES.

948

PSEUDOCONTRACTIONS AND MULTISPLITTING 949

2. Pseudocontractive operators and a general convergence theorem.
Let X∗ be a nonempty closed convex subset of R

n, and let ‖ · ‖ be a norm on R
n. For

any vector x ∈ R
n, y∗ ∈ X∗ is a projection vector of x onto X∗ if

‖x− y∗‖ = min
y∈X∗

‖x− y‖.

Remark. Since X∗ is closed, the minimum is always attained. The projection
vector may be not unique. For example, let ‖ · ‖ = ‖ · ‖∞, X∗ = {x ∈ R

2 | ‖x‖ ≤ 1},
x = (2, 0)T , then all vectors (1, a)T with a ∈ [−1, 1] are projection vectors of x
onto X∗. We use P (x) to denote an arbitrary but fixed projection vector of x and
dist(x,X∗) to denote ‖x− P (x)‖. Note that dist(x,X∗) is independent of the choice
of P (x).

Let T be an operator on R
n. It is nonexpansive (with respect to ‖ · ‖ and X∗) if

‖Tx− x∗‖ ≤ ‖x− x∗‖ for all x ∈ R
n, x∗ ∈ X∗(2.1)

and pseudocontractive (with respect to ‖ · ‖ and X∗) if, in addition,

dist(Tx,X∗) < dist(x,X∗) for all x /∈ X∗.(2.2)

We use T to denote the set of all pseudocontractive operators.
Proposition 2.1. If T is pseudocontractive with respect to ‖ · ‖ and X∗, then

X∗ is the set of all fixed points of T .
Proof. For any fixed x∗ ∈ X∗, in (2.1), let x = x∗, and thus we have Tx∗ = x∗,

which means that all points in X∗ are fixed points of T . For any x /∈ X∗, from (2.2),
Tx− P (Tx)
= x− P (x), therefore, Tx
= x, i.e., x is not a fixed point of T .

Example 1. Let T ∈ R
n×n, X∗ = {αe | α ∈ R}, and let e ∈ R

n denote the
vector with all components equal to 1. Then T is pseudocontractive with respect to
X∗ and the infinity norm ‖ · ‖∞ if and only if Te = e and for any x ∈ R

n such that
mini xi < maxi xi, maxi(Tx)i −mini(Tx)i < maxi xi −mini xi.

Remark (paracontractivity versus pseudocontractivity). Paracontractive opera-
tors have been used mainly in the study of systems with multiple solutions; see, for
example, [32, 14, 15, 11, 35, 8]. An operator is paracontractive if

‖Tx‖ ≤ ‖x‖ for all x ∈ R
n

and equality holds if and only if Tx = x. In the case that T is linear, if T is
paracontractive, then

‖Tx− x∗‖ = ‖T (x− x∗)‖ < ‖x− x∗‖ for all x /∈ X∗, x∗ ∈ X∗,

where X∗ is the subspace consisting of all fixed points of T . Thus, T is pseudo-
contractive. So in the linear case, pseudocontractive operators are generalizations of
paracontractive ones. But the converse is not true. Consider the following inequalities:

‖Tx− P (Tx)‖ ≤ ‖Tx− P (x)‖ ≤ ‖x− P (x)‖ for x /∈ X∗.

Paracontractivity requires the second inequality to be strict, while pseudocontractivity
requires any one of these two inequalities to be strict.

Example 2. For the operator

T =

 .5 .5 0
.25 .5 .25
0 .5 .5

 ,

950 YANGFENG SU AND AMIT BHAYA

the norm, the vector e, and the set X∗ are the same as in Example 1. For any x,
P (x) = 0.5(maxi xi + mini xi)e. For x = (2, 2, 1)T , Tx = (2, 1.75, 1.5)T , P (x) = 1.5e,
and P (Tx) = 1.75e. Thus the first inequality in the equation above is strict while the
second one is an equality. So this operator is pseudocontractive, not paracontractive.

Another simple property of pseudocontractions is given below.
Proposition 2.2. Let Ti be a set of nonexpansive or pseudocontractive operators

(with respect to the same norm and the same set X∗). A product of any number
of operators from this set that contains at least one pseudocontractive operator is
pseudocontractive.

Proof. Let T1 be pseudocontractive and T2 be nonexpansive. First consider the
case that T = T1T2. For x
∈ X∗, if T2x ∈ X∗, then ‖Tx−P (Tx)‖ = 0 < ‖x−P (x)‖.
Suppose T2x
∈ X∗; from the definition of the operator P , it follows that

‖Tx− P (Tx)‖ = ‖T1T2x− P (T1T2x)‖
< ‖T2x− P (T2x)‖
≤ ‖T2x− P (x)‖
≤ ‖x− P (x)‖.

Thus, T is pseudocontractive. Now consider the case that T = T2T1.

‖Tx− P (Tx)‖ ≤ ‖Tx− P (T1x)‖ ≤ ‖T1x− P (T1x)‖.

Since T1 is pseudocontractive, T is also pseudocontractive.
Note that this proposition implies that if a product of operators is pseudocon-

tractive, then only one of its factors need be pseudocontractive; the others may be
nonexpansive.

In the following theorem, the operators are not necessarily linear, although in our
later applications the operators are linear.

Theorem 2.3. Let {Tk} be a sequence of nonexpansive operators (with respect
to ‖ · ‖ and X∗), and let there exist a subsequence {Tki} which converges to T ∈ T . If
T is pseudocontractive and uniformly Lipschitz continuous, then for any initial vector
x(0), the sequence of vectors

x(k + 1) = Tkx(k), k = 0, 1, 2, . . . ,

converges to some x∗ ∈ X∗.
Proof. Consider the subsequence of vectors {x(ki)}∞i=0 of the sequence {x(k)}∞k=0.

As Tk is nonexpansive, this subsequence is bounded, and it contains a convergent
subsequence which, without loss of generality, can be taken to be {x(ki)}∞i=0 itself.
Assume therefore that

lim
i→∞

x(ki) = ξ.

If ξ ∈ X∗, as all Ti are nonexpansive,

‖x(k + 1)− ξ‖ ≤ ‖x(k)− ξ‖, k = 0, 1, 2 . . . ,

and we are done.

PSEUDOCONTRACTIONS AND MULTISPLITTING 951

Suppose ξ /∈ X∗, and therefore ‖ξ − P (ξ)‖ > 0. As T is pseudocontractive,

β :=
‖Tξ − P (Tξ)‖
‖ξ − P (ξ)‖ < 1.

For arbitrary fixed ε > 0 small enough, there exists an integer kε such that

‖x(ki)− ξ‖ ≤ ε, ‖Tki − T‖ ≤ ε for all i such that ki ≥ kε.
Consider i: ki ≥ kε.

‖x(ki + 1)− P (x(ki + 1))‖
≤ ‖x(ki + 1)− P (Tξ)‖
= ‖Tkix(ki)− P (Tξ)‖
≤ ‖Tkix(ki)− Tx(ki)‖+ ‖Tx(ki)− Tξ‖+ ‖Tξ − P (Tξ)‖(2.3)

≤ ε‖x(ki)‖+ ε‖T‖+ β‖ξ − P (ξ)‖(2.4)

≤ β‖ξ − P (ξ)‖+ Cε,

where, from (2.3) to (2.4), we use the convergence of Tki for the first term, the uniform
Lipschitz continuity of T for the second term (‖T‖ is used to denote the Lipschitz
constant), the pseudocontractive property of T for the third term, and C is a positive
constant scalar. As all Tk are nonexpansive, for k ≥ 0,

‖x(k + 1)− P (x(k + 1))‖ ≤ ‖x(k + 1)− P (x(k))‖
= ‖Tx(k)− P (x(k))‖ ≤ ‖x(k)− P (x(k))‖,

therefore,

‖x(ki+1)− P (x(ki+1))‖ ≤ ‖x(ki + 1)− P (x(ki + 1))‖ ≤ β‖ξ − P (ξ)‖+ Cε.

On the other hand,

‖ξ − P (ξ)‖ ≤ ‖ξ − P (x(ki+1))‖
≤ ‖ξ − x(ki+1)‖+ ‖x(ki+1)− P (x(ki+1))‖
≤ ε+ β‖ξ − P (ξ)‖+ Cε,

i.e., for any ε small enough,

‖ξ − P (ξ)‖ ≤ C + 1

1− β ε.

This contradicts ‖ξ − P (ξ)‖ > 0.
This theorem is applied to prove the convergence of two-stage multisplitting it-

eration algorithms and asynchronous multisplitting iteration algorithms for singular
M -matrices in the subsequent sections. The following corollary relates pseudocon-
tractivity to the existence of limits of powers of a matrix.

Corollary 2.4. If T is a pseudocontractive matrix, then limn→∞ Tn exists.
Proof. In the matrix case, limn→∞ Tn exists if and only if for all x, limn→∞ Tnx

exists. The conclusion is now drawn from the above theorem.
Theoretically, the convergence of the powers of a matrix is equivalent to the

existence of a vector norm such that the matrix is paracontractive with respect to

952 YANGFENG SU AND AMIT BHAYA

this norm. However, in practice, it is usually necessary to prove that a matrix has
some contractive property with respect to a given norm, for example, with respect
to the 2-norm in the case of symmetric matrices [32], or the weighted infinity norm
in the case of nonnegative matrices. By the remark following Example 1, if a matrix
is paracontractive with respect to a given norm, then it is always pseudocontractive
with respect to this norm. On the other hand, if a matrix is not paracontractive
with respect to some norm, it may still be pseudocontractive with respect to this
norm. In this paper, it is proved that the product of a sufficiently large number (at
most n − 1, where n is the order of the matrix) of nonnegative matrices, which are
induced from (possibly different) weak regular splittings of a singular M -matrix, is
pseudocontractive. This is used to prove the convergence of some parallel iterative
methods for singular M -matrices.

3. Pseudocontractive operators and weak regular splittings of an ir-
reducible singular M-matrix. Let B be a nonnegative matrix (denoted B ≥ 0),
i.e., each element of B is nonnegative. From nonnegative matrix theory, see, e.g.,
[6, 42], ρ(B), the spectral radius of B, is an eigenvalue of B, and there exists a non-
negative eigenvector, which is termed the Perron vector of B, associated to it. If B is
irreducible, there is only one eigenvalue equal to ρ(B) and the Perron vector is posi-
tive (componentwise, denoted as � 0) and unique (up to a scalar factor). A matrix
A ∈ R

n×n is a singular M -matrix if there exists a nonnegative matrix B such that
A = ρ(B)I − B. Therefore, if A is an irreducible singular M -matrix, there exists a
unique (up to a scalar factor) v which is positive such that Av = 0. In what follows,
the following assumption will always be made.

Assumption. The vector v, referred to above, is equal to e, the vector with all
components equal to 1.

Remark. This assumption makes our notation simpler and our demonstrations
more intuitive: for example, Av = 0 means that all sums of elements in the same
row of A are equal to zero. Furthermore, it entails no loss of generality. For, if
v
= e, then A′ = D−1AD with D = diag(v) is a singular M -matrix as well, satisfying
A′e = 0. If the same similarity transformation is applied to all the other matrices
involved, then all the important properties assumed in this paper are preserved. For
example, if A = M −N is a weak regular or regular splitting (as defined below), then
A′ = M ′ − N ′ is weak regular or regular as well. Consequently, the iterates x(k)
of the nonstationary two-stage multisplitting iteration described in section 4 (with
splittings A = M −N , M = Fl −Nl) are related to those of the same algorithm with
splittings A′ = M ′ − N ′, M ′ = F ′

l − G′
l through x′(k) = D−1x(k), provided that

x′(0) := D−1x(0). Thus, the convergence proved in Theorem 4.2 for the special case
v = e actually also holds in the general case. Exactly the same situation arises for
Theorem 5.1.

A splitting of the matrix A : A = M − N is weak regular if M is nonsingular,
M−1 ≥ 0, and M−1N ≥ 0, and is regular if M−1 ≥ 0 and N ≥ 0.

Proposition 3.1. Let A be an irreducible singular M -matrix, the splitting A =
M −N be weak regular, and T = M−1N . Then either T is irreducible, or there exists
a permutation matrix Pe such that

Pe
TTPe =

(
T11

T21 T22

)
,

where T11 is irreducible, ρ(T11) = 1, and ρ(T22) < 1.

PSEUDOCONTRACTIONS AND MULTISPLITTING 953

Proof. Suppose that T is reducible. For v � 0, Av = 0, we have Tv = v,
therefore, from [29, p. 728], there exists a permutation matrix Pe such that

Pe
TTPe =

Q11

. . .

Qii
Qi+1,1 · · · · · · Qi+1,i+1

 ,

where Q11, . . . , Qii are irreducible, i ≥ 1, ρ(Q11) = · · · = ρ(Qii) = 1, ρ(Qi+1,i+1) < 1,

and Qi+1,i+1 may be missing. If i ≥ 2, let u = Pe
T v = (uT1 , . . . , u

T
i , u

T
i+1)T , then any

vector

ũ =

α1u

T
1 , . . . , αiu

T
i ,

(I −Qi+1,i+1)−1

i∑
j=1

Qi+1,jαjuj

T

T

, αj > 0,

is also the Perron vector of Pe
TTPe, which contradicts the fact that T has a unique

(up to a scalar factor) Perron vector. Therefore i = 1.
We use S(T) to denote the set of all row indices of T such that after the permu-

tation in the above proposition, these rows become the rows of T11. For any x ∈ R
n,

denote

x ≡ max
i
xi, x ≡ min

i
xi.

Proposition 3.2. Let x be a vector such that x < x, A be an irreducible singular
M -matrix such that Ae = 0 with e = (1, 1, . . . , 1)T , the splitting A = M −N be weak
regular, T ≡ (tij) = M−1N with tii > 0 for 1 ≤ i ≤ n, y = Tx. Then we have the
following:

(i) For all components of y,

x ≤ yi ≤ x, 1 ≤ i ≤ n,

{i | yi = x} ⊂ {i |xi = x},(3.1)

{i | yi = x} ⊂ {i |xi = x}.(3.2)

(ii) Equation

{i | yi = x} = {i |xi = x}(3.3)

holds if and only if

{i | yi = x} = {i |xi = x} = S(T);

similarly, equation

{i | yi = x} = {i |xi = x}(3.4)

holds if and only if

{i | yi = x} = {i |xi = x} = S(T).

(iii) The number of the elements in set {i | yi = x or yi = x} is at least one less
than the number of the elements in {i |xi = x or xi = x}.

954 YANGFENG SU AND AMIT BHAYA

Proof. Write yi as

yi =
∑
xj=x

tijxj +
∑
xj=x

tijxj +
∑

x<xj<x

tijxj , i = 1, . . . , n.(3.5)

Using tii > 0 and Te = e, we have

x ≤ yi < x for i such that xi = x;
x < yi < x for i such that x < xi < x;
x < yi ≤ x for i such that xi = x.

This is part (i) of this proposition.
From (3.5), {i | yi = x} = {i |xi = x} if and only if

∑
j: xj>x

tij = 0 for all i such that xi = x(3.6)

or equivalently,
∑

j: xj=x

tij = 1 for all i such that xi = x.(3.7)

We use T̃11 to denote the principal submatrix of T consisting of those rows and
columns whose indices belong to {i | yi = x}. From (3.7), e is a Perron vector of

T̃11. Using Proposition 3.1, we have {i |xi = x} = S(T); thus (3.3) holds. Similar
arguments are valid for the necessary and sufficient condition of (3.4).

As x < x, equalities (3.3) and (3.4) cannot hold simultaneously, therefore, at least
one of the inclusions (3.1), (3.2) is strict, and part (iii) is also proved.

Remark. If tii = 0, then for any ω : 0 < ω < 1, all diagonal elements of
(1 − ω)I + ωT , the Jacobi extrapolating matrix of T , are positive. Let T be an
irreducible nonnegative matrix with ρ(T) = 1. If at least one diagonal element of T
is positive (thus T is primitive), then T is semiconvergent, i.e., limk→∞ T k exists, the
Jacobi iterative method converges; see [6, Chapter 2]. If this is not satisfied, T may
not be semiconvergent, for example,

T =

(
0 1
1 0

)
.

Proposition 3.3. Let A ∈ R
n×n be an irreducible singular M -matrix such that

Ae = 0, let A = Mk −Nk, k = 1, . . . , n− 1, be arbitrary weak regular splittings of A,
and let Tk = M−1

k Nk, with all diagonal elements of Tk positive. Then, with respect to
‖ · ‖∞ and X∗ = {αe |α ∈ R},

T = Tn−1Tn−2 · · ·T1

is pseudocontractive.
Proof. For any x /∈ X∗, i.e., x < x, denote y = Tx, as Te = e, it is easy to

prove that T is nonexpansive. Applying part (iii) of Proposition 3.2 repeatedly (n−1
times), we have that at least one set of {i | yi = x} and {i | yi = x} is empty. If, say,
{i | yi = x} is empty, then yi > x for all 1 ≤ i ≤ n, and furthermore

‖y − P (y)‖ =
maxi yi −mini yi

2
≤ x−mini yi

2
<
x− x

2
= ‖x− P (x)‖;

therefore T is pseudocontractive.

PSEUDOCONTRACTIONS AND MULTISPLITTING 955

Remark. This T may be not paracontractive with respect to ‖ · ‖∞. For example,
for n = 3, let

A =

 2 −1 −1
−1 2 −1
−1 −1 2

 , M =

 4 −2 −2

0 4 −2
0 −2 4

 , N = M −A,

T1 = T2 = M−1N =

 1 0 0

0.5 0.5 0
0.5 0 0.5

 , T = T2T1 =

 1 0 0

0.75 0.25 0
0.75 0 0.25

 .

Tk and T satisfy all conditions in Proposition 3.3, so T is pseudocontractive. For
x = (2, 0, 0)T /∈ X∗, Tx = (2, 1.5, 1.5)T
= x, the projection vectors P (x) = (1, 1, 1)T ,
P (Tx) = (1.75, 1.75, 1.75)T , thus

0.25 = ‖Tx− P (Tx)‖ < ‖x− P (x)‖ = 1, but ‖x‖ = ‖Tx‖.

Thus, T is pseudocontractive, but not paracontractive. In [11] it was shown that
T positive guarantees that T is paracontractive. For the matrix T in Example 2,
T 2 is positive. Here we do not require T to be positive or even to be nonnegative
irreducible.

4. Two-stage multisplitting iterative methods. Since multisplitting itera-
tion was first proposed by O’Leary and White [34] to solve systems of linear equations
in a parallel computer, it has been studied for many types of systems, for example,
nonsingular M -systems [1, 13, 33], H-systems [37], SPD-systems [31, 44], nonlinear
systems [17, 16], linear or nonlinear complementarity problems [2, 4, 28], etc., combin-
ing with many kinds of methods, e.g., extrapolating methods [43, 18, 3], CG methods
with preconditioning [9, 24, 23], two-stage methods [12, 25, 40], etc. However, mul-
tisplitting iteration should be viewed more as an analysis tool to study a variety of
block iterative methods, including the Schwarz method, rather than as a competitive
computational method. In this section, we discuss a nonstationary two-stage multi-
splitting method for solving singular M -systems and its convergence from this point
of view. In the next section, another nonstationary multisplitting method called the
asynchronous multisplitting method is discussed.

Let A be an singular M -matrix, A = M − N be a weak regular splitting,
M = Fl − Gl be r splittings, El be r nonnegative diagonal matrices such that∑r
l=1El = I. (Fl, Gl, El)

r
l=1 is called a weak regular multisplitting of M if the r

splittings M = Fl − Gl, l = 1, . . . , r, are weak regular. The following nonstationary
two-stage multisplitting method for solving singular M -systems was given in [30].

Algorithm (nonstationary two-stage multisplitting). Given the initial vector
x(0), and a sequence of numbers of inner iterations q(l, k), 1 ≤ l ≤ r, k = 1, 2, . . . ,

For k = 1, 2, . . ., until convergence.
For l = 1 to r % outer stage

y(k, 0) = x(k − 1)
For j = 1 to q(l, k) % inner stage

Fly(l, j) = Gly(l, j − 1) +Nx(k − 1)
x(k) =

∑r
l=1Ely(l, q(l, k)).

The parallel implementation of this algorithm is obvious. Before we state our
convergence theorem for it, we give a lemma.

956 YANGFENG SU AND AMIT BHAYA

Lemma 4.1. Let A be an irreducible singular M -matrix, A = M − N be a
weak regular splitting, and (Fl, Gl, El)

r
l=1 be a weak regular multisplitting of M . Then

the sequence of iterative vectors x(k) in the nonstationary two-stage multisplitting
iteration satisfies

x(k) = Tk−1x(k − 1),

where

Tk−1 =

r∑
l=1

El

[
R
q(l,k)
l + (I +Rl + · · ·+Rq(l,k)−1

l)F−1
l N

]
(4.1)

with

Rl = F−1
l Gl.

Assume further that the diagonal elements of M−1N and F−1
l Gl are positive, and

that F−1
l N ≥ 0, then there exists M̃k−1 and Ñk−1 such that A = M̃k−1 − Ñk−1 is

a weak regular splitting, Tk−1 = M̃−1
k−1Ñk−1 ≥ 0, all diagonal elements of Tk−1 are

positive.
Proof. Equation (4.1) can be proved by induction. Since Rl = F−1

l Gl ≥ 0,
FlN ≥ 0, we have Tk−1 ≥ 0. At the same time, since all diagonal elements of Rl are
positive, all diagonal elements of Tk−1 are also positive. Furthermore, as M−1 ≥ 0,
M = Fl −Gl is weak regular, we know [42] that ρ(Rl) < 1 and

Tk−1 =

r∑
l=1

El

[
R
q(l,k)
l + (I −Rl)−1(I −Rq(l,k)l)F−1

l N
]

=

r∑
l=1

El

[
R
q(l,k)
l + (I −Rq(l,k)l)M−1N

]
.(4.2)

Define

F̃l,k = M(I −Rq(l,k)l)−1,

G̃l,k = F̃l,kR
q(l,k)
l ;

we have F̃l,k − G̃l,k = M and

F̃−1
l,k = (I +Rl + · · ·+Rq(l,k)−1

l)F−1
l ≥ 0

and

F̃−1
l,k G̃l,k = R

q(l,k)
l ≥ 0,

thus (F̃l,k, G̃l,k, El)
r
l=1 is also a weak regular multisplitting of M . Since M−1 ≥ 0,

from [19, Theorem 2.1(ii)], we know that
∑r
l=1ElF̃

−1
l,k is nonsingular, thus we can

define

M̃k−1 =

(
r∑
l=1

ElF̃
−1
l,k

)−1

, Ñk−1 = M̃k−1 −A.

It is easy to verify that M̃k−1, Ñk−1 satisfy the requirements of the lemma.

PSEUDOCONTRACTIONS AND MULTISPLITTING 957

Remark. If A is nonsingular, results similar to this lemma have appeared in, e.g.,
[40, 22]. If A is singular, the expression of A = M̃k−1 − Ñk−1 is not unique; see [5].

Theorem 4.2. Suppose that the matrix A and all related splittings satisfy the
conditions in Lemma 4.1. Then for any x(0), the sequence of iterative vectors x(k)
converges to some x∗ such that Ax∗ = 0. More specifically, if x(0) is positive, x∗ is
also positive.

Proof. Without loss of generality, we assume that Ae = 0. Let x(k) = Tk−1x(k−
1), where Tk−1 is defined by Lemma 4.1, and construct the following sequence of
vectors iteratively:

y(0) = x(0);

y(m+ 1) = T̃my(m), m = 0, 1, 2, . . . ,

where

T̃m = Tm(n−1)+n−2 · · ·Tm(n−1).

From Lemma 4.1, Tk is induced by a weak regular splitting of A for k = 0, 1, From
the assumption of this theorem, all diagonals of Tk are positive, thus from Proposition
3.3, T̃m is pseudocontractive with respect to ‖ ‖∞ and X∗ = {αe |α ∈ R}. To apply

Theorem 2.3, we need to look for a convergent subsequence {T̃mi
}∞i=0 of {T̃m}∞m=0.

Once the splitting A = M−N and the multisplitting ofM : (Fl, Gl, El)
r
l=1 are defined,

Tk−1 is uniquely determined by an integer vector

q̂(k) = (q(1, k), . . . , q(l, k));

cf. (4.2). Note that if some component of q̂(k), say q(1, k), is replaced by +∞, then

Tk−1 = E1M
−1N +

r∑
l=2

El

[
R
q(l,k)
l + (I −Rq(l,k)l)M−1N

]
,

the operator Tk−1 is well defined, and it has the same properties as the one which has

finite parameters q(1, k), . . . , q(l, k). Similarly, each T̃m is uniquely determined by an
integer vector

q̃(m) = (q̂((m+ 1)(n− 1)− 1), . . . , q̂(m(n− 1))) .

Now we choose a subsequence {q̃(mi)}∞i=0 of {q̃(m)}∞m=0 such that for each component
sequence of {q̃(mi)}∞i=0, either this component sequence has equal value for all i, or
this component sequence tends to infinity as i → ∞. From the above analysis, the
subsequence {T̃ (mi)}∞i=0 of {T̃ (m)}∞m=0 is convergent, and its limit is pseudocontrac-
tive.

So, by applying Theorem 2.3, the sequence of vectors y(m) converges to some
x∗ = α∗e. More specifically,

min
i
xi(0) ≤ α∗ ≤ max

i
xi(0).

As every Tk is nonexpansive, {y(m)} is a subsequence of {x(k)}, the sequence of
iterative vectors x(k) converges to x∗ also.

Remark. The condition that A = M −N is a regular splitting (M−1 ≥ 0, N ≥ 0)
is not necessary, since only a weaker condition F−1

l N ≥ 0 is needed in this theorem

958 YANGFENG SU AND AMIT BHAYA

(this has been observed earlier in [20]) . The condition that q(l, k) is bounded for all
k is not necessary either. The condition below was given in [30] for the convergence
of the nonstationary iteration

‖Tk(I − Tk)(I − Tk)#‖ ≤ θ < 1, k = 0, 1, 2, . . . ,(4.3)

where Tk are the iteration matrices such that x(k + 1) = Tkx(k), and # denotes
the group inverse. The following example shows that there is a matrix Tk, which is
pseudocontractive with respect to ‖ · ‖∞, but does not satisfy the above condition
with respect to ‖ · ‖∞:

Tk =
1

100

(
99 1
40 60

)
, T∞
k =

1

41

(
40 1
40 1

)
,

and ‖Tk(I−Tk)(I−Tk)#‖∞ = ‖Tk−T∞
k ‖∞ = 236

205 > 1. We should note that the norm
in (4.3) can be any norm, although the infinity norm is widely used in nonnegative
matrix theory.

5. Asynchronous multisplitting iterations. Parallel multisplitting iterative
methods can be implemented asynchronously, avoiding synchronization overhead and
thus saving computational time. Asynchronous multisplitting iterations to solve non-
singular systems have been widely discussed; see, e.g., [10, 12, 39, 38]. The effec-
tiveness of asynchronization was shown by Frommer, Schwandt, and Szyld [21] with
numerical examples. To solve singular systems, Lubachevski and Mitra [27] proposed
an asynchronous iterative algorithm in the case of a single splitting and Pott [35] gave
a different approach to prove convergence.

Let {Ml, Nl, El}rl=1 be a multisplitting of A. The following asynchronous mul-
tisplitting iteration (AMI) was given by Bru, Elsner, and Neumann [10] to solve
nonsingular systems; here we use it to solve singular systems. Its convergence will be
proved under reasonable conditions.

Algorithm (AMI). Given the initial vectors x(0), . . ., x(−D), for k = 0, 1, 2, . . .,

x(k + 1) = (I − El(k))x(k) + El(k)M
−1
l(k)Nl(k)y(k),(5.1)

with

y(k) = (x1(k − d(k, 1)), . . . , xn(k − d(k, n)))
T
,(5.2)

where l(k) ∈ {1, . . . , r}, 0 ≤ d(k, i) ≤ k +D are integers less than or equal k.
Suppose we have a parallel computer consisting of a host and r slaves. There is a

global approximation in the host. Every slave has a local approximation and does the
following repeatedly: retrieves a global approximation y from the host, forms a local
approximation, say M−1

l Nly, and sends it to the host. The host does the following
repeatedly: receives a local approximation from some slave and forms a new global
approximation as in (5.1). The terms d(k, i) can be interpreted as follows: Suppose
that the l(k)th slave retrieves a global approximation at the (k − d)th iteration and
forms a new local approximation, the host uses this to form a new global approxima-
tion x(k + 1); during this period, other slave(s) may send their local approximations
to the host and the host forms global approximations x(k− d+ 1), . . . , x(k− d); thus
d is the iteration drift.

A more universal asynchronous model for a distributed parallel machine can be
found in [21]. Here we use a simple model in order to show how to use the analysis
technique developed above.

PSEUDOCONTRACTIONS AND MULTISPLITTING 959

Theorem 5.1. Let A be an irreducible singular M -matrix, and {Ml, Nl, El}rl=1

be a weak regular multisplitting of A. If, in the AMI (5.1) and (5.2),
(i)
∑r
l=1ElM

−1
l is nonsingular,

(ii) there exists some integer D such that

{l(k)} ∪ {l(k + 1)} ∪ · · · ∪ {l(k +D)} = {1, . . . , r} for all k = 0, 1, . . .(5.3)

and

0 ≤ d(k, i) ≤ D for all k ≥ 0, 1 ≤ i ≤ n,(5.4)

(iii) for each 1 ≤ i ≤ n, either

(El)ii < 1(5.5)

or

(El)ii = 1, (Tl)ii > 0, and d(k, i) = 0 for k : l(k) = l,(5.6)

where Tl = M−1
l Nl, then AMI converges.

Condition (i) is necessary even in the case of synchronous multisplitting iterations,
see [26], to guarantee the consistency between the iteration and the system Ax = 0.
If A = M − N is a weak regular splitting of A and (Fl, Gl, El)l is a weak regular
multisplitting of M (cf. section 4), then the multisplitting (Ml, Nl, El)l with

Ml = Fl, Nl = Gl +N, l = 1, . . . , r,

satisfies condition (i). Condition (ii) is referred to as the condition that the sequence
l(k) be regulated in [10]. If condition (5.5) is satisfied, the AMI can be viewed as
an extrapolating one; cf. [14, 15]. Condition (5.6) is referred to as a partial asyn-
chronism condition; see [27, 7, 41]. In practice, this condition can be satisfied if the
ith component is updated by only one processor in a distributed parallel computer
system.

Proof. For an arbitrary fixed k′, denote

α ≡ max
1≤i≤n

{xi(k′ −D), . . . , xi(k
′)},

α ≡ min
1≤i≤n

{xi(k′ −D), . . . , xi(k
′)}.

For any k ≥ k′,

xi(k + 1) = (1− (El(k))ii)xi(k) + (El(k))ii

n∑
j=1

(Tl(k))ijxj(k − d(k, j)),

with condition (iii), by induction, (as in Proposition 3.2) we have

α < xi(k) < α⇒ α < xi(k + 1) < α,

xi(k) = α⇒ α < xi(k + 1) ≤ α,
xi(k) = α⇒ α ≤ xi(k + 1) < α.(5.7)

960 YANGFENG SU AND AMIT BHAYA

Lemma 5.2. At least one of the sets {i | xi(k′ + (n − 1)(2D + 1)) = α} and
{i | xi(k′ + (n− 1)(2D + 1)) = α} is empty.

Proof. Without loss of generality, we suppose that both {i | xi(k′) = α} and
{i | xi(k′) = α} are not empty, otherwise, from (5.7), we are done. From (5.7),

{i | xi(k′ + (n− 1)(2D + 1)) = α} ⊂ · · · ⊂ {i | xi(k′ + 1) = α} ⊂ {i | xi(k′) = α}
and

{i | xi(k′ + (n− 1)(2D + 1)) = α} ⊂ · · · ⊂ {i | xi(k′ + 1) = α} ⊂ {i | xi(k′) = α}.
We first prove that

{i | xi(k′ + 2D + 1) = α or xi(k
′ + 2D + 1) = α}(5.8)

= {i | xi(k′) = α or xi(k
′) = α}.

If this is not the case, by (5.7),

{i | xi(k′) = α} = · · · = {i | xi(k′ + 2D + 1) = α},

{i | xi(k′) = α} = · · · = {i | xi(k′ + 2D + 1) = α},
and

α < xi(k) < α for all i such that α < xi(k
′) < α, k = k′, . . . , k′ + 2D + 1.

For k : k′ +D ≤ k ≤ k′ + 2D, using (5.4), we have

k′ ≤ k − d(k, j) ≤ k′ + 2D, j = 1, . . . , n,

for i such that xi(k
′) = α, use

∑
j(Tl(k))ij = 1, we can write xi(k + 1) as

α = xi(k + 1)

= (1− (El(k))ii)α

+(El(k))ii ×

α ∑

j: xj(k′)=α

(Tl(k))ij +
∑

j: xj(k′)<α

(Tl(k))ijxj(k − d(k, j))

= α+ (El(k))ii ×
∑

j: xj(k′)<α

(Tl(k))ij(xj(k − d(i, j))− α).

This equation holds if and only if

(El(k))ii(Tl(k))ij = 0 for j : xj(k
′) < α,

which means that

(El(k))ii

1−

∑
j: xj(k′)=α

(Tl(k))ij

 = 0, k = k′ +D, . . . , k′ + 2D,

i.e.,

(El(k))ii
∑

j: xj(k′)=α

(Tl(k))ij = (El(k))ii, k = k′ +D, . . . , k′ + 2D.

PSEUDOCONTRACTIONS AND MULTISPLITTING 961

From (5.3), we have

⋃
k′+D≤k≤k′+2D

{l(k)} = {1, . . . , r},

so,

r∑
l=1

(El)ii
∑

j: xj(k′)=α

(Tl)ij =

r∑
l=1

(El)ii = 1,

which means that
∑

j: xj(k′)=α

Tij = 1 for all i such that xi(k
′) = α,(5.9)

where

T =

r∑
l=1

ElTl.

By the same argument, we have also that

∑
j: xj(k′)=α

Tij = 1 for all i such that xi(k
′) = α.(5.10)

Note that under the condition (i) of the theorem, T is also an iterative matrix
induced by a weak regular splitting [26], so these two equalities (5.9) and (5.10)
contradict Proposition 3.1. Therefore the number of elements in {i | xi(k′ + 2D +
1) = α or xi(k

′ + 2D + 1) = α} is at least one less than the number of elements in
{i | xi(k′) = α or xi(k

′) = α}.
Repeating the above proof, we have that either one of {i | xi(k′+n′(2D+1)) = α}

and {i | xi(k′ + n′(2D + 1)) = α} is empty for some 1 ≤ n′ ≤ n − 1, in this case,
the lemma has been proved, or the number of elements in {i | xi(k′ + n′(2D + 1)) =
α or xi(k

′ + n′(2D + 1)) = α} is at least one less than the number of elements in
{i | xi(k′+(n′−1)(2D+1)) = α or xi(k

′+(n′−1)(2D+1)) = α} for all 1 ≤ n′ ≤ n−1.
After at most n− 1 steps, we get the conclusion.

Proof of Theorem 5.1 (continued). Construct a big vector

x(k) ≡ (xT (k −D), . . . , xT (k))T ∈ R
(D+1)n, k = 0, 1, 2,

The asynchronous iteration (5.1) and (5.2) is equivalent to

x(k + 1) = Tkx(k), k = 0, 1, 2, . . . ,

where Tk has the form

I − El(k) + ∗ ∗ ∗ · · · ∗
I 0 0 · · · 0

I 0 · · · ...
. . .

. . .
...

I 0

.

962 YANGFENG SU AND AMIT BHAYA

Consider

X∗ = {αe | α ∈ R},
where e ∈ R

(D+1)n is the vector with all components equal to 1. For any x(k′) /∈ X∗,
from the above lemma, we know that, say, {i | xi(k′ +(n−1)(2D+1)) = α} is empty,
and therefore {i | xi(k) = α} is empty for all k ≥ k′ + (n− 1)(2D + 1), which means
that

‖x(k′ + (n−1)(2D+ 1) +D)−P (x(k′ + (n−1)(2D+ 1) +D))‖ < ‖x(k′)−P (x(k′))‖.
So for all k′ ≥ 0, the product

Tk′+(n−1)(2D+1)+D−1 · · ·Tk′+1Tk′

of (n − 1)(2D + 1) + D operators is pseudocontractive with respect to ‖ · ‖∞ and
X∗. Because there is only a finite number of operators, there is always a convergent
subsequence in this sequence of operators, and its limit is also pseudocontractive, from
Theorem 2.3, we obtain the convergence of x(k), which is equivalent to asserting that
the sequence x(k) converges.

6. Conclusions. This paper introduced a new property of operators called pseu-
docontractivity and showed that it is a generalization of the paracontractivity prop-
erty. A general convergence theorem for pseudocontractive iterations was proved and
it was shown that, under appropriate conditions, the product of at most n− 1 (where
n is the dimension of the matrix) iteration matrices induced from weak regular split-
tings is pseudocontractive. This analysis technique was applied to nonstationary it-
erative methods for solving singular M -systems, specifically, nonstationary two-stage
multisplitting methods and asynchronous multisplitting methods, with no other con-
tractivity condition on the iteration operators.

Acknowledgments. We thank Professor Daniel B. Szyld for a careful reading
of a draft version of this paper and, among other helpful suggestions, pointing out the
nonuniqueness of expression of the splitting in the first remark of section 4. We also
thank the anonymous reviewers for several questions and suggestions that improved
the paper.

REFERENCES

[1] G. Alefeld, I. Lenhardt, and G. Mayer, On multisplitting methods for band matrices,
Numer. Math., 75 (1997), pp. 267–292.

[2] Z.-Z. Bai, The monotone convergence of a class of parallel nonlinear relaxation methods for
nonlinear complementarity problems, Comput. Math. Appl., 31 (1996), pp. 17–33.

[3] Z.-Z. Bai, The monotone convergence rate of the parallel nonlinear AOR method, Comput.
Math. Appl., 31 (1996), pp. 1–8.

[4] Z.-Z. Bai and D. Wang, A class of parallel nonlinear multisplitting relaxation methods for
the large sparse nonlinear complementarity problems, Comput. Math. Appl., 32 (1996),
pp. 79–95.

[5] M. Benzi and D. B. Szyld, Existence and uniqueness of splittings for stationary iterative
methods with applications to alternating methods, Numer. Math., 76 (1997), pp. 309–321.

[6] A. Berman and B. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics
Appl. Math. 9, SIAM, Philadelphia, 1994.

[7] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation—Numerical meth-
ods, Prentice–Hall, Englewood Cliffs, NJ, 1989.

[8] W.-J. Beyn and L. Elsner, Infinite products and paracontracting matrices, Electron. J. Linear
Algebra, 2 (1997), pp. 1–8.

PSEUDOCONTRACTIONS AND MULTISPLITTING 963

[9] R. Bru, C. Corral, A. Mart́ınez, and J. Mas, Multisplitting preconditioners based on in-
complete Choleski factorizations, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1210–1222.

[10] R. Bru, L. Elsner, and M. Neumann, Models of parallel chaotic iteration methods, Linear
Algebra Appl., 103 (1988), pp. 175–192.

[11] R. Bru, L. Elsner, and M. Neumann, Convergence of infinite products of matrices and
inner-outer iteration schemes, Electron. Trans. Numer. Anal., 2 (1994), pp. 183–193.

[12] R. Bru, V. Migallón, J. Penadés, and D. B. Szyld, Parallel, synchronous and asynchronous
two-stage multisplitting methods, Electron. Trans. Numer. Anal., 3 (1995), pp. 24–38.

[13] L. Elsner, Comparisons of weak regular splittings and multisplitting methods, Numer. Math.,
56 (1989), pp. 283–289.

[14] L. Elsner, I. Koltracht, and M. Neumann, On the convergence of asynchronous paracon-
tractions with applications to tomographic reconstruction from incomplete data, Linear
Algebra Appl., 130 (1990), pp. 65–82.

[15] L. Elsner, I. Koltracht, and M. Neumann, Convergence of sequential and asynchronous
nonlinear paracontractions, Numer. Math., 62 (1992), pp. 305–319.

[16] A. Frommer, Parallel nonlinear multisplitting methods, Numer. Math., 56 (1989), pp. 269–282.
[17] A. Frommer and G. Mayer, Parallel interval multisplittings, Numer. Math., 56 (1989),

pp. 255–267.
[18] A. Frommer and G. Mayer, Safe bounds for the solutions of nonlinear problems using a

parallel multisplitting method, Computing, 42 (1989), pp. 171–186.
[19] A. Frommer and B. Pohl, A comparison result for multisplittings and waveform relaxation

methods, Numer. Linear Algebra Appl., 2 (1995), pp. 335–346.
[20] A. Frommer and H. Schwandt, A unified representation and theory of algebraic additive

Schwarz and multisplitting methods, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 893–912.
[21] A. Frommer, H. Schwandt, and D. B. Szyld, Asynchronous weighted additive Schwarz

methods, Electron. Trans. Numer. Anal., 5 (1997), pp. 48–61.
[22] A. Frommer and D. B. Szyld, Asynchronous two-stage iterative methods, Numer. Math., 69

(1994), pp. 141–153.
[23] A. Hadjidimos and A. K. Yeyios, Some notes on multisplitting methods and m-step precon-

ditioners for linear systems, Linear Algebra Appl., 248 (1996), pp. 277–301.
[24] C.-M. Huang and D. P. O’Leary, A Krylov multisplitting algorithm for solving linear systems

of equations, Linear Algebra Appl., (1993), pp. 9–29.
[25] M. T. Jones and D. B. Szyld, Two-stage multisplitting methods with overlapping blocks,

Numer. Linear Algebra Appl., 3 (1996), pp. 113–124.
[26] J. P. Kavanagh and M. Neumann, Consistency and convergence of the parallel multisplitting

method for singular M-matrices, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 210–218.
[27] B. Lubachevsky and D. Mitra, A chaotic asynchronous algorithm for computing the fixed

point of a nonnegative matrix of unit spectral radius, J. Assoc. Comput. Mach., 33 (1985),
pp. 130–150.

[28] N. Machida, M. Fukushima, and T. Ibaraki, A multisplitting method for symmetric linear
complementarity problems, J. Assoc. Comput. Mach., 62 (1995), pp. 217–227.

[29] I. Marek and D. B. Szyld, Iterative and semi-iterative methods for computing stationary
probability vectors of Markov operators, Math. Comp., 61 (1993), pp. 719–731.

[30] V. Migallón, J. Penadés, and D. B. Szyld, Block two-stage methods for singular systems
and Markov chains, Numer. Linear Algebra Appl., 3 (1996), pp. 413–426.

[31] R. Nabben, A note on comparison theorems for splittings and multisplittings of Hermitian
positive definite matrices, Linear Algebra Appl., 233 (1996), pp. 67–80.

[32] S. Nelson and M. Neumann, Generalization of the projection method with applications to
SOR method for Hermitian positive semidefinite linear systems, Numer. Math., 51 (1987),
pp. 123–141.

[33] M. Neumann and R. J. Plemmons, Convergence of parallel multisplitting iterative methods
for M-matrices, Linear Algebra Appl., 88/89 (1987), pp. 559–573.

[34] D. P. O’Leary and R. E. White, Multisplittings of matrices and parallel solution of linear
systems, SIAM J. Algebraic Discrete Methods, 6 (1985), pp. 630–640.

[35] M. Pott, On the convergence of asynchronous iteration methods for nonlinear paracontrac-
tions and consistent linear systems, Linear Algebra Appl., 283 (1998), pp. 1–33.

[36] H. Schneider, Theorems onM-splittings of a singular M-matrix which depend on graph struc-
ture, Linear Algebra Appl., 58 (1984), pp. 407–424.

[37] Y. Song and D. Yuan, On the convergence of relaxed parallel chaotic iterations for H-matrix,
Int. J. Comput. Math., 52 (1994), pp. 195–209.

[38] Y. Su, Generalized multisplitting asynchronous iteration, Linear Algebra Appl., 235 (1996),
pp. 77–92.

964 YANGFENG SU AND AMIT BHAYA

[39] Y. Su and S. Zhu, A model for parallel multisplitting chaotic iterations, J. Fudan Univ. Natur.
Sci., 30 (1991), pp. 444–450 (in Chinese).

[40] D. B. Szyld and M. T. Jones, Two-stage and multisplitting methods for the parallel solution
of linear systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 671–679.

[41] P. Tseng, D. Bertsekas, and J. Tsitsiklis, Partially asynchronous, parallel algorithms for
network flow and other problems, SIAM J. Control Optim., 28 (1990), pp. 678–710.

[42] R. S. Varga, Matrix Iterative Analysis, Prentice–Hall, Englewood Cliffs, NJ, 1962.
[43] D. Wang, On the convergence of the parallel multisplitting AOR algorithm, Linear Algebra

Appl., 154/156 (1991), pp. 473–486.
[44] R. E. White, Multisplitting of a symmetric positive definite matrix, SIAM J. Matrix Anal.

Appl., 11 (1990), pp. 69–82.

ON REAL SOLUTIONS OF THE EQUATION Φt(A) = 1
n
Jn

∗

YUMING CHEN†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 965–970

Abstract. For a class of n × n-matrices, we get related real solutions to the matrix equation
Φt(A) = 1

n
Jn by generalizing the approach of and applying the results of Zhang, Yang, and Cao

[SIAM J. Matrix Anal. Appl., 21 (1999), pp. 642–645]. These solutions contain not only those
obtained by Zhang, Yang, and Cao but also some which are neither diagonally nor permutation
equivalent to those obtained by Zhang, Yang, and Cao. Therefore, the open problem proposed by
Zhang, Yang, and Cao in the cited paper is solved.

Key words. Hadamard product, diagonally equivalent, permutation equivalent

AMS subject classifications. 15A24, 93A99, 65F99

PII. S0895479800372912

1. Introduction. For a given positive integer n, let Mn(R) and GLn(R) be the
sets of all n × n real matrices and all n × n real nonsingular matrices, respectively.
Two important members of Mn(R) are the n×n identity and all-one matrix, denoted
as In and Jn, respectively.

For A = (aij) and B = (bij) in Mn(R), the Hadamard product of A and B is
defined as A ◦B = (aijbij) ∈Mn(R). Then we define

Φ : GLn(R)→Mn(R)

by

Φ(A) = A ◦A−T , A ∈ GLn(R),
where A−T means the inverse transpose, (A−1)T , of A. The mapping Φ arises in
mathematical control theory in chemical engineering design problems. The basic
question about Φ is to determine its range.

It is easy to see that every matrix in the range of Φ has row and column sums 1.
However, the converse is not true. In fact, Johnson and Shapiro [1] showed that the
equation Φ(A) = 1

3J3 has no real solutions. So they asked whether the equation

Φ(A) =
1

n
Jn

has a real solution. This problem was solved by Zhang, Yang, and Cao [2]. In fact,
they studied the more general problem, i.e., the existence of real solutions of the
equation

Φt(A) =
1

n
Jn(1)

for any positive integer t, where Φt is the mapping Φ applied t times.

∗Received by the editors June 5, 2000; accepted for publication (in revised form) by R. Brualdi
September 16, 2000; published electronically January 19, 2001. This research was partially supported
by the Izaak Walton Killam Memorial Postdoctoral Fellowship, University of Alberta.

http://www.siam.org/journals/simax/22-3/37291.html
†Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON,

M3J 1P3 Canada. Current address: Department of Mathematical Sciences, University of Alberta,
Edmonton, AB, T6G 2G1 Canada (ychen@math.ualberta.ca).

965

966 YUMING CHEN

The purpose of this note is to obtain some new solutions to (1) by generalizing
the approach of and applying the results of [2]. Some of the solutions are neither
diagonally equivalent nor permutation equivalent to those obtained in [2]. Hence, the
open problem proposed in [2] is solved.

The organization of this note is as follows. First, by an example, we partially
answer the open problem in [2] and introduce the notion of permutation equivalence.
Then we obtain new solutions to (1) which are related to a class of n × n-matrices.
As a result, the above-mentioned open problem is solved.

2. An example. First, we recall some results about the mapping Φ.
Lemma 1 (see [1, Observations 2 and 4]). For A ∈ GLn(R),
(i) if D and E in GLn(R) are diagonal, then Φ(DAE) = Φ(A);
(ii) if P and Q in GLn(R) are permutation matrices, then Φ(PAQ) = PΦ(A)Q.

When n = 4 and t = 1, the unique solution to (1) with respect to diagonal
equivalence obtained in [2] is

A =

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 .(2)

Let P be the permutation

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

Then, by Lemma 1,

Φ(PA) = PΦ(A) = P

(
1

4
J4

)
=

1

4
J4.

But PA is not diagonally equivalent to A. If not, let D = diag(d1, d2, d3, d4) and
E = diag(e1, e2, e3, e4) be two nonsingular diagonal matrices such that

DAE = PA.

Particularly, we have d1e1 = −1, d3e1 = 1, d1e3 = 1, and d3e3 = 1. This is impossible
since the first two equations give d1 = −d3 while the last two give d1 = d3.

With (1) and the example in mind, Lemma 1 leads us to introduce the notion of
permutation equivalence in a similar way to diagonal equivalence (see [2]).

Zhang, Yang, and Cao [2] also proved that, for n = 2 and t = 1, there is only
one nondiagonally equivalent solution to (1) and no solution to (1) when n = 2 and
t ≥ 2. This, combined with the result of Johnson and Shapiro [1], intrigues us, and
we naturally ask, for n ≥ 4, whether there exist real solutions to (1) which are neither
diagonally equivalent nor permutation equivalent to those found by Zhang, Yang, and
Cao [2]. A positive answer will be given in the next section. In this section, we give
a partial answer for the case where n = 4 and t = 1. For a �= 0, let

Aa =

1 a −1 a
a 1 a −1
−1 a 1 a
a −1 a 1

 .(3)

ON REAL SOLUTIONS OF THE EQUATION Φt(A) = 1
n
Jn 967

Then |Aa| = −16a2 �= 0 and

A−1
a =

1

4

1 a−1 −1 a−1

a−1 1 a−1 −1
−1 a−1 1 a−1

a−1 −1 a−1 1

 .

Therefore,

Φ(Aa) =
1

4
J4.

Now, assume that a ∈ R \ {0,−1, 1}. Obviously, Aa is not permutation equivalent
to A given in (2). Now, we claim that Aa is not diagonally equivalent to A. In fact,
if D = diag(d1, d2, d3, d4) and E = diag(e1, e2, e3, e4) are two nonsingular diagonal
matrices such that

DAE = Aa,

then we have e1 = e3, e2 = e4 = −ae1, d1 = d3, d2 = d4 = −ad1, d1e1 = −1, and
d2e2 = −1. Thus −1 = d2e2 = a2d1e1 = −a2 or a2 = 1, a contradiction.

Remark 1. To obtain the form of Aa in (3), we tried the cyclic matrix generated
by (1, a, b, c). By requiring it satisfy Φ(A) = 1

4J4, we get b = 1 or −1. But b = 1 is
not suitable. Taking b = −1, we have a = c. Fortunately, the matrix we get satisfies
Φ(A) = 1

4J4. We believe that this approach is also applicable to deal with the general
case. However, in the following section, by generalizing the approach of and using the
results of Zhang, Yang, and Cao [2], we give a new approach to the general case.

3. New solutions to Φt(A) = 1
n
Jn. In this section we always assume n ≥ 4.

Note that what is important in the presentation of Zhang, Yang, and Cao [2] are
some special properties of Jn such as J2

n = nJn and Jn ◦ JTn = Jn. Inspired by this
observation, for k ∈ R such that k ≤ 0 or k ≥ 2n− 4 (these restrictions on k will be
clear later), we introduce a subset Mn,k(R) of Mn(R) as follows:

Mn,k(R) = {A ∈Mn(R);A◦AT = Jn, aii = 1 for i = 1, . . ., n, A2 = kIn + (n− k)A}.

Generalizing the approach of and applying some results of Zhang, Yang, and Cao [2],
we show that for each A ∈Mn,k(R) there exist corresponding solutions to (1).

Examples. Let a = (a1, . . . , an−1) ∈ R
n−1 with ai �= 0 for i ∈ {1, . . . , n − 1}.

Define Aa ∈Mn(R) by

Aaij =

1 if i = j,
j−1∏
k=i

ak if i < j,

1
i−1∏
k=j

ak

if i > j.

Then it is easy to show that Aa ∈ Mn,0(R). Particularly, when ai = 1 for i ∈
{1, . . . , n− 1}, Aa = Jn. Furthermore, define Ã

a ∈Mn(R) by

Ãaij =

{
Aaij if i = j,
(−1)i−j+1Aaij if i �= j.

968 YUMING CHEN

Then Ãa ∈Mn,2n−4(R). Note that neither A
a nor Ãa is symmetric if there exists an

i0 ∈ {1, . . . , n− 1} such that a2
i0
�= 1.

The following results can be easily proved and hence the proofs are omitted.
Lemma 2. Let A ∈Mn,k(R). If a[a+b(n−k)]−b2k �= 0, then aIn+bA ∈ GLn(R)

with

(aIn + bA)−1 =
1

a[a+ b(n− k)]− b2k {[a+ b(n− k)]In − bA}

and therefore

Φ(aIn + bA) =
1

a[a+ b(n− k)]− b2k {[a
2 + ab(n− k) + b2(n− k)]In − b2Jn}.

Lemma 3. Let A ∈Mn,k(R) and λ �= k. Denote

A(λ) =
1

λ− k [(λ+ n− k)In −A].(4)

Then

(i) A(λ) ∈ GLn(R) if λ �= −(n−k)±
√

(n−k)2+4k

2 ;

(ii) if λ �= −(n−k)±
√

(n−k)2+4k

2 , we have Φ(A(λ)) = Jn(µ), where µ = λ(λ+n−
k)− k;

(iii) A(α) and A(β) are not diagonally equivalent if α �= β.
Proof. Since Jn ∈Mn,0(R), it follows from (4) that

Jn(λ) =
1

λ
[(λ+ n)In − Jn](5)

for λ �= 0. Now, (i) and (ii) follow easily from Lemma 2. The proof of (iii) is similar
to that of (iii) of Lemma 2 of Zhang, Yang, and Cao [2]. This completes the proof of
the lemma.

Theorem 1. Let A ∈ Mn,k(R) and t be a positive integer. Then if n > 4, there
are 2t distinct, real values of λ such that Φt(A(λ)) = 1

nJn and hence (1) has at least 2t

nondiagonally equivalent solutions. When n = 4, there are 2t−1 distinct, real values of
λ such that Φt(A(λ)) = 1

4J4 and hence (1) has at least 2t−1 nondiagonally equivalent
solutions.

Proof. We prove only the theorem for the case where n > 4. The proof is similar
for the case where n = 4. First note that the nondiagonal equivalence follows from
(iii) of Lemma 3. Second, it follows from (5) that

Jn(−n) = 1

n
Jn.(6)

Now we distinguish two cases to complete the proof.
Case 1. t = 1. Consider the equation

λ(λ+ n− k)− k = −n.(7)

Note ∆ = (n − k)2 − 4(n − k) = (n − k)(n − k − 4) > 0 since k ≤ 0 or k ≥ 2n − 4.
Thus (7) has two distinct real solutions λ1 and λ2. By (6) and (ii) of Lemma 3,

ON REAL SOLUTIONS OF THE EQUATION Φt(A) = 1
n
Jn 969

Φ(A(λ1)) = Φ(A(λ2)) = Jn(−n) = 1

n
Jn.

Case 2. t > 1. It follows from (ii) of Lemma 3, for µ �= −n, that

Φ(Jn(µ)) = Jn(f(µ)),

where f(µ) = µ(µ + n). Thus, if λ �= −(n−k)±
√

(n−k)2+4k

2 , using (ii) of Lemma 3
again, we have

Φt(A(λ)) = Φt−1(Φ(A(λ))) = Φt−1(Jn(µ)) = Jn(f
t−1(µ)),(8)

where µ = λ(λ+n−k)−k. Lemma 3 of Zhang, Yang, and Cao [2] tells us that in the

interval (−n2

4 , 0] there are 2
t−1 distinct, real solutions to the equation f t−1(µ) = −n,

say µ1, . . . , µ2t−1 . For i = 1, . . ., 2t−1, consider

λ(λ+ n− k)− k = µi.(9)

Noting

∆ = (n− k)2 + 4(k + µi)
= (n2 + 4µi) + (k2 − 2nk + 4k)
> k2 − 2nk + 4k
= k[k − (2n− 4)]
≥ 0

(from here you see why we require k ≤ 0 or k ≥ 2n − 4), we know that (9) has two
distinct, real solutions, say λi,1 and λi,2. Moreover, it is easy to see that all λ1,1, λ1,2,
. . ., λ2t−1,1, and λ2t−1,2 are distinct. Thus it follows from (6) and (8) that

Φt(A(λi,j)) = Jn(f
t−1(µi)) = Jn(−n) = 1

n
Jn, i = 1, . . . , 2t−1, j = 1, 2,

and the proof is complete.
Remark 2. For A ∈ Mn,k(R), we can find 2t and 2t−1 mutually nondiagonally

equivalent real solutions A(λ0) to (1) for n > 4 and n = 4, respectively, where λ0

satisfies the following inverted iteration (see Theorem 1 here and Remark 1 of Zhang,
Yang, and Cao [2]):

λt = −n,
λk =

−n±
√
n2+4λk+1

2 , k = 1, . . . , t− 1,

λ0 =
−(n−k)±

√
(n−k)2+4(λ1+k)

2 .

Remark 3. For a = (a1, . . . , an−1) ∈ R
n−1 with ai �= 0 for i ∈ {1, . . . , n− 1}, let

Aa and Ãa be defined as in the examples above. Then we can easily show that the
solutions associated with Aa and Ãa are diagonally equivalent to those associated with
A1 and Ã1, respectively, where 1 = (1, . . . , 1) ∈ R

n−1. But the solutions associated
with A1 and Ã1 are neither diagonally equivalent nor permutation equivalent. Note
that the solutions associated with A1 are just those obtained by Zhang, Yang, and
Cao [2] and hence the open problem, whether there are real solutions to (1) which
are not diagonally equivalent to those found in [2] when n ≥ 4, proposed by them is

970 YUMING CHEN

solved. Moreover, when n = 4, t = 1 and a ∈ R \ {0,−1, 1}, the solutions given in
section 2 are not associated with any A ∈Mn,k(R).

REFERENCES

[1] C. R. Johnson and H. M. Shapiro, Mathematical aspects of the relative gain array (A ◦A−T),
SIAM J. Algebraic Discrete Methods, 7 (1986), pp. 627–644.

[2] X. Zhang, Z. Yang, and C. Cao, Real solutions of the equation Φt(A) = 1
n
Jn, SIAM J. Matrix

Anal. Appl., 21 (1999), pp. 642–645.

ERRATUM: POINTWISE AND UNIFORMLY CONVERGENT SETS
OF MATRICES∗

ADAM L. COHEN† , LEIBA RODMAN‡ , AND DAVID P. STANFORD‡

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 971–971

Abstract. An error in the paper [A. L. Cohen, L. Rodman, and D. P. Stanford, SIAM J. Matrix
Anal. Appl., 21 (1999), pp. 93–105] is corrected.

Key words. uniform convergence, matrix sets

AMS subject classification. 15A99

PII. S0895479800374674

We wish to point out that in Theorem 4.4 of our paper [1], as well as in the
paragraph preceding Theorem 4.4, a hypothesis is inadvertently omitted. Namely, it
should be assumed in Theorem 4.4 that the diagonal entries of the matrices in the set
A are all nonzero. Without this assumption the statement of Theorem 4.4 is false, as
the following example shows:

A =

{
A1 =

[
0 0
0 2

]
, A2 =

[
2 0
0 1

]}
.

The setA is in the closure of the set U2,2 (in the notation of [1]) of uniformly convergent
ordered pairs of 2× 2 real matrices. Indeed,

A = lim
p→∞Ap,

where the sets

Ap =
{[

0 0
0 2

]
,

[
2 0
0 0.51/p

]}

are uniformly convergent. Nevertheless, ρ(A) = 2.
This omission does not affect the rest of the paper [1].

REFERENCES

[1] A. L. Cohen, L. Rodman, and D. P. Stanford, Pointwise and uniformly convergent sets of
matrices, SIAM J. Matrix Anal. Appl., 21 (1999), pp. 93–105.

∗Received by the editors June 27, 2000; accepted for publication by P. Van Dooren June 29, 2000;
published electronically January 19, 2001.

http://www.siam.org/journals/simax/22-3/37467.html
†Oregon State University, Corvallis, OR 97330 (cohena@ucs.orst.edu). Current address: 122

Campbell Avenue, Revere, MA 02151.
‡Department of Mathematics, College of William and Mary, P. O. Box 8795, Williamsburg, VA

23187-8795 (lxrodm@math.wm.edu, stanford@math.wm.edu).

971

ON ALGORITHMS FOR PERMUTING LARGE ENTRIES TO THE
DIAGONAL OF A SPARSE MATRIX∗

I. S. DUFF† AND J. KOSTER‡

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 973–996

Abstract. We consider bipartite matching algorithms for computing permutations of a sparse
matrix so that the diagonal of the permuted matrix has entries of large absolute value. We discuss
various strategies for this and consider their implementation as computer codes. We also consider
scaling techniques to further increase the relative values of the diagonal entries. Numerical exper-
iments show the effect of the reorderings and the scaling on the solution of sparse equations by a
direct method and by preconditioned iterative techniques.

Key words. sparse matrices, bipartite weighted matching, shortest path algorithms, direct
methods, iterative methods, preconditioning

AMS subject classifications. 05C70, 65F05, 65F10, 65F50

PII. S0895479899358443

1. Introduction. We say that an n × n matrix A has a large diagonal if the
absolute value of each diagonal entry is large relative to the absolute values of the
off-diagonal entries in its row and column. Permuting large nonzero entries onto the
diagonal of a sparse matrix can be useful in several ways. If we wish to solve the
system

Ax = b,(1.1)

where A is a nonsingular square matrix of order n and x and b are vectors of length
n, then a preordering of this kind can be useful whether direct or iterative methods
are used for solution (see [17, 33]).

The work in this paper is a continuation of the work reported in [17]. In that
paper the authors presented an algorithm that maximizes the smallest entry on the
diagonal and relies on repeated applications of the depth first search algorithm MC21
[15] in the Harwell Subroutine Library [28]. In the current paper, we will be concerned
with other bipartite matching algorithms for permuting the rows and columns of the
matrix so that the diagonal of the permuted matrix is large. The algorithm that is
central to this paper computes a matching that corresponds to a permutation of a
sparse matrix such that the product (or sum) of the diagonal entries is maximized.
This algorithm is already mentioned and used in [17], but it is not fully described.
We describe the algorithm and its implementation in more detail in this paper. We
also consider a modified version of this algorithm to compute a permutation of the
matrix that maximizes the smallest diagonal entry. We compare the performance
of this algorithm with that in [17]. We also investigate the influence of scaling the
matrix. Scaling can be used before or after computation of the matching to make
the diagonal entries even larger relative to the off-diagonals. In particular, we look
at a sparse variant of a bipartite matching and scaling algorithm of Olschowka and

∗Received by the editors July 12, 1999; accepted for publication (in revised form) by E. Ng
September 6, 2000; published electronically January 31, 2001.

http://www.siam.org/journals/simax/22-4/35844.html
†Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX England, and CERFACS,

Toulouse, France (I.Duff@rl.ac.uk).
‡Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX England. Current address:

Parallab, University of Bergen, 5020 Bergen, Norway (jak@ii.uib.no).

973

974 I. S. DUFF AND J. KOSTER

Neumaier [33] that first maximizes the product of the diagonal entries and then scales
the matrix so that these entries are one and all other entries are no greater than one.

The paper is organized as follows. In section 2, we describe some concepts of
bipartite matching that we need for the descriptions of the algorithms. In section
3, we review the basic properties of an algorithm (MC21) that computes a matching
that corresponds to a permutation of the matrix that puts as many entries as possible
onto the diagonal. The algorithm operates on a bipartite graph that has no weights;
i.e., the numerical values of the matrix entries are not taken into account. Section 4
describes the algorithm that computes a matching for permuting a matrix such that
the product of the diagonal entries is maximized. It is based on finding a minimum
weight matching in a bipartite graph with nonnegative edge weights. The algorithm
computes a sequence of shortest (augmenting) paths in this graph, each of which is
used to extend a partial matching. Properties of the weighted bipartite graph and
the partial matching are discussed. Details on the construction of the augmenting
paths are also given. In section 5, we modify this algorithm such that it maximizes
the smallest diagonal entry of the permuted matrix. In section 6, we consider the
scaling of the reordered matrix. Computational experience for the algorithms applied
to some practical problems and the effect of the reorderings and scaling on direct and
iterative methods of solution are presented in section 7. Finally, we consider some of
the implications of this current work in section 8.

2. Bipartite matching. Let A = (aij) be a general n× n sparse matrix. With
the matrix A, we associate a bipartite graph GA = (Vr, Vc, E) that consists of two
disjoint node sets Vr and Vc and an edge set E, where (u, v) ∈ E implies that u ∈ Vr,
v ∈ Vc. The sets Vr and Vc have cardinality n and correspond to the rows and
columns of A, respectively. Edge (i, j) ∈ E if and only if aij �= 0. We define the sets
ROW (i) = {j|(i, j) ∈ E}, for i ∈ Vr, and COL(j) = {i|(i, j) ∈ E}, for j ∈ Vc. These
sets correspond to the positions of the entries in row i and column j of the sparse
matrix, respectively. We use | . . . | both to denote the absolute value and to signify
the number of entries in a set, sequence, or matrix. The meaning should always be
clear from the context.

A subset M ⊆ E is called a matching (or assignment) if no two edges of M
are incident to the same node. A matching containing the largest number of edges
possible is called a maximum cardinality matching (or simply maximum matching).
A maximum matching is a perfect matching if every node is incident to a matching
edge. Obviously, not every bipartite graph allows a perfect matching. However, if
the matrix A is nonsingular, then there exists a perfect matching for GA. A perfect
matching M has cardinality n and defines an n × n permutation matrix Q = (qij)
with {

qji = 1 for (i, j) ∈M,
qji = 0 otherwise,

so that both QA and AQ are matrices with the matching entries on the (zero-free)
diagonal. Bipartite matching problems can be viewed as a special case of network
flow problems (see, for example, [21]). We refer the reader to [1] for an introduction
to bipartite matching and network flow algorithms.

The more efficient algorithms for finding maximum matchings in bipartite graphs
make use of augmenting paths. Let M be a matching in GA. A node v is matched
if it is incident to an edge in M . A path P in GA is defined as an ordered set of
edges in which successive edges are incident to the same node. A path P is called

PERMUTING LARGE ENTRIES TO THE DIAGONAL 975

an M -alternating path if the edges of P are alternately in M and not in M . An
M -alternating path P is called an M -augmenting path if it connects an unmatched
row node with an unmatched column node. In the bipartite graph in Figure 2.1, there
exists an M -augmenting path from column node 8 to row node 8. If it is clear from the
context which matching M is associated with the M -alternating and M -augmenting
paths, then we will simply refer to them as alternating and augmenting paths.

Vc 1 2 3 4 5 6 7 8 9Vr

c4

c1

c2

c3

c5

c6

c7

c8

c9

4

1

2

3

5

6

7

8

9

r1

r2

r3

r4

r5

r6

r7

r8

r9

Fig. 2.1. Example of an M-augmenting path. The bipartite graph contains nine row nodes
r1, . . . , r9 and nine column nodes c1, . . . , c9. The white nodes are unmatched, and the black nodes
are matched. The matching M (of cardinality 7) is represented by the thick edges in the bipartite
graph and by the black entries in the matrix. The connected matrix entries form the augmenting
path {(8, 2), (6, 2), (6, 5), (4, 5), (4, 3), (2, 3), (2, 8)}.

Let M and P be subsets of E. We define

M ⊕ P := (M \ P) ∪ (P \M).

If M is a matching and P is an M -augmenting path, then M⊕P is again a matching,
and |M ⊕P | = |M |+1. If P is an M -alternating cyclic path, i.e., an alternating path
whose first and last edges are incident to the same node, then M⊕P is also a matching
and |M ⊕P | = |M |. A key observation for the construction of a maximum or perfect
matching is that a matching M is maximum if and only if there is no augmenting
path relative to M .

In what follows, a matching M will often be represented by a pointer array m :
Vr ∪ Vc → Vr ∪ Vc ∪ {null} with{

mi = j and mj = i for (i, j) ∈M,
mi = null for i unmatched.

Augmenting paths in a bipartite graph G can be found by constructing alternating
trees. An alternating tree T = (Tr, Tc, ET) is a subgraph of G rooted at a row or
column node in which each path from the root of T is an alternating path that begins
with an edge not in M . An alternating tree rooted at an unmatched column node j0
can be grown in the following way. We start with the initial alternating tree (∅, {j0}, ∅)
and consider all the column nodes j ∈ Tc in turn. Initially j = j0. For each node j,
we check the row nodes i ∈ COL(j) for which an alternating path from i to j0 does
not yet exist. If node i is already matched, we add row node i, column node mi, and

976 I. S. DUFF AND J. KOSTER

edges (i, j) and (i,mi) to T . If i is not matched, we extend T by row node i and edge
(i, j). Now the path in T from node i to the root forms an augmenting path.

Alternating trees can be implemented using a pointer array p : Vc → Vc such that,
given an edge (i, j) ∈ ET \M , node j is either the root node of the tree, or the edges
(i, j), (mj , j), and (mj , pj) are consecutive edges in an alternating path towards the
root. Augmenting paths in an alternating tree (provided they exist) can thus easily
be obtained from p and m.

Alternating trees are not unique. In general, one can construct several alternating
trees starting from the same root node that have equal node sets, but different edge
sets. Different alternating trees, in general, will contain different augmenting paths.
The matching algorithms that we describe in the next sections impose different criteria
on the order in which the paths in the alternating trees are grown in order to obtain
augmenting paths and maximum matchings with special properties.

3. Unweighted matching. The asymptotically fastest currently known algo-
rithm for finding a maximum matching is by Hopcroft and Karp [27]. It has a worst-
case complexity of O(√nτ), where τ = |E| is the number of entries in the sparse
matrix. An efficient implementation of this algorithm can be found in [19]. The al-
gorithm MC21 implemented by Duff [15] has a theoretically worst-case behavior of
O(nτ), but in practice it behaves more like O(n + τ). Because this latter algorithm
is simpler, we concentrate on this in what follows although we note that it is possible
to use the algorithm of Hopcroft and Karp [27] in a similar way to how we will use
MC21 in later sections.

for j0 ∈ Vc do
j := j0; pj := null; iap := null;
B := ∅;
repeat

if there exists i ∈ COL(j) and i is unmatched then
iap := i;

else
if there exists i ∈ COL(j) \B then

B := B + {i};
pmi := j;
j := mi;

else
j := pj ;

end if;
end if;

until iap �= null or j = null;
if iap �= null then augment along path from node iap to node j0;

end for

Fig. 3.1. Outline of MC21.

MC21 is a depth first search algorithm with look-ahead. It starts off with an empty
matching M , and hence all column nodes are unmatched initially. See Figure 3.1. For
each unmatched column node j0 in turn, an alternating tree is grown until an augment-
ing path with respect to the current matching M is found (provided one exists). A set
B is used to mark all the matched row nodes that have been visited so far. Initially,
B = ∅. First, the row nodes in COL(j0) are searched (look-ahead) for an unmatched

PERMUTING LARGE ENTRIES TO THE DIAGONAL 977

node i0. If one is found, the singleton path P = {(i0, j0)} is an M -augmenting path.
If there is no such unmatched node, then an unmarked matched node i0 ∈ COL(j0) is
chosen, i0 is marked, and the nodes i0 and j1, j1 = mi0 , and the edges (i0, j0), (i0, j1)
are added to the alternating tree (by setting pj1 = j0). The search then continues
with column node j1. For node j1, the row nodes in COL(j1) are first checked for an
unmatched node. If one exists, say, i1, then the path P = {(i0, j0), (i0, j1), (i1, j1)}
forms an augmenting path. If there is no such unmatched node, a remaining unmarked
node i1 is picked from COL(j1), i1 is marked, pj2 is set to j1, j2 = mi1 , and the search
moves to node j2. This continues in a similar (depth first search) fashion until either
an augmenting path P = {(i0, j0), (i0, j1), (i1, j1), . . . , (ik, jk)} is found (with nodes j0
and ik unmatched) or until for some k > 0, COL(jk) does not contain an unmarked
node. In the latter case, MC21 backtracks by resuming the search at the previously
visited column node jk−1 for some remaining unmarked node i′k−1 ∈ COL(jk−1).
Backtracking for k = 0 is not possible; if MC21 resumes the search at column node
j0 and COL(j0) does not contain an unmarked node, then an M -augmenting path
starting at node j0 does not exist. In this case, MC21 continues with the construction
of a new alternating tree starting at the next unmatched column node. (The final
maximum matching will have cardinality at most n − 1, and hence it will not be
perfect.)

4. Weighted matching. In this section, we describe an algorithm that com-
putes a matching for permuting a sparse matrix A such that the product of the
diagonal entries of the permuted matrix is maximum in absolute value. That is, the
algorithm determines a matching that corresponds to a permutation σ that maximizes

n∏
i=1

|aiσi
|.(4.1)

This maximization multiplicative problem can be translated into a minimization
additive problem by defining a matrix C = (cij) as

cij =

{
log aj − log |aij |, aij �= 0,
∞ otherwise,

where aj = maxi |aij | is the maximum absolute value in column j of matrix A. Max-
imizing (4.1) is equal to minimizing

log

∏n
i=1 ai∏n

i=1 |aiσi |
= log

∏n
i=1 aσi∏n
i=1 |aiσi |

=

n∑
i=1

log aσi −
n∑
i=1

log |aiσi |

=

n∑
i=1

ciσi .(4.2)

Minimizing (4.2) is equivalent to finding a minimum weight perfect matching in
an edge weighted bipartite graph. This is known in the literature of linear program-
ming and combinatorial optimization as the bipartite weighted matching or linear
sum assignment problem. Numerous algorithms have been proposed for computing
minimum weight perfect matchings; see, for example, [6, 7, 8, 13, 22, 24, 29, 30]. A
practical example of an assignment problem is the allocation of tasks to people; entry
cij in the cost matrix C represents the cost or benefit of assigning person i to task j.

978 I. S. DUFF AND J. KOSTER

Let C = (cij) be a real-valued n × n matrix, cij ≥ 0. Let GC = (Vr, Vc, E) be
the corresponding bipartite graph each of whose edges (i, j) ∈ E has weight cij . The
weight of a matching M in GC , denoted by c(M), is the sum of its edge weights; i.e.,

c(M) =
∑

(i,j)∈M
cij .

A perfect matching M is said to be a minimum weight perfect matching if it has
smallest possible weight; i.e., c(M) ≤ c(M ′) for all possible maximum matchings M ′.

The key concept for finding a minimum weight perfect matching is the so-called
shortest augmenting path. An M -augmenting path P starting at an unmatched col-
umn node j is called shortest if c(M ⊕ P) ≤ c(M ⊕ P ′) for all other possible M -
augmenting paths P ′ starting at node j. We define the length of an alternating path
P as

l(P) := c(M ⊕ P)− c(M) = c(P \M)− c(M ∩ P).

If P is an augmenting path, l(P) is the cost incurred by changing the matching by
augmenting along the path P . A matching M is called extreme if and only if there
exists no alternating cyclic path with negative length.

The following two relations hold [13, 33]. First, a perfect matching has minimum
weight if (and, obviously, only if) it is extreme. Second, if the matching M is extreme
and P is a shortest M -augmenting path, then M ⊕P is also extreme. These two rela-
tions form the basis for many algorithms for solving the bipartite weighted matching
problem: start from any (possibly empty) extreme matching M and successively aug-
ment M along shortest augmenting paths until M is maximum (or perfect).

Furthermore (see [30]), a matching M is extreme if and only if there exist dual
variables ui and vj with

{
ui + vj ≤ cij for (i, j) ∈ E,
ui + vj = cij for (i, j) ∈M.

(4.3)

We define the reduced weight matrix C = (cij) by

cij := cij − ui − vj ≥ 0.

The weights cij are nonnegative. Finding a minimum weight matching in the graph
GC is equivalent to finding a minimum weight matching in the graph GC because

n∑
i=1

ciσi =

n∑
i=1

(ciσi + ui + vσi) =

n∑
i=1

ciσi +∆,

where ∆ is a constant. The reduced weight c(M) for the matching M is zero. The
reduced length l(P) of any M -alternating path P is nonnegative; i.e.,

l(P) =
∑

(i,j)∈P\M
cij ≥ 0,

and, if M ⊕ P is a matching, the reduced weight of M ⊕ P equals

PERMUTING LARGE ENTRIES TO THE DIAGONAL 979

c(M ⊕ P) = l(P).

Thus, finding a shortest augmenting path in the graph GC is equivalent to finding
an augmenting path with minimum reduced length. Since cij = 0 for every edge
(i, j) ∈ M and the graph GC contains no alternating paths P with negative length,

l(P ′) ≤ l(P) for every principal leading subpath P ′ of P .
The algorithm that we describe in this paper for solving the bipartite weighted

matching problem finds shortest augmenting paths by using these reduced weights.
Each time a shortest augmenting path with minimum reduced length is found, the
algorithm augments the matching M and updates the dual variables u and v (and
thereby the reduced weight matrix C), such that (4.3) again holds. We will describe
this update in more detail later in this section.

Shortest augmenting paths in a weighted bipartite graph G = (Vr, Vc, E) can be
obtained by means of a shortest alternating path tree. A shortest alternating path
tree T is an alternating tree each of whose paths is a shortest path in G. For any
node i ∈ Vr ∪ Vc, we define di as the length of the shortest path in T from node i to
the root node (di =∞ if no such path exists). T is a shortest alternating path tree if
and only if di + cij ≥ dj for every edge (i, j) ∈ E and tree nodes i, j.

An outline of an algorithm for constructing a shortest alternating path tree rooted
at column node j0 is given in Figure 4.1. Figure 4.2 illustrates the search for a shortest
augmenting path in an 8 × 8 matrix, starting at the unmatched column (root) node
j0=c7. Since the reduced weights cij are nonnegative, and the graph GC contains
no alternating paths with negative length, we can use a sparse variant of Dijkstra’s
algorithm [14].

Intuitively, the algorithm works as follows. The set of row nodes is partitioned
into three sets B, Q, and W . B is the set of (marked) nodes whose shortest alter-
nating paths and distances to node j0 are known. Q is the set of nodes for which an
alternating path to the root is known that is not necessarily the shortest possible. W
is the set of nodes for which an alternating path does not exist or is not yet known.
(Since W is defined implicitly as Vr \ (B ∪Q), it is not actually used in Figure 4.1.)
Initially, B = Q = ∅. We now develop our algorithm using the example in Figure 4.2.

In the first step of the algorithm, the neighboring row nodes of the root node are
considered, that is, the nodes in COL(c7) = {r2, r4, r6, r8}. For each matched row
node i, the distance di(= cij) to the root node is set and the node is added to Q. The
singleton path {(8, 7)} is an augmenting path with length 8. Since the edge weights
cij are nonnegative, we know that for the row node i ∈ Q that is closest to j0, there
cannot be another row node in Q or W that has a shorter distance to j0 and there does
not exist a path from j0 to i that is shorter than the one that is already computed.
Therefore, node i can be moved to B. This corresponds to node r6 in Figure 4.2. The
same procedure is now repeated with its matched column node mi=c6. That is, for
each neighbor row node i that is matched (and not already in B), the distance di to
j0 is updated and the node is added to Q (if it was not already there). If a neighbor
row node i is unmatched, a new augmenting path (from root node j0 to node i) has
been found. This path will be marked as the shortest augmenting path if it has length
smaller than the shortest augmenting path currently computed (that is, if di < lsap
in Figure 4.1). After column node c6 has been processed, node r5 has been added
to Q and the shortest path currently computed is {(7, 6), (6, 6), (6, 7)} and has length
7. Row node r2 of Q is now closest to the root node, and the algorithm continues
the search with column node c1. (Dijkstra’s algorithm is sometimes referred to as a
shortest first search algorithm.)

980 I. S. DUFF AND J. KOSTER

B := ∅; Q := ∅;
for i ∈ Vr do di := ∞;
lsp := 0; /* length of shortest path from j0 to any node in Q */

lsap := ∞; /* length of shortest augmenting path */

j := j0; pj := null;
while true do

for i ∈ COL(j) \B do
dnew := lsp + cij ;
if dnew < lsap then

if i unmatched then
lsap := dnew; isap := i;

else
if dnew < di then

di := dnew; pmi := j;
if i �∈ Q then Q := Q + {i};

end if;
end if;

end if;
end for;
if Q = ∅ then exit while-loop;
choose i ∈ Q with minimal di;
lsp := di;
if lsap ≤ lsp then exit while-loop;
Q := Q− {i}; B := B + {i};
j := mi;

end while;
if lsap �= ∞ then augment along path from node isap to node j0;

Fig. 4.1. Construction of a shortest augmenting path.

0

0

r5
r4

r6

c4

c1 r1 c8 r3

r2 c2 c3

c7

r8 c5

r7

1/1

4/4

1/6
0/5

4/8

0/1

0/3 0/--

2/6

c6
8/9

8/8 0/4

2/5

4/7
2/2

0/2
0/3

1/3 6/-- 4/--

6/7

1 2 3 4 5 6 7 8

4

1

2

3

5

6

7

8

0

0

0

0

42

2

4

1

6

8

1

4

2

6

4

0

1

8

Fig. 4.2. Example of a shortest augmenting path for an 8 × 8 matrix (with reduced weights
cij) and a matching of cardinality 6. The white nodes in the bipartite graph are unmatched,
and the black nodes are matched. The matching is represented by the thick edges in the graph
and by the black entries in the matrix. The edges in the graph are labelled with cij/di; “--”
stands for di = ∞. The shortest augmenting path from the unmatched column node c7 is
{(2, 7), (2, 1), (1, 1), (1, 2), (5, 2), (5, 5), (8, 5)}.

PERMUTING LARGE ENTRIES TO THE DIAGONAL 981

At each step of the algorithm, after all the neighboring row nodes of a column
node have been considered, the nodes in Q form a front between the nodes in B and
the matched row nodes in W . That is, each arbitrary path in the graph GC from
root node j0 to a node w in W must contain a (matched) row node i that is in Q and
di ≤ dw, or it must contain an unmatched row node in W . As soon as the distance
di of the node in Q that is closest to j0 is larger than or equal to the length lsap
of the shortest augmenting path currently computed, we know that there cannot be
another (not yet computed) augmenting path with length smaller than lsap. At this
point, the shortest augmenting path is known (if one exists) and we can stop the
search. The search is also stopped when there are no more row node lists of column
nodes to be examined; i.e., Q = ∅. If an augmenting path was found, it is used to
augment the current matching. For the example of Figure 4.2, the algorithm continues
by scanning the row node lists of column nodes c2, c4, and c5. Then Q = ∅. The
shortest augmenting path is {(2,7),(2,1),(1,1),(1,2),(5,2),(5,5),(8,5)} from row node r7
to column c7. It has length 6.

Dijkstra’s algorithm (intended for dense graphs) hasO(n2) complexity. For sparse
problems, the complexity can be reduced to O(τ log n) by implementing the set Q as a
k-heap in which the nodes i are sorted by increasing distance di from the root (see, for
example, [25] and [37]). The theoretical run time of the algorithm is dominated by the
operations on the heap Q of which there areO(n) delete operations, O(n) insert opera-
tions, and O(τ) modification operations (these are necessary each time a distance di is
updated). Each insert and modification operation runs in O(logk n) time, and a delete
operation runs in O(k logk n) time. Consequently, the algorithm for finding a shortest
augmenting path in a sparse bipartite graph has run time O((τ + kn) logk n), and
the total run time for the sparse bipartite weighted algorithm is O(n(τ + kn) logk n).
If we choose k = 2, the algorithm uses binary heaps and we obtain a time bound
of O(n(τ + n) log2 n). If we choose k = �τ/n� (and k ≥ 2), we obtain a bound of
O(nτ logτ/n n). To our knowledge, the best known polynomial time bound for solving
the assignment problem is O(n(τ + n log n)), achieved by Fredman and Tarjan [22]
with the use of Fibonacci heaps. (See also [10].)

The actual implementation that we use for the heap Q is similar to the implemen-
tation proposed in [13]. Q is a pair (Q1, Q2), where Q1 is an array that contains all
the row nodes for which the distance to the root is shortest (lsp), and Q2 = Q\Q1 is a
2-heap. By separating the nodes in Q that are closest to the root, we may reduce the
number of operations on the heap, especially in those situations where the cost matrix
C has only a few different numerical values and many alternating paths have the same
length. More precisely, if dmin = min{di|i ∈ Q}, then Q1 contains the nodes i for
which di ≤ dmin · (1 + α). The real parameter α, α ≥ 0, ensures that round-off error
in calculating (the real-valued) path lengths does not lead to a large increase in the
number of operations on the heap Q2. For our experiments in section 7, α = 10−14

is sufficient. Deleting a node from Q for which di is smallest (see Figure 4.1) now
consists of choosing an (arbitrary) element from Q1. If Q1 is empty, then we first
move all the nodes in Q2 that are closest to the root to Q1.

After the matching M is augmented, the reduced weights cij must be updated
to ensure that relation (4.3) is satisfied for the new matching M ′. This is done by
modifying the dual vectors u and v by{

u′
i := ui + di − lsap for i ∈ B,

v′j := cij − u′
i for all (i, j) ∈M ′.

The new reduced weights cij = cij − u′
i− v′j are nonnegative. Suppose, for simplicity,

982 I. S. DUFF AND J. KOSTER

that for the example in Figure 4.2, the dual variables for the extreme matching (of
cardinality 6) are u = 0 and v = 0. Then cij = cij . After the search for a shortest
augmenting path starting at column node c7 has finished, d = {3, 2,∞, 4, 5, 1, 7, 6},
B = {1, 2, 4, 5, 6}, isap = 8, and lsap = 6. The dual variables for the new (extreme)
matching M ′ are u′ = {−3,−4, 0,−2,−1,−5, 0, 0} and v′ = {4, 3, 0, 2, 0, 5, 6, 0}.

The run time of the weighted matching algorithm can be decreased considerably
by means of a cheap heuristic that determines an initial extreme matching M that is
large. We use the strategy proposed in [7]. We calculate

ui := min
j∈ROW (i)

cij for i ∈ Vr

and

vj := min
i∈COL(j)

(cij − ui) for j ∈ Vc.

An initial extreme matching M can be determined from the edges for which the
reduced weight cij = cij − ui − vj is zero. This can be done by scanning the set
COL(j) for each column node j to see whether it contains an unmatched row node i
for which cij = 0. If such a node i exists, edge (i, j) is added to the initial matching
M . Then, for each remaining unmatched column node j, every row node i ∈ COL(j)
is considered for which cij = 0, and that is matched to a column node other than j,
say, j1. So (i, j1) ∈ M . If a row node i1 ∈ COL(j1) can be found that is not yet
matched and for which ci1j1 = 0, then edge (i, j1) in M is replaced by edges (i, j) and
(i1, j1). After having repeated this for all unmatched columns, the search for shortest
augmenting paths starts with respect to the current matching.

Finally, we note that the weighted matching algorithm above can also be used for
maximizing the sum of the diagonal entries of the matrix A (instead of maximizing
the product of the diagonal entries). To do this, we again minimize (4.2), but we
redefine the matrix C as

cij =

{
aj − |aij |, aij �= 0,
0 otherwise.

Maximizing the sum of the diagonal entries is equal to minimizing (4.2), since

n∑
i=1

aσi −
n∑
i=1

|aiσi | =
n∑
i=1

(aσi − |aiσi |) =
n∑
i=1

ciσi .

5. Bottleneck matching. We describe a modification of the weighted bipartite
matching algorithm from the previous section for permuting rows and columns of a
sparse matrix A such that the smallest ratio between the absolute value of a diagonal
entry and the maximum absolute value in its column is maximized. That is, the
modification computes a permutation σ that maximizes

min
1≤i≤n

|aiσi |
aσi

,(5.1)

where aj is the maximum absolute value in column j of the matrix A. Similar to
the previous section, we transform this into a minimization problem. We define the
matrix C = (cij) as

cij =

1− |aij |
aj

, aij �= 0,

∞ otherwise.

PERMUTING LARGE ENTRIES TO THE DIAGONAL 983

Then, maximizing (5.1) is equal to minimizing

max
1≤i≤n

aσi − |aiσi |
aσi

= max
1≤i≤n

ciσi .

Given a matching M in the bipartite graph GC = (Vr, Vc, E), the bottleneck value
of M is defined as

c(M) = max
(i,j)∈M

cij .

The problem is to find a perfect (or maximum) bottleneck matching M for which
c(M) is minimal, i.e., c(M) ≤ c(M ′) for all possible maximum matchings M ′.

Recall that a matching M is called extreme if and only if it does not allow any
alternating cyclic path P for which c(M ⊕ P) < c(M). The bottleneck algorithm
begins with any extreme matching M . The initial bottleneck value b is set to c(M).
For each pass through the main loop, an alternating tree is constructed until an
augmenting path P is found for which either c(M⊕P) = c(M) or c(M⊕P)−c(M) > 0
is as small as possible. That is, the algorithm tries to find an augmenting path from an
unmatched column node to any unmatched row node such that the bottleneck value
of the (augmented) matching does not increase. This will be the case if the weight of
the largest edge on the augmenting path is less than or equal to the bottleneck value.
If such a path does not exist, then the algorithm will compute an augmenting path
that increases the bottleneck value with the smallest possible (nonnegative) amount.

The initializations and the main loop for constructing an augmenting path for
the bottleneck algorithm are those of Figure 4.1. Figure 5.1 shows the inner loop of
the weighted matching algorithm of Figure 4.1 modified to the case of the bottleneck
objective function. There are two main differences. First, instead of an augmenting
path with shortest possible length (sum of edge weights), the bottleneck algorithm
computes, at each step of the algorithm, an augmenting path whose largest weight
of any of its edges is as small as possible. Therefore, the algorithm constructs an
alternating path tree, rooted at unmatched column node j0, for which the largest
weight on any of its paths is as small as possible (or less than or equal to the tentative
bottleneck value b). The largest weight on the alternating path from root node j0 to
row node i is stored in di. As a consequence, the sum operation on the path lengths
in Figure 4.1 is replaced by the “max” operation. Second, as soon as an augmenting
path P is found whose cost lsap is less than or equal to the current bottleneck value b,
the main loop can be exited and the path P is used to augment the current matching
M . The bottleneck value b does not change in this case. If such an augmenting path
cannot be found, the algorithm continues the search and will eventually exit the main
loop with an augmenting path P whose largest edge weight lsap is larger than the
current bottleneck value b but smaller than or equal to the largest edge weight of any
other augmenting path. The current matching M is then augmented with path P and
the bottleneck value b is adjusted to lsap. The bottleneck algorithm does not modify
the edge weights cij , that is, it does not use dual variables or reduced edge weights.

Similar to the implementation discussed in section 4, the set Q is implemented
as a pair (Q1, Q2). Now, the array Q1 contains all the row nodes i for which di ≤ b.
Q2 contains the nodes (not in Q1) for which di is larger than b (but not infinity). Q2

is again implemented as a 2-heap. If Q1 is empty and the heap Q2 is not, then we
first move all the nodes i ∈ Q2 to Q1 for which di is as small as possible, say, dmin
(dmin > b), and we adjust the bottleneck value b to dmin. The search for augmenting

984 I. S. DUFF AND J. KOSTER

paths does not require floating-point arithmetic. Therefore, a parameter α that takes
into account numerical round-off (as used in the weighted matching algorithm) is not
necessary.

The worst-case run time of this bottleneck algorithm is the same as for the
weighted matching algorithm, namely O(n(τ + n) log2 n).

for i ∈ COL(j) \B do
dnew := max(lsp, cij);
if dnew < lsap then

if i unmatched then
lsap := dnew; isap := i;
if lsap ≤ b then exit while-loop;

else
if dnew < di then

di := dnew; pmi := j;
if i �∈ Q then Q := Q + {i};

end if;
end if;

end if;
end for;

Fig. 5.1. Modified inner loop of Figure 4.1.

A large initial extreme matching can be found in the following way. We define

ri := min
j∈ROW (i)

cij for i ∈ Vr

and

sj := min
i∈COL(j)

cij for j ∈ Vc,

as the smallest entry in row i and column j, respectively. Obviously, any perfect
matching (with cardinality n) will contain an edge that has a weight that is at least

b0 := max

{
max
i

ri,max
j

sj

}
.

That is, b0 is a lower bound for the bottleneck value. An extreme matching M can
be obtained from the edges (i, j) for which cij ≤ b0; we scan all nodes j ∈ Vc in
turn and for each node i ∈ COL(j) that is unmatched and for which cij ≤ b0, edge
(i, j) is added to M . Then, for each remaining unmatched column node j, every node
i ∈ COL(j) matched to a column node other than j, say, j1, and for which cij ≤ b0
is considered. So (i, j1) ∈M . If an unmatched row node i1 ∈ COL(j1) can be found
for which ci1j1 ≤ b0, then (i, j1) in M is replaced by (i, j) and (i1, j1). After having
done this for all unmatched columns, the search for shortest augmenting paths starts
with respect to the current matching.

Other initialization procedures can be found in the literature. For example, a
slightly more complicated initialization strategy is used by Finke and Smith [20] in
the context of solving transportation problems. For every i ∈ Vr, j ∈ Vc, they use

gi := |{cik | k ∈ ROW (i) and cik ≤ b0}|

PERMUTING LARGE ENTRIES TO THE DIAGONAL 985

and

hj := |{ckj | k ∈ COL(j) and ckj ≤ b0}|
as the number of admissible edges incident to row node i and column node j, respec-
tively. The idea behind using gi and hj is that once an admissible edge (i, j) is added
to M , all the other admissible edges that are incident to nodes i and j are no longer
candidates to be added to M . Therefore, the method tries to pick admissible edges
such that the number of admissible edges that become unusable is minimal. First, a
row node i with minimal gi is determined. From the set ROW (i) an admissible entry
(i, j) (provided one exists) is chosen for which hj is minimal and (i, j) is added to M .
After deleting the edges (i, k), k ∈ ROW (i), and the edges (k, j), k ∈ COL(j), the
method repeats the same for another row node i′ with minimal gi′ . This continues
until all admissible edges are deleted from the graph.

Finally, we note that instead of maximizing (5.1) we could have also maximized
the smallest absolute value on the diagonal. That is, we maximize

min
1≤i≤n

|aiσi |,

and define the matrix C as

cij =

{
aj − |aij |, aij �= 0,
∞ otherwise.

Note that this problem is rather sensitive to the scaling of the matrix A. Suppose for
example that the matrix A has a column containing only one nonzero entry whose
absolute value v is the smallest absolute value present in A. Then, after applying
the bottleneck algorithm, the bottleneck value b will be equal to this small value.
The smallest entry on the diagonal of the permuted matrix is maximized, but the
algorithm did not have any influence on the values of the other diagonal values.
Scaling the matrix prior to applying the bottleneck algorithm avoids this difficulty.

In [17], a different approach is taken to obtain a bottleneck matching. Let Aε
denote the matrix that is obtained by setting to zero in A all entries aij for which
|aij | < ε (thus A0 = A) and let M denote any maximum matching for A. Throughout
the algorithm, εmax and εmin are such that a maximum matching of size |M | does
not exist for Aεmax but does exist for Aεmin. At each step, ε is chosen in the interval
(εmin, εmax), and a maximum matching for the matrix Aε is computed using a vari-
ant of MC21. If this matching has size |M |, then εmin is set to ε, otherwise εmax is
set to ε. Hence, the size of the interval decreases at each step and ε will converge to
the bottleneck value. When the algorithm terminates, the last computed matching
of size |M | is the bottleneck matching and εmin the corresponding bottleneck value.
The worst-case run time of this algorithm is O(nτ log2 n). The term nτ is the cost
for finding a maximum matching with the variant of MC21. The number of times
a maximum matching is computed depends on the number q of different numerical
values in the matrix. If at each step ε is chosen close to the median of the inter-
val (εmin, εmax), then approximately log2 q < log2 τ < 2 log2 n matchings will be
computed.

6. Scaling. Olschowka and Neumaier [33] use the dual solution produced by the
weighted matching algorithm to scale the matrix. Let u and v be such that they
satisfy relation (4.3). If we define the diagonal matrices

Dr = diag(p1, p2, . . . , pn), pi = exp(ui)

986 I. S. DUFF AND J. KOSTER

and

Dc = diag(q1, q2, . . . , qn), qj = exp(vj)/aj ,

then we have

pi · |aij | · qj
= exp(ui + log(|aij |) + vj − log(aj))

= exp(ui + vj − (log(aj)− log(|aij |)))
= exp(ui + vj − cij) ≤ 1.

Equality holds when ui + vj = cij , and this is true for all (i, j) ∈ M . The scaled
and permuted matrix QDrADc is a matrix whose diagonal entries are one in absolute
value and whose off-diagonal entries are all less than or equal to one. Olschowka and
Neumaier call such a matrix an I-matrix and use this in the context of dense Gaussian
elimination to reduce the amount of pivoting that is needed for numerical stability.
The more dominant the diagonal of a matrix, the higher the chance that diagonal
entries are stable enough to serve as pivots for elimination.

For iterative methods, the transformation of a matrix to an I-matrix is also of
interest. For example, from Gershgorin’s theorem we know that the union of all discs

Ki =

µ ∈ C | |µ− aii| ≤

∑
k �=i
|aik|

contains all eigenvalues of the n × n matrix A. Disc Ki has center at aii and radius
that is equal to the sum of the absolute off-diagonal values in row i. If we scale the
columns of an I-matrix such that the diagonal entries of an I-matrix are all one, the
n discs all have their center at one. The estimate of the eigenvalues will be sharper as
A deviates less from a diagonal matrix. That is, the smaller the radii of the discs, the
better we know where the eigenvalues are situated. If we are able to reduce the radii
of the discs of an I-matrix, i.e., reduce the off-diagonal values, then we tend to cluster
the eigenvalues more around one. In the ideal case, all the discs of an I-matrix have
a radius smaller than one, in which case the matrix is strictly row-wise diagonally
dominant. This guarantees that many types of iterative methods will converge (in
exact arithmetic), even simple ones like Jacobi and Gauss–Seidel. However, if at least
one disc remains with radius larger than or close to one, zero eigenvalues or small
eigenvalues are possible.

Note, however, that this scaling strategy does not guarantee that all the off-
diagonal entries of an I-matrix are strictly smaller than one in absolute value.

7. Experimental results. In this section, we discuss cases where the reordering
algorithms from the previous section can be useful. These include the solution of
sparse equations by a direct method and by preconditioned iterative techniques.

The set of matrices that we used for our experiments are unsymmetric matrices
from the Harwell–Boeing Sparse Matrix Test Collection [16] and from the sparse
matrix collection at the University of Florida [11].

All matrices are initially row and column scaled. By this we mean that the matrix
is scaled so that the maximum entry in each row and in each column is one.

The computer used for the experiments is a SUN UltraSparc with 256 Mbytes of
main memory. The algorithms are implemented in Fortran 77.

PERMUTING LARGE ENTRIES TO THE DIAGONAL 987

We use the following acronyms. MC21 is the matching algorithm from the Harwell
Subroutine Library [28] for computing a matching such that the corresponding per-
muted matrix has a zero-free diagonal (see section 3). BT is the bottleneck bipartite
matching algorithm from section 5 for permuting a matrix such that the smallest ratio
between the absolute value of a diagonal entry and the maximum absolute value in its
column is maximized. BT′ is the bottleneck bipartite matching algorithm from [17].
MPD is the weighted matching algorithm from section 4 and computes a permutation
such that the product of the diagonal entries of the permuted matrix is maximum in
absolute value. MPS is equal to the MPD algorithm but, after the permutation, the
matrix is scaled to an I-matrix (see section 6).

Table 7.1
Times (in seconds) for the matching algorithms. The order of the matrix is n; the number of

entries in the matrix is τ.

Matrix n τ MC21 BT′ BT MPD
WEST1505 1505 5445 <0.01 <0.01 <0.01 0.02
WEST2021 2021 7353 <0.01 <0.01 <0.01 0.02
MAHINDAS 1258 7682 <0.01 <0.01 <0.01 0.01
ORANI678 2529 90158 0.01 0.07 0.02 0.07
GEMAT11 4929 33185 <0.01 0.03 <0.01 0.03
BAYER01 57735 277774 0.55 1.68 0.37 0.74
LHR01 1477 18592 0.01 0.03 0.05 0.04
LHR02 2954 37206 0.03 0.08 0.07 0.08
LHR14C 14270 307858 0.12 0.71 0.55 1.57
LHR71C 70304 1528092 0.86 6.06 6.18 16.90
ONETONE1 36057 341088 1.30 0.47 0.11 0.39
ONETONE2 36057 227628 1.36 0.35 0.08 0.27
GOODWIN 7320 324784 0.11 1.21 2.12 0.82
AV41092 41092 1683902 17.64 6.44 20.66 29.73

Table 7.1 shows, for our set of large sparse matrices, the order, number of entries,
and the time for the algorithms to compute a matching. The times for MPS are not
given, because they are almost identical to those for MPD. In general, MC21 needs
the least time to compute a matching, except for the ONETONE matrices. For these
matrices, the search heuristic that is used in MC21 (a depth first search with look-
ahead) does not perform well. There is not a clear winner between the bottleneck
algorithms BT and BT′, although we note that BT′ requires the entries inside the
columns to be sorted by value. This sorting can be expensive for relatively dense
matrices. MPD is in general the most expensive algorithm. We attribute this to the
more selective way in which this algorithm constructs augmenting paths.

7.1. Experiments with a direct solution method. For direct methods,
putting large entries on the diagonal suggests that pivoting down the diagonal might
be more stable. Indeed, stability cannot be guaranteed, but, if we have a solution
scheme like the multifrontal method [18], where a symbolic phase chooses the initial
pivotal sequence and the subsequent factorization phase then modifies this sequence
for stability, it can mean that less modification is required than if the permutation
were not applied.

In the multifrontal approach of Duff and Reid [18], later developed by Amestoy
and Duff [2], an analysis is performed on the pattern (adjacency graph) of the sym-
metric matrix A + AT to obtain an elimination order for the variables that reduces
fill-in. Based on this analysis, estimates are computed for the amount of work and
the size of the integer and real workspaces that will be needed during the subsequent

988 I. S. DUFF AND J. KOSTER

Table 7.2
Number of delayed pivots during the factorization by MA41. An “–” indicates that MA41 needed

more than 200 Mbytes of real workspace.

Matrix Matching algorithm
None MC21 BT MPD MPS

WEST1505 1617 19 8 1 1
WEST2021 2447 27 6 0 0
MAHINDAS 1154 13 0 0 0
ORANI678 2343 9 0 0 0
GEMAT11 – 76 0 0 0
BAYER01 – 28115 8315 3493 0
LHR01 1378 171 42 18 0
LHR02 3432 388 143 56 0
LHR14C – 7608 1042 169 174
LHR71C – 35354 7424 2643 3190
ONETONE1 – 16261 298 100 0
ONETONE2 40916 8310 411 100 0
GOODWIN 536 1622 427 53 41
AV41092 – 10151 2141 1730 1722

Table 7.3
Number of entries (×103) in the factors computed by MA41.

Matrix Matching algorithm
None MC21 BT MPD MPS

WEST1505 531 24 24 24 24
WEST2021 932 32 32 32 32
MAHINDAS 418 46 51 52 52
ORANI678 1923 360 416 423 423
GEMAT11 – 128 79 78 78
BAYER01 – 6272 3534 2945 2801
LHR01 997 137 210 113 111
LHR02 2299 333 374 235 230
LHR14C – 3111 2676 2164 2165
LHR71C – 18787 17528 11600 11630
ONETONE1 – 10359 7329 4715 4713
ONETONE2 14083 2876 2298 2170 2168
GOODWIN 1263 2673 2058 1282 1281
AV41092 – 16226 14968 14110 14111

factorization. The numerical factorization is guided by an assembly tree based on the
ordering and generated in the analysis phase. At each node of the tree, some steps of
Gaussian elimination are performed on a dense submatrix whose Schur complement
is then passed to the parent node in the tree where it is assembled (or summed) with
Schur complements from the other children and original entries of the matrix. If,
however, numerical considerations prevent the selection of a stable pivot in this dense
submatrix, then the elimination of a variable is delayed. As a consequence, the Schur
complement that is passed to the parent is larger and usually more work and storage
will be needed than was predicted by the analysis phase. By permuting the matrix
so that there are large entries on the diagonal, before computing the fill reducing
ordering, we try to reduce the number of delayed pivots. We show the effect of this
in Table 7.2 where we can see that even using MC21 can be very beneficial although
the other algorithms can show significant further gains. Tables 7.3 and 7.4 show the
effect on the number of entries in the factors and the solution time, respectively. We
sometimes observe a dramatic reduction in the fill-in and in the solution time for
MA41 when preceded by a permutation.

PERMUTING LARGE ENTRIES TO THE DIAGONAL 989

Table 7.4
Solution time (in seconds) required by MA41.

Matrix Matching algorithm
None MC21 BT MPD MPS

WEST1505 1.96 0.04 0.04 0.04 0.04
WEST2021 4.56 0.05 0.05 0.05 0.05
MAHINDAS 1.42 0.09 0.09 0.09 0.09
ORANI678 15.79 2.69 3.14 3.21 3.21
GEMAT11 – 0.15 0.10 0.10 0.10
BAYER01 – 17.81 8.09 8.53 8.33
LHR01 6.04 0.23 0.41 0.16 0.16
LHR02 15.16 0.62 0.65 0.33 0.32
LHR14C – 7.42 6.10 3.51 3.48
LHR71C – 73.12 59.41 24.01 24.11
ONETONE1 – 134.98 58.17 26.13 25.58
ONETONE2 44.53 9.26 6.45 6.31 6.12
GOODWIN 2.14 7.77 4.55 2.10 2.10
AV41092 – 124.08 98.91 88.88 88.61

Table 7.5
Structural symmetry after permutation (1.00 = symmetric).

Matrix Matching algorithm
None MC21 BT MPD/MPS

WEST1505 0.002 0.297 0.295 0.292
WEST2021 0.004 0.289 0.297 0.290
MAHINDAS 0.030 0.248 0.183 0.177
ORANI678 0.073 0.077 0.091 0.090
GEMAT11 0.002 0.530 0.947 0.957
BAYER01 <0.01 0.265 0.268 0.255
LHR01 0.009 0.302 0.133 0.168
LHR02 0.009 0.302 0.141 0.168
LHR14C 0.007 0.336 0.125 0.150
LHR71C 0.002 0.384 0.182 0.207
ONETONE1 0.099 0.368 0.427 0.434
ONETONE2 0.148 0.461 0.564 0.574
GOODWIN 0.642 0.288 0.365 0.583
AV41092 0.001 0.101 0.082 0.082

In general, the multifrontal code MA41 will do better on matrices whose structure
is symmetric or nearly so. Here, we define the structural symmetry for a matrix A as
the number of entries aij for which aji is also an entry, divided by the total number
of entries. The structural symmetry after the permutations is shown in Table 7.5. We
see that in some cases the symmetry of the resulting reordered matrix has increased
with respect to the original matrix. This is particularly apparent for very sparse
matrices with many zeros on the diagonal, for example, the matrices WEST1505 and
WEST2021. For such matrices, the reduction in the number of off-diagonal entries in
the reordered matrix has a significant influence on the symmetry.

Our implementations of the algorithms described in this paper have been used
successfully by Li and Demmel [31] to avoid the need for numerical pivoting in sparse
Gaussian elimination in a distributed-memory environment. Their method partitions
the matrix into an N × N block matrix A[1 : N, 1 : N] by using the notion of
unsymmetric supernodes [12]. The blocks are mapped cyclically (in both row and
column dimensions) onto the nodes (processors) of a two-dimensional rectangular
processor grid. The mapping is such that at step k, k = 1, . . . , N , of the numerical

990 I. S. DUFF AND J. KOSTER

factorization, a column of processors factorizes the block column A[k : N, k], a row of
processors participates in the triangular solves to obtain the block row U [k, k+1 : N],
and all processors participate in the subsequent multiple-rank update of the remaining
matrix A[k + 1 : N, k + 1 : N].

The numerical factorization phase in this method does not use (dynamic) partial
pivoting on the block columns. This allows the a priori computation of the nonzero
structure of the factors, the distributed data structures, the communication pattern,
and a static load balancing scheme, which makes the factorization potentially more
scalable on distributed-memory machines than factorizations in which the computa-
tional and communication tasks only become apparent during the elimination process.
To help with numerical stability, the matrix is permuted and scaled before the factor-
ization to make the diagonal entries large compared to the off-diagonal entries, any
tiny pivots encountered during the factorization are perturbed, and a few steps of
iterative refinement are performed during the triangular solution phase if the solution
is not accurate enough. Numerical experiments demonstrate that the method (using
our implementation of the MPS algorithm) is as stable as partial pivoting for a wide
range of problems [31].

7.2. Experiments with iterative solution methods. For iterative methods,
simple techniques like Jacobi or Gauss–Seidel converge more quickly if the diagonal
entry is large relative to the off-diagonals in its row or column, and techniques like
block iterative methods can benefit if the entries in the diagonal blocks are large.
Additionally, for preconditioning techniques, for example, for diagonal preconditioning
or incomplete LU preconditioning, it is intuitively evident that large diagonals should
be beneficial.

In incomplete factorization preconditioners, pivots are often taken from the diag-
onal and fill-in is discarded if it falls outside a prescribed sparsity pattern. Incomplete
factorizations are used so that the resulting factors are more economical to store, to
compute, and to use in the solution process. See [35] for an overview.

One of the reasons incomplete factorizations can behave poorly is that pivots
can be arbitrarily small [5, 9]. Pivots may even be zero, in which case the incomplete
factorization fails. Small pivots allow the numerical values of the entries in the incom-
plete factors to become very large, which leads to unstable, and therefore inaccurate,
factorizations. In such cases, the norm of the residual matrix R = A − L̂Û will be
large. (Here, L̂ and Û denote the computed incomplete factors.)

A way to improve the stability of the incomplete factorization is to preorder the
matrix to put large entries onto the diagonal. Obviously, a successful factorization
still cannot be guaranteed, because nonzero diagonal entries may become very small
(or even zero) during the factorization, but the reordering may mean that zero or
small pivots are less likely to occur.

Table 7.6 shows results for three preconditioned Krylov subspace methods
GMRES(20) [36], Bi-CGSTAB [38], and TFQMR [23]. The preconditioners considered
are the incomplete factorizations ILU(0) and ILU(1) and the threshold incomplete fac-
torization ILUT(tol, p) with drop tolerance tol = 0.1 and at most p = 5 off-diagonal
entries in each row of the incomplete factor (see [35]). The column permutations
that were obtained from the matching algorithms were applied to the sparse matrix
prior to computing the incomplete factorization. The iteration was stopped when the
l2 norm of the residual was less than 10−9 times the l2 norm of the initial residual.
The table shows experimental results for eight matrices of Table 7.1. For the other
matrices we did not achieve convergence of the iterative methods. The results show

PERMUTING LARGE ENTRIES TO THE DIAGONAL 991

Table 7.6
Number of iterations required by preconditioned iterative methods after unsymmetric (matching)

reordering of the matrix. An “–” indicates no convergence within min(n, 1000) iterations.

Matrix + Iterative method + Matching algorithm
Preconditioner GMRES(20) Bi-CGSTAB TFQMR

MC21 BT MPD MPS MC21 BT MPD MPS MC21 BT MPD MPS
WEST1505
ILU(0) – – – – – – – – – – – –
ILU(1) – – – – – – 94 68 – – – –
ILUT – – – – – – – – – – – –
WEST2021
ILU(0) – – – – – – – – – – – –
ILU(1) – – – – – – – – – – – –
ILUT – – – – – – – – – – – –
MAHINDAS
ILU(0) – – 60 55 – – 33 31 – – 33 30
ILU(1) – – 36 34 – – 22 18 – – 23 19
ILUT – 178 26 16 – 93 19 10 – 80 17 11
ORANI678
ILU(0) – 298 37 36 – 88 24 22 – 100 22 23
ILU(1) – 34 17 16 – 23 11 11 – 23 13 11
ILUT – 51 20 15 – 33 15 10 – 33 15 10
GEMAT11
ILU(0) – – – – – – 246 211 – – 252 259
ILU(1) – – 380 375 – – 112 85 – – 101 100
ILUT – – – – – 764 401 446 – – 679 826
BAYER01
ILU(0) – – – – – – – – – – 632 466
ILU(1) – – – – – – – 300 – – 470 357
ILUT – – – 49 – – – 29 – – – 25
LHR01
ILU(0) – – – – – – – – – – – –
ILU(1) – – 95 87 – – 37 31 – – 32 31
ILUT – – 496 39 – – – 24 – – 381 23
LHR02
ILU(0) – – – – – – – – – – – –
ILU(1) – – 236 154 – – 96 60 – – 53 53
ILUT – – 496 39 – – 534 29 – – 170 28

that a permutation (and scaling) applied to the initial matrix sometimes greatly im-
proves the convergence. In all cases, the best results in terms of number of iterations
are achieved by either the MPD or MPS algorithm. Overall, the MPS ordering and
scaling seems to produce the best results.

Obviously, permuting large entries to the diagonal of matrix does not guaran-
tee the accuracy and stability of the incomplete factorization. An inaccurate fac-
torization can also occur in the absence of small pivots, for example, when many
fill-ins are dropped from the incomplete factors. Another kind of instability in in-
complete factorizations, which can occur with and without small pivots, is severe
ill-conditioning of the triangular factors. (In this situation, ||R||F need not be very
large, but ||I − A(L̂Û)−1||F will be.) This is also a common situation when the
coefficient matrix is far from diagonally dominant.

More accurate and more stable incomplete factors may be achieved by combining
the unsymmetric permutations that place large entries onto the diagonal with a sym-
metric permutation. A symmetric permutation PTBP of an unsymmetric matrix B
reorders the rows and columns of B in the same way and can be obtained by using the
adjacency graph of the symmetric matrix B +BT . A sparse linear system Ax = b is

992 I. S. DUFF AND J. KOSTER

Table 7.7
Number of iterations required by preconditioned iterative methods after unsymmetric (matching)

reordering followed by a symmetric reverse Cuthill–McKee reordering of the matrix.

Matrix + Iterative method + Matching algorithm
Preconditioner GMRES(20) Bi-CGSTAB TFQMR

MC21 BT MPD MPS MC21 BT MPD MPS MC21 BT MPD MPS
WEST1505
ILU(0) – – – – – – – – – – – –
ILU(1) – – – 317 – – – – – – 96 73
ILUT – – – – – – 139 – – – 389 –
WEST2021
ILU(0) – – – – – – – – – – – –
ILU(1) – – – – – – 74 85 – – 108 94
ILUT – – – – – – 359 – – – – –
MAHINDAS
ILU(0) – – 55 53 – – 62 30 – – 35 28
ILU(1) – 176 28 27 – 105 18 18 – 121 17 18
ILUT – 191 19 16 – 114 22 9 – 156 17 10
ORANI678
ILU(0) – 86 35 34 – 55 26 19 – 54 21 23
ILU(1) – 33 18 17 – 23 12 12 – 23 13 12
ILUT – 31 19 18 – 19 14 12 – 21 16 14
GEMAT11
ILU(0) – – 572 624 – – 141 170 – – 148 151
ILU(1) – 178 90 90 – 60 50 49 – 65 56 56
ILUT – – – – – 490 263 265 – 499 407 399
BAYER01
ILU(0) – – – – – – – – – – 481 317
ILU(1) – – – – – – – 770 – – 535 408
ILUT – – – 16 – – – 11 – – – 11
LHR01
ILU(0) – – 218 137 – – 47 40 – – 60 48
ILU(1) – – 180 123 – – 43 39 – – 39 37
ILUT – – 474 35 – – 265 19 – – 267 21
LHR02
ILU(0) – – – – – – – – – – – –
ILU(1) – – – 369 – – 90 104 – – 69 66
ILUT – – 395 197 – – 195 61 – – 143 55

then transformed into a system PT (QDrADc)Py = PTQDrb; i.e., the symmetric per-
mutation is applied to the matrix QDrADc. The solution to the original linear system
is x = DcPy. The incomplete factorization preconditioners may benefit from a sym-
metric permutation since they are sensitive to the ordering of the rows and columns
of the matrix. Table 7.7 shows the results that we obtained by combining the un-
symmetric matching permutations with the reverse Cuthill–McKee ordering [26, 32].
In most cases, the reverse Cuthill–McKee ordering has a positive effect, but this is
not always true. Benzi, Haws, and Tůma [4] have experimented extensively with our
matching algorithms and combined them with the reverse Cuthill–McKee ordering,
the multiple minimum degree ordering, and a generalized nested dissection ordering.
Their main motivation for also using a symmetric permutation is that the number of
entries that is dropped in incomplete factorization preconditioners can be reduced by
applying a reordering of the matrix that reduces fill-in. The extensive experimental
results presented in [4] show that the reliability and performance of preconditioned
iterative solvers can be further enhanced by such combined preprocessing.

Finally, we mention that we also performed numerous experiments with the im-
plementation of the block Cimmino method that is described in [3]. This iterative

PERMUTING LARGE ENTRIES TO THE DIAGONAL 993

scheme is equivalent to using a block Jacobi algorithm on the normal equations. The
subproblems corresponding to blocks of rows from the matrix are solved by the sparse
direct method MA27 [28]. In the experiments, the matching algorithm was followed by
a reverse Cuthill–McKee algorithm to obtain a block tridiagonal form. We partitioned
the matrix into blocks of rows of varying sizes (2, 4, 8, and 16). The accelerations
used were block CG algorithms, also of varying sizes (1, 4, and 8). We chose the block
rows to be of equal (or nearly equal) size. Table 7.8 shows a small set of results that is
representative for many of the experimental results that we obtained. In general, we
noticed in our experiments that the block Cimmino method often was more sensitive
to the scaling (in MPS) and less to the reorderings. The convergence properties of the
block Cimmino method are independent of row scaling. However, the sparse direct
solver MA27 used for solving the augmented systems performs numerical pivoting
during the factorizations of the augmented matrices. Row scaling might well change
the choice of the pivot order and affect the fill-in in the factors and the accuracy of
the solution. Column scaling should affect convergence of the method since it can be
considered as a diagonal preconditioner. For more details, see [34].

Table 7.8
Number of iterations required by the block Cimmino algorithm with CG(4) acceleration for the

matrix MAHINDAS.

block rows Matching algorithm
None MC21 BT MPD MPS

2 148 112 130 133 68
4 212 190 199 194 92
8 261 235 232 233 111
16 281 245 253 253 112

8. Conclusions and future directions of work. We have considered, in sec-
tions 3–5, techniques for permuting a sparse matrix so that the diagonal of the per-
muted matrix has entries of large absolute value. We discussed various criteria for
this and considered their implementation as computer codes. We also considered in
section 6 possible scaling strategies to further improve the weight of the diagonal
with respect to the off-diagonal values. In section 7, we indicated cases where such a
permutation (and scaling) can be useful. These include the solution of sparse equa-
tions by a direct method and by an iterative technique. We also considered its use in
generating a preconditioner for an iterative method.

The experimental results in section 7 show that the proposed reordering and
scaling algorithms can have a significant effect on the performance of various methods
for solving sparse systems. However, at present it is still somewhat less clear that
there is a universal strategy that performs well in general. One reason for this is
that increasing the size of only the diagonal is not always sufficient to improve the
performance of the method. For example, for the incomplete preconditioners that we
used for the numerical experiments in section 7.2, it is not only the size of the diagonal
but also the amount and size of the discarded fill-in that plays an important role.

It is, therefore, interesting to combine the reordering and scaling strategies de-
scribed in sections 3–6 with other reordering strategies. The experiments performed
by Benzi, Haws, and Tůma [4], who used our algorithms in combination with sym-
metric matrix orderings, can be seen as a step in that direction. A combination with
other scaling strategies is also possible. As an example of this, we mention a possible
way of decreasing large off-diagonal entries of an I-matrix by row and column equal-

994 I. S. DUFF AND J. KOSTER

ization [33]. Let A be an I-matrix that (for simplicity) does not contain zero entries.
We define the matrix C = (cij) as cij = log |aij |. Equalization consists of repeatedly
equalizing the largest absolute values in row i and column i:

t := 0;
for k := 1, 2, . . . do

for j := 1 to n do
y1 := max{cjr + tj − tr | r �= j and cjr �= 0};
y2 := max{crj + tr − tj | r �= j and crj �= 0};
tj := tj + (y2 − y1)/2;

end;
end;

For k = ∞, this algorithm minimizes max{cij + ti − tj | i �= j, cij �= 0}. If we
define diagonal scaling matrices Dr and Dc as in section 6, but now pi := exp(ti)
and qj := 1/ exp(tj), then the algorithm minimizes the largest off-diagonal absolute
value in the matrix DrADc. The diagonal entries do not change. Unfortunately, this
equalization strategy is costly and perhaps not practical in an actual implementation.

The run time of the minimum weighted matching algorithms can be reduced by
using heuristics that more quickly find matchings of small but not minimum weight.
This will be of interest as long as the benefit of using the weighted matching (with,
for example, the incomplete factorization preconditioners) is not too much reduced.
We note that the weighted matching algorithm described in section 4 can be used
to find matchings with small weight by using larger values for the parameter α. A
similar parameter can be inserted in the bottleneck matching algorithm of section 5.

Another interesting direction of research would be to develop an algorithm to
obtain a partitioned matrix where the diagonal blocks have entries of large magnitude
relative to the entries in the off-diagonal blocks. This is of particular interest for the
block Cimmino method. One could also build other criteria into the weighting for
obtaining a bipartite matching, for example, to incorporate a Markowitz cost so that
sparsity would also be preserved by the choice of the resulting diagonal as a pivot.
Such combination would make the resulting ordering suitable for a wider class of
sparse direct solvers.

Finally, we plan to continue the development of the algorithms for the bipartite
matchings. Preliminary experimental results with a tuned version of the weighted
matching algorithm show that the time required by the MPD algorithm for matrix
AV41092 can be reduced by about a factor of two, without degrading the quality of
the matching. Up-to-date copies of the software can be obtained by contacting one of
the authors.

Acknowledgments. We are grateful to Michele Benzi of Los Alamos National
Laboratory and Miroslav Tůma of the Czech Academy of Sciences for their assistance
on the preconditioned iterative methods and to Daniel Ruiz of ENSEEIHT for his
help on block iterative methods. We would also like to thank two anonymous referees
for their constructive criticism on an early draft of the paper.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice–Hall, Englewood Cliffs, NJ, 1993.

[2] P. R. Amestoy and I. S. Duff, Vectorization of a multiprocessor multifrontal code, Internat.
J. Supercomputer Appl., 3 (1989), pp. 41–59.

PERMUTING LARGE ENTRIES TO THE DIAGONAL 995

[3] M. Arioli, I. S. Duff, J. Noailles, and D. Ruiz, A block projection method for sparse
matrices, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 47–70.

[4] M. Benzi, J. C. Haws, and M. Tůma, Preconditioning highly indefinite and nonsymmetric
matrices, SIAM J. Sci. Comput., 22 (2000), pp. 1333–1353.

[5] M. Benzi, D. B. Szyld, and A. van Duin, Orderings for incomplete factorization precondi-
tioning of nonsymmetric problems, SIAM J. Sci. Comput., 20 (1999), pp. 1652–1670.

[6] R. E. Burkard and U. Derigs, Assignment and Matching Problems: Solution Methods with
FORTRAN-Programs, Lecture Notes in Econom. and Math. Systems 184, Springer, Berlin,
Heidelberg, New York, 1980.

[7] G. Carpaneto and P. Toth, Solution of the assignment problem (Algorithm 548), ACM
Trans. Math. Software, 1980, pp. 104–111.

[8] P. Carraresi and C. Sodini, An efficient algorithm for the bipartite matching problem, Eu-
ropean J. Oper Res., 23 (1986), 86–93.

[9] E. Chow and Y. Saad, Experimental Study of ILU Preconditioners for Indefinite Matrices,
Technical Report TR 97/95, Department of Computer Science, University of Minnesota,
and Minnesota Supercomputer Institute, Minneapolis, MN, 1997.

[10] T. Corman, C. Leiserson, and R. Rivest, Introduction to Algorithms, MIT Press, Cambridge,
MA, 1990.

[11] T. A. Davis, University of Florida sparse matrix collection, http://www.cise.ufl.edu/∼davis
and ftp://ftp.cise.ufl.edu/pub/faculty/davis (1997).

[12] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 720–755.

[13] U. Derigs and A. Metz, An efficient labeling technique for solving sparse assignment prob-
lems, Computing, 36 (1986), pp. 301–311.

[14] E. W. Dijkstra, A note on two problems in connection with graphs, Numer. Math., 1 (1959),
pp. 269–271.

[15] I. S. Duff, Algorithm 575. Permutations for a zero-free diagonal, ACM Trans. Math. Software,
7 (1981), pp. 387–390.

[16] I. S. Duff, R. G. Grimes, and J. G. Lewis, Users’ Guide for the Harwell-Boeing Sparse
Matrix Collection (Release 1), Technical Report RAL-92-086, Rutherford Appleton Labo-
ratory, Oxfordshire, England, 1992.

[17] I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to
the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889–901.

[18] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
systems, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[19] I. S. Duff and T. Wiberg, Remarks on implementations of O(n1/2τ) assignment algorithms,
ACM Trans. Math. Software, 14 (1988), pp. 267–287.

[20] G. Finke and P. Smith, Primal equivalents for the threshold algorithm, in Proceedings of the
Third Symposium on Operations Research, University of Mannheim, Mannheim, Germany,
1978, Operations Res. Verfahren 31, 1979, pp. 185–198.

[21] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press, Prince-
ton, NJ, 1962.

[22] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. Assoc. Comput. Mach., 34 (1987), pp. 596–615.

[23] R. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear sys-
tems, SIAM J. Sci. Statist. Comput., 14 (1993), pp. 470–482.

[24] H. N. Gabow, Scaling algorithms for network problems, J. Comput. System Sci., 31 (1985),
pp. 148–168.

[25] G. Gallo and S. Pallottino, Shortest path algorithms, Ann. Oper. Res., 13 (1988), pp. 3–79.
[26] A. George, Computer Implementation of the Finite-Element Method, Ph.D. thesis, Report

STAN CS-71-208, Department of Computer Science, Stanford University, Stanford, CA,
1971.

[27] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite
graphs, SIAM J. Comput., 2 (1973), pp. 225–231.

[28] HSL, A collection of Fortran codes for large scale scientific computation, http://www.
numerical.rl.ac.uk/hsl (2000).

[29] R. Jonker and A. Volgenant, A shortest augmenting path algorithm for dense and sparse
linear assignment problems, Computing, 38 (1987), pp. 325–340.

[30] H. W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Quart.,
2 (1955), pp. 83–97.

[31] X. S. Li and J. W. Demmel, A scalable sparse direct solver using static pivoting, in Proceed-
ings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing, San

996 I. S. DUFF AND J. KOSTER

Antonio, Texas, 1999, CD-ROM, SIAM, Philadelphia, PA, 1999.
[32] W. H. Liu and A. H. Sherman, Comparative analysis of the Cuthill–McKee and the reverse

Cuthill–McKee ordering algorithms for sparse matrices, SIAM J. Numer. Anal., 13 (1976),
pp. 198–213.

[33] M. Olschowka and A. Neumaier, A new pivoting strategy for Gaussian elimination, Linear
Algebra Appl., 240 (1996), pp. 131–151.

[34] D. Ruiz, Solution of Large Sparse Unsymmetric Linear Systems with a Block Iterative Method
in a Multiprocessor Environment, Ph.D. thesis, CERFACS, Toulouse, France, 1992.

[35] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,
MA, 1996.

[36] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[37] R. E. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conf. Ser. in
Appl. Math. 44, SIAM, Philadelphia, PA, 1983.

[38] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

MULTIPLE-RANK MODIFICATIONS OF A SPARSE CHOLESKY
FACTORIZATION∗

TIMOTHY A. DAVIS† AND WILLIAM W. HAGER‡

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 997–1013

Abstract. Given a sparse symmetric positive definite matrix AAT and an associated sparse
Cholesky factorization LDLT or LLT, we develop sparse techniques for updating the factorization
after either adding a collection of columns to A or deleting a collection of columns from A. Our
techniques are based on an analysis and manipulation of the underlying graph structure, using the
framework developed in an earlier paper on rank-1 modifications [T. A. Davis and W. W. Hager,
SIAM J. Matrix Anal. Appl., 20 (1999), pp. 606–627]. Computationally, the multiple-rank update
has better memory traffic and executes much faster than an equivalent series of rank-1 updates since
the multiple-rank update makes one pass through L computing the new entries, while a series of
rank-1 updates requires multiple passes through L.

Key words. numerical linear algebra, direct methods, Cholesky factorization, sparse matrices,
mathematical software, matrix updates

AMS subject classifications. 65F05, 65F50, 65-04

PII. S0895479899357346

1. Introduction. This paper presents a method for evaluating a multiple-rank
update or downdate of the sparse Cholesky factorization LDLT or LLT of the matrix
AAT, where A is m× n. More precisely, given an m× r matrix W, we evaluate the
Cholesky factorization of AAT + σWWT where either σ is +1 (corresponding to an
update) and W is arbitrary, or σ is −1 (corresponding to a downdate) and W consists
of columns of A. Both AAT and AAT +σWWT must be positive definite. It follows
that n ≥ m in the case of an update, and n− r ≥ m in the case of a downdate.

One approach to the multiple-rank update is to express it as a series of rank-1
updates and use the theory developed in [10] for updating a sparse factorization after
a rank-1 change. This approach, however, requires multiple passes through L as it is
updated after each rank-1 change. In this paper, we develop a sparse factorization
algorithm that makes only one pass through L.

For a dense Cholesky factorization, a one-pass algorithm to update a factorization
is obtained from Method C1 in [18] by making all the changes associated with one
column of L before moving to the next column, as is done in the following algorithm
that overwrites L and D with the new factors of AAT + σWWT. Algorithm 1
performs 2rm2 + 4rm floating-point operations.

Algorithm 1 (dense rank-r update/downdate).
for i = 1 to r do

αi = 1
end for
for j = 1 to m do

for i = 1 to r do

∗Received by the editors June 17, 1999; accepted for publication (in revised form) by S. Vavasis
August 16, 2000; published electronically January 31, 2001. This work was supported by the National
Science Foundation.

http://www.siam.org/journals/simax/22-4/35734.html
†Department of Computer and Information Science and Engineering, University of Florida,

P.O. Box 116120, Gainesville, FL 32611-6120 (davis@cise.ufl.edu, http://www.cise.ufl.edu/̃ davis).
‡Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville, FL 32611-8105

(hager@math.ufl.edu, http://www.math.ufl.edu/̃ hager).

997

998 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

α = αi + σw2
ji/dj (σ = +1 for update or −1 for downdate)

dj = djα
γi = wji/dj
dj = dj/αi
αi = α

end for
for p = j + 1 to m do

for i = 1 to r do
wpi = wpi − wjilpj
lpj = lpj + σγiwpi

end for
end for

end for

We develop a sparse version of this algorithm that only accesses and modifies those
entries in L and D which can change. For r = 1, the theory in our rank-1 paper [10]
shows that those columns which can change correspond to the nodes in an elimination
tree on a path starting from the node k associated with the first nonzero element wk1
in W. For r > 1 we show that the columns of L which can change correspond
to the nodes in a subtree of the elimination tree, and we express this subtree as a
modification of the elimination tree of AAT. Also, we show that with a reordering of
the columns of W, it can be arranged so that in the inner loop where elements in row
p of W are updated, the elements that change are adjacent to each other. The sparse
techniques that we develop lead to sequential access of matrix elements and to efficient
computer memory traffic. These techniques to modify a sparse factorization have
many applications, including the linear program dual active set algorithm (LPDASA)
[20], least-squares problems in statistics, the analysis of electrical circuits and power
systems, structural mechanics, sensitivity analysis in linear programming, boundary
condition changes in partial differential equations, domain decomposition methods,
and boundary element methods (see [19]).

Section 2 describes our notation. In section 3, we present an algorithm for comput-
ing the symbolic factorization of AAT using multisets, which determines the location
of nonzero entries in L. Sections 4 and 5 describe our multiple-rank symbolic update
and downdate algorithms for finding the nonzero pattern of the new factors. Section 6
describes our algorithm for computing the new numerical values of L and D, for either
an update or downdate. Our experimental results are presented in section 7.

2. Notation and background. Given the location of the nonzero elements of
AAT, we can perform a symbolic factorization (this terminology is introduced by
George and Liu in [15]) of the matrix to predict the location of the nonzero elements
of the Cholesky factor L. In actuality, some of these predicted nonzeros may be
zero due to numerical cancellation during the factorization process. The statement
“lij �= 0” will mean that lij is symbolically nonzero. The main diagonals of L and
D are always nonzero since the matrices that we factor are positive definite (see [26,
p. 253]). The nonzero pattern of column j of L is denoted Lj ,

Lj = {i : lij �= 0},

while L denotes the collection of patterns

L = {L1,L2, . . . ,Lm}.

MULTIPLE-RANK MODIFICATIONS 999

Similarly, Aj denotes the nonzero pattern of column j of A,

Aj = {i : aij �= 0},
while A is the collection of patterns

A = {A1,A2, . . . ,An}.
The elimination tree can be defined in terms of a parent map π (see [22]). For any

node j, π(j) is the row index of the first nonzero element in column j of L beneath
the diagonal element

π(j) = min Lj \ {j},
where “min X” denotes the smallest element of X :

min X = min
i∈X

i.

Our convention is that the min of the empty set is zero. Note that j < π(j) except
in the case where the diagonal element in column j is the only nonzero element. The
children of node j is the set of nodes whose parent is j:

{c : j = π(c)}.
The ancestors of a node j, denoted P(j), is the set of successive parents:

P(j) = {j, π(j), π(π(j)), . . .}.
Since π(j) > j for each j, the ancestor sequence is finite. The sequence of nodes
j, π(j), π(π(j)), . . . , forming P(j), is called the path from j to the associated tree
root, the final node on the path. The collection of paths leading to a root form an
elimination tree. The set of all trees is the elimination forest. Typically, there is a
single tree whose root is m; however, if column j of L has only one nonzero element,
the diagonal element, then j will be the root of a separate tree.

The number of elements (or size) of a set X is denoted |X |, while |A| or |L| denote
the sum of the sizes of the sets they contain.

3. Symbolic factorization. For a matrix of the form AAT, the pattern Lj of
column j is the union of the patterns of each column of L whose parent is j and each
column of A whose smallest row index of its nonzero entries is j (see [16, 22]):

Lj = {j} ∪

 ⋃

{c:j=π(c)}
Lc \ {c}

 ∪

 ⋃

min Ak=j

Ak

 .(3.1)

To modify (3.1) during an update or downdate, without recomputing it from
scratch, we need to keep track of how each entry i entered into Lj [10]. For example,
if π(c) changes, we may need to remove a term Lc \ {c}. We cannot simply perform
a set subtraction, since we may remove entries that appear in other terms. To keep
track of how entries enter and leave the set Lj , we maintain a multiset associated
with column j. It has the form

L	j = {(i,m(i, j)) : i ∈ Lj},

1000 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

where the multiplicity m(i, j) is the number of children of j that contain row index i
in their pattern plus the number of columns of A whose smallest entry is j and that
contain row index i. Equivalently, for i �= j,

m(i, j) = |{c : j = π(c) and i ∈ Lc}|+ |{k : min Ak = j and i ∈ Ak}| .

For i = j, we increment the above equation by one to ensure that the diagonal entries
never disappear during a downdate. The set Lj is obtained from L	j by removing the
multiplicities.

We define the addition of a multiset X 	 and a set Y in the following way:

X 	 + Y = {(i,m′(i)) : i ∈ X or i ∈ Y},

where

m′(i) =

1 if i /∈ X and i ∈ Y,
m(i) if i ∈ X and i /∈ Y,
m(i) + 1 if i ∈ X and i ∈ Y.

Similarly, the subtraction of a set Y from a multiset X 	 is defined by

X 	 − Y = {(i,m′(i)) : i ∈ X and m′(i) > 0},

where

m′(i) =

{
m(i) if i /∈ Y,
m(i)− 1 if i ∈ Y.

The multiset subtraction of Y from X 	 undoes a prior addition. That is, for any
multiset X 	 and any set Y, we have

((X 	 + Y)− Y) = X 	.

In contrast ((X ∪ Y) \ Y) is equal to X if and only if X and Y are disjoint sets.
Using multiset addition instead of set union, (3.1) leads to the following algorithm

for computing the symbolic factorization of AAT.
Algorithm 2 (symbolic factorization of AAT, using multisets).
for j = 1 to m do

L	j = {(j, 1)}
for each c such that j = π(c) do

L	j = L	j + (Lc \ {c})
end for
for each k where min Ak = j do

L	j = L	j +Ak
end for
π(j) = min Lj \ {j}

end for

4. Multiple-rank symbolic update. We consider how the pattern L changes
when AAT is replaced by AAT + WWT. Since

AAT + WWT = [A|W][A|W]T,

MULTIPLE-RANK MODIFICATIONS 1001

we can in essence augment A by W in order to evaluate the new pattern of column
j in L. According to (3.1), the new pattern Lj of column j of L after the update is

Lj = {j} ∪

 ⋃

{c:j=π(c)}
Lc \ {c}

 ∪

 ⋃

min Ak=j

Ak

 ∪

 ⋃

min Wi=j

Wi

 ,(4.1)

where Wi is the pattern of column i in W. Throughout, we put a bar over a matrix
or a set to denote its new value after the update or downdate.

In the following theorem, we consider a column j of the matrix L and how its

pattern is modified by the sets Wi. Let L	j denote the multiset for column j after the
rank-r update or downdate has been applied.

Theorem 4.1. To compute the new multiset L	j, initialize L	j = L	j and perform
the following modifications.

• Case A: For each i such that j = minWi, add Wi to the pattern for column j,

L	j = L	j +Wi.

• Case B: For each c such that j = π(c) = π(c), compute

L	j = L	j + (Lc \ Lc)
(c is a child of j in both the old and new elimination tree).

• Case C: For each c such that j = π(c) �= π(c), compute

L	j = L	j + (Lc \ {c})
(c is a child of j in the new tree, but not the old one).

• Case D: For each c such that j = π(c) �= π(c), compute

L	j = L	j − (Lc \ {c})
(c is a child of j in the old tree, but not the new one).

Proof. Cases A–D account for all the adjustments we need to make in Lj in order
to obtain Lj . These adjustments are deduced from a comparison of (3.1) with (4.1).
In case A, we simply add in the Wi multisets of (4.1) that do not appear in (3.1). In
case B, node c is a child of node j both before and after the update. In this case, we
must adjust for the deviation between Lc and Lc. By [10, Prop. 3.2], after a rank-1
update, Lc ⊆ Lc. If wi denotes the ith column of W, then

WWT = w1w
T
1 + w2w

T
2 + · · ·+ wrw

T
r .

Hence, updating AAT by WWT is equivalent to r successive rank-1 updates of AAT.
By repeated application of [10, Prop. 3.2], Lc ⊆ Lc after a rank-r update of AAT. It
follows that Lc and Lc deviate from each other by the set Lc \ Lc. Consequently, in
case B we simply add in Lc \ Lc.

In case C, node c is a child of j in the new elimination tree, but not in the old
tree. In this case we need to add in the entire set Lc \ {c} since the corresponding
term does not appear in (3.1). Similarly, in case D, node c is a child of j in the old
elimination tree, but not in the new tree. In this case, the entire set Lc \{c} should be
deleted. The case where c is not a child of j in either the old or the new elimination

1002 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

tree does not result in any adjustment since the corresponding Lc term is absent from
both (3.1) and (4.1).

An algorithm for updating a Cholesky factorization that is based only on this
theorem would have to visit all nodes j from 1 to m, and consider all possible children
c < j. On the other hand, not all nodes j from 1 to m need to be considered since not
all columns of L change when AAT is modified. In [10, Thm. 4.1] we show that for
r = 1, the nodes whose patterns can change are contained in P(k1), where we define
ki = minWi. For a rank-r update, let P(i) be the ancestor map associated with the
elimination tree for the Cholesky factorization of the matrix

AAT +

i∑
j=1

wjw
T
j .(4.2)

Again, by [10, Thm. 4.1], the nodes whose patterns can change during the rank-r
update are contained in the union of the patterns P(i)(ki), 1 ≤ i ≤ r. Although we
could evaluate P(i)(ki) for each i, it is difficult to do this efficiently since we need to
perform a series of rank-1 updates and evaluate the ancestor map after each of these.
On the other hand, by [10, Prop. 3.1] and [10, Prop. 3.2], P(i)(j) ⊆ P(i+1)(j) for each
i and j, from which it follows that P(i)(ki) ⊆ P(ki) for each i. Consequently, the
nodes whose patterns change during a rank-r update are contained in the set

T =
⋃

1≤i≤r
P(ki).

Theorem 4.2, below, shows that any node in T is also contained in one or more
of the sets P(i)(ki). From this it follows that the nodes in T are precisely those nodes
for which entries in the associated columns of L can change during a rank-r update.
Before presenting the theorem, we illustrate this with a simple example shown in
Figure 4.1. The left of Figure 4.1 shows the sparsity pattern of original matrix AAT,
its Cholesky factor L, and the corresponding elimination tree. The nonzero pattern
of the first column of W is W1 = {1, 2}. If performed as a single rank-1 update, this
causes a modification of columns 1, 2, 6, and 8 of L. The corresponding nodes in the
original tree are encircled; these nodes form the path P(1)(1) = {1, 2, 6, 8} from node
1 to the root (node 8) in the second tree. The middle of Figure 4.1 shows the matrix
after this rank-1 update, and its factor and elimination tree. The entries in the second
matrix AAT + w1w

T
1 that differ from the original matrix AAT are shown as small

pluses. The second column of W has the nonzero patternW2 = {3, 4, 7}. As a rank-1
update, this affects columns P(2)(3) = P(3) = {3, 4, 5, 6, 7, 8} of L. These columns
form a single path in the final elimination tree shown in the right of the figure.

For the first rank-1 update, the set of columns that actually change are P(1)(1) =
{1, 2, 6, 8}. This is a subset of the path P(1) = {1, 2, 6, 7, 8} in the final tree. If we
use P(1) to guide the work associated with column 1 of W, we visit all the columns
that need to be modified, plus column 7. Node 7 is in the set of nodes P(3) affected
by the second rank-1 update, however, as shown in the following theorem.

Theorem 4.2. Each of the paths P(i)(ki) is contained in T and conversely, if
j ∈ T , then j is contained in P(i)(ki) for some i.

Proof. Before the theorem, we observe that each of the paths P(i)(ki) is contained
in T . Now suppose that some node j lies in the tree T . We need to prove that it is
contained in P(i)(ki) for some i. Let s be the largest integer such that P(ks) contains
j, and let c be any child of j in T . If c lies on the path P(ki) for some i, then j lies

MULTIPLE-RANK MODIFICATIONS 1003

after second updateafter first updateelimination tree
Elimination tree

After first update

Elimination tree

Original factor L Factor after second updateFactor after first update

Original matrix

+ w w1 1 + w w2 2

After second update

11+ w wATA T

5

6

2

7

8

41

3

TTA TA

3

5

6 7

8

1 2 4 3

6 7

8

2

41

5

AT

Original

A

Fig. 4.1. Example rank-2 update.

on the path P(ki) since j is the parent of c. Since j does not lie on the path P(ki)
for any i > s, it follows that c does not lie on the path P(ki) for any i > s. Applying
this same argument recursively, we conclude that none of the nodes on the subtree
of T rooted at j lie on the path P(ki) for any i > s. Let Tj denote the subtree of T
rooted at j. Since P(i)(ki) is contained in P(ki) for each i, none of the nodes of Tj
lie on any of the paths P(i)(ki) for i > s. By [10, Thm. 4.1], the patterns of all nodes

outside the path P(i)(ki) are unchanged for each i. Let L(i)
c be the pattern of column

c in the Cholesky factorization of (4.2). Since any node c contained in Tj does not lie

on any of the paths P(i)(ki) for i > s, L(i)
c = L(l)

c for all i, l ≥ s. Since ks is a node
of Tj , the path P(s)(ks) must include j.

Figure 4.2 depicts a subtree T for an example rank-8 update. The subtree consists
of all those nodes and edges in one or more of the paths P(k1),P(k2), . . . ,P(k8). These
paths form a subtree, and not a general graph, since they are all paths from an initial
node to the root of the elimination tree of the matrix L. The subtree T might actually
be a forest, if L has an elimination forest rather than an elimination tree. The first
nonzero positions in w1 through w8 correspond to nodes k1 through k8. For this

1004 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

(d,c)P

P (k5,d)

P (k2,c)

P (k3,d)

(c,e)P

(e,f)P

(b,e)P

P (k4,b)

P (k7,a) P (k6,a)

P (a,b) P (k8,c)

e

f

b
c

da

k4

k7

k3k6

k8

k5

k1

k2

P (k1,k4)

Fig. 4.2. Example rank-8 symbolic update and subtree T .

example, node k4 happens to lie on the path P(1)(k1). Nodes at which paths first
intersect are shown as smaller circles and are labeled a through f . Other nodes along
the paths are not shown. Each curved arrow denotes a single subpath. For example,
the arrow from nodes b to e denotes the subpath from b to e in P(b). This subpath is
denoted as P(b, e) in Figure 4.2.

The following algorithm computes the rank-r symbolic update. It keeps track of
an array of m “path-queues,” one for each column of L. Each queue contains a set
of path-markers in the range 1 to r, which denote which of the paths P(k1) through
P(kr) will modify column j next. If two paths have merged, only one of the paths
needs to be considered. (We arbitrarily select the higher-numbered path to represent
the merged paths.) This set of path-queues requires O(m+ r) space. Removing and
inserting a path-marker in a path-queue takes O(1) time. The only outputs of the

algorithm are the new pattern of L and its elimination tree, namely, L	j and π(j) for

all j ∈ [1,m]. Not all columns are affected by the rank-r update. We define L	j = L	j
and π(j) = π(j) for any node j not in T .

Case C will occur for c and j prior to visiting column π(c), since j = π(c) < π(c).
Thus we place c in the lost-child-queue of column π(c) when encountering case C
for nodes c and j. When the algorithm visits node π(c), its lost-child-queue will
contain all those nodes for which case D holds. This set of lost-child-queues is not
the same as the set of path-queues (although there is exactly one lost-child-queue and
one path-queue for each column j of L).

Algorithm 3 (symbolic rank-r update; add new matrix W).
Find the starting nodes of each path
for i = 1 to r do

Wi = {k : wki �= 0}
ki = min Wi

place path-marker i in path-queue of column ki

MULTIPLE-RANK MODIFICATIONS 1005

end for
Consider all columns corresponding to nodes in the paths P(k1) through P(kr)
for j = mini∈[1,r] ki to m do

if path-queue of column j is nonempty do

L	j = L	j
for each path-marker i on path-queue of column j do

Path P(ki) includes column j
Let c be the prior column on this path (if any), where π(c) = j
if j = ki do

Case A: j is the first node on the path P(ki), no prior c

L	j = L	j +Wi

else if j = π(c) then
Case B: c is an old child of j, possibly changed

L	j = L	j + (Lc \ Lc)
else

Case C: c is a new child of j and a lost child of π(c)

L	j = L	j + (Lc \ {c})
place c in lost-child-queue of column π(c)

end if
end for
Case D: consider each lost child of j
for each c in lost-child-queue of column j do

L	j = L	j − (Lc \ {c})
end for
Move up one step in the path(s)
π(j) = min Lj \ {j}
if Lj \ {j} �= ∅ then

Let i be the largest path-marker in path-queue of column j
Place path-marker i in path-queue of column π(j)

end if
end if path-queue of column j nonempty

end for
The optimal time for a general rank-r update is

O

∑
j∈T
|Lj |

 .

The actual time taken by Algorithm 3 is only slightly higher, namely,

O

m+

∑
j∈T
|Lj |

 ,

because of the O(m) bookkeeping required for the path-queues. In most practical
cases, the O(m) term will not be the dominant term in the run time.

Algorithm 3 can be used to compute an entire symbolic factorization. We start
by factorizing the identity matrix I = IIT into LDLT = III. In this case, we have
L	j = {(j, 1)} for all j. The initial elimination tree is a forest of m nodes and no

1006 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

edges. We can now determine the symbolic factorization of I+AAT using the rank-r
symbolic update algorithm above, with r = m. This matrix has identical symbolic
factors as AAT. Case A will apply for each column in A, corresponding to the

⋃
min Ak=j

Ak

term in (3.1). Since π(c) = 0 for each c, cases B and D will not apply. At column j,
case C will apply for all children in the elimination tree, corresponding to the

⋃
{c:j=π(c)}

Lc \ {c}

term in (3.1). Since duplicate paths are discarded when they merge, we modify
each column j once, for each child c in the elimination tree. This is the same work
performed by the symbolic factorization algorithm, Algorithm 2, which is O(|L|).
Hence, Algorithm 3 is equivalent to Algorithm 2 when we apply it to the update
I + AAT. Its run time is optimal in this case.

5. Multiple-rank symbolic downdate. The downdate algorithm is analo-
gous. The downdated matrix is AAT −WWT, where W is a subset of the columns
of A. In a downdate, P(k) ⊆ P(k), and thus rather than following the paths P(ki),
we follow the paths P(ki). Entries are dropped during a downdate, and thus Lj ⊆ Lj
and π(j) ≤ π(j). We start with L	j = L	j and make the following changes.

• Case A: If j = minWi for some i, then the pattern Wi is removed from
column j,

L	j = L	j −Wi.

• Case B: If j = π(c) = π(c) for some node c, then c is a child of j in both the

old and new tree. We need to remove from L	j entries in the old pattern Lc
but not in the new pattern Lc,

L	j = L	j − (Lc \ Lc).

• Case C: If j = π(c) �= π(c) for some node c, then c is a child of j in the old
elimination tree, but not the new tree. We compute

L	j = L	j − (Lc \ {c}).

• Case D: If j = π(c) �= π(c) for some node c, then c is a child of j in the new
tree, but not the old one. We compute

L	j = L	j + (Lc \ {c}).

Case C will occur for c and j prior to visiting column π(c), since j = π(c) < π(c).
Thus we place c in the new-child-queue of π(c) when encountering case C for nodes c
and j. When the algorithm visits node π(c), its new-child-queue will contain all those
nodes for which case D holds.

MULTIPLE-RANK MODIFICATIONS 1007

Algorithm 4 (symbolic rank-r downdate; remove matrix W).
Find the starting nodes of each path
for i = 1 to r do

Wi = {k : wki �= 0}
ki = min Wi

place path-marker i in path-queue of column ki
end for
Consider all columns corresponding to nodes in the paths P(k1) through P(kr)
for j = mini∈[1,r] ki to m do

if path-queue of column j is nonempty do

L	j = L	j
for each path-marker i on path-queue of column j do

Path P(ki) includes column j
Let c be the prior column on this path (if any), where π(c) = j
if j = ki do

Case A: j is the first node on the path P(ki), no prior c

L	j = L	j −Wi

else if j = π(c) then
Case B: c is an old child of j, possibly changed

L	j = L	j − (Lc \ Lc)
else

Case C: c is a lost child of j and a new child of π(c)

L	j = L	j − (Lc \ {c})
place c in new-child-queue of column π(c)

end if
end for
Case D: consider each new child of j
for each c in new-child-queue of j do

L	j = L	j + (Lc \ {c})
end for
Move up one step in the path(s)
π(j) = min Lj \ {j}
if Lj \ {j} �= ∅ then

Let i be the largest path-marker in path-queue of column j
Place path-marker i in path-queue of column π(j)

end if
end if path-queue of column j nonempty

end for
The time taken by Algorithm 4 is

O

m+

∑
j∈T
|Lj |

 ,

which is slightly higher than the optimal time,

O

∑
j∈T
|Lj |

 .

1008 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

e

f

b
c

da

k

k3

k7k4

k6

k8

1

k52

k

13th

2nd

1st

6th

3rd 4th

7th

8th

9th
10th

11th

12th1-4

5

3-4

3 4

6
7-8

7
8

1

5th

1-2

5-8

1-8

Fig. 6.1. Example rank-8 update after depth-first-search reordering.

In most practical cases, the O(m) term in the asymptotic run time for Algorithm 4
will not be the dominant term.

6. Multiple-rank numerical update and downdate. The following numer-
ical rank-r update/downdate algorithm, Algorithm 5, overwrites L and D with the
updated or downdated factors. The algorithm is based on Algorithm 1, the one-pass
version of Method C1 in [18] presented in section 1. The algorithm is used after
the symbolic update algorithm (Algorithm 3) has found the subtree T corresponding
to the nodes whose patterns can change, or after the symbolic downdate algorithm
(Algorithm 4) has found T . Since the columns of the matrix W can be reordered
without affecting the product WWT, we reorder the columns of W using a depth-
first search [6] of T (or T) so that as we march through the tree, consecutive columns
of W are utilized in the computations. This reordering improves the numerical up-
date/downdate algorithm by placing all columns of W that affect any given subpath
next to each other, eliminating an indexing operation. Reordering the columns of
a sparse matrix prior to Cholesky factorization is very common [3, 22, 23, 25]. It
improves data locality and simplifies the algorithm, just as it does for reordering W
in a multiple-rank update/downdate. The depth-first ordering of the tree changes as
the elimination tree changes, so columns of W must be ordered for each update or
downdate.

To illustrate this reordering, consider the subtree T in Figure 4.2 for a rank-8
update. If the depth-first-search algorithm visits child subtrees from left to right, the
resulting reordering is as shown in Figure 6.1. Each subpath in Figure 6.1 is labeled
with the range of columns of W that affect that subpath, and with the order in which
the subpath is processed by Algorithm 5. Consider the path from node c to e. In
Figure 4.2, the columns of L corresponding to nodes on this subpath are updated by
columns 2, 8, 3, and 5 of W, in that order. In the reordered subtree (Figure 6.1), the
columns on this subpath are updated by columns 5 through 8 of the reordered W.

MULTIPLE-RANK MODIFICATIONS 1009

Algorithm 5 (sparse numeric rank-r modification; add σWWT).
The columns of W have been reordered.
for i = 1 to r do

αi = 1
end for
for each subpath in depth-first-search order in T (σ = 1) or T (σ = −1) do

Let c1 through c2 be the columns of W that affect this subpath
for each column j in the subpath do

for i = c1 to c2 do
α = αi + σw2

ji/dj
dj = djα
γi = wji/dj
dj = dj/αi
αi = α

end for
for all p ∈ Lj \ {j} (σ = 1) or p ∈ Lj \ {j} (σ = −1) do

for i = c1 to c2 do
wpi = wpi − wjilpj
lpj = lpj + σγiwpi

end for
end for

end for
end for

The time taken by r rank-1 updates [10] is

O

 r∑
i=1

∑
j∈P(i)(ki)

|L(i)
j |

 ,(6.1)

where L(i)
j is the pattern of column j after the ith rank-1 update. This time is asymp-

totically optimal. A single rank-r update cannot determine the paths P(i)(ki), but
uses P(ki) instead. Thus, the time taken by Algorithm 5 for a rank-r update is

O

 r∑
i=1

∑
j∈P(ki)

|Lj |

 .

This is slightly higher than (6.1), because P(i)(ki) ⊆ P(ki) and L(i)
j ⊆ Lj . Since

P(i)(ki) ⊆ P(ki), the ith column of W does not necessarily affect all of the columns
in the path P(ki). If wi does not affect column j, then wji and γi will both be zero in
the inner loop in Algorithm 5. An example of this occurs in Figure 4.1, where column
1 of W does not affect column 7 of L. We could check this condition, and reduce the
asymptotic run time to

O

 r∑
i=1

∑
j∈P(i)(ki)

|Lj |

 .

In practice, however, we found that the paths P(i)(ki) and P(ki) did not differ much.
Including this test did not improve the overall performance of our algorithm. The

1010 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

time taken by Algorithm 5 for a rank-r downdate is similar, namely,

O

 r∑
i=1

∑
j∈P(ki)

|Lj |

 .

The numerical algorithm for updating and downdating LLT is essentially the
same as that for LDLT [4, 24]; the only difference is a diagonal scaling. For either
LLT or LDLT, the symbolic algorithms are identical.

7. Experimental results. To test our methods, we selected the same experi-
ment as in our earlier paper on the single-rank update and downdate [10], which mim-
ics the behavior of the LPDASA [20]. The first matrix is 10−6I + A0A0

T, where A0

consists of 5446 columns from a larger 6071-by-12,230 matrix B with 35,632 nonzeros
arising in an airline scheduling problem (DFL001) [13]. The 5446 columns correspond
to the optimal solution of the linear programming problem. Starting with an initial
LDLT factorization of the matrix 10−6I + A0A0

T, we added columns from B (cor-
responding to an update) until we obtained the factors of 10−6I + BBT. We then
removed columns in a first-in-first-out order (corresponding to a downdate) until we
obtained the original factors. The LPDASA algorithm would not perform this much
work (6784 updates and 6784 downdates) to solve this linear programming problem.

Our experiment took place on a Sun Ultra Enterprise running the Solaris 2.6
operating system, with eight 248 MHz UltraSparc-II processors (only one processor
was used) and 2 GB of main memory. The dense matrix performance in millions of
floating-point operations per second (Mflops) of the BLAS [12] is shown in Table 7.1.
All results presented below are for our own codes (except for colmmd, spooles, and the
BLAS) written in the C programming language and using double precision floating-
point arithmetic.

Table 7.1
Dense matrix performance for 64-by-64 matrices and 64-by-1 vectors.

BLAS operation Mflops
DGEMM (matrix-matrix multiply) 171.6
DGEMV (matrix-vector multiply) 130.0
DTRSV (solve Lx = b) 81.5
DAXPY (the vector computation y = αx+ y) 78.5
DDOT (the dot product α = xTy) 68.7

We first permuted the rows of B to preserve sparsity in the Cholesky factors of
BBT. This can be done efficiently with colamd [7, 8, 9, 21], which is based on an
approximate minimum degree ordering algorithm [1]. However, to keep our results
consistent with our prior rank-1 update/downdate paper [10], we used the same per-
mutation as in those experiments (from colmmd [17]). Both colamd and MATLAB’s
colmmd compute the ordering without forming BBT explicitly. A symbolic factoriza-
tion of BBT finds the nonzero counts of each column of the factors. This step takes
an amount of space that is proportional to the number of nonzero entries in B. It
gives us the size of a static data structure to hold the factors during the updating
and downdating process. The numerical factorization of BBT is not required. A
second symbolic factorization finds the first nonzero pattern L. An initial numerical
factorization computes the first factors L and D. We used our own nonsupernodal
factorization code (similar to SPARSPAK [5, 15]), since the update/downdate algo-
rithms do not use supernodes. A supernodal factorization code such as spooles [3] or

MULTIPLE-RANK MODIFICATIONS 1011

Table 7.2
Average update and downdate performance results.

rank rank-r time / r Mflops
r in seconds

Update Downdate Update Downdate
1 0.0840 0.0880 30.3 29.6
2 0.0656 0.0668 38.9 39.0
3 0.0589 0.0597 43.3 43.6
4 0.0513 0.0549 49.7 47.5
5 0.0500 0.0519 51.0 50.2
6 0.0469 0.0487 54.4 53.5
7 0.0451 0.0468 56.6 55.7
8 0.0434 0.0448 58.8 58.2
9 0.0431 0.0458 59.1 57.0
10 0.0426 0.0447 60.0 58.3
11 0.0415 0.0437 61.5 59.6
12 0.0413 0.0432 61.8 60.3
13 0.0403 0.0424 63.2 61.4
14 0.0402 0.0420 63.6 62.1
15 0.0395 0.0413 64.6 63.1
16 0.0392 0.0408 65.1 63.9

Table 7.3
Dense matrix performance for 64-by-64 matrices and 64-by-1 vectors.

Operation Time (sec) Mflops Notes
colamd ordering 0.45 -

Symbolic factorization (of BBT) 0.07 - 1.49 million nonzeros
Symbolic factorization for first L 0.46 - 831 thousand nonzeros
Numeric factorization for first L (our code) 20.07 24.0
Numeric factorization for first L (spooles) 18.10 26.6

Numeric factorization of BBT (our code) 61.04 18.5 not required

Numeric factorization of BBT (spooles) 17.80 63.3 not required
Average rank-16 update 0.63 65.1 compare with rank-1
Average rank-5 update 0.25 51.0 compare with solve step
Average rank-1 update 0.084 30.3

Average solve LDLTx = b 0.27 18.2

a multifrontal method [2, 14] can get better performance. The factorization method
used has no impact on the performance of the update and downdate algorithms.

We ran 16 different experiments, each one using a different rank-r update and
downdate, where r varied from 1 to 16. After each rank-r update, we solved the
sparse linear system LDLTx = b using a dense right-hand side b. To compare the
performance of a rank-1 update with a rank-r update (r > 1), we divided the run time
of the rank-r update by r. This gives us a normalized time for a single rank-1 update.
The average time and Mflops rate for a normalized rank-1 update and downdate for
the entire experiment is shown in Table 7.2. The time for the update, downdate, or
solve increases as the factors become denser, but the performance in terms of Mflops
is fairly constant for all three operations. The first rank-16 update when the factor
L is sparsest takes 0.47 seconds (0.0294 seconds normalized) and runs at 65.5 Mflops
compared to 65.1 Mflops in Table 7.2 for the average speed of all the rank-16 updates.

The performance of each step is summarized in Table 7.3. A rank-5 update takes
about the same time as using the updated factors to solve the sparse linear system
LDLTx = b, even though the rank-5 update performs 2.6 times the work.

The work, in terms of floating-point operations, varies only slightly as r changes.

1012 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

With rank-1 updates, the total work for all the updates is 17.293 billion floating-point
operations, or 2.55 million per rank-1 update. With rank-16 updates (the worst case),
the total work increases to 17.318 billion floating-point operations. The rank-1 down-
dates take a total of 17.679 billion floating-point operations (2.61 million per rank-1
downdate), while the rank-16 downdates take a total of 17.691 billion operations. This
confirms the near-optimal operation count of the multiple-rank update/downdate, as
compared to the optimal rank-1 update/downdate.

Solving Lx = b when L is sparse and b is dense, and computing the sparse LDLT

factorization using a nonsupernodal method, both give a rather poor computation-
to-memory-reference ratio of only 2/3. We tried the same loop unrolling technique
used in our update/downdate code for our sparse solve and sparse LDLT factorization
codes, but this resulted in no improvement in performance.

A sparse rank-r update or downdate can be implemented in a one-pass algorithm
that has much better memory traffic than that of a series of r rank-1 modifications. In
our numerical experimentation with the DFL001 linear programming test problem, the
rank-r modification was more than twice as fast as r rank-1 modifications for r ≥ 11.
The superior performance of the multiple-rank algorithm can be explained using the
computation-to-memory-reference ratio. If c1 = c2 in Algorithm 5 (a subpath affected
by only one column of W), it can be shown that this ratio is about 4/5 when Lj is
large. The ratio when c2 = c1 + 15 (a subpath affected by 16 columns of W) is
about 64/35 when Lj is large. Hence, going from a rank-1 to a rank-16 update
improves the computation-to-memory-reference ratio by a factor of about 2.3 when
column j of L has many nonzeros. By comparison, the level-1 BLAS routines for
dense matrix computations (vector computations such as DAXPY and DDOT) [11]
have computation-to-memory-reference ratios between 2/3 and 1. The level-2 BLAS
(DGEMV and DTRSV, for example) have a ratio of 2.

8. Summary. Because of improved memory locality, our multiple-rank sparse
update/downdate method is over twice as fast as our prior rank-1 update/downdate
method. The performance of our new method (65.1 Mflops for a sparse rank-16
update) compares favorably with both the dense matrix performance (81.5 Mflops to
solve the dense system Lx = b) and the sparse matrix performance (18.0 Mflops to
solve the sparse system Lx = b and an observed peak numerical factorization of 63.3
Mflops in spooles) on the computer used in our experiments. Although not strictly
optimal, the multiple-rank update/downdate method has nearly the same operation
count as the rank-1 update/downdate method, which has an optimal operation count.

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] P. R. Amestoy and I. S. Duff, Vectorization of a multiprocessor multifrontal code, Inter-
nat. J. Supercomputer Appl., 3 (1989), pp. 41–59.

[3] C. Ashcraft and R. G. Grimes, SPOOLES: An object-oriented sparse matrix library, in
Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing,
San Antonio, TX, 1999, CD-ROM, SIAM, Philadelphia, 1999.

[4] C. H. Bischof, C.-T. Pan, and P. T. P. Tang, A Cholesky up- and downdating algorithm for
systolic and SIMD architectures, SIAM J. Sci. Comput., 14 (1993), pp. 670–676.

[5] E. Chu, A. George, J. W. H. Liu, and E. Ng, SPARSPAK: Waterloo Sparse Matrix Pack-
age, User’s Guide for SPARSPAK-A, Technical report, Department of Computer Science,
University of Waterloo, Waterloo, ON, Canada, 1984.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, and McGraw–Hill, New York, 1990.

MULTIPLE-RANK MODIFICATIONS 1013

[7] T. A. Davis, J. R. Gilbert, S. I. Larimore, E. Ng, and B. Peyton, A column approximate
minimum degree ordering algorithm, in Proceedings of the Sixth SIAM Conference on
Applied Linear Algebra, Snowbird, UT, 1997, p. 29.

[8] T. A. Davis, J. R. Gilbert, E. Ng, and B. Peyton, A column approximate minimum de-
gree ordering algorithm, in Abstracts of the Second SIAM Conference on Sparse Matrices,
Snowbird, UT, 1996.

[9] T. A. Davis, J. R. Gilbert, E. Ng, and B. Peyton, A column approximate minimum degree
ordering algorithm, presented at the 13th Householder Symposium on Numerical Linear
Algebra, Pontresina, Switzerland, 1996.

[10] T. A. Davis and W. W. Hager, Modifying a sparse Cholesky factorization, SIAM J. Matrix
Anal. Appl., 20 (1999), pp. 606–627.

[11] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users’ Guide,
SIAM, Philadelphia, 1979.

[12] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of level-3 basic linear
algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1–17.

[13] J. J. Dongarra and E. Grosse, Distribution of mathematical software via electronic mail,
Comm. ACM, 30 (1987), pp. 403–407.

[14] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[15] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall, Englewood Cliffs, NJ, 1981.

[16] A. George, J. Liu, and E. Ng, A data structure for sparse QR and LU factorizations, SIAM
J. Sci. Statist. Comput., 9 (1988), pp. 100–121.

[17] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in MATLAB: Design and
implementation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333–356.

[18] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix
factorizations, Math. Comp., 28 (1974), pp. 505–535.

[19] W. W. Hager, Updating the inverse of a matrix, SIAM Rev., 31 (1989), pp. 221–239.
[20] W. W. Hager, The LP dual active set algorithm, in High Performance Algorithms and Software

in Nonlinear Optimization, R. D. Leone, A. Murli, P. M. Pardalos, and G. Toraldo, eds.,
Kluwer, Dordrecht, The Netherlands, 1998, pp. 243–254.

[21] S. I. Larimore, An Approximate Minimum Degree Column Ordering Algorithm, Technical
Report TR-98-016, University of Florida, Gainesville, FL, 1998; also available online at
http://www.cise.ufl.edu/tech-reports/.

[22] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl.,
11 (1990), pp. 134–172.

[23] E. G. Ng and B. W. Peyton, A supernodal Cholesky factorization algorithm for shared-
memory multiprocessors, SIAM J. Sci. Comput., 14 (1993), pp. 761–769.

[24] C.-T. Pan, A modification to the LINPACK downdating algorithm, BIT, 30 (1990), pp. 707–
722.

[25] E. Rothberg, A. Gupta, E. G. Ng, and B. W. Peyton, Parallel sparse Cholesky factorization
algorithms for shared-memory multiprocessor systems, in Advances in Computer Methods
for Partial Differential Equations - VII, R. Vichnevetsky, D. Knight, and G. Richter, eds.,
IMACS, 1992, pp. 622–628.

[26] G. Strang, Linear Algebra and Its Applications, Academic Press, New York, 1980.

ON GREEN’S MATRICES OF TREES∗

REINHARD NABBEN†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1014–1026

Abstract. The inverse C = [ci,j] of an irreducible nonsingular symmetric tridiagonal matrix is a
so-called Green’s matrix. A Green’s matrix is a symmetric matrix which is given by two sequences of
real numbers {ui} and {vi} such that ci,j = uivj for i ≤ j. A similar result holds for nonsymmetric
matrices. An open problem on nonsingular sparse matrices is whether there exists a similar structure
for their inverses as in the tridiagonal case. Here we positively answer this question for irreducible
acyclic matrices, i.e., matrices whose undirected graphs are trees. We prove that the inverses of
irreducible acyclic symmetric matrices are given as the Hadamard product of three matrices, a type
D matrix, a flipped type D matrix, and a matrix of tree structure which is closely related to the graph
of the original matrix itself. For nonsymmetric matrices we obtain a similar structure. Moreover,
our results include the result for symmetric and nonsymmetric tridiagonal matrices.

Key words. acyclic matrices, trees, Green’s matrices, tridiagonal matrices

AMS subject classifications. 15A48, 15A57, 65F10

PII. S0895479899365732

1. Introduction. In many mathematical problems nonsingular sparse matrices
arise. An important class of sparse matrices is the class of tridiagonal matrices. For
tridiagonal matrices many theoretical results are known. One of the most important
results is established by Gantmacher and Krein in [4] and [5]. They proved that a
symmetric, irreducible nonsingular matrix A is tridiagonal if and only if A−1 =: C =
[ci,j] is given by two sequences {ui}ni=1, {vi}ni=1 of numbers such that

C =

u1v1 u1v2 · · · u1vn
u1v2 u2v2 · · · u2vn
...

...
. . .

...
u1vn u2vn · · · unvn

 , i.e., ci,j =

{
uivj i ≤ j,
ujvi i ≥ j.

(1.1)

Matrices of the form (1.1) are called Green’s matrices by Karlin [8]. Gantmacher
and Krein [5] called them matrices á la couple in [4]. It was observed in [14] that
Green’s matrices can be described more elegantly as the Hadamard product (elemen-
twise product) of a so-called type D matrix [11] and a flipped type D matrix:

C =

u1 u1 · · · u1

u1 u2 · · · u2

...
...

. . .
...

u1 u2 · · · un

 ◦

v1 v2 · · · vn
v2 v2 · · · vn
...

...
. . .

...
vn vn · · · vn

 .(1.2)

A similar result holds for the inverse of a nonsymmetric irreducible tridiagonal ma-
trix. There the inverse C = A−1 can be described by four sequences {ui}, {vi}, {xi}, {yi}
which satisfy uivi = xiyi [6]. In detail we have

ci,j =

{
uivj , i ≤ j,
xiyj , i ≥ j.

(1.3)

∗Received by the editors January 19, 2000; accepted for publication (in revised form) by I. Ipsen
July 28, 2000; published electronically January 31, 2001.

http://www.siam.org/journals/simax/22-4/36573.html
†Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33 501 Bielefeld, Germany

(nabben@mathematik.uni-bielefeld.de).

1014

ON GREEN’S MATRICES OF TREES 1015

As in the symmetric case matrices of the form (1.3) can be written nicely as the
Hadamard product of two matrices:

C =

u1 u1 · · · · · · u1

x1 u2 · · · · · · u2

x1 x2 u3 · · · u3

...
...

. . .
...

x1 x2 · · · · · · un

◦

v1 v2 · · · · · · vn
y2 v2 · · · · · · vn
y3 y3 v3 · · · vn
...

...
. . .

...
yn yn · · · · · · vn

.(1.4)

A frequently asked question about nonsingular sparse matrices is whether there
exists a similar structure for their inverses as in the tridiagonal case. Or in other
words, what are generalizations of Green’s matrices for arbitrary sparse matrices?
Probably the answer of the first question in general is negative. However, here we
establish the structure of the inverses of irreducible acyclic matrices, i.e., irreducible
matrices whose graphs are trees. It turns out that the Hadamard product form (1.2)
and (1.4) is the most promising approach for generalizations. We prove that the
inverses of irreducible acyclic symmetric matrices are given as the Hadamard product
of three matrices, a type D matrix, a flipped type D matrix (as in (1.2)), and a matrix
of tree structure which is closely related to the graph of A itself. A similar result holds
for nonsymmetric matrices (see Theorem 3.4 and Corollary 3.5). Moreover, our result
includes the result by Gantmacher and Krein and also the result for nonsymmetric
matrices. We also extend some results by Kirkland, Neumann, and Shader [10] as
well as by Fiedler [3]. There, inverses of (n − 1) × (n − 1) principal submatrices of
combinatorically symmetric [10] or symmetric [3] singular M -matrices whose graphs
are trees are considered.

2. Notations and preliminary results. We start this section with some no-
tations and definitions taken from [7]. A weighted graph G = (V,E) of n + 1 ver-
tices is a graph with vertex set V = {0, . . . , n}, edges eij ∈ E between the vertices
(i, j ∈ {0, 1, . . . , n}) labeled by nonzero weights wi,j ∈ R. Note that we allow negative
weights. Here we consider only undirected graphs.

A path from vertex i to vertex j, denoted by Pi,j , is the set of edges {(k1, k2), (k2, k3),
. . . , (kr−1, kr)}, where k1 = i and kr = j. The path Pi,j is a cycle if k1 = i = j = kr,
r ≥ 3, and k1, . . . , kr−1 are distinct.

A graph is acyclic if it has no cycles. A tree is a connected acyclic graph. Equiva-
lently, a tree is a graph for which there exists a unique path between any two vertices
i and j. A rooted tree is a tree with a prominent vertex called the root.

Here we distinguish between trees Γ and rooted trees Γ(0). We always assume
that trees have vertex set {1, . . . , n} while for rooted trees {0, 1, . . . , n} is the vertex
set and the root is labeled by 0. For a given tree Γ we construct a (special) rooted
tree Γ(0) by adding a new vertex 0, the root, and a new edge e0,1 from the root to
vertex 1 to the old tree.

The numbering of the vertices of the tree has no impact on our results. However,
for convenience, we number the vertices of the trees in the following way. We start
with an arbitrary vertex which is then labeled with 1. We then proceed recursively by
a depth-first search (dfs) or numbering; see [1]. In other words we label the vertices
recursively branch by branch.

A branch starting at vertex i of the tree Γ is the connected subgraph of Γ including
vertex i obtained by deleting the unique edge ej,i with j < i.

The graph G(A) of an n× n matrix A = [ai,j] is the undirected graph consisting
of n vertices {1, . . . , n} such that there is an edge between vertex i and vertex j if and

1016 REINHARD NABBEN

only if ai,j
= 0 or aj,i
= 0. A is called treediagonal by Klein [9] if G(A) is a forest, i.e.,
a collection of trees. Here we prefer the name acyclic matrices for matrices A whose
graphs G(A) are forests.

In one of our main theorems (Theorem 3.4) we consider irreducible acyclic ma-
trices. Irreducible acyclic matrices are matrices whose graphs are trees. However,
matrices whose graphs are trees are in general not irreducible and acyclic. For exam-
ple consider the matrix

A =

[
1 1
0 1

]
.

In Lemma 3.2 and Theorem 3.3 the more general assumption that the graph of a
matrix is a tree is used.

We denote by e the vector with all ones and e1 = (1, 0, . . . , 0)T .
Klein established in [9] some results on matrices whose graphs are trees. We will

use these results in the next section.
Definition 2.1. An n× n matrix C = [ci,j] satisfies the treeangle property with

respect to a given tree Γ if for every i, j, k ∈ V with Pi,k ⊆ Pi,j

ci,jck,k = ci,kck,j .(2.1)

Klein then proved the following theorems.
Theorem 2.2. Let Γ be a tree. If a nonsingular matrix C satisfies the treean-

gle property with respect to Γ and if ci,i
= 0 for all interior vertices, then C−1 is
treediagonal with respect to Γ, i.e., C−1 is acyclic.

Theorem 2.3. Let Γ be a tree. If A is a nonsingular treediagonal matrix with
respect to Γ, then A−1 satisfies the treeangle property with respect to Γ.

The above theorems describe the structure of inverses of acyclic matrices. How-
ever, it is not clear at all how one can describe the treeangle property in terms of
matrices as in the tridiagonal case. Moreover, what are the generalizations of Green’s
matrices? To do so we need the following class of matrices.

Definition 2.4. Let Γ(0) be a weighted rooted tree with vertex set {0, 1, . . . , n},
where 0 denotes the root. A matrix A = [ai,j] ∈ R

n,n is of tree structure with respect
to Γ(0) if for all i, j = 1, . . . , n

a(i, j) :=
∑

{r,s}∈Pi,0∩Pj,0

wr,s,(2.2)

where {r, s} ∈ Pi,0 ∩ Pj,0 denotes a common edge of the paths Pi,0 and Pj,0.
Note that (2.2) defines a “distance” or better an “inverse distance” between the

vertices of the tree. This distance was already used by Nabben and Varga in [16] for
leaves of trees.

We immediately obtain the following characterization of matrices of tree structure.
Theorem 2.5. Let Γ(0) be a weighted rooted tree. Then the following are equiv-

alent:
(1) A = [ai,j] ∈ R

n,n is of tree structure with respect to Γ(0).
(2) A can be decomposed as

A =
n∑
i=1

τiuiu
T
i ,(2.3)

ON GREEN’S MATRICES OF TREES 1017

where τi ∈ R and τi = wj,i; here j is the unique vertex which is connected
with i and j < i. The vectors ui ∈ R

n,n satisfy (ui)j = 1 for all j (including
i) belonging to the branch of Γ(0) starting at vertex i, and (ui)j = 0 otherwise.

Proof. First assume that A is of tree structure. Consider the branches starting
at the root 0. If there are s, s > 1, branches and i and j are vertices of different
branches then a(i, j) = 0 and with our numbering of the vertices of the tree A is a
block diagonal matrix

A =

C1 0
. . .

0 Cs

 ,

where C1, . . . , Cs are square matrices. We then proceed by induction. We can write
Ct = C̃t−τiteeT , t ∈ {1, . . . , s}, where τit = ω0,it . Here ω0,it is the weight of edge from
the root 0 to its neighbor it ∈ {1, . . . , n}. The matrices are again of tree structure.
The trees are the separate branches starting at the vertices it which become the new
roots.

If there is just one branch, then a(1, j) = w0,1 for all j = 1, . . . , n. Hence

A =

[
0 0
0 C

]
+ w0,1ee

T .

Again we can proceed by induction. The matrix C is of tree structure with respect
to the branch starting at the neighbor of the root.

The other implication can be proved by induction also. If i and j are in different
branches connected with the root, then

a(i, j) = 0 =
∑

{r,s}∈Pi,0∩Pj,0

wr,s.

If there is just one neighbor of the root, vertex 1, then for all j

a(1, j) = a(j, 1) = τ1 = w0,1 =
∑

{r,s}∈P1,0∩Pj,0

wr,s.

Note that matrices of tree structure can have negative entries. Thus the τi of (2.3)
can be negative. But if all τi in (2.3) are nonnegative, we obtain a subclass of certain
so-called pre-ultrametric matrices (see [3] and [17]). If all τi are positive, (2.3) gives
certain so-called strictly ultrametric matrices defined by [12] and characterized in
[15]. Pre-ultrametric matrices as well as strictly ultrametric matrices are nonnegative
inverse M-matrices which can be decomposed as the sum of 2n− 1 rank one matrices
similar to (2.3). For more details on ultrametric matrices, see [15], [17], [16].

Example 2.1. For illustration consider the weighted rooted tree in Figure 1. The
5× 5 matrix of tree structure is then given by

A =

−1 −1 −1 −1 −1
−1 2 −1 −1 −1
−1 −1 1 1 1
−1 −1 1 −1 1
−1 −1 1 1 2

 .

1018 REINHARD NABBEN

u4 := (0, 0, 0, 1, 0)T ; u5 := (0, 0, 0, 0, 1)T

u2 := (0, 1, 0, 0, 0)T ; u3 := (0, 0, 1, 1, 1)T

u1 := (1, 1, 1, 1, 1)T

� �

� �

�

�

4

-2 1

3 2

-1

2

5

3

1

0

✁
✁
✁
✁✁

❆
❆

❆
❆❆

✁
✁
✁
✁✁

❆
❆

❆
❆❆

❙
❙

❙
❙❙

Fig. 1.

Moreover, A can be decomposed as

A =

5∑
i=1

τiuiu
T
i ,

where the ui are given as in Figure 1 and the {τ1, . . . , τ5} in (2.3) are {−1, 3, 2,−2, 1}.
3. Main results. We start this section with a simple observation.
Proposition 3.1. Let A = [ai,j] ∈ R

n,n be nonsingular, irreducible, and acyclic.
Assume that the diagonal entries of C = [ci,j] := A−1 are nonzero. Then ci,j
= 0 for
all i, j ∈ {1, . . . , n}.

Proof. Obviously, A is treediagonal. With Theorem 2.3, C satisfies the treeangle
property. Now let Pi,j = {(k1, k2), (k2, k3), . . . , (kr−1, kr)}, where k1 = i and kr = j,
be the unique path from i to j. As mentioned in [9] the treeangle property implies

ci,j = ck1,k2

r−1∏
s=2

cks,ks+1

cks,ks
.(3.1)

Thus, if there is one ci,i+1 = 0, then C is reducible. Hence all ci,i+1 are nonzero
which implies that all other entries are nonzero also.

Note that Proposition 3.1 is not true for matrices whose graph is a tree.
Lemma 3.2. Let Γ be a tree and let C = [ci,j] ∈ R

n,n. Then the following are
equivalent:

(1) C satisfies the treeangle property with respect to Γ with Ce1 = αe and eT1 C =
αeT for some α ∈ R.

(2) C is symmetric and C is of tree structure with respect to the weighted tree
Γ(0), where w0,1 = α.

Proof. (1) ⇒ (2): First, observe that the first row and column of C are the same.
We then proceed by induction on n. For n = 2 the statement is true.

Now delete the first row and column of C and let C[1] be the remaining matrix.
Obviously, C[1] satisfies the treeangle property with respect to Γ[1], i.e., the graph
obtained from Γ by deleting vertex 1 and all edges connecting 1 with other vertices.
First assume that Γ[1] is connected. This implies that there was just one edge from

ON GREEN’S MATRICES OF TREES 1019

vertex 1 to vertex 2. Since the first row and column of C are the same we can write
C as

C =

[
0 0
0 B

]
+ αeeT

for some B ∈ R
n−1,n−1 and e = (1, . . . , 1)T ∈ R

n,n. The treeangle property for C says

c1,jc2,2 = c1,2c2,j for j > 2,

ci,1c2,2 = ci,2c2,1 for i > 2.

Thus

c2,2 = c2,j = ci,2
= 0 for j > 2, i > 2.

Hence, C[1]e1 = c̃e and eT1 C[1] = c̃eT . Therefore Be1 = (c̃−α)e and eT1 B = (c̃−α)eT .
With the induction hypothesis and Theorem 2.5 we obtain the result.

Now assume that C[1] is reducible, i.e., there is more than one vertex connected
with 1. Thus we have different branches connected with vertex 1. Now let i and j be
two vertices of different branches. The treeangle property implies

ci,jc1,1 = ci,1c1,j .

Thus

ci,j = α.

Hence C is of the form

C =

C1 0
. . .

0 Cs

+ αeeT ,

for some square matrices C1, . . . , Cs. Now consider the submatrices of C correspond-
ing to the different branches. Obviously they satisfy the treeangle property with
respect to the subgraphs. The first submatrix, say A11, which includes vertex 1
obviously satisfies that the first row and column are the same. Now consider a sub-
matrix consisting of vertices k, k + 1, . . . , t, where k is connected with 1. Then for
j ∈ {k + 1, . . . , t}

c1,jck,k = c1,kck,j ,

cj,1ck,k = cj,kck,1.

Hence

ck,k = ck,j = cj,k.

Thus the submatrices satisfy the inductive assumptions. Again, with the induction
hypothesis and Theorem 2.5 we get (2).

(2) ⇒ (1): Since C is of tree structure, it is clear that Ce1 = αe and eT1 C =
αeT . We then prove that C satisfies the treeangle property with respect to Γ. Let
i, j, k ∈ {1, . . . , n} with Pi,k ⊆ Pi,j . If P0,k ⊆ P0,i, then ci,k = ck,k and ci,j = ck,j . If

1020 REINHARD NABBEN

P0,k ⊆ P0,j , then cj,k = ck,j = ck,k and ci,j = ck,i = ci,k. In both cases the treeangle
property is fulfilled.

The next theorem gives a characterization of acyclic matrices which satisfies Ae =
γe1 and eTA = γeT1 . Moreover, we give the exact formula for the inverse.

Theorem 3.3. Let Γ be a tree and let A = [ai,j] ∈ R
n,n be nonsingular. Then

the following are equivalent:
(1) G(A) = Γ and Ae = γe1 and eTA = γeT1 .
(2) A−1 is symmetric and A−1 is of tree structure with respect to the weighted

rooted tree Γ(0), where the weights are wi,j = −1/ai,j and w0,1 = 1/γ.
Proof. (1)⇒ (2): Obviously the first row and column of A−1 are γ−1e and γ−1eT .

Therefore we have

A−1 =

γ−1 . . . γ−1

... B
γ−1

 =

0 . . . 0
... B̃
0

+

1

γ
eeT

for some B, B̃ ∈ R
n−1,n−1. We partition A similarly:

A =

[
a11 b
cT A22

]
.(3.2)

SinceA is nonsingular we obtain that the Schur complementA−1/γ−1 = B−γ−1en−1e
T
n−1

is also nonsingular. Using the formula for the inverse of 2×2 block matrices we obtain

A22 = (B − γ−1en−1e
T
n−1)

−1 = B̃−1,

where en−1 = [1, . . . , 1]T ∈ R
n−1.

Now first let vertex 1 be only connected with vertex 2. Then since Ae = γe1 and
A is acyclic we have

A22e = −a12e1 or − 1

a12
e = A−1

22 e1,

eTA22 = −a21e
T
1 or − 1

a21
eT = eT1 A

−1
22 .

Hence, a21 = a12
= 0 and

A−1 =
1

γ
eeT − 1

a12
(0, eTn−1)

T (0, eTn−1) +

[
O O

O B̂

]

for some B̂ ∈ R
n−2×n−2.

If there is more than one branch connected with vertex 1, we can apply the above
proof for each branch. We then proceed by induction.

(2) ⇒ (1): Since A−1 is of tree structure we have as above

A−1 =

γ−1 . . . γ−1

... B
γ−1

 =

0 . . . 0
... B̃
0

+

1

γ
eeT

for some B, B̃ ∈ R
n−1,n−1. Hence Ae = γe1 and eTA = γeT1 . We partition A as in

(3.2) and get A22 = B̃−1. Now first let vertex 1 be only connected with vertex 2.

ON GREEN’S MATRICES OF TREES 1021

� �

�

�

�

3

2 1

-8

8

4

2

1

0

✁
✁
✁✁

❆
❆

❆❆
❆

❆
❆❆

❙
❙

❙❙

Fig. 2.

Then B̃e1 = w12en−1 and eT1 B̃ = w12e
T
n−1 and B̃ is of tree structure with respect to

the branch starting at vertex 2. Moreover, since

Ae = γe1 and A22en−1 = B̃−1en−1 = w−1
12 e1,

we obtain

a21 = − 1

w12
and ai,1 = 0 for i > 2.

If there is more than one branch connected with vertex 1, we can apply the above
steps for each branch connected with vertex 1. By induction we thus obtain the
result.

Note that in Theorem 3.3 there is no restriction on the signs of the entries of the
matrix. Moreover, Theorem 3.3 also gives formulas for the entries of the inverse of a
matrix of tree structure. The diagonal entries of the inverse can be obtained using
Ae = γe1.

Theorem 3.3 extends some results by Kirkland, Neumann, and Shader [10] as
well as by Fiedler [3]. There, inverses of (n − 1) × (n − 1) principal submatrices of
combinatorically symmetric [10] or symmetric [3] singular M -matrices whose graphs
are trees are considered.

Next we compare Theorem 3.3 with Klein’s Theorems 2.2 and 2.3. First, of
course, here we give formulas for the inverse in both ways. But on the other hand,
the assumption for A−1 being of tree structure which implies A−1e1 = w01e seems
to be more restrictive then the assumption of nonvanishing diagonal entries. But the
following example shows that Theorem 3.3 is not included in Theorem 2.2.

Example 3.1. Let A−1 be as follows:

A−1 =

8 8 8 8
8 0 0 0
8 0 2 0
8 0 0 1

 .

A−1 is of tree structure with respect to the tree given in Figure 2.
The inverse of A−1 is

A =
1

8

0 1 0 0
1 11 −4 −8
0 −4 4 0
0 −8 0 8

 ,

1022 REINHARD NABBEN

and G(A) is the tree given in Figure 2.
We then obtain our generalization of the Gantmacher and Krein result.
Theorem 3.4. Let A ∈ R

n,n be nonsingular, irreducible, and acyclic and let
Γ = G(A). Assume that the diagonal entries of A−1 are nonzero. Then there exist
matrices T and R of the form

T =

d1 d1 · · · · · · d1

f1 d2 · · · · · · d2

f1 f2 d3 · · · d3

...
...

. . .
...

f1 f2 · · · · · · dn

, R =

f1 f2 · · · · · · fn
d2 f2 · · · · · · fn
d3 d3 f3 · · · fn
...

...
. . .

...
dn dn · · · · · · fn

(3.3)

and a matrix U of tree structure with respect to the weighted tree Γ(0) such that

A−1 = T ◦ U ◦R.

Conversely, let U = [ui,j] ∈ R
n,n be nonsingular. If U is of tree structure with respect

to a given rooted tree Γ(0), then for any matrices T and R of the form (3.3) with fidi
=
0 for all i, the matrix (T ◦U ◦R)−1 is irreducible, acyclic, and G((T ◦U ◦R)−1) = Γ.

Note again that here Γ(0) is obtained from Γ by adding the root 0 and a new edge
e0,1.

Proof. Let F = diag(f1, . . . , fn) = diag(eT1 A
−1) and D = diag(d1, . . . , dn) =

diag(A−1e1). Since A is irreducible, we can apply Proposition 3.1. Thus D and F are
nonsingular. Hence FAD is nonsingular and G(FAD) = Γ. Moreover, (FAD)−1e1 =
ce and eT1 (FAD)−1 = ceT for some c ∈ R. Thus with Theorem 3.3

(FAD)−1 = U

for a matrix U of tree structure with respect to Γ(0). Hence

A−1 = DUF.

But we then observe that

A−1 = DUF = T ◦ U ◦R.

For the converse we obtain with Theorem 3.3 that U−1 is acyclic with G(U−1) = Γ.
Since T ◦ U ◦ R = DUF with D = diag(d1, . . . , dn) and F = diag(f1, . . . , fn), we
obtain the desired result.

For the symmetric case we obtain the following.
Corollary 3.5. Let A ∈ R

n,n be symmetric nonsingular, acyclic, and irreducible
with G(A) = Γ. Assume that the diagonal entries of A−1 are nonzero. Then there
exist matrices T and R of the form

T =

d1 d1 · · · · · · d1

d1 d2 · · · · · · d2

d1 d2 d3 · · · d3

...
...

. . .
...

d1 d2 · · · · · · dn

, R =

d1 d2 · · · · · · dn
d2 d2 · · · · · · dn
d3 d3 d3 · · · dn
...

...
. . .

...
dn dn · · · · · · dn

(3.4)

and a matrix U of tree structure with respect to the weighted tree Γ(0) such that

A−1 = T ◦ U ◦R.

ON GREEN’S MATRICES OF TREES 1023

Conversely, let U = [ui,j] ∈ R
n,n be nonsingular. If U is of tree structure with respect

to a given rooted tree Γ(0), then for any matrices T and R of the form (3.4) with di
= 0
for all i, the matrix (T ◦ U ◦R)−1 is irreducible, acyclic and G((T ◦ U ◦R)−1) = Γ.

Theorem 3.4 implies several well-known results as corollaries.
Corollary 3.6. Let A ∈ R

n,n be nonsingular, irreducible, and tridiagonal.
Assume that the diagonal entries of A−1 are nonzero. Then there exist four vectors
u, v, x, y ∈ R

n with uivi = xiyi for all i, such that A−1 =: C = [ci,j] is given by

ci,j =

{
uivj , i ≤ j,
xiyj , i ≥ j,

(3.5)

i.e.,

C =

u1 u1 · · · · · · u1

x1 u2 · · · · · · u2

x1 x2 u3 · · · u3

...
...

. . .
...

x1 x2 · · · · · · un

◦

v1 v2 · · · · · · vn
y2 v2 · · · · · · vn
y3 y3 v3 · · · vn
...

...
. . .

...
yn yn · · · · · · vn

.(3.6)

Conversely, if C is nonsingular and of the form (3.5) with uivi = xiyi
= 0 for all i,
then C−1 is tridiagonal.

Proof. Consider the Hadamard product form of A given in Theorem 3.4. The
matrix U is of tree structure with respect to Γ(0), where Γ = G(A). But G(A) is just
a path. Hence U is a type D matrix as in (1.2). Therefore

C =

d1 d1 · · · · · · d1

f1 d2 · · · · · · d2

f1 f2 d3 · · · d3

...
...

. . .
...

f1 f2 · · · · · · dn

◦

g1 g1 · · · · · · g1

g1 g2 · · · · · · g2

g1 g2 g3 · · · g3

...
...

. . .
...

g1 g2 · · · · · · gn

◦

f1 f2 · · · · · · fn
d2 f2 · · · · · · fn
d3 d3 f3 · · · fn
...

...
. . .

...
dn dn · · · · · · fn

.

Thus with ui = digi, xi = figi and vi = fi, yi = di we get the required form of C.
Moreover, uivi = xiyi for all i. For the converse we set fi = vi, di = yi, and gi = ui/di.
With Theorem 3.4 we obtain that C−1 is tridiagonal.

For the symmetric case we obtain the well-known result below.
Corollary 3.7. Let A ∈ R

n,n be nonsingular, symmetric, irreducible, and
tridiagonal. Assume that the diagonal entries of A−1 are nonzero. Then there exist
two vectors u, v ∈ R

n such that A−1 =: C = [ci,j] is given by

C =

u1 u1 · · · u1

u1 u2 · · · u2

...
...

. . .
...

u1 u2 · · · un

 ◦

v1 v2 · · · vn
v2 v2 · · · vn
...

...
. . .

...
vn vn · · · vn

 .(3.7)

Conversely, if C is nonsingular and of the form (3.7) with uivi
= 0, then C−1 is
tridiagonal.

Proof. The result follows immediately from Corollary 3.6 and the fact that di = fi
for all i.

In the above corollaries tridiagonal matrices are considered. In some sense the
counterpart of these matrices are matrices whose graphs are stars. For these matrices
we obtain the following.

1024 REINHARD NABBEN

Corollary 3.8. Let A ∈ R
n,n be nonsingular and irreducible and let G(A)

be a star, i.e., without loss of generality ai,j = 0 whenever i or j is not 1, i
= j.
Assume that diagonal entries of A−1 are nonzero. Then there exist diagonal matrices
D1, D2, D3 and a constant α such that

A−1 = D1(αee
t +D3)D2.(3.8)

Moreover, there exist matrices T and R as in (3.3) such that

A−1 = T ◦ (αeeT +D3) ◦R.(3.9)

Proof. We apply Theorem 3.4. Since the center of the star is vertex 1, the related
matrix of tree structure is αeeT +D3.

Example 3.2.

A =

10 −2 −4 −4 −4
−1 1 0 0 0
−2 0 4 0 0
−1 0 0 2 0
−2 0 0 0 4

 .

We have

A−1 =
1

4

2 4 2 4 2
2 8 2 4 2
1 2 2 2 1
1 2 1 4 1
1 2 1 2 2

=
1

4

1
2

1
2

1

 ∗

1 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 2

 ∗

2
2

1
1

1

 .

Example 3.3.

B =

−1 −2 −3 0 0
−2 2 0 0 0
−3 0 6 3 −6
0 0 3 −3 0
0 0 −6 0 6

 .

The graph G(B) is just the graph given in Figure 1. The inverse of B is 1
6 ∗ A, with

A as in Example 2.1:

A =

−1 −1 −1 −1 −1
−1 2 −1 −1 −1
−1 −1 1 1 1
−1 −1 1 −1 1
−1 −1 1 1 2

 .

ON GREEN’S MATRICES OF TREES 1025

Note that A is of tree structure with respect toG(B). Moreover, we haveD = F = −I,
where I denotes the identity matrix.

Theorem 3.4 describes a simple way to construct matrices A for which G(A−1)
is a tree. However, one has to guarantee that the matrices of tree structure are
nonsingular. The next theorem gives a useful characterization of nonsingularity. This
characterization was already observed in [13] for so-called generalized ultrametric
matrices.

Theorem 3.9. Let C = [ci,j] ∈ R
n,n be of tree structure with respect to a given

rooted tree. Then C is nonsingular if and only if C does not contain a row or column
of zeros, and no two rows or two columns are the same.

Proof. It is clear that C is singular if C does contain a row or column of zeros,
or if two rows or two columns are the same. We prove the other implication with an
induction on the dimension of C. For n = 2 this is obviously true.

So assume that C does not contain a row or column of zeros, and that no two
rows or two columns are the same. Moreover, C has the structure

C =

w0,1 . . . w0,1

... B
w0,1

 =

0 . . . 0
... B̃
0

+ w0,1ee

T

for some B, B̃ ∈ R
n−1,n−1 and some w0,1
= 0. For the Schur complement C/w0,1 we

obtain

C/w0,1 = B − w0,1en−1e
T
n−1 = B̃.

Obviously, B̃ does not contain a row or column of zeros, and no two rows or two
columns are the same. Otherwise C would do so. On the other hand, B̃ is of tree
structure or the direct sum of matrices of tree structure. Thus by the induction
hypothesis we get the result.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, Addison-
Wesley, Reading, MA, 1983.

[2] W. W. Barrett, A theorem on inverses of tridiagonal matrices, Linear Algebra Appl., 27
(1979), pp. 211–217.

[3] M. Fiedler, Some characterizations of symmetric inverse M–matrices, Linear Algebra Appl.,
275/276 (1998), pp. 179–187.

[4] F. R. Gantmacher and M. G. Krein, Sur les matrices complètement non neǵatives et oscil-
latoires, Compositio Math., 4 (1937), pp. 445–470.

[5] F. R. Gantmacher and M. G. Krein, Oszillationsmatrizen, Oszillationskerne und kleine
Schwingungen mechanischer Systeme, Akademie-Verlag, Berlin, 1960 (in German).

[6] Y. Ikebe, On inverses of Hessenberg matrices, Linear Algebra Appl., 24 (1979), pp. 93–97.
[7] F. Harray, Graph Theory, Addison-Wesley, Reading, MA, 1972.
[8] S. Karlin, Total Positivity, Stanford University Press, Stanford, CA, 1968.
[9] D. J. Klein, Treediagonal matrices and their inverses, Linear Algebra Appl., 42 (1982),

pp. 109–117.
[10] S. J. Kirkland, M. Neumann, and B. L. Shader, Distances in weighted trees and group

inverse of Laplacian matrices, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 827–841.
[11] T. L. Markham, Nonnegative matrices whose inverses are M-matrices, Proc. Amer. Math.

Soc., 36 (1972), pp. 326–330.
[12] S. Mart́ınez, G. Michon, and J. San Mart́ın, Inverses of ultrametric matrices are of Stieltjes

type, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 98–106.

1026 REINHARD NABBEN

[13] J. J. McDonald, M. Neumann, H. Schneider, and M. J. Tsatsomeros, Inverse M-
matrix inequalities and generalized ultrametric matrices, Linear Algebra Appl., 220 (1995),
pp. 329–349.

[14] J. J. McDonald, R. Nabben, M. Neumann, H. Schneider, and M. Tsatsomeros, Inverse
tridiagonal Z–matrices, Linear and Multilinear Algebra, 45 (1998), pp. 75–97.

[15] R. Nabben and R. S. Varga, A linear algebra proof that the inverse of strictly ultrametric
matrix is a strictly diagonally dominant Stieltjes matrix, SIAM J. Matrix Anal. Appl., 15
(1994), pp. 107–113.

[16] R. Nabben and R. S. Varga, Generalized ultrametric matrices—a class of inverse M–matrices,
Linear Algebra Appl., 220 (1995), pp. 365–390.

[17] R. S. Varga and R. Nabben, On symmetric ultrametric matrices, in Numerical Linear Al-
gebra, L. Reichel, A. Ruttan, R. S. Varga, eds., Walter de Gruyter, New York, 1993,
pp. 193–199.

A CLASS OF P -MATRICES WITH APPLICATIONS TO THE
LOCALIZATION OF THE EIGENVALUES OF A REAL MATRIX∗

J. M. PEÑA†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1027–1037

Abstract. A matrix with positive row sums and all its off-diagonal elements bounded above by
their corresponding row means is called a B-matrix. It is proved that the class of B-matrices is a
subset of the class of P -matrices. Properties of B-matrices are used to localize the real eigenvalues
of a real matrix and the real parts of all eigenvalues of a real matrix.

Key words. Gerschgorin circles, P -matrix, eigenvalues localization, sign-regular matrix, sym-
metric matrix

AMS subject classifications. 15A18, 15A42, 15A48, 65F15

PII. S0895479800370342

1. Introduction. Weakest linear conditions on the rows of an n×n matrix that
ensure that its determinant is positive were described and analyzed in [4]. One such
set of n2n−1 linear inequalities is that the matrix is strictly diagonal dominant by
rows with positive diagonal elements. Another such set of n2 linear inequalities is
that the row means are positive and larger than all the off-diagonal entries in that
row. Here a matrix satisfying this property is called a B-matrix. In [6] it was already
proved that these matrices have positive determinants, and a first application to the
localization of the real eigenvalues of a real matrix was included. In this paper we
study properties of B-matrices. We use these properties to localize the eigenvalues of
a real matrix. We also analyze some cases where these alternative regions are more
advantageous than Gerschgorin circles.

In section 2 we provide several characterizations of B-matrices. We also prove
some properties satisfied by B-matrices and their relationship with other classes of
matrices. It is shown that B-matrices are P -matrices (i.e., all their principal minors
are positive), a property which will be used in section 4.

We start section 3 by introducing the class of B̄-matrices. These matrices can be
factorized as a product of a nonsingular diagonal matrix and a B-matrix. Theorem
3.5 uses this class of nonsingular matrices to derive a result for localizing the real
eigenvalues of a real matrix by means of a set of intervals called row B̄-intervals. This
result has a nature similar to the Gerschgorin circle theorem. The second part of
Theorem 3.5 can be applied to several classes of real matrices, including symmetric
matrices. We finish section 3 by comparing B̄-intervals with the real intervals provided
by Gerschgorin circles, specializing the comparison to several classes of matrices.

If a set of linear conditions on the rows of a complex matrix implies nonsingularity
then we can derive a localization result for the eigenvalues of a matrix. Analogously,
if a set of linear conditions on the rows of a real matrix implies nonsingularity then we
can derive a localization result for the real eigenvalues of a real matrix A. However,
since the matrix A − λI (λ ∈ C) is a complex matrix, in this last case we have no
information on the complex eigenvalues of the real matrix A. Section 4 deals with

∗Received by the editors April 7, 2000; accepted for publication (in revised form) by R. Brualdi
July 28, 2000; published electronically February 23, 2001. This research was partially supported by
the Research grant DGES PB96-0730, Spain.

http://www.siam.org/journals/simax/22-4/37034.html
†Departamento de Matemática Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain

(jmpena@posta.unizar.es).

1027

1028 J. M. PEÑA

the localization of the real parts of all eigenvalues of a real matrix. This is obtained
in Theorem 4.3, whose second part can be applied to any real matrix, in contrast to
the second part of Theorem 3.5. Each of the intervals obtained in Theorem 4.3 uses
information on one row and one column of the matrix. In order to obtain Theorem 4.3
we apply some properties of B-matrices. Finally, by Proposition 4.6, the arguments
given in this section to derive information on the real parts of all eigenvalues of a
real matrix can be extended to any class of P -matrices closed under addition, multi-
plication by positive scalars and transposition which is formed by matrices satisfying
linear conditions on rows and columns.

2. B-matrices. Let us introduce some basic notations. Given k, n ∈ N, 1 ≤
k ≤ n, Qk,n will denote the set of all increasing sequences of k natural numbers less
than or equal to n. Given α ∈ Qk,n, the complement α′ ∈ Qn−k,n is the increasingly
rearranged {1, 2, . . . , n} \α. Let A be a real m×n matrix. For k ≤ m, l ≤ n, and for
any α ∈ Qk,m and β ∈ Ql,n, we denote by A[α|β] the k× l submatrix of A containing
rows numbered by α and columns numbered by β. The principal submatrices will be
written in the form A[α] := A[α|α]. The identity matrix will be denoted by I.

The next definition introduces B-matrices, a class of nonsingular matrices which
will be crucial in this paper.

Definition 2.1. We say that a square real matrix A = (aik)1≤i,k≤n with positive
row sums is a B-matrix if all of its off-diagonal elements are bounded above by the
corresponding row means, i.e., for all i = 1, . . . , n

n∑
k=1

aik > 0 and
1

n

(
n∑
k=1

aik

)
> aij ∀ j
= i.

In [6] it was proved that a B-matrix is nonsingular and has positive determinant
(see also [4, Corollary 4.5]). Let us observe that the definition of an n× n B-matrix
involves n2 linear inequalities. In [4] it was proved that this set of inequalities forms
a weakest set of linear conditions on the rows of a real n × n matrix to ensure posi-
tive determinant. In that paper it was also proved that another weakest set of linear
conditions to ensure positive determinant is provided by the n2n−1 inequalities corre-
sponding to strict diagonal dominance by rows with positive entries. In this section we
show several properties satisfied by B-matrices, including that they are P -matrices, a
property which is also shared by matrices which are strictly diagonally dominant by
rows with positive entries.

From the previous definition we can deduce that the diagonal elements of a B-
matrix satisfy for all i = 1, . . . , n

aii > max{0, aij | j
= i},(2.1)

and therefore each row mean of a B-matrix is bounded below by any off-diagonal
element of the row and bounded above by the diagonal element of the row.

Let A = (aik)1≤i,k≤n be a real matrix. From now on, we shall use the following
notations: for each i = 1, . . . , n

r+i := max{0, aij | j
= i}, r−i := min{0, aij | j
= i}, ri :=

{
r+i if aii > 0,
r−i if aii < 0

(2.2)

and for each j = 1, . . . , n

c+j := max{0, aij | i
= j}, c−j := min{0, aij | i
= j}, cj :=

{
c+j if ajj > 0,

c−j if ajj < 0.
(2.3)

EIGENVALUES OF REAL MATRICES 1029

The next result provides a characterization of B-matrices which can be derived
from Definition 2.1.

Proposition 2.2. Let A = (aik)1≤i,k≤n be a real matrix and, for each i =
1, . . . , n, let r+i be the number given in (2.2). Then A is a B-matrix if and only if for
all i ∈ {1, . . . , n}

n∑
k=1

aik > nr+i .(2.4)

By (2.1) and the previous proposition we can characterize n×n B-matrices with
n > 2 by the following property, which localizes each row mean in an open interval:

∑n
k=1 aik
n

∈ (r+i , aii), i = 1, . . . , n.(2.5)

By rearranging the terms of (2.4), Proposition 2.2 also provides the following
characterization, which will be very useful in the next section.

Proposition 2.3. Let A = (aik)1≤i,k≤n be a real matrix and, for each i =
1, . . . , n, let r+i be the number given in (2.2). Then A is a B-matrix if and only if for
all i ∈ {1, . . . , n}

aii − r+i >
∑
j �=i

(r+i − aij).(2.6)

The following results collect some properties of B-matrices.
Proposition 2.4. Let A = (aik)1≤i,k≤n be a real matrix and, for each i =

1, . . . , n, let r+i be the number given in (2.2). Then the following properties hold for
all i = 1, . . . , n:

(i) aii >
∑
h∈H |aih|, where H = {h | 1 ≤ h ≤ n and aih < 0}.

(ii) aii > |aij | ∀ j
= i.
Proof. (i) follows from (2.6), taking into account that aii ≥ aii− r+i , r+i − aij ≥ 0

for all j
= i and r+i − aij ≥ |aij | if aij < 0.
(ii) is a consequence of (i) and (2.1).
From Definition 2.1 it is straightforward to check that the sum of two B-matrices

is a B-matrix and that the multiplication of a positive real number and a B-matrix is
a B-matrix. The following result shows that being a B-matrix is a property inherited
by principal submatrices.

Proposition 2.5. The principal submatrices of a B-matrix are B-matrices.
Proof. Let A[α], α ∈ Qk,n, be any principal submatrix of an n × n B-matrix A.

By Proposition 2.4(i), A[α] has positive row sums. It is now sufficient to assume that,
for some two different indices i, j ∈ α, kaij ≥

∑
s∈α ais, deriving a contradiction. Let

α′ be the complement of α. If ail is the greatest off-diagonal element of the ith row
of A (i.e., l
= i and ail ≥ ait for any t
= i, 1 ≤ t ≤ n) then kail ≥ kaij and so

nail ≥ kail +
∑
r∈α′

air ≥
∑
s∈α

ais +
∑
r∈α′

air ≥
n∑
p=1

aip,

which contradicts the fact that A is a B-matrix.
A matrix with positive principal minors is called a P -matrix. From the previous

result joint with the fact that B-matrices have positive determinant (see [4, Corollary
4.5]) we obtain the following consequence.

1030 J. M. PEÑA

Corollary 2.6. B-matrices are P -matrices.
We can now add to our list of properties of B-matrices all properties known for

the class of P -matrices (see [2, Chapter 10, section 2]). Corollary 2.6 also implies the
following result.

Corollary 2.7. A symmetric B-matrix is positive definite.
Recall that a square real matrix is a Z-matrix if all of its off-diagonal elements

are nonpositive. We finish this section by showing that for Z-matrices, the concept
of being a B-matrix coincides with the strict diagonal dominance by rows.

Proposition 2.8. Let A be a Z-matrix. Then the following properties are equiv-
alent:

(i) A is a B-matrix.
(ii) The row sums of A are positive.
(iii) A is strictly diagonally dominant by rows with positive diagonal entries.
Proof. By Definition 2.1, (i) implies (ii). Taking into account that the off-diagonal

elements of A are nonpositive, (ii) implies (iii) and (iii) implies (i).
Recall that a nonsingular Z-matrix whose inverse is nonnegative is called an M -

matrix. We deduce from the equivalence of (i) and (iii) in Proposition 2.8 and property
(M35) of [2, Chapter 6, Theorem 2.3] that a B-matrix is a Z-matrix if and only if it
is an M -matrix.

3. Applications to the localization of real eigenvalues of a real matrix.
We start this section by introducing a class of nonsingular matrices closely related to
B-matrices.

Definition 3.1. We say that a real matrix is a B̄-matrix if it is of the form DA
where D is a diagonal matrix whose diagonal elements belong to the set {1,−1} and
A is a B-matrix.

Remark 3.2. If A = (aij)1≤i,j≤n is a B̄-matrix then it is a nonsingular matrix
because B-matrices are nonsingular (see [4, Corollary 4.5]). On the other hand,
since by (2.1) the diagonal elements of a B-matrix are positive, we conclude that the
diagonal elements of a B̄-matrix are nonzero. Finally, observe that a B̄-matrix with
positive diagonal elements is a B-matrix.

The following result, motivated by Proposition 2.3, characterizes B̄-matrices.
Proposition 3.3. Let A = (aik)1≤i,k≤n be a real matrix and let ri be as in (2.2).

Then A is a B̄-matrix if and only if for all i = 1, . . . , n

|aii − ri| >
∑
j �=i
|ri − aij |.(3.1)

Proof. Let D be the matrix of Definition 3.1 and let r+i , r
−
i be the numbers given

in (2.2). Observe that A is a B̄-matrix if and only if DA is a B-matrix. The ith
row of DA is given by (ai1, . . . , ain) if aii > 0 and by (−ai1, . . . ,−ain) if aii < 0. By
Proposition 2.3 DA is a B-matrix if and only if (2.6) holds if aii > 0 and

−aii − (−r−i) >
∑
j �=i

(−r−i − (−aij))

if aii < 0. Both cases are equivalent to (3.1) and the result follows.
If a diagonal element aii of a B̄-matrix A = (aij)1≤i,j≤n has opposite sign to the

off-diagonal elements of its row then ri = 0 (see (2.2)) and by (3.1) the corresponding
row satisfies the strict diagonal dominance condition. If akk does not satisfy the
previous property and we define A′ = (a′ij)1≤i,j≤n by a′ij := aij if i
= k and a′kj :=

EIGENVALUES OF REAL MATRICES 1031

akj − rk for 1 ≤ j ≤ n, then the kth row of A′ also satisfies the strict diagonal
dominance condition.

Remark 3.4. The fact that AT is a B̄-matrix is equivalent, by Proposition 3.3,
to the fact that for all j = 1, . . . , n

|ajj − cj | >
∑
i �=j
|cj − aij |,(3.2)

where cj is given by (2.3). A matrix satisfying (3.2) for all j = 1, . . . , n is nonsingular
because, by Remark 3.2, its transpose is nonsingular.

Given a matrix B = (bik)1≤i,k≤n, let us define the family of matrices

Bt := D + t(B −D), t ∈ [0, 1],(3.3)

where D is the diagonal matrix diag{b11, . . . , bnn}. We can now prove a result on
the localization of the real eigenvalues of a real matrix of a nature similar to the
Gerschgorin circles theorem.

Theorem 3.5. Let A = (aik)1≤i,k≤n be a real matrix; let r+i , r
−
i be as in (2.2);

and let λ be a real eigenvalue of A. Then
(i) λ ∈ S :=

⋃n
i=1[aii − r+i −

∑
k �=i |r+i − aik| , aii − r−i +

∑
k �=i |r−i − aik|].

(ii) Let C be a class of real matrices such that if B ∈ C then all eigenvalues of B
are real and all matrices of the form (3.3) belong to C and let us assume that A ∈ C.
If S′ is the union of m intervals of S such that S′ is disjoint from all other intervals,
then S′ contains precisely m eigenvalues (counting multiplicities) of A.

Proof. (i) Taking into account that A− λI has the same off-diagonal elements as
A and Proposition 3.3, we can deduce that if λ /∈ S then A − λI is a B̄-matrix and,
by Remark 3.2, A− λI is nonsingular. Therefore (i) holds.

(ii) For each i = 1, . . . , n and for every t ∈ [0, 1], let St := ∪ni=1[αi,t, βi,t], where
αi,t := aii− tr+i − t

∑
k �=i |r+i −aik|, βi,t := aii− tr−i + t

∑
k �=i |r−i −aik|. Then we can

write S′ = ∪mj=1[αij ,1, βij ,1], and let S′
t := ∪mj=1[αij ,t, βij ,t] and S

′′
t := St \ S′

t. By our
hypotheses, S′′

1 is disjoint from S′ and, since t ∈ [0, 1] and [αi,t, βi,t] ⊆ [αi,1, βi,1] for all
i = 1, . . . , n, this implies that S′′

t and S′
t are disjoint for all t ∈ [0, 1]. By our hypotheses

on C, all eigenvalues of At are real and, by (i), they are contained in S′
t ∪ S′′

t for all
t ∈ [0, 1]. Since S′′

t and S′
t are disjoint, the continuity of the eigenvalues as functions

of the elements of the matrix joint with the fact that S′
0 contains m eigenvalues of the

diagonal matrix A0 (namely, ai1 , . . . , aim) imply that S′
t must contain m eigenvalues

of At for all t ∈ [0, 1] and (ii) follows.
The following concept plays in this paper a role similar to Gerschgorin row-regions

(see [3]) in the Gerschgorin theorem.
Definition 3.6. The intervals appearing in Theorem 3.5(i) will be called row

B̄-intervals.
Part (i) of Theorem 3.5 was also derived in [6], with an equivalent expression of

S. The expression of S given here will be used later to analyze when row B̄-intervals
are more advantageous than Gerschgorin row-regions for the localization of the real
eigenvalues of a real matrix.

The following remark shows some classes of matrices C satisfying the hypotheses
required in part (ii) of Theorem 3.5.

Remark 3.7. The second part of Theorem 3.5 can be applied to any class of real
matrices C such that if B ∈ C then all eigenvalues of B are real and all matrices Bt
of the form (3.3) also belong to C. This happens with the following classes of real
matrices:

1032 J. M. PEÑA

(I) The class of symmetric matrices.
(II) The class of matrices with disjoint Gerschgorin circles.
(III) The class C of matrices such that the row B̄-intervals are disjoint. Let us

justify this case with an argument very similar to the known argument of case II.
Given B ∈ C, since for all t ∈ [0, 1] the row B̄-intervals of matrices Bt of (3.3) are
contained in the row B̄-intervals of B1 = B then all matrices Bt belong to C whenever
B ∈ C, and it is sufficient to see that the eigenvalues of matrices in this class C are
real. Let us assume that B = B1 ∈ C has some nonreal eigenvalues and let t̂ be
the infimum number in {t ∈ [0, 1] | Bt has some nonreal eigenvalues}. Since B0 is
a diagonal matrix, its eigenvalues are real and its row B̄-intervals are its diagonal
elements. If t̂ > 1, for all t < t̂ the eigenvalues of Bt are real and by Theorem 3.5
and our definition of C, each of them belongs to an interval which is disjoint from the
other ones. The eigenvalues of Bt̂ are also real by the continuity of the eigenvalues
as functions of the coefficients of the matrix. By our choice of t̂, we have, for t > t̂
close enough to t̂, that there are two nonreal (conjugate) eigenvalues of Bt converging
to a real number when t converges to t̂+, contradicting the mentioned continuity
of the eigenvalues. This contradiction shows that this class of matrices satisfies the
properties required above.

In section 4 we shall obtain an extension of Theorem 3.5 in order to localize the real
parts of all eigenvalues of a real matrix. This extension uses intervals containing the
row B̄-intervals (in fact it uses the union of row B̄-intervals and column B̄-intervals),
and the corresponding second part of the theorem will be applied to all real matrices
(without the requirement of classes C of Theorem 3.5(ii)).

We now include two examples showing that, in some cases, row B̄-intervals provide
sharp bounds to localize the real eigenvalues, even in spite that the bounds obtained
from the union of intervals derived from the Gerschgorin circles are not sharp.

Example 3.8. Let us consider the matrix A = (aik)1≤i,k≤n with aik = 1 for all
i, k. Its eigenvalues are λ = 0 (with multiplicity n−1) and λ = n. The B̄-intervals are
all [0, n] and they are sharp, in contrast with the interval derived from the Gerschgorin
circles: [−n+ 2, n]. This also happens with the matrix B = (bik)1≤i,k≤n with bik = 1
if i = k and bik = −1 otherwise. Its eigenvalues are λ = 2 (with multiplicity n−1) and
λ = −n + 2. The B̄-intervals now coincide with [−n + 2, 2] and the interval derived
from the Gerschgorin circles is [−n+ 2, n].

By using AT instead of A and applying Remark 3.4, Theorem 3.5 is valid if we
change rows by columns and the elements r+i , r

−
i of (2.2) by c+i , c

−
i of (2.3). Then we

could define a set of column B̄-intervals, which would also contain all real eigenvalues
of the matrix. Information obtained from row B̄-intervals can be complemented with
the information obtained from column B̄-intervals, and this information also can
be complemented with the information derived from Gerschgorin circles. A natural
question arises in this context in order to localize the real eigenvalues of a real matrix:
can we combine Theorem 3.5(i) with the union of intervals provided by Gerschgorin
row-regions so that we get a criterium which improves both mentioned criteria? The
following example gives a negative answer to this question by showing that we cannot
choose for each row the intersection of the real interval provided by the Gerschgorin
circle theorem and the row B̄-interval.

Example 3.9. The matrix

A =

 5 4 4

4 5 0
4 0 5

EIGENVALUES OF REAL MATRICES 1033

has a negative eigenvalue. The B̄-interval corresponding to the first row is [1,13] and
the interval provided by Gerschgorin circle theorem for the second and third row is
[1,9]. Therefore the union of these intervals does not contain all real eigenvalues of A.

It is well known (see [5], [9]) that Gerschgorin circles possess optimal properties
among other possible results on localization of eigenvalues by means of circles which
depend on the absolute value of the off-diagonal elements. Let us consider the question
about which matrices are more suitable using row B̄-intervals than Gerschgorin row-
regions (and conversely) in order to localize its real eigenvalues. The sizes of the row
B̄-intervals depend on the size of the greatest and least off-diagonal elements and on
the dispersion of off-diagonal elements. In fact, if all off-diagonal elements of each row
are very similar then the distance from the diagonal element to one of the endpoints
of each row B̄-interval is approximately given by one off-diagonal element (n−1 times
smaller than using Gerschgorin circles), although the distance to the other endpoint
is the same as using Gerschgorin circles. For the case of nonnegative matrices and
Z-matrices, the following remark describes the set of matrices for which all row B̄-
intervals are smaller than the real intervals provided by Gerschgorin row-regions, and
the set of matrices satisfying the converse condition.

Remark 3.10. Given a nonnegative matrix A = (aik)1≤i,k≤n, the right endpoints
of the row B̄-intervals and the right endpoints of the real intervals provided by Ger-
schgorin row-regions coincide. Since A is nonnegative, for each i = 1, . . . , n, there
exists j
= i such that r+i = aij . Let us now compare the corresponding left endpoints.
The left endpoints of the real intervals provided by Gerschgorin row-regions are given
by aii − aij −

∑
k �=i,j aik, i = 1, . . . , n, and the left endpoints of the row B̄-intervals

can be written as

aii − nr+i +
∑
k �=i

aik = aii − aij − (n− 2)r+i +
∑
k �=i,j

aik, i = 1, . . . , n.

One of these left endpoints is greater than the Gerschgorin left endpoint if and only if

r+i <
2
∑
k �=i,j aik
n− 2

.(3.4)

Taking into account that
∑
k �=i,j aik ∈ [0, (n− 2)r+i], (3.4) is equivalent to

∑
k �=i,j

aik ∈
(
n− 2

2
r+i , (n− 2)r+i

]
.(3.5)

Conversely, one of the left endpoints of the real intervals provided by Gerschgorin
circles is greater than the corresponding one of the row B̄-intervals if for the corre-
sponding index i one has

∑
k �=i,j

aik ∈
[
0,
n− 2

2
r+i

)
.(3.6)

Therefore, for the localization of the real eigenvalues of a nonnegative matrix such
that all its rows satisfy (3.6) it is more convenient to use Gerschgorin circles, and if
all of its rows satisfy (3.5) it is more convenient to apply Theorem 3.5(i). Analogous
conclusions can be derived if A is a Z-matrix. In this case, for each i = 1, . . . , n, there
exists j
= i such that r−i = aij . Then the left endpoints of the row B̄-intervals and
the left endpoints of the real intervals provided by Gerschgorin row-regions coincide.

1034 J. M. PEÑA

As for the right endpoints, take into account that now
∑
k �=i,j aik ∈ [(n − 2)r−i , 0],

and replace (3.5) by

∑
k �=i,j

aik ∈
[
(n− 2)r−i ,

n− 2

2
r−i

)
(3.7)

and (3.6) by

∑
k �=i,j

aik ∈
(
n− 2

2
r−i , 0

]
.(3.8)

4. On the localization of the real parts of the eigenvalues. Theorem 3.5(i)
provides a region containing all real eigenvalues of a real matrix. However, a region
containing all real eigenvalues of a real matrix does not necessarily include the real
parts of all of its eigenvalues. For instance, let us recall that the real eigenvalues of a
P -matrix are contained in (0,∞) although there exist P -matrices with eigenvalues λ
such that Re(λ) /∈ (0,∞). In Theorem 4.3 we shall extend Theorem 3.5 in order to
localize the real parts of all eigenvalues of a real matrix.

Given a matrix A = (aij)1≤i,j≤n, let Re(A) := (Re(aij))1≤i,j≤n. The matrix

H(A) =

(
1

2
(aij + āji)

)
1≤i,j≤n

(4.1)

is called the Hermitian part of A. The following result will use the fact that a B-
matrix is a P -matrix (in fact, its consequence Corollary 2.7) and will allow us to
analyze the localization of the real parts of the eigenvalues of a real matrix.

Proposition 4.1. If A = (aik)1≤i,k≤n is a complex matrix such that its off-
diagonal entries are real and Re(A) and Re(AT) are B-matrices then A is nonsingu-
lar.

Proof. Given the matrix A, let r+i and c+i as in (2.2) and (2.3), respectively.
Observe that the matrix H(A) of (4.1) is a symmetric real matrix. Let us first see
that H(A) is a B-matrix.

Taking into account that the off-diagonal entries of Re(A) and Re(AT) coincide
with those of A and AT , respectively, and applying Proposition 2.2 to Re(A) and
Re(AT) we derive for all i ∈ {1, . . . , n}

Re(aii) +

n∑
j �=i

aij > nr+i and Re(aii) +

n∑
j �=i

aji > nc+i ,

and so

2Re(aii) +

n∑
j �=i

(aij + aji) > n(r+i + c+i).

Hence we obtain

Re(aii) +

∑n
j �=i(aij + aji)

2
> n

(r+i + c+i)

2
≥ nmax

{
0,
aij + aji

2
| j
= i

}

and, again by Proposition 2.2, H(A) is a B-matrix.

EIGENVALUES OF REAL MATRICES 1035

Therefore the symmetric matrix H(A) is a B-matrix and, by Corollary 2.7, it is
positive definite. So H(A) has only positive eigenvalues. Since by [7, Corollary 3.15]
the least singular value of a matrix A is greater than or equal to the least eigenvalue
of H(A), we now deduce that the least singular value of A is positive and therefore
A is nonsingular.

Corollary 4.2. If A is a singular complex matrix whose off-diagonal entries
are real then either Re(A) or Re(AT) is not a B̄-matrix.

Proof. Let us assume that Re(A) and Re(AT) are B̄-matrices and we shall prove
that A is nonsingular. By our assumption there exists a nonsingular diagonal matrix
D such that DRe(A) = Re(DA) is a B-matrix and so, by (2.1), it has only positive
diagonal elements. Then its transpose Re(AT)D = Re(ATD) = Re((DA)T) is a B-
matrix with positive diagonal elements and, by Remark 3.2, it is also a B-matrix.
Then, by Proposition 4.1, the matrix DA with real off-diagonal entries is nonsingular
and A is nonsingular.

By using information on rows and columns we can now derive the following ex-
tension of Theorem 3.5 to localize the real parts of all eigenvalues of a real matrix.

Theorem 4.3. Let A = (aik)1≤i,k≤n be a real matrix; let r+i , r
−
i , c

+
i , c

−
i be as in

(2.2), (2.3); and let λ be an eigenvalue of A. Then

(i) Re(λ) ∈ S∗ := ∪ni=1[αi, βi], where for each i = 1, . . . , n

αi := min

aii − r+i −

∑
k �=i
|r+i − aik|, aii − c+i −

∑
k �=i
|c+i − aki|

 ,

βi := max

aii − r−i +

∑
k �=i
|r−i − aik|, aii − c−i +

∑
k �=i
|c−i − aki|

 ;

(4.2)

(ii) if S′ is the union of m intervals of S∗ such that S′ is disjoint from all other
intervals, then S′ contains precisely the real part of m eigenvalues (counting multi-
plicities) of A.

Proof. (i) Since A−λI is singular, by Corollary 4.2 either Re(A−λI) = A−Re(λ)I
or Re((A − λI)T) = AT − Re(λ)I is not a B̄-matrix. Part (i) is now a consequence
of Proposition 3.3, taking into account that A − Re(λ)I and AT − Re(λ)I have the
same off-diagonal entries as A and AT , respectively.

(ii) For each i = 1, . . . , n and for every t ∈ [0, 1], let St := ∪ni=1[αi,t, βi,t], where

αi,t := min

aii − tr+i − t

∑
k �=i
|r+i − aik|, aii − tc+i − t

∑
k �=i
|c+i − aki|

 ,

βi,t := max

aii − tr−i + t

∑
k �=i
|r−i − aik|, aii − tc−i + t

∑
k �=i
|c−i − aki|

 .

If S′ = ∪mj=1[αij , βij], let S
′
t := ∪mj=1[αij ,t, βij ,t] and S

′′
t := St \S′

t. By our hypotheses,
S′′

1 is disjoint from S′ and, since [αi,t, βi,t] ⊆ [αi, βi] for all i = 1, . . . , n and t ∈ [0, 1],
this implies that S′′

t and S′
t are disjoint for all t ∈ [0, 1]. By (i) and our hypotheses,

the eigenvalues of At have their real parts contained in S′
t ∪S′′

t for all t ∈ [0, 1]. Since
S′′
t and S′

t are disjoint, the continuity of the eigenvalues as functions of the elements of
the matrix joint with the fact that S′

0 contains m eigenvalues of the diagonal matrix

1036 J. M. PEÑA

A0 imply that S′
t must contain the real part of m eigenvalues of At for all t ∈ [0, 1]

and (ii) follows.

If all eigenvalues of the real matrix A are real then we can deduce the following
consequence from Theorem 4.3.

Corollary 4.4. Let A = (aik)1≤i,k≤n be a real matrix whose eigenvalues are
real, let r+i , r

−
i , c

+
i , c

−
i be as in (2.2), (2.3), and let λ be an eigenvalue of A. Then

(i) λ ∈ S∗ := ∪ni=1[αi, βi], where αi, βi are given in (4.2);

(ii) if S′ is the union of m intervals of S∗ such that S′ is disjoint from all other
intervals, then S′ contains precisely m eigenvalues (counting multiplicities) of A.

Observe that if we specialize Corollary 4.4 to the class of symmetric matrices we
obtain the same information as in Theorem 3.5.

Remark 4.5. Matrices with all minors of each order with the same sign are called
sign-regular (see [1], [8]). This class of matrices has many applications and contains the
class of totally positive matrices (matrices whose minors are nonnegative). In addition
to the classes of matrices considered in Remark 3.7, we can now apply Corollary 4.4
to localize all eigenvalues of sign-regular matrices since all their eigenvalues are real
(cf. [1, Corollary 6.6]). However, this class of matrices does not satisfy the conditions
stated in Theorem 3.5(ii): the matrix

B =

 1 1 1

2 3 4
4 9 16

is sign-regular (even totally positive) but the matrix Bt given by (3.3) with t = 1/2,

 1 1/2 1/2

1 3 2
2 9/2 16

 ,

is not sign-regular because it has 2× 2 minors with different strict sign. On the other
hand, observe that Corollary 4.4 can also be applied to localize all eigenvalues of
inverses of sign-regular matrices.

We finish this section by showing that the arguments used in this section can
be extended to any set of linear conditions on the rows which ensure positive deter-
minants are preserved under summation and multiplication by positive scalars and
are inherited by principal submatrices. For this purpose, we consider the class B of
matrices whose rows and columns satisfy such set of linear conditions. Then B is a
class of P -matrices which is closed under addition, multiplication by positive scalars,
and transposition, and then Proposition 4.1 can be generalized to B.

Proposition 4.6. Let B be any class of P -matrices which is closed under ad-
dition, multiplication by positive scalars, and transposition, and let A be a complex
matrix whose off-diagonal entries are real. If Re(A) ∈ B, then A is nonsingular.

Proof. By our hypotheses, the matrix H(A) of (4.1) is real and symmetric. By
our assumptions on B, (Re(A))T = Re(AT) ∈ B, Re(A)+Re(AT) ∈ B, and H(A) ∈ B.
Then H(A) is a symmetric P -matrix and therefore it has only positive eigenvalues.
Since by [7, Corollary 3.15] the least singular value of a matrix A is greater than or
equal to the least eigenvalue of H(A), we conclude that the least singular value of A
is positive and therefore A is nonsingular.

EIGENVALUES OF REAL MATRICES 1037

REFERENCES

[1] T. Ando, Totally positive matrices, Linear Algebra Appl., 90 (1987), pp. 165–219.
[2] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics

Appl. Math. 9, SIAM, Philadelphia, 1996.
[3] R. A. Brualdi and S. Mellendorf, Regions in the complex plane containing the eigenvalues

of a matrix, Amer. Math. Monthly, 101 (1994), pp. 975–985.
[4] J. M. Carnicer, T. N. T. Goodman, and J. M. Peña, Linear conditions for positive determi-

nants, Linear Algebra Appl., 292 (1999), pp. 39–59.
[5] K. Fan, Note on circular disks containing the eigenvalues of a matrix, Duke Math. J., 25 (1958),

pp. 441–445.
[6] A. J. Hoffman, On the nonsingularity of real matrices, Math. Comp., 19 (1965), pp. 56–61.
[7] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,

UK, 1985.
[8] J. M. Peña, Backward stability of a pivoting strategy for sign-regular linear systems, BIT, 37

(1997), pp. 910–924.
[9] R. S. Varga, Minimal Gerschgorin sets, Pacific J. Math., 15 (1965), pp. 719–729.

NEWTON’S METHOD IN FLOATING POINT ARITHMETIC
AND ITERATIVE REFINEMENT OF

GENERALIZED EIGENVALUE PROBLEMS∗

FRANÇOISE TISSEUR†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1038–1057

Abstract. We examine the behavior of Newton’s method in floating point arithmetic, allowing
for extended precision in computation of the residual, inaccurate evaluation of the Jacobian and
unstable solution of the linear systems. We bound the limiting accuracy and the smallest norm of
the residual. The application that motivates this work is iterative refinement for the generalized
eigenvalue problem. We show that iterative refinement by Newton’s method can be used to improve
the forward and backward errors of computed eigenpairs.

Key words. Newton’s method, generalized eigenvalue problem, iterative refinement, Cholesky
method, backward error, forward error, rounding error analysis, limiting accuracy, limiting residual

AMS subject classifications. 65F15, 65F35

PII. S0895479899359837

1. Introduction. This work is motivated by the symmetric definite generalized
eigenvalue problem Ax = λBx (A and B symmetric and one of them positive definite),
for which no method is known that takes advantage of the symmetry, is efficient, and
is backward stable. For the special case where both matrices are positive definite,
such a method is available [26]. The aim is to show that iterative refinement by New-
ton’s method can be used to improve the forward and backward errors of computed
eigenpairs. An important question is how accurately the residuals must be evaluated
in order to improve the relative forward error and/or the backward error.

For added generality we give a detailed analysis of the general Newton method
in floating point arithmetic, allowing for extended precision in computation of the
residual, possibly inaccurate evaluation of the Jacobian and unstable linear system
solvers. We bound the limiting accuracy that can be obtained and the smallest norm
of the residual.

Lancaster [19], Woźniakowski [28], Ypma [29], [30], and Dennis and Walker [6]
have also considered the effects of inaccuracy, computational or otherwise, on New-
ton’s method for solving nonlinear algebraic equations. None of these authors analyzed
the behavior of the residual. Lancaster and Ypma were interested in how the approx-
imate iterate is related to the exact one rather than the error in the approximate
iterate. Woźniakowski carried out his analysis with the big-Oh notation and therefore
his results contain unknown constants. We follow the same approach as Dennis and
Walker [6] in that our results are based directly on the error in the computed iterates.
The analysis in [6] is very general and uses several assumptions and constants that
are difficult to interpret and understand even for the special case discussed therein
(iterative refinement for linear systems of equations).

The residual contains information that is crucial for improving an approximate
solution by Newton’s method. Thus it should be computed as accurately as possible.

∗Received by the editors August 4, 1999; accepted for publication (in revised form) by J. Varah
October 5, 2000; published electronically February 23, 2001.

http://www.siam.org/journals/simax/22-4/35983.html
†Department of Mathematics, University of Manchester, Manchester, M13 9PL, England

(ftisseur@ma.man.ac.uk, http://www.ma.man.ac.uk/˜ftisseur/). This work was supported by En-
gineering and Physical Sciences Research Council grant GR/L76532.

1038

NEWTON’S METHOD IN FLOATING POINT ARITHMETIC 1039

Recently, mixed precision BLAS (XBLAS) routines have been proposed as a standard
[2], where extended precision arithmetic is used internally to the BLAS and then the
output is rounded to working precision. These new BLAS make the computation of
the residual in mixed precision feasible for many problems, including the generalized
eigenvalue problem considered here.

We first rework the forward error analysis of [6] for Newton’s method in floating
point arithmetic. We use different assumptions that are more appropriate when we
have access to extended precision in computation of the residual and when we are
using a possibly unstable linear system solver. The results we obtain are of more
practical use than those in [6], [19], [28], [29] but consistent with them. We also
estimate the limiting accuracy that can be obtained near a solution.

Next, we study the convergence of the norm of the residual, bounding the smallest
norm. For many problems the backward error is a scaled residual norm, in which case
we can use our results to bound the backward error. The idea of using iterative refine-
ment to obtain a small backward error with a potentially unstable solution method
has been investigated for linear systems by several authors, including Jankowski and
Woźniakowski [18], Skeel [22], and Higham [17], and more recently for the algebraic
Riccati equation by Ghavimi and Laub [11]. The idea does not seem to have been
applied previously to the generalized eigenvalue problem.

In section 3 we apply our results to linear systems and to the standard and
generalized eigenvalue problems. In section 4 we present numerical examples for the
symmetric definite eigenvalue problem that motivated the whole analysis.

2. Newton’s method in floating point arithmetic.

2.1. Basics and notation. We begin by describing our notation. Let F : R
m �→

R
m be continuously differentiable on R

m. We denote by J the Jacobian matrix
(∂Fi/∂vj) of F and assume that J is Lipschitz continuous with constant β in R

m,
that is,

‖J(w)− J(v)‖ ≤ β‖w − v‖ for all v, w ∈ R
m,

where ‖ ·‖ denotes any vector norm and the corresponding operator norm. We denote
by κ(J) = ‖J‖‖J−1‖ the condition number of the matrix J . We attempt to solve the
system of nonlinear equations F (v) = 0 by Newton’s method:

J(vi)(vi+1 − vi) = −F (vi), i ≥ 0,(2.1)

where v0 is given. We implement (2.1) as
Solve J(vi)di = −F (vi),
vi+1 = vi + di.

Newton’s method is attractive because under appropriate conditions it converges
rapidly from any sufficiently good initial guess. In particular, if the Jacobian is non-
singular at the solution, local quadratic convergence can be proved [5, Thm. 5.2.1].
The Kantorovich theorem yields a weaker bound on the convergence rate but makes
no assumption on the nonsingularity of Jacobian at the solution [5, Thm. 5.3.1], [24].

We use hats to denote computed quantities. We work with the standard model
of floating point arithmetic [16, section 2.3]

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /,

where u is the unit roundoff.

1040 FRANÇOISE TISSEUR

In floating point arithmetic, we have

v̂i+1 = v̂i − (J(v̂i) + Ei)−1
(F (v̂i) + ei) + εi,(2.2)

where
• ei is the error made when computing the residual F (v̂i),
• Ei is the error incurred in forming J(v̂i) and solving the linear system for di,

• εi is the error made when adding the correction d̂i to v̂i.
We assume that F (v̂i) is computed in the possibly extended precision ū ≤ u before

rounding back to working precision u, and that d̂i, v̂i are computed at precision u.
Hence we assume that there exists a function ψ depending on F, v̂i, u, and ū such that

‖ei‖ ≤ u‖F (v̂i)‖+ ψ(F, v̂i, u, ū).(2.3)

Note that standard error analysis shows that ‖ei‖ ≤ u‖F (v̂i)‖ is the best we can
obtain in practice for both mixed and fixed precision. Later, we will give an explicit
formula for ψ in the case of linear systems and the generalized eigenvalue problem.
We assume that the error Ei satisfies

‖Ei‖ ≤ uφ(F, v̂i, n, u)(2.4)

for some function φ that reflects both the instability of the linear solver and the
error made when approximating or forming J(v̂i). In practice, we certainly have
φ(F, v̂i, n, u) ≥ ‖J(v̂i)‖. For the error εi we have

‖εi‖ ≤ u(‖v̂i‖+ ‖d̂i‖).
We will make use of the constants

γn =
cnu

1− cnu and γ̄n =
cnū

1− cnū ,(2.5)

where c is a small integer constant.

2.2. Forward error. First we consider the change in error for a single step of
an iteration of the form (2.2). For notational convenience we write v = v̂i, v̄ = v̂i+1,
and

v̄ = v − (J + E)−1(r + e) + ε,(2.6)

where r = F (v), J = J(v), and

‖E‖ ≤ uφ(F, v, n, u),(2.7)

‖e‖ ≤ u‖r‖+ ψ(F, v, u, ū), ‖ε‖ ≤ u(‖v‖+ ‖d‖),
with

d = (J + E)−1(r + e).(2.8)

We will often refer to the following lemma.
Lemma 2.1 (see [5, Lem. 4.1.12]). For any v, w ∈ R

m,

‖F (w)− F (v)− J(v)(w − v)‖ ≤ β
2
‖w − v‖2.(2.9)

NEWTON’S METHOD IN FLOATING POINT ARITHMETIC 1041

Theorem 2.2. Assume that there is a v∗ such that F (v∗) = 0, J∗ = J(v∗) is
nonsingular, and

‖J−1E‖ ≤ ν < 1.(2.10)

Then, for all v such that

β‖J−1
∗ ‖‖v − v∗‖ ≤ µ < 1,(2.11)

v̄ in (2.6) is well defined and

‖v̄ − v∗‖ ≤ G‖v − v∗‖+ g,

where

G =
1

1− ν ‖J
−1E‖+ (1 + u)2

2(1− µ)(1− ν)β‖J
−1
∗ ‖‖v − v∗‖+

u(2 + u)

(1− µ)(1− ν)κ(J∗) + u

and

g =
1 + u

(1− µ)(1− ν)‖J
−1
∗ ‖ψ(F, v, u, ū) + u‖v∗‖.

Proof. From assumption (2.11) and the Lipschitz property of J we have

‖J−1
∗ (J − J∗)‖ ≤ β‖J−1

∗ ‖‖v − v∗‖ ≤ µ < 1.(2.12)

From the identity

J = J∗(I + J−1
∗ (J − J∗))(2.13)

it then follows that J is nonsingular with inverse given by

J−1 = (I + J−1
∗ (J − J∗))−1J−1

∗

and with

‖J−1‖ ≤ ‖J−1
∗ ‖

1− ‖J−1∗ (J − J∗)‖
≤ 1

1− µ‖J
−1
∗ ‖.(2.14)

Similarly, assumption (2.10) guarantees that J + E is nonsingular and that, using
(2.14),

‖(J + E)−1‖ ≤ ‖J−1‖
1− ‖J−1E‖ ≤

1

(1− µ)(1− ν)‖J
−1
∗ ‖.(2.15)

Since (J + E)−1 exists, v̄ in (2.6) is well defined. We have

v̄ − v∗ = v − v∗ − (J + E)−1(r + e) + ε

= (I − (J + E)−1J)(v − v∗)− (J + E)−1(r − J(v − v∗) + e) + ε,

which gives

‖v̄ − v∗‖ ≤ ‖I − (J + E)−1J‖‖v − v∗‖+ ‖(J + E)−1‖(‖r − J(v − v∗)‖+ ‖e‖) + ‖ε‖.

1042 FRANÇOISE TISSEUR

From

I − (J + E)−1J = (J + E)−1E = (I + J−1E)−1J−1E

it follows that

‖I − (J + E)−1J‖ ≤ 1

1− ν ‖J
−1E‖.

From Lemma 2.1,

‖r − J(v − v∗)‖ ≤ β
2
‖v − v∗‖2 and ‖r − J∗(v − v∗)‖ ≤ β

2
‖v − v∗‖2,

so that

‖r‖ ≤ ‖r − J∗(v − v∗)‖+ ‖J∗(v − v∗)‖ ≤ β
2
‖v − v∗‖2 + ‖J∗‖‖v − v∗‖(2.16)

and hence

‖e‖ ≤ u
(
β

2
‖v − v∗‖2 + ‖J∗‖‖v − v∗‖

)
+ ψ(F, v, u, ū).

We have

‖ε‖ ≤ u(‖v − v∗‖+ ‖v∗‖+ ‖d‖)
with

‖d‖ ≤ ‖(J + E)−1‖(‖r‖+ ‖e‖)(2.17)

≤ ‖(J + E)−1‖((1 + u)‖r‖+ ψ(F, v, u, ū))

≤ 1

(1− µ)(1− ν)‖J
−1
∗ ‖

[
(1 + u)

(
β

2
‖v − v∗‖+ ‖J∗‖

)
‖v − v∗‖

+ ψ(F, v, u, ū)

]
,

using (2.15) and (2.16). Hence,

‖v̄ − v∗‖ ≤ G‖v − v∗‖+ g,
where G and g are given in the statement of the theorem.

Assumptions (2.10) and (2.11) are necessary for v̄ in (2.6) to be defined. Assump-
tion (2.10) is a condition on the stability of the linear system solver and the accuracy
of the Jacobian.

In exact arithmetic we have u = ψ(F, v, u, ū) = ν = 0 and E = 0. Then,
for µ ≤ 1/2, Theorem 2.2 reduces to the local quadratic convergence theorem for
Newton’s method [5, Thm. 5.2.1] applied to a single step.

Clearly, for µ ≤ 1
8 , ν ≤ 1

8 , if J∗ is not too ill conditioned, say, uκ(J∗) ≤ 1
8 , then we

have G ≤ 1
2 . Thus the error contracts unless g

>∼ ‖v − v∗‖. Hence, the best limiting
normwise accuracy we can guarantee is

g

‖v∗‖ =
1 + u

(1− µ)(1− ν)
‖J−1

∗ ‖
‖v∗‖ ψ(F, v, u, ū) + u,

NEWTON’S METHOD IN FLOATING POINT ARITHMETIC 1043

which depends on the accuracy with which the residual is computed. If ‖J−1
∗ ‖ψ(F, v, u, ū)

≤ cu‖v∗‖ for some constant c, then we can expect to obtain a normwise relative error
of order cu.

Note that the rate of convergence depends on the accuracy of the Jacobian and
on the stability of the linear system solver, since G depends strongly on E, but the
limiting accuracy is essentially independent of the solver (for ν < 1

8 , say). Note also
that G is independent of ū, which means that the rate of convergence is bounded
independent of the precision used to compute the residual.

Corollary 2.3. Assume that there is a v∗ such that F (v∗) = 0 and J∗ = J(v∗)
is nonsingular and satisfies

uκ(J∗) ≤ 1

8
.(2.18)

Assume also that for φ in (2.4),

u‖J(v̂i)−1‖φ(F, v̂i, n, u) ≤ 1

8
for all i.(2.19)

Then, for all v0 such that

β‖J−1
∗ ‖‖v0 − v∗‖ ≤

1

8
,(2.20)

Newton’s method in floating point arithmetic generates a sequence {v̂i+1} whose norm-
wise relative error decreases until the first i for which

‖v̂i+1 − v∗‖
‖v∗‖ ≈ ‖J

−1
∗ ‖
‖v∗‖ ψ(F, v∗, u, ū) + u.(2.21)

Proof. For i = 0, the assumptions (2.10) and (2.11) hold with ν = 1
8 and µ =

1
8

and Theorem 2.2 applies to the first step. Using the values for µ, ν, and the bound
(2.18), we find that G < 1 so the error contracts if (2.21) does not already hold. Thus,
(2.20) is also satisfied with v0 replaced by v̂1. The result follows by induction.

Example 1. To illustrate the corollary, we use Newton’s method to compute a
zero of the polynomial

F (v) = (v − 1)10 − 10−8.

At the solution v∗ = 1 − 10−0.8 ≈ 0.8415, |J(v∗)−1| ≈ 1.6 × 106. To increase the
rounding errors when computing the residual, we expand (v − 1)10 as

(v−1)10 = v10−10v9+45v8−120v7+210v6−252v5+210v4−120v3+45v2−10v+1

and use this expression to evaluate F (v). For v ≈ 1 we have ψ(F, v, u, ū) ≈ 103ū
(which is roughly the sum of the absolute values of the coefficients in the expansion
of (v−1)10). Corollary 2.3 predicts that if v0 is not too far from v∗, the forward error
decreases until |v̂i+1 − v∗|/|v∗| ≈ 109ū+ u.

We carried out some numerical experiments inMatlab, for which the unit round-
off is u = 2−53 ≈ 1.1× 10−16. We used the Symbolic Math Toolbox to evaluate F (v)
at precision ū. We tried both ū = u and ū = u3/2 ≈ 3.3×10−24.1 The theory predicts

1In the BLAST document [2], the term “extended precision” is used for ū ≤ u3/2.

1044 FRANÇOISE TISSEUR

limiting accuracy |v̂i+1 − v∗|/|v∗| ≈ 10−7 if ū = u and |v̂i+1 − v∗|/|v∗| ≈ 10−15 if
ū = u3/2. For both values of ū, we used two different starting values for v0, one for
which |v0 − v∗|/|v∗| > 109ū + u and the second one for which the forward error is
smaller than the expected limiting accuracy. We plot the behavior of the normwise
forward error for ū = u and ū = u3/2 in Figure 2.1. The results are as predicted by
the theory. They also illustrate Wilkinson’s remark [27, p. 55]:

It is perhaps worth remarking that if we start with an approxima-
tion to a zero which is appreciably more accurate than the limiting
accuracy . . . a single iteration will usually spoil this very good ap-
proximation and produce one with an error which is typical of the
limiting accuracy.

2.3. Residual. We now turn to bounding the residual for a single step of the
form (2.6). As before, we write r = F (v) and J = J(v). Note that if v̂∗ = fl(v∗) =
v∗ +∆v∗ with ‖∆v∗‖ ≤ u‖v∗‖, then Lemma 2.1 gives

F (v̂∗) = F (v∗ +∆v∗) = J(v∗)∆v∗ + θ, where ‖θ‖ ≤ β
2
‖v̂∗ − v∗‖2.

Thus

‖F (v̂∗)‖ ≤ u‖J(v∗)‖‖v∗‖+ β
2
u2‖v∗‖2

is the best bound we can hope to obtain for the norm of the residual.
Theorem 2.4. Assume that there is a v∗ such that F (v∗) = 0, J∗ = J(v∗) is

nonsingular, and

β‖J−1
∗ ‖‖v − v∗‖ ≤ µ < 1,(2.22)

u‖J−1‖φ(F, v, n, u) ≤ ν < 1.(2.23)

Let

τ = βg‖J−1
∗ ‖,

where g is defined in Theorem 2.2. Then

‖F (v̄)‖ ≤ H‖F (v)‖+ h,
where

H = c0 [µ+ τ + uκ(J∗)]

and

h = c1 (µ+ τ + uκ(J∗))ψ(F, v, u, ū) + c2 (µ+ τ + 1)u‖J‖‖v‖,
with c0, c1, and c2 constants of order 1.

Proof. We have

‖J−1E‖ ≤ u‖J−1‖φ(F, v, n, u) ≤ ν < 1(2.24)

using (2.7) and (2.23). Thus, we can apply Theorem 2.2 to deduce that v̄ is well
defined. Let r̄ = F (v̄), and define w ∈ R

m by w = r̄ − r − J(v̄ − v). Note that from

NEWTON’S METHOD IN FLOATING POINT ARITHMETIC 1045

1 2 3 4 5 6 7 8 9 10

10
−9

10
−8

10
−7

10
−6

10
−5

Iteration, i

R
el

at
iv

e
er

ro
r

Predicted limiting accuracy

|v
i
−v

*
|/|v

*
| with v

0
 = v

*
 + 4e10u

|v
i
−v

*
|/|v

*
| with v

0
 = v

*
 + u

1 2 3 4 5 6 7 8 9 10

10
−15

10
−14

10
−13

Iteration, i

R
el

at
iv

e
er

ro
r

Predicted limiting accuracy

|v
i
−v

*
|/|v

*
| with v

0
 = v

*
 + 4e2u

|v
i
−v

*
|/|v

*
| with v

0
 = v

*
 + 2u

Fig. 2.1. Behavior of the forward error for ū = u (top) and ū = u3/2 (bottom).

(2.6) and (2.8) v̄− v = −d+ ε and Jd = r+ e−Ed, so that r̄ = r+ J(−d+ ε) +w =
−e+ Ed+ Jε+ w, which yields

‖r̄‖ ≤ ‖e‖+ ‖E‖‖d‖+ ‖J‖‖ε‖+ ‖w‖
≤ u‖r‖+ ψ(F, v, u, ū) + u‖d‖(φ(F, v, n, u) + ‖J‖) + u‖J‖‖v‖+ ‖w‖.(2.25)

From (2.12) and (2.13) it follows that

‖J‖ ≤ (1 + µ)‖J∗‖.(2.26)

1046 FRANÇOISE TISSEUR

Using (2.17) and (2.24), we have

‖d‖ ≤ ‖(J + E)−1‖(‖r‖+ ‖e‖) ≤ 1

1− ν ‖J
−1‖ ((1 + u)‖r‖+ ψ(F, v, u, ū)) ,(2.27)

which gives, using (2.14) and (2.26),

u‖d‖(φ(F, v, n, u) + ‖J‖) ≤ 1 + u

1− ν
{
u‖J−1‖φ(F, v, n, u) + 1 + µ

1− µuκ(J∗)
}
‖r‖

+
1

1− ν
{
u‖J−1‖φ(F, v, n, u) + 1 + µ

1− µuκ(J∗)
}
ψ(F, v, u, ū).(2.28)

From Lemma 2.1 we have

‖w‖ ≤ β
2
‖v̄ − v‖2.(2.29)

First, from (2.6), (2.8), (2.27), and (2.14)

‖v̄ − v‖ ≤ (1 + u)‖d‖+ u‖v‖
≤ ‖J−1

∗ ‖
(

(1 + u)2

(1− µ)(1− ν)‖r‖+
1 + u

(1− µ)(1− ν)ψ(F, v, u, ū)
)
+ u‖v‖.(2.30)

Second, from the triangle inequality and Theorem 2.2 we have

‖v̄ − v‖ ≤ (G+ 1)‖v − v∗‖+ g.(2.31)

Substituting the product of (2.30) and (2.31) into (2.29) yields

‖w‖ ≤ (1 + u)2(G+ 1)

2(1− µ)(1− ν) β‖J
−1
∗ ‖‖v − v∗‖‖r‖+

(1 + u)2

2(1− µ)(1− ν)β‖J
−1
∗ ‖g‖r‖

+
(1 + u)(G+ 1)

2(1− µ)(1− ν)β‖J
−1
∗ ‖‖v − v∗‖ψ(F, v, u, ū)

+
(1 + u)

2(1− µ)(1− ν)β‖J
−1
∗ ‖gψ(F, v, u, ū)

+
(G+ 1)

2(1− µ)β‖J
−1
∗ ‖‖v − v∗‖u‖J‖‖v‖+

1

2(1− µ)βg‖J
−1
∗ ‖u‖J‖‖v‖,(2.32)

where the penultimate and last terms on the right-hand side of the inequality are
obtained using ‖J‖‖J−1‖ ≥ 1 and (2.14). Substituting (2.28) and (2.32) into (2.25)
yields

‖r̄‖ ≤ H‖r‖+ h,
with H and h as in the statement of the theorem.

The theorem shows that if the problem is not too ill conditioned, the solver is
not too unstable, the approximation of the Jacobian is accurate enough, and v is
sufficiently close to the solution, then the norm of the residual reduces after one step
of Newton’s method in floating point arithmetic. Note that H does not depend on ū
so that, as for the forward error analysis, the use of extended precision for computing
the residual has no effect on the rate of convergence of Newton’s method. With a
careful analysis of the constants in Theorem 2.4 we can derive the following corollary.

NEWTON’S METHOD IN FLOATING POINT ARITHMETIC 1047

1 2 3 4 5 6 7 8 9 10

10
−14

10
−13

10
−12

Iteration, i

R
es

id
ua

l n
or

m

Predicted limiting residual

|v
i
−v

*
|/|v

*
| with v

0
 = v

*
 + 4e10u

|v
i
−v

*
|/|v

*
| with v

0
 = v

*
 + u

1 2 3 4 5 6 7 8 9 10

10
−22

10
−21

10
−20

Iteration, i

R
es

id
ua

l n
or

m

Predicted limiting residual

|v
i
−v

*
|/|v

*
| with v

0
 = v

*
 + 4e2u

|v
i
−v

*
|/|v

*
| with v

0
 = v

*
 + 2u

Fig. 2.2. Behavior of the norm of the residual for ū = u (top) and for ū = u3/2 (bottom).

Corollary 2.5. Assume that there is a v∗ such that F (v∗) = 0, J∗ = J(v∗) is
nonsingular, and

uκ(J∗) < 1/8.(2.33)

Assume also that for φ in (2.4)

u‖J(v̂i)−1‖φ(F, v̂i, n, u) < 1

8
for all i(2.34)

and that the limiting accuracy g ≈ ‖J−1
∗ ‖ψ(F, v∗, u, ū) + u‖v∗‖ satisfies βg‖J−1

∗ ‖ <

1048 FRANÇOISE TISSEUR

1/8. Then, for all v0 such that β‖J−1
∗ ‖‖v0 − v∗‖ < 1/8, the sequence {F (v̂i)} of

residual norms generated by Newton’s method in floating point arithmetic decreases
until

‖F (v̂i+1)‖ ≈ ψ(F, v̂i, u, ū) + u‖J(v̂i)‖‖v̂i‖.(2.35)

Note that the second term in (2.35) is independent of the accuracy with which the
residual is computed.

We consider again Example 1, for which ψ(F, v̂i, u, ū) ≈ 103ū and u‖J(v∗)‖‖v∗‖ ≈
10−7u. As before, we tried both ū = u and ū = u3/2 ≈ 3.3 × 10−24. The theory
predicts that

‖F (v̂i)‖ <∼
{
10−13 if ū = u,
10−21 if ū = u3/2.

We used the same starting values as before. We plot the behavior of |F (v̂i)| for ū = u
and ū = u3/2 in Figure 2.2. The results agree well with the predictions.

3. Applications. In this section, we consider several applications. For each of
them, we define F and the function ψ and apply our results. We are particularly
interested in the effect of mixed precision versus fixed precision for the computation
of the residual. The proposed mixed precision BLAS routines (XBLAS) [2] make
possible the use of mixed precision in a portable manner.

3.1. Linear systems. We consider the linear system Ax = b, where A ∈ R
n×n

is nonsingular and b ∈ R
n. Iterative refinement for a computed solution x̂ is simple to

describe: compute the residual r = b−Ax̂, solve the system Ad = r for the correction
d, and form the updated solution y = x̂ + d. If necessary, repeat the process with x̂
replaced by y. This process is equivalent to Newton’s method with F (x) = b−Ax for
which J(x) = A and thus β = 0.

If the residual r = F (x̂) is computed with the XBLAS routine GEMV−X at precision
ū, then for ψ in (2.3) we can take

ψ(F, x̂, u, ū) = γ̄n(‖A‖‖x̂‖+ ‖b‖),
where γ̄n is defined in (2.5). Corollary 2.3 then yields the following result.

Corollary 3.1. If uκ(A) is sufficiently less than 1 and if the linear system
solver is not too unstable, then iterative refinement reduces the relative forward error
until

‖x̂i − x‖
‖x‖ ≈ u+ κ(A)γ̄n.

If ū = u2, then the relative error is of order u provided nκ(A)u ≤ 1.
A backward error of an approximate solution x̂ is a measure of the smallest

perturbations ∆A and ∆b such that (A+∆A)x̂ = b+∆b. The most popular definition
of the normwise backward error is

η(x̂) = min {ε : (A+∆A)x̂ = b+∆b, ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖} .
It can be shown [21] that

η(x̂) =
‖r‖

‖A‖‖x̂‖+ ‖b‖ .

NEWTON’S METHOD IN FLOATING POINT ARITHMETIC 1049

Corollary 2.5 thus yields the following result.
Corollary 3.2. Let iterative refinement be applied to the nonsingular lin-

ear system Ax = b of order n with uκ(A) < 1/8 and using a solver satisfying
u‖A−1‖φ(A, b, n, u) ≤ 1/8. Then the norm of the residual decreases until

‖r̂i‖ ≈ max(γ̄n, u)(‖A‖‖x̂‖+ ‖b‖),
so that iterative refinement yields a small normwise backward error η(x̂) ≈ max(γ̄n, u).

Corollaries 3.1 and 3.2 are standard normwise results in the literature [17], [18],
[20], [22], [27]. They show that we do not lose anything by using our general analysis.

3.2. Generalized eigenvalue problem. Newton’s method and its variants
have been considered for improving the accuracy of computed eigenvalues and eigen-
vectors for the standard eigenvalue problem [10], [7], [8], [23], the singular value
problem [9], and refining estimates of invariant subspaces [4], [10]. The error analysis
in [10] applies to the standard eigenvalue problem Ax = λx and requires that the
problem be scaled (‖A‖ = 1), that the residual be computed in extended precision,
and that the linear solver be stable. A lengthy analysis leads to the conclusion that if
the problem is not too ill conditioned and the initial guess is good enough, then their
refinement procedure yields a relative error of the order of the working precision.

Here, we consider the generalized eigenvalue problem (GEP)

Ax = λBx with eTs x = 1 for some fixed s,(3.1)

where A ∈ R
n×n, B ∈ R

n×n. Newton-based refinement algorithms for this problem
have been proposed [7], [23] but no error analysis has been done.

Define F : R
n+1 �→ R

n+1 by

F

([
x
λ

])
=

[
(A− λB)x
αeTs x− α

]
,(3.2)

where α = max(‖A‖, ‖B‖). Then (3.1) can be stated as finding the zeros of F (v),
where v = [xT , λ]T . The function F is continuously differentiable in R

n+1 with
Jacobian

J(v) =

[
A− λB −Bx
αeTs 0

]
.(3.3)

The scalar α is introduced to make F and J scale linearly when A and B are multiplied
by a scalar. For all v, w ∈ R

n+1 and any absolute vector norm we have

‖J(w)− J(v)‖ ≤ 2‖B‖‖w − v‖
so that J is Lipschitz continuous in R

n+1 with constant β = 2‖B‖.
The next lemma concerns the singularity of J at a zero of F . This result is more

general than the one given in [23, p. 120] as it applies to the generalized eigenvalue
problem rather than the standard eigenvalue problem and no assumption is made on
the nonsingularity of B.

Lemma 3.3. Let v∗ = [xT∗ , λ∗]
T be a zero of F as defined by (3.2) with λ finite.

Then J(v∗) is singular if and only if λ∗ is a multiple eigenvalue of (A,B).
Proof. Suppose that J(v∗) is singular. Using the formula (see [13])

det

([
M u
vT∗ µ

])
= µdet(M)− vT∗MAu,

1050 FRANÇOISE TISSEUR

where MA is the adjugate (or adjoint) of M , we obtain

0 = det(J(v∗)) = αeTs (A− λ∗B)ABx∗.(3.4)

The adjugate has the property that

MAM = det(M)I.

Define yT = eTs (A− λ∗B)A. Then
yT (A− λ∗B) = eTs det(A− λ∗B)I = 0,

because λ∗ is an eigenvalue of (A,B). Thus y is a left eigenvector corresponding to
λ∗. Using (3.4),

yTBx∗ = eTs (A− λ∗B)ABx∗ = 0.

If λ∗ were a simple eigenvalue, we would have yTBx∗ �= 0 [1, Thm. 3.2]. So λ∗ must
be an eigenvalue of multiplicity at least two.

For the converse, suppose that λ∗ is a multiple eigenvalue of (A,B). Then, there
exists a left eigenvector y corresponding to λ∗ that is B-orthogonal to x∗. We have

[yT 0]

[
A− λ∗B −Bx∗
αeTs 0

]
= 0,

which means that J(v∗) is singular.
In exact arithmetic, Theorem 2.2 applies with E = 0 and ν = u = 0 so that for

all v0 such that ‖v0− v∗‖ ≤ 1/(4‖B‖‖J∗‖−1) the Newton iteration is well defined and
converges quadratically to zero.

The residual F (v̂i) can be computed in mixed precision by the XBLAS routine
GE−SUM−MV. Then we can take

ψ(F, v, u, ū) = γ̄n(‖A‖+ |λ|‖B‖)‖x‖.(3.5)

Corollary 3.4. Let λ∗ be a simple eigenvalue of (A,B), and let x∗ be the
corresponding eigenvector normalized such that ‖x∗‖∞ = |x∗s| = 1. Assume that J
in (3.3) is not too ill conditioned, the linear system solver is not too unstable, and
(x0, λ0) is a sufficiently good approximation to (x∗, λ∗) so that assumptions (2.18)–
(2.20) with β = 2‖B‖∞ are satisfied. Then Newton’s method for (3.2) in floating point
arithmetic is well defined and the limiting forward error is bounded by

‖(x̂Ti , λ̂i)− (xT∗ , λ∗)‖∞
‖(xT∗ , λ∗)‖∞

<∼ γ̄n‖J(v∗)−1‖∞max(‖A‖∞, ‖B‖∞) + u.

If ū = u2, then

‖(x̂Ti , λ̂i)− (xT∗ , λ∗)‖∞
‖(xT∗ , λ∗)‖∞

<∼ γn.

Proof. We apply Corollary 2.3 using (3.5) for ψ(F, v, u, ū). We have

‖J(v∗)−1‖∞
‖v∗‖∞ ψ(F, v∗, u, ū) =

‖J(v∗)−1‖∞
‖v∗‖∞ γ̄n(‖A‖∞ + |λ∗|‖B‖∞)‖x∗‖∞

≤ γ̄n‖J(v∗)−1‖∞max(‖A‖∞, ‖B‖∞) (1 + |λ∗|)
max(1, |λ∗|)

≤ 2γ̄n‖J(v∗)−1‖∞max(‖A‖∞, ‖B‖∞).

NEWTON’S METHOD IN FLOATING POINT ARITHMETIC 1051

Since J(v∗)n+1,s = α, we have ‖J(v∗)‖∞ ≥ max(‖A‖∞, ‖B‖∞). From (2.18), we
have uκ(J(v∗)) < 1 and if γ̄n ≈ nu2, then γ̄n‖J(v∗)−1‖∞ <∼ numax(‖A‖∞, ‖B‖∞)−1,
which proves the last part of the corollary.

Our result is consistent with the one of Dongarra, Moler, and Wilkinson [10] con-
cerning the standard eigenvalue problem. They showed that their iterative refinement
procedure, which is a recasting of Newton’s method, yields a forward error of the order
of the working precision assuming that ‖A‖∞ = 1 and that the residual is computed
at precision ū = u2.

The normwise backward error for an approximate eigenpair (x̂, λ̂) is defined by

η(x̂, λ̂) = min{ε : (A+∆A)x̂ = λ̂(B +∆B)x̂, ‖∆A‖ ≤ ε‖A‖, ‖∆B‖ ≤ ε‖B‖},
and it can be shown [14], [25] that

η(x̂, λ̂) =
‖r‖

(‖A‖+ |λ̂|‖B‖)‖x̂‖
,

where r = Ax̂− λ̂Bx̂.
Corollary 3.5. Under the same assumptions as in Corollary 3.4, Newton’s

method for (3.2) in floating point arithmetic yields a backward error for the ∞-norm
bounded by

η∞(x̂i, λ̂i) <∼ γ̄n + u(3 + |λ|)max
(‖A‖∞
‖B‖∞ ,

‖B‖∞
‖A‖∞

)
.

Proof. We assume ‖x̂i‖∞ ≈ 1. We have ψ(F, v̂i, u, ū) ≈ γ̄n(‖A‖∞ + |λ̂i|‖B‖∞)
and

‖v̂i‖∞ <∼ 1 + |λ̂i|, ‖J(v̂i)‖∞ <∼ (3 + |λ̂i|)max(‖A‖∞, ‖B‖∞),

and (‖A‖∞ + |λ̂i|‖B‖∞)‖x̂i‖∞ >∼ min(‖A‖∞, ‖B‖∞)(1 + |λ̂i|). Then applying Corol-
lary 2.5 yields the result.

The corollary shows that if |λ|max(‖A‖∞/‖B‖∞, ‖B‖∞/‖A‖∞) is large,
then we cannot guarantee a small backward error. In numerical experiments, we
have found that the backward error is small independent of the size of
|λ|max(‖A‖∞/‖B‖∞, ‖B‖∞/‖A‖∞), but we have not been able to prove that this
must always be the case.

Note that for the standard eigenvalue problem, |λ∗| ≤ 1 if ‖A‖∞ = 1, as was as-
sumed in [10]. Then the eigenpairs refined by Newton’s method have a small backward
error.

For the GEP, if the problem is scaled and replaced by Ãx = λ̃Bx with Ã and λ̃
such that ‖Ã‖∞ = α‖A‖∞ = ‖B‖∞ and λ̃ = αλ, then, for this problem, the backward

error depends only on the size of |λ̃|. A small |λ̃| ensures a small backward error. If
|λ̃| is large, then we can consider the problem Bx = µ̃Ãx for which |µ̃| is small and
Corollary 3.5 guarantees that iterative refinement will yield a small backward error.

4. Numerical experiments. We show how iterative refinement can be used
to improve the stability of an unstable solver for the symmetric definite generalized
eigenvalue problem Ax = λBx, with A symmetric and B symmetric positive definite.

All our tests have been performed with Matlab for which the working precision
is u = 2−53 ≈ 1.1 × 10−16. We approximate the eigenpairs using the Cholesky-QR
method, which consists of the following.

1052 FRANÇOISE TISSEUR

1. Compute the Cholesky factorization B = GGT .
2. Compute C = G−1AG−T .
3. Compute the eigendecomposition WTCW = diag(λ1, λ2, . . . , λn) using the
symmetric QR algorithm.

The matrix X = G−TW is nonsingular and satisfies XTBX = I and XTAX =
diag(λ1, λ2, . . . , λn). This algorithm can be unstable. The computed Ĉ from step 2
satisfies [3]

Ĉ = C +∆C, ‖∆C‖2 ≤ γn2‖B−1‖2‖A‖2,

so if B is ill conditioned, then ‖∆C‖2/‖C‖2 can be large, even if the eigenvalue
problem itself is well conditioned.

For problem (3.1), the Newton iteration (2.1) can be written as

(A− λiB)∆xi+1 −∆λi+1Bxi = ri, eTs xi+1 = e
T
s xi = 1,(4.1)

where ∆xi+1 = xi+1 − xi and ∆λi+1 = λi+1 − λi. As in [10], [23] we note that
eTs x0 = 1 implies eTs ∆xi+1 = 0 for i ≥ 0, and thus the sth column of A − λiB does
not participate in the product with ∆xi+1. We can replace the sth column of A−λiB
by −Bxi and the component s of ∆xi+1 by ∆λi+1. We define

δi = ∆xi +∆λies and Mi = (A− λiB)− ((A− λiB)es +Bxi)eTs .

Then we can rewrite (4.1) as

Miδi+1 = ri, λi+1 = λi + e
T
s δi+1, xi+1 = xi + δi+1 − eTs δi+1es.(4.2)

Algorithm 4.1 is a straightforward implementation of iteration (4.2).
Algorithm 4.1. Given A, B, and an approximate eigenpair (x, λ) with ‖x‖∞ =

xs = 1, this algorithm applies iterative refinement to λ and x:
repeat until convergence

r = λBx−Ax (possibly extended precision used)
Form M : the matrix A− λB with column s replaced by −Bx.
Factor PM = LU (LU factorization with partial pivoting)
Solve Mδ = r using the LU factors
λ = λ+ δs; δs = 0
x = x+ δ

end
This algorithm is expensive as each iteration requires O(n3) flops for the factorization
of M . If the eigenpairs are approximated by a Cholesky reduction of A− λB, then a
nonsingular matrix X such that XTAX = D = diag(λ1, . . . , λn) and X

TBX = I is
available. Then

XT ri = X
TMiδi+1

=
(
(D − λiI)−XT ((A− λiB)es +Bxi)eTs X

)
X−1δi+1.(4.3)

Defining

Dλi = D − λiI, vi = X
T ((A− λiB)es +Bxi),

f = XT es, wi+1 = X
−1δi+1, gi = X

T ri,

NEWTON’S METHOD IN FLOATING POINT ARITHMETIC 1053

(4.3) becomes

(Dλi − vifT)wi+1 = gi.(4.4)

The matrix in (4.4) is a rank-one modification of a diagonal matrix. As Dλi
is nearly

singular when λi approaches the solution λ∗, we cannot use the Sherman–Morrison–
Woodbury formula. However, we can define rotations Jn−1, . . . , J1 such that

JT1 . . . J
T
n−1vi = ±‖vi‖2e1,

where Jk is a rotation in the (k, k + 1) plane. Then H = JT1 . . . J
T
n−1Dλi

is upper
Hessenberg, as is the matrix

JT1 . . . J
T
n−1(Dλi − vifT) = H ± ‖vi‖2e1fT = H1.

Using a QR factorization of H1, the solution of (4.4) can be computed in O(n
2) flops.

Algorithm 4.2. Given A,B, X, and D such that XTAX = D and XTBX = I
and an approximate eigenpair (x, λ) with ‖x‖∞ = xs = 1, this algorithm applies
iterative refinement to λ and x at a cost of O(n2) flops per iteration.

repeat until convergence
r = λBx−Ax (possibly extended precision used)
Dλ = D − λI
d = −Bx− cλs where cλs is the sth column of A− λB
v = XT d; f = XT es
Compute Givens rotations Jk in the (k, k + 1) plane, such that

QT1 v := J
T
1 . . . J

T
n−1v = ‖v‖2e1

Compute orthogonal Q2 such that
T = QT2Q

T
1 (Dλ + vf

T) is upper triangular
z = QT2Q

T
1X

T r
Solve Tw = z for w
δ = Xw
λ = λ+ δs; δs = 0
x = x+ δ

end

When B is ill conditioned, the computed X̂ may be inaccurate, so that X̂TAX̂ =
D+∆D, X̂TBX̂ = I+∆I, with possibly large ‖∆D‖ and ‖∆I‖. Then the procedure
used in Algorithm 4.2 to solve Mδ = r may be unstable: δ is the exact solution of
(M+∆M)δ = r with a possibly large ‖∆M‖. However, the theory shows that allowing
some instability in the solver and inaccurate evaluation of the Jacobian (assumptions
(2.19) and (2.23)) may affect the rate of convergence of the Newton process but not
the limiting accuracy and backward error.

We use the hat notation (x̂, λ̂) for approximate eigenpairs obtained with the

Cholesky-QR method and the tilde notation (x̃, λ̃) for the refined eigenpairs obtained

after a few iterations with Algorithm 4.1 or 4.2 starting with (x̂, λ̂) as initial guess.
We need to define several quantities:

Erel(x̂, λ̂) = ‖(x, λ)− (x̂, λ̂)‖∞/‖(x, λ)‖∞
is the relative forward error;

cond(λ) = (‖A‖∞ + |λ|‖B‖∞)‖x‖2∞/(|λ| |yTBx|)

1054 FRANÇOISE TISSEUR

Table 4.1
Relative errors, condition numbers, and backward error for Example 1.

λi Erel(x̂i, λ̂i) cond(λi) η(x̂i, λ̂i)
1 −0.62 6e-5 41 4e-6
2 1.63 6e-5 120 2e-6
3 9e17 9e-5 6e18 2e-20

Table 4.2
Backward error and relative error for the two smallest eigenpairs of Example 1.

Algorithm 4.1 Algorithm 4.2

λi ηest Eest
rel it η(x̃i, λ̃i) Erel(x̃i, λ̃i) it η(x̃i, λ̃i) Erel(x̃i, λ̃i)

−0.62 1e-16 1e-14 3 2e-17 2e-16 4 6e-17 4e-16
1.63 1e-16 1e-14 3 3e-17 4e-16 4 4e-17 7e-16

is the condition number of the eigenvalue λ, where y is a left eigenvector corresponding
to λ [14];

η(x̂, λ̂) = ‖Ax̂− λ̂Bx̂‖∞/
(
(‖A‖∞ + |λ̂|‖B‖∞)‖x̂‖∞

)

is the backward error of the approximate eigenpair (x̂, λ̂);

Eestrel = ‖J−1‖∞ū(‖A‖∞ + |λ|‖B‖∞)‖x‖∞/‖(xT , λ)‖∞ + u

is an approximation of the theoretical bound (2.21) for the relative forward error,
where the Jacobian matrix J is given by (3.3) and ψ(F, v, u, ū) is given by (3.5) with
γ̄n ≈ ū; and finally, ηest is the theoretical bound of the backward error for the refined
eigenpair (x̃, λ̃) from Corollary 3.5.

Example 1. First we consider

A =

 1 2 3
2 4 5
3 5 6

 , G =

 .001 0 0

1 .001 0
2 1 0.001

 ,

and B = GGT . This example is used in [12] to illustrate the instability of the
Cholesky-QR method when B is ill conditioned. Results are displayed in Table 4.1.
The two smallest eigenvalues have a small condition number, but their backward error
is large because of the ill conditioning of B (κ∞(B) = 7× 1018).

We refined the two smallest eigenvalues using Algorithm 4.1 and Algorithm 4.2
with the approximate eigenpairs as initial guess and the residual computed at working
precision (ū = u ≈ 1.1 × 10−16). We terminated the iteration when the norm of the
correction stopped decreasing. The results are given in Table 4.2, where it is the
number of iterations required for convergence. Algorithm 4.2 uses an unstable solver
and therefore requires one more iteration. However, the accuracy and stability are
unaffected by this unstable solver. Both algorithms produce refined eigenpairs with a
small backward error and a relative error as predicted by the theory.

Example 2. We would like to test the sharpness of the residual bound in Corollary
2.5 and the backward error bound in Corollary 3.5. We consider an example with large
‖J∗‖, a large ratio ‖A‖∞/‖B‖∞, and large eigenvalues. We denote by M the Moler
matrix from the Test Matrix Toolbox [15]:

mij =

{
i if i = j,
min(i, j)− 2 otherwise.

NEWTON’S METHOD IN FLOATING POINT ARITHMETIC 1055

Table 4.3
Estimated and computed residuals and backward errors for Example 2.

Before refinement From theory After refinement

λi cond(λi) η(x̂i, λ̂i) ‖rest‖ ηest ‖r‖ η(x̃i, λ̃i) it
7.1e5 2.0 1e-5 3.1e-4 9.1e-5 1.2e-10 5.2e-17 5
5.6e6 9.0 2e-6 1.1e-2 7.3e-4 4.7e-10 4.3e-17 4
2.0e7 29.2 9e-7 1.5e-1 2.6e-3 1.0e-9 2.9e-17 3
3.3e7 48.7 7e-7 4.3e-1 4.3e-3 1.6e-9 2.7e-17 5
4.3e7 62.9 2e-7 7.4e-1 5.6e-3 1.7e-9 2.2e-17 3

Table 4.4
Relative error for the computed and refined eigenpairs of Example 3 using working and double

precision in the computation of the residual.

Before refinement After refinement
ū = u ū = u2

λi cond(λi) Erel(x̂i, λ̂i) Eest
rel Erel(x̃i, λ̃i) Eest

rel Erel(x̃i, λ̃i)
2.4e-7 1.8e6 1.3e-8 1.0e-11 2.0e-13 2.2e-16 1.1e-16
2.2e-5 2.0e4 2.1e-8 1.3e-11 7.3e-13 2.2e-16 2.2e-16
8.2e-4 5.3e2 1.0e-9 3.3e-13 1.8e-14 2.2e-16 1.1e-16
1.4e-2 4.0e1 6.9e-11 3.4e-14 2.0e-15 2.2e-16 1.1e-16
2.9e-2 4.6e0 4.3e-11 2.8e-14 5.6e-16 2.2e-16 1.1e-16
1.2e-1 1.5e1 2.6e-11 1.7e-14 5.6e-16 2.2e-16 1.1e-16
1.7e-1 7.4e0 3.6e-11 3.0e-14 1.3e-15 2.2e-16 1.1e-16
3.0e-1 1.1e1 3.0e-11 2.0e-13 2.2e-15 2.2e-16 5.6e-17
3.1e-1 1.2e1 3.4e-11 2.1e-13 7.8e-16 2.2e-16 5.6e-17
9.2e4 3.7e6 1.6e-16 1.5e-9 4.1e-12 2.2e-16 0.0e0

We took n = 20, A = 106I, and B = 10−2M and computed the approximate eigen-
pairs using the Cholesky reduction. Instabilities are expected as κ(B) = 2×1013. All
the eigenpairs have a large backward error and a small condition number except the
largest one. We refined using Algorithm 4.1. Results for some eigenpairs are given in
Table 4.3, where

‖rest‖ = ū(‖A‖∞ + |λ|‖B‖∞)‖x‖∞ + u‖J‖∞‖(xT , λ)‖∞
is the theoretical bound (2.35) for the norm of the residual. This example corresponds
to the “bad case” where |λ|max (‖A‖/‖B‖, ‖B‖/‖A‖) is large, which explains why
the theoretical estimates are so pessimistic. The estimates are sharp when the pair
(A,B) is scaled such that ‖A‖ = ‖B‖ and the eigenpair is refined on the reverse

problem (B,A) if |λ̂i| is large. We have generated many pairs (A,B) with a large value
of max

(‖A‖/‖B‖, ‖B‖/‖A‖) and large eigenvalues, for which the theory predicts a
large backward error. For all of them, iterative refinement yields a small backward
error as long as the initial guess is good enough for Newton’s method to converge.

Example 3. We illustrate how using extended precision in computation of the
residual yields a small relative error. Let A be the Prolate matrix of size n = 10 of
the Test Matrix Toolbox [15], and let B be the Moler matrix. We used the Symbolic
Math Toolbox of Matlab to compute the exact eigenpairs of (A,B) and the Cholesky
reduction method to approximate the eigenpairs. We give the results in Table 4.4.
We refined using both working precision (ū = u) and double precision (ū = u2)

for the computation of the residual. For eigenpairs such that Erel(x̂i, λ̂i) > Eestrel ,

iterative refinement leads to Erel(x̃i, λ̃i) < E
est
rel after two iterations. For the largest

eigenvalue, Erel(x̂i, λ̂i)� Eestrel of ū = u, which means that the approximate eigenpair
is appreciably more accurate than the limiting accuracy. In this case, one single step

1056 FRANÇOISE TISSEUR

of iterative refinement is enough to spoil the good initial approximation. If ū = u2,
all the eigenpairs are computed to high relative accuracy as expected from the theory
(Corollary 3.4).

For further numerical examples of iterative refinement for the Cholesky-QR
method, see [3].

5. Conclusions. We have analyzed Newton’s method in floating point arith-
metic, allowing for extended precision in computation of the residual, inaccurate eval-
uation of the Jacobian, and a possibly unstable solver. We estimated the limiting
accuracy and the smallest residual norm. We showed that the accuracy with which
the residual is computed affects the limiting accuracy. The limiting residual norm
depends on two terms, one of them independent of the accuracy used in evaluating
the residual.

We applied our results to iterative refinement for the generalized eigenvalue prob-
lem. We showed that high accuracy for the refined eigenpairs is guaranteed, under
suitable assumptions, if twice the working precision is used for the computation of
the residual. We also showed that if the pair (A,B) is well balanced (‖A‖ ≈ ‖B‖),
working precision in evaluating the residual is enough for iterative refinement to yield
a small backward error.

Finally, we examined in detail how iterative refinement can be used to improve
the forward and backward error of computed eigenpairs for the symmetric definite
GEP. We used two refinement algorithms, one of them with an unstable solver.
We confirmed that the unstable solver affects the convergence but not the limiting
accuracy and backward error. In practice, the assumption that the pair (A,B) is
well balanced does not seem to be necessary. We have not been able to generate an
example for which iterative refinement fails to yield a small backward error for pairs
(A,B) for which max(‖A‖/‖B‖, ‖B‖/‖A‖) is large. This suggests that the bound of
Corollary 3.5 is pessimistic. Deriving a sharper bound remains an open problem.

In future work, we plan to investigate iterative refinement for the quadratic eigen-
value problem, for which there are no proven backward stable algorithms [25].

Acknowledgments. I thank the referees for valuable suggestions that improved
the paper.

REFERENCES

[1] A. L. Andrew, K.-W. E. Chu, and P. Lancaster, Derivatives of eigenvalues and eigenvectors
of matrix functions, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 903–926.

[2] BLAS Technical Forum Standard, International Journal of High Performance Computing Ap-
plications, to appear. Available online at http://www.netlib.org/blas/blast-forum/.

[3] P. I. Davies, N. J. Higham, and F. Tisseur, Analysis of the Cholesky Method with Itera-
tive Refinement for Solving the Symmetric Definite Generalized Eigenproblem, Numerical
Analysis Report No. 360, Manchester Centre for Computational Mathematics, Manchester,
UK, 2000.

[4] J. W. Demmel, Three methods for refining estimates of invariant subspaces, Computing, 38
(1987), pp. 43–57.

[5] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[6] J. E. Dennis, Jr. and H. F. Walker, Inaccuracy in quasi-Newton methods: Local improve-
ment theorems, Math. Programming Stud., 22 (1984), pp. 70–85.

[7] J. J. Dongarra, Improving the accuracy of computed matrix eigenvalues, Preprint ANL-80-84,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL,
1980.

NEWTON’S METHOD IN FLOATING POINT ARITHMETIC 1057

[8] J. J. Dongarra, Algorithm 589 SICEDR: A FORTRAN subroutine for improving the accuracy
of computed matrix eigenvalues, ACM Trans. Math. Software, 8 (1982), pp. 371–375.

[9] J. J. Dongarra, Improving the accuracy of computed singular values, SIAM J. Sci. Statist.
Comput., 4 (1983), pp. 712–719.

[10] J. J. Dongarra, C. B. Moler, and J. H. Wilkinson, Improving the accuracy of computed
eigenvalues and eigenvectors, SIAM J. Numer. Anal., 20 (1983), pp. 23–45.

[11] A. R. Ghavimi and A. J. Laub, Backward error, sensitivity, and refinement of computed
solutions of algebraic Riccati equations, Numer. Linear Algebra Appl., 2 (1995), pp. 29–49.

[12] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[13] H. V. Henderson and S. R. Searle, On deriving the inverse of a sum of matrices, SIAM
Rev., 23 (1981), pp. 53–60.

[14] D. J. Higham and N. J. Higham, Structured backward error and condition of generalized
eigenvalue problems, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 493–512.

[15] N. J. Higham, The Test Matrix Toolbox for Matlab (version 3.0), Numerical Analysis Report
No. 276, Manchester Centre for Computational Mathematics, Manchester, UK, 1995.

[16] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[17] N. J. Higham, Iterative refinement for linear systems and LAPACK, IMA J. Numer. Anal.,

17 (1997), pp. 495–509.
[18] M. Jankowski and H. Woźniakowski, Iterative refinement implies numerical stability, BIT,

17 (1977), pp. 303–311.
[19] P. Lancaster, Error analysis for the Newton-Raphson method, Numer. Math., 9 (1966),

pp. 55–68.
[20] C. B. Moler, Iterative refinement in floating point, J. Assoc. Comput. Mach., 14 (1967),

pp. 316–321.
[21] J. L. Rigal and J. Gaches, On the compatibility of a given solution with the data of a linear

system, J. Assoc. Comput. Mach., 14 (1967), pp. 543–548.
[22] R. D. Skeel, Iterative refinement implies numerical stability for Gaussian elimination, Math.

Comp., 35 (1980), pp. 817–832.
[23] H. J. Symm and J. H. Wilkinson, Realistic error bounds for a simple eigenvalue and its

associated eigenvector, Numer. Math., 35 (1980), pp. 113–126.
[24] R. A. Tapia, The Kantorovich theorem for Newton’s method, Amer. Math. Monthly, 78 (1971),

pp. 389–392.
[25] F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Linear Algebra

Appl., 309 (2000), pp. 339–361.
[26] S. Wang and S. Zhao, An algorithm for Ax = λBx with symmetric and positive-definite A

and B, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 654–660.
[27] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Notes on Applied Science No. 32,

Her Majesty’s Stationery Office, London, 1963. Also published by Prentice-Hall, Englewood
Cliffs, NJ, 1963. Reprinted by Dover, New York, 1994.

[28] H. Woźniakowski, Numerical stability for solving nonlinear equations, Numer. Math., 27
(1977), pp. 373–390.

[29] T. J. Ypma, The effect of rounding errors on Newton-like methods, IMA J. Numer. Anal., 3
(1983), pp. 109–118.

[30] T. J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal., 21 (1984),
pp. 583–590.

AN ANALYSIS OF SPARSE APPROXIMATE INVERSE
PRECONDITIONERS FOR BOUNDARY INTEGRAL EQUATIONS∗

KE CHEN†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1058–1078

Abstract. Preconditioning techniques for dense linear systems arising from singular boundary
integral equations are described and analyzed. A particular class of approximate inverse based
preconditioners related to the mesh neighbor methods is known to be efficient. This paper shows that
it is an operator splitting preconditioner and clusters eigenvalues for the normal equation matrix thus
ensuring a fast convergence of the conjugate gradient normal method. Clustering of the eigenvalues
of the preconditioned matrix and fast convergence of the generalized minimal residual method are
also observed. For the type of problems considered, we demonstrate a crucial connection between two
essential features of eigenvalue clustering for a sparse preconditioner—approximate inversion for a
small cluster radius and operator splitting for a small cluster size. Experimental results from several
boundary integral equations are presented.

Key words. preconditioning, operator splitting, approximate inversion, singular boundary
elements, least squares solution, conjugate gradients, conjugate gradient normal method, GMRES

AMS subject classifications. 65F10, 65R20

PII. S0895479898348040

1. Introduction. In this paper we consider the efficient solution of dense linear
systems Ax = b by preconditioned iterative methods, where A is an n×n unsymmetric
matrix. We are concerned with those systems arising from numerical solution of
singular boundary integral equations (BIEs), where preconditioning is essential for
convergence of iterative methods. Special attention is given to a justification of sparse
approximate inverse related preconditioners.

Most BIEs possess singularities. When the underlying integral operator is smooth
or only weakly singular, it is compact and iterative methods have been proved to be
efficient even without preconditioning; see [1, 5, 6, 27, 29, 38, 40]. In the special case
when the singularities are due to geometric nonsmoothness (e.g., corners), the oper-
ator can be noncompact but the singularities occur at fixed points. Preconditioners
based on separating these fixed singularities have been studied and iterative methods
for the preconditioned systems have been shown to be effective; see [8, 12, 15]. Here
we consider the general case of singular BIEs, e.g., an integral reformulation of the
Helmholtz equations with Neumann’s boundary conditions. To iteratively solve the
dense linear system from discretization of singular BIEs, we consider three types of
sparse preconditioners: the operator splitting preconditioner (OSP), the least squares
approximate inverse preconditioner (LSAI), and the diagonal block approximate in-
verse preconditioner (DBAI).

All these sparse preconditioners have been used in the literature. The OSPs
[13, 14, 30, 46], although admitting a number of isolated eigenvalues (see section 2.2),
can cluster eigenvalues of both the original matrix and its normal matrix but further
improvements are difficult. The LSAI is a general technique and its effectiveness lies in
a knowledge of a dominant sparsity pattern of the true inverse (otherwise the technique
can be expensive); see [10, 18, 3, 16, 17]. The LSAIs can also cluster eigenvalues

∗Received by the editors November 23, 1998; accepted for publication (in revised form) by S.
Vavasis August 15, 2000; published electronically February 23, 2001.

http://www.siam.org/journals/simax/22-4/34804.html
†Department of Mathematical Sciences, The University of Liverpool, M & O Building, Peach

Street, Liverpool L69 7ZL, UK (k.chen@liv.ac.uk, http://www.liv.ac.uk/∼cmchenke).

1058

SPARSE APPROXIMATE INVERSE PRECONDITIONERS 1059

collectively but with less tight clusters unless the approximate inverse approaches the
true inverse. The DBAIs, under different names and contexts, have been used by
many researchers. These include the mesh neighbor preconditioner (MN) of [43], the
local least squares inverse approximation preconditioner of [42], the truncated Green’s
function preconditioner of [26], and the nearest neighbor preconditioner of [44] among
others. The effectiveness of DBAIs has been noted in the work of [3, 4, 7, 14, 17].
However, despite many successful experiments, there was no analysis done to indicate
why DBAIs should be effective. Here we show that the preconditioner implements a
useful operator splitting, possessing the advantages of both LSAI and OSP. Thus, both
the preconditioned matrix and its normal matrix have eigenvalue clustering patterns.
Further this is also true for the generalized case with more mesh neighbors and in the
three dimensional (3D) case.

The rest of the paper is presented as follows. Section 2 provides some background
information on solving BIEs and iterative solvers with preconditioning. Section 3
discusses a general OSP that can be used to establish eigenvalue clustering. Section 4
discusses the LSAI in order to introduce the DBAI. Section 5 shows that the DBAI is
a version of OSP and a brief discussion is followed in section 6 generalizing the results
to the 3D case. Finally section 7 gives some experimental results for three examples
solved by two preconditioned conjugate gradient methods.

Define a linear system by Au = f and write the preconditioned system as

M−1Au = M−1f (left preconditioned) or AM−1y = f with y = Mu (right pre-

conditioned), with a preconditioner M−1. As is known, there are two somewhat
self-conflicting requirements of the preconditioner. The first one follows from conver-
gence estimates of iterative methods, namely, we require M−1 be close to A−1 (or M
to A). Similarly (but not always equivalently), the eigenspectrum and singular value
spectrum of the preconditioned matrix (or its normal matrix if conjugate gradient for
the normal equation (CGN) is considered) should be clustered, provided all eigenval-
ues are not sensitive to small perturbations. The second requirement is efficiency; that
is, the extra work required to find M−1 (or solve Mx = z) should be at a minimum.
Practically this means that either M or M−1 must be sparse or a product of sparse
matrices implicitly or explicitly.

We remark that the three classes of preconditioning methods discussed in this
paper all satisfy the second requirement but satisfy the first requirement in different
ways—this is the key to a successful preconditioner. The first class, OSP, aims to
achieve eigenvalue clustering for most eigenvalues of singular BIEs but does not ap-
proximate the inverse well. The second class, LSAI, aims to approximate A−1 (as the
name suggests) and cluster all eigenvalues but may not cluster eigenvalues as tightly
as OSP for singular equations. The third class, DBAI, appears as a special case of
LSAI but is shown here to be an OSP. Therefore, DBAI can be viewed as an ideal
combination of LSAI and OSP producing good approximate inversion (clustering for
all eigenvalues) and operator splitting (tight clustering for most eigenvalues) for our
class of singular BIEs.

2. Dense linear systems. Let Ω ∈ R2 denote1 a closed domain that may be
interior and bounded, or exterior and unbounded, and Γ = ∂Ω be its (finite part)
boundary that can be parameterized by p = (x, y) = (x(s), y(s)), a ≤ s ≤ b. Then a
boundary integral equation that usually arises from reformulating a partial differential

1The 3D case can be described similarly; see [2] and sections 6 and 7 of this paper.

1060 KE CHEN

equation in Ω can be written as

αu(p)−
∫

Γ

k(p, q)u(q)dΓ = f(p), p ∈ Γ,(1)

or

αu(s)−
∫ b

a

k(s, t)u(t)dt = f(s), s ∈ [a, b],(2)

i.e., simply,

(αI −K)u = f.(3)

Here u may be a density function; see [2, 7]. We do not assume that α �= 0 so our
methods will work for both first and second kind boundary integral equations of the
Fredholm type. For the latter type, α = 1/2 at smooth points on Γ. We assume that
K is the full operator (not just a principal part); for the Helmholtz equation this refers
to the unique formulation which is valid for all wavenumbers (see [2] and section 7).

To solve the above equation numerically, we divide the boundary Γ (interval [a, b])
into m boundary elements (nonintersecting subintervals Ii = (si−1, si)). On each
interval Ii, we may either approximate the unknown u by an interpolating polynomial
of order τ that leads to a collocation method or apply a quadrature method of τ nodes
and weights wi, that gives rise to the Nyström method. Both discretization methods
approximate (3) by

(αI −Kn)un = f,(4)

where we can write

Knu = Knun =
m∑
j=1

[
τ∑
i=1

wik(s, tji)uji

]
, un(tji) = u(tji) = uji, and n = mτ.

We use the vector u to denote uji’s at all nodes. By a collocation step in (4), we
obtain a linear system of equations

(αI −K)u = f, or Au = f,(5)

where matrices K and A are dense and unsymmetric (in general). The conditioning
of A depends on the smoothness of kernel function k(s, t). A strong singularity (as
t→ s) leads to noncompactness of operator K and consequently the iterative solution
of (5) requires preconditioning.

2.1. Iterative methods. For a general unsymmetric linear system, there exist
many useful iterative solvers of the conjugate gradient type. See [22, 37, 41]. Here
we select the following two methods for testing our preconditioners: CGN and the
generalized minimum residuals (GMRES); see [37]. We use the usual notation: λ(A)
denotes the eigenvalue spectrum of A, σ(A) =

√
λ(A∗A) the singular value spectrum

of A, and Pj the space of all polynomials of degree up to j. Similarly λε(A) denotes
the ε-pseudospectrum of A; see [37]. For λ(A), as in [9], we assume that its members
λj are ordered such that |λj+1− | ≤ |λj− | for some cluster center (usually = 1).
We now briefly review the convergence estimates of these two methods to motivate
the need of preconditioning.

SPARSE APPROXIMATE INVERSE PRECONDITIONERS 1061

CGN. Recall that the error of CGN at the jth iteration is determined by

Ej = inf
Ψ∈Pj :Ψ(0)=1

max
λi∈λ(A∗A)

|Ψ(λi)|.

GMRES. The relative residual error of the GMRES method, at step j, is gen-
erally determined by

F ε
j = inf

Ψ∈Pj :Ψ(0)=1
sup

λi∈λε(A)

|Ψ(λi)|.

For the case where A is diagonalizable, this residual error is bounded by the alternative
and simpler quantity

Fj = inf
Ψ∈Pj :Ψ(0)=1

max
λi∈λ(A)

|Ψ(λi)|,

provided the condition number of the matrix of A’s eigenvectors is not large.
Clearly smaller values of Ej and F ε

j lead to faster convergence. A good precon-
ditioner should force these quantities to be small. For matrices whose eigenvalues are
insensitive to small perturbations, one aims to design preconditioners for λ(A) and
λ(A∗A) to cluster and thus produce small values of Ej and Fj .

By “cluster” or “clustering” we mean that there are a large number of eigenvalues
that are inside a small interval [35] or close to a fixed point [9]. If we define, for any

µ1 ≤ µ2, a complex row vector set by
∑[n1,µ1]

[,µ2]
=
{
a� | a = (a1, . . . , an)

� ∈ Cn, |aj − |
≤ µ2 for j ≥ 1 and |ak − | ≤ µ1 for k ≥ n1} ,then a more precise statement can be
made as follows.

Definition 1. Given a square matrix An×n, if λ(A) ∈ ∑[n1,µ1]
[,µ2]

for some rela-

tively small n1 (with respect to n), we say λ(A) is clustered at point with a cluster
size µ1 and cluster radius µ2.

Here µ2 is the radius of a disk, centering at , containing all the eigenvalues
and µ1 is the radius of a smaller disk that contains most of the eigenvalues (i.e., all
eigenvalues except the first n1 − 1).

Remark. As far as convergence of conjugate gradients methods is concerned, point
clusterings imply that at step n1 the underlying approximation in Pn1 is almost as
accurate as in Pn. In this sense, both condition number estimates (popular in the
literature) and interval clusterings are not as effective as point clusterings (Definition
1) in measuring convergence.

2.2. Compactness, eigenvalue clustering, and preconditioning. We recall
that for a compact operator, its eigenvalues cluster at zero. For compact K, the adjoint
K∗ and product K∗K are also compact. Therefore in this case for A in (5), λ(A) ∈∑[n1,µ1]

[α,µ2]
and λ(A∗A) ∈ ∑[n1,µ1]

[|α|2,µ2]
, i.e., clustered at α and |α|2, respectively, with µ1

arbitrarily small for some suitable and fixed n1. Further the superlinear convergence
of both CGN and GMRES has been established in [45] and [36], respectively.

When K is not compact, we wish to use preconditioning to achieve compactness
and thus eigenvalue clustering and superlinear convergence. To this end, we shall con-
sider on one hand preconditioning a dense matrix for the general case and on the other
hand preconditioning the operator. If the preconditioned operator is compact (plus
an identity), we expect the preconditioned matrix and its normal to have clustered
eigenvalues at 1, that in turn imply fast convergence of iterative solvers.

Before we proceed we show in Figures 1 and 2 two typical examples of eigen-
value distributions λ(A) and singular value distributions σ(A) of an original matrix

1062 KE CHEN

A, compared to preconditioned counterparts C = M−1A for the three main types
of preconditioners (OSP, DBAI, LSAI). (Note the different scalings in the figures.)
Clearly the preconditioned cases show better clustering patterns, although of differ-
ent cluster sizes and radii, than the unpreconditioned case. We have also computed
the ε-pseudospectra for all cases and found that the preconditioned eigenvalues are not
sensitive to small perturbations. This implies that all preconditioned systems can be
solved efficiently by either CGN or other solvers such as GMRES because eigenvalues
can be used as convergence indicators [20, 37].

Moreover, DBAI has the best singular value clustering pattern among all cases
in terms of distances from 1 (both cluster size and radius). The following sections
explain the different reasons why such clustering patterns occur.

3. Operator splitting preconditioners. Operator splitting is a useful tech-
nique in solving singular BIEs; see [13, 14, 30, 46] and the references therein. There
are two main approaches. Both make use of the following elementary lemma.

Lemma 1. Let linear operators A and C be defined in a normed space with A
bounded and C compact. Then

1. operator A−1C is also compact;
2. operator B = A− C has a bounded inverse if B is injective.
The first splitting approach is based on expanding the singular kernel into a

principal term of simple forms and a smooth part of remaining terms, giving rise to
two splitting operators. The latter part gives rise to a compact operator while the
former to a bounded operator. Further because of the simple forms in the kernel, fast
algorithms (e.g., the FFT; see [34] and [46]) are used to invert the former operator
which serves as a preconditioner.

Here we apply the second idea of operator splitting, previously used in [13]. This is
based on domain decomposition rather than kernel decomposition. Use the partition
of section 2, [a, b] =

⋃m
i=1 Ii. Accordingly we can partition the variable u and vector

u as follows: u = (u1, u2, . . . , um)
T and u = (u1, u2, . . . , um)

T . Similarly writing
the operator A in matrix form, we obtain the splitting A = αI − K = B − C with
B = I +K) and

K =

K1,1 K1,2 K1,m

K2,1 K2,2 K2,3

K3,2
. . .

. . .

. . .
. . . Km−1,m

Km,1 Km,m−1 Km,m

.

Observe that all singularities of A are contained in the above operator and so the
smooth operator C is compact. Note also that, after discretization, the corresponding
matrix out of K is

K =

K1,1 K1,2 K1,m

K2,1 K2,2 K2,3

K3,2
. . .

. . .

. . .
. . . Km−1,m

Km,1 Km,m−1 Km,m

.

Also define matrix B = αI − K and C = K − K. Then from the above lemma,
it can be shown that the operator B is bounded. Since the operator B−1C is also

SPARSE APPROXIMATE INVERSE PRECONDITIONERS 1063

−7 −6 −5 −4 −3 −2 −1

λ
(
A

)

10
0

10
1

σ
(
A

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

O
S

P
 λ

(
C

)

10
−3

10
−2

10
−1

10
0

10
1

O
S

P
 σ

(
C

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

L
S

A
I
λ
(
C

)

10
−3

10
−2

10
−1

10
0

10
1

L
S

A
I
σ

(
C

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
B

A
I
λ
(
C

)

10
−3

10
−2

10
−1

10
0

10
1

D
B

A
I
σ

(
C

)

Fig. 1. Example 1 of eigenvalue and singular value distributions of 4 cases: original matrix A,
OSP, LSAI, DBAI.

1064 KE CHEN

10
1

10
2

10
3

10
4

λ
(
A

)

10
2

10
3

10
4

σ
(
A

)

−1 0 1 2 3 4 5 6 7 8 9

O
S

P
 λ

(
C

)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

O
S

P
 σ

(
C

)

−1 0 1 2 3 4 5 6 7 8 9

L
S

A
I
λ
(
C

)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

L
S

A
I
σ

(
C

)

−1 0 1 2 3 4 5 6 7 8 9

D
B

A
I
λ
(
C

)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

D
B

A
I
σ

(
C

)

Fig. 2. Example 2 of eigenvalue and singular value distributions of 4 cases: original matrix A,
OSP, LSAI, DBAI.

SPARSE APPROXIMATE INVERSE PRECONDITIONERS 1065

compact, we can useM = B as an operator preconditioner and M = B as a matrix
preconditioner. This is what we call OSP.

Thus the solution of Au = f is reduced to that of M−1Au = M−1f , i.e., [I −
M−1C]u = M−1f . Here B is in general a block quasi-tridiagonal matrix and the
solution of Bx = y is via B = LU , where L,U are of the same sparsity structure as
B apart from the last row of L and the last column of U ; see [3, 14].

We remark that our techniques of constructing M , for singular operators, may
be viewed as efficient regularization methods. Therefore from properties of compact
operators, the preconditioned matrix (I −M−1C) and its normal matrix should have
most of its eigenvalues clustered as demonstrated in Figures 1 and 2. Most sparse
preconditioners (e.g., approximate inverses [31]) do not possess the latter property of
the normal matrix having clustered eigenvalues because of the unsymmetric nature of
the matrix (where λ(M−1A) and σ(M−1A) are not related).

Note that the underlying preconditioner M−1 = B−1, although not sparse, does
not approximate A−1 well because ‖M−1A − I‖ is not small. Solving Bx = y takes
O(kn) flops at each step of iterative methods where k (= 3 here) denotes the total

bandwidth of B. Using Definition 1, we may write λ(M−1A) ∈∑[n1,µOSP]
[1,µ2]

for a small

µOSP and some relatively small n1 (with respect to n), but the poor approximation of A
byM means that we cannot estimate µ2. It has been found that, to further improve on
the above preconditioner, i.e., reduce n1, µOSP, µ2, increasing the bandwidth k alone
is not efficient (or sufficient) as the improvements are only marginal unless k ≈ n. We
now consider a different class of preconditioners (i.e., LSAI) before establishing the
connection of mesh neighbor preconditioners with OSP and LSAI.

4. Approximate inversion techniques. Sparse approximate inverse precon-
ditioners are widely used for preconditioning sparse linear systems, since the earlier
work of [10] and [33]. See also [18, 25, 31, 41, 16, 17] and the references therein for
more details. Here we review the method briefly in order to introduce the DBAI and
consider its applications to iterative solution of dense linear systems Au = f from
section 2.

4.1. The LSAI approach. The problem is to construct approximations, M−1,
to the inverse of matrix A for which ‖AM−1−I‖ is small in some norm. Once such an
M−1 has been constructed, we solve the preconditioned linear system AM−1w = f ,

u = M−1w.
To specify the matrix M−1, denote N = {1, 2, . . . , n}, and let S be a given set

of (i, j)’s with [i, j] ∈ N , and GS be the space of all n× n matrices that have entries
in positions indexed by S. For each column index j = 1, . . . , n, define its row indices
Sj = {i : (i, j) ∈ S} and let its vector space GSj contain all vectors that have entries in
positions indexed by Sj . Then the approximate inverse M−1 is calculated by solving
the least squares problem

min
M−1∈GS

‖AM−1 − I‖2F =
n∑
j=1

min
mj∈GSj

‖Amj − ej‖22,(6)

where M−1 = [m1, . . . ,mn] and I = [e1, . . . , en]. In theory, such a problem can be
posed in any norm but the Frobenius norm leads to an easier solution. The full
problem of finding M−1 is reduced to n standard least squares problems. The above
equation (6) has been used by various researchers. The resulting preconditioner M−1

is obviously the right preconditioner since A is multiplied on its right.

1066 KE CHEN

But we can equally attempt to search for the left preconditioner M−1 by trying
to minimize ‖M−1A− I‖:

min
M−1∈GS

‖M−1A− I‖2F = min
M−1∈GS

‖ATM−T − I‖2F =
n∑
j=1

min
mj∈GVj

‖ATmj − ej‖22,(7)

where M−T = [m1, . . . ,mn], I = [e1, . . . , en], Vj = {i : (j, i) ∈ S}, and GVj
contain all

vectors that have entries in positions indexed by Vj . We find it slightly convenient to
describe and implement the right preconditioner.

The suitable specification of S will then become essential. For PDEs solved
by domain-type discretization methods (mainly finite element and finite difference
methods), S is usually chosen so that M−1 is of some sparse structure, e.g., a band
matrix. Its choice may also be coupled with the solution process of least squares
problems so we could start from an initial sparse specification (say a diagonal matrix)
and increase the number of nonzeros adaptively in order to control the residual errors
of each least squares solution under some tolerance. See [25, 31, 41].

4.2. Application to singular integral equations. For singular BIEs, we have
shown in section 3 that for a suitable preconditioner M−1 = B−1 (left or right), its
inverse M = B can be of the specific sparsity structure

× × ×
× × ×
× × ×

. . .
. . .

. . .

. . .
. . .

. . .

× × ×
× × ×
× × ×

× × ×

.(8)

As the diagonal entries of B are large, numerical evidence suggests that the structure
of the largest entries in B−1 is similar to the structure of B. In fact, if B is strictly
diagonal dominant, B−1 can be shown to be exponentially decaying from the diagonal.
In practice, this strong condition may not be strictly satisfied. For 3D problems, see
section 6 for further discussions.

However, it appears reasonable to seek a preconditionerM−1 of sparsity structure
(8) that can be used as an approximate inverse of A. Thus S will represent all nonzero
positions in (8).

4.3. Solution of the least squares problem. We now consider the solution of
the least squares problem for finding the right preconditioner; the left preconditioner
can be found similarly. Since matrixM−1 = [m1, m2, . . . , mn] is consisted of column
vectors, for each column j, the least squares problem is to solve

min
mj∈GSj

‖Amj − ej‖22 = min
mj∈GSj

‖Âjmj − ej‖22

SPARSE APPROXIMATE INVERSE PRECONDITIONERS 1067

or

A1j1 A1j2 A1j3
...

...
...

Aj1j1 Aj1j2 Aj1j3
Aj2j1 Aj2j2 Aj2j3
Aj3j1 Aj3j2 Aj3j3
...

...
...

Anj1 Anj2 Anj3

 Mj1j

Mj2j

Mj3j

 =

0
...
0
1
0
...
0

,(9)

or simply

Âjm̂j = ej ,

where j2 = j, m̂j = [Mj1j Mj2j Mj3j]
T , mj = [0T m̂j 0T]T , j1 = j − 1, j3 = j +1

for j = 2, . . . , n, j1 = n, j3 = 2 for j = 1, and j1 = n− 1, j3 = 1 for j = n due to the
choice of S and the wrap-around nature of M−1.

The least squares problem (9) may be solved by the QR method [11, 24]. For the
approximation using this specific pattern S, we have the following theorem.

Theorem 1. For the least squares problem (9) with Âj of size n× 3,
1. the residual for the solution m̂j satisfies ‖rj‖2 ≤ 1 because the right-hand side

of (9) is a unit vector;
2. problem (9) is equivalent in the least squares sense to the following problem

with Bj of a smaller size (i.e., 4× 3),

Bjm̂j =

b11 b12 b13
b21 b22 b23

b32 b33
b43

 Mj1j

Mj2j

Mj3j

 =

1
0
0
0

 .

Further, the residual for the solution m̂j can be written more specifically as

rj = [0 r̄j]
T and r̄j = − sin θ1 sin θ2 sin θ3

for some θi’s (so ‖rj‖2 < 1 if A1j1 �= 0).
Therefore the matrix residual for the approximate inverse M−1 will be E = I−AM−1

and its F -norm satisfies ‖E‖2F =
∑n
j=1 ‖rj‖22 < n or ‖E‖F <

√
n.

Proof. See the appendix.
Remark. This theorem illustrates the accuracy of inverse approximation using

structure (8). More general results of this type and on eigenvalue bounds can be
found in [18, 31] among others. In particular, note that the residual error ‖E‖ is
directly linked to the eigenspectrum λ(AM−1). Using Definition 1, we may write

λ(AM−1) ∈
[1,µLSAI]∑
[1,µLSAI]

,

where µLSAI is generally small depending on the approximation accuracy. This be-
havior of LSAI having the same (maybe small) cluster radius as the cluster size is
different from OSP having a very small cluster size but not necessarily small cluster
radius. We shall show that the DBAI is an interesting method that has both small
cluster size and small cluster radius.

1068 KE CHEN

5. The DBAI and an analysis. In (9), we expect three rows (j1, j2, j3) of Âj
to play a dominant role due to the singular nature of the original operator. Therefore
we may approximately reduce (9) to a 3× 3 system

Ajm̂j =

 Aj1j1 Aj1j2 Aj1j3

Aj2j1 Aj2j2 Aj2j3
Aj3j1 Aj3j2 Aj3j3

 Mj1j

Mj2j

Mj3j

 =

 0

1
0

 ,(10)

which of course makes sense from a computational point of view. This modified pre-
conditioner M−1, of form (8), is a DBAI preconditioner. This is the so-called method
of mesh neighbors in [43]. The same idea was used in the local least squares inverse
approximation preconditioner of [42], the truncated Green’s function preconditioner
of [26], and the nearest neighbor preconditioner of [44], among others.

While heuristically reasonable, computationally simple, and experimentally suc-
cessful, the DBAI method has not been justified in theory. Here we present results on
an analysis for the method before discussing the generalized version using more mesh
neighbors.

To simplify the presentation, we first give two definitions and then a simple
lemma.

Definition 2 (Band+(dL, dU , bL, bU)). A band matrix An×n with wrap-around
boundaries is called Band+(dL, dU , bL, bU) if its lower and upper bandwidths are bL
and bU , respectively, and if furthermore the first dL bands below the main diagonal
are all zeros and the first dU bands above the main diagonal are also all zeros.

Definition 3 (Band−(dL, dU , bL, bU)). A simple band matrix An×n (without
wrap-around boundaries) is called Band−(dL, dU , bL, bU) if its lower and upper band-
widths are bL and bU , respectively, and if furthermore the first dL bands below the
main diagonal are all zeros and the first dU bands above the main diagonal are also
all zeros.

Note that the first definition here is for matrices with wrap-around boundaries
while the second is for simple band matrices without wrap-arounds. In both def-
initions, the parameters are nonnegative integers, not exceeding (n − 1). Here if
dLdU �= 0, both Band+(dL, dU , bL, bU) and Band−(dL, dU , bL, bU) matrices have a
zero diagonal. But if dLdU = 0 the diagonal information will be stated in the context.
With n = 6 we may illustrate Band+(0, 1, 2, 1) and Band−(0, 1, 2, 1), respectively,
by

0 0 × 0 × ×
× 0 0 × 0 ×
× × 0 0 × 0
0 × × 0 0 ×
× 0 × × 0 0
0 × 0 × × 0

and

0 0 × 0 0 0
× 0 0 × 0 0
× × 0 0 × 0
0 × × 0 0 ×
0 0 × × 0 0
0 0 0 × × 0

.

Therefore, for matrices from section 3, B and K are Band+(0, 0, 1, 1), and C is
Band−(1, 1, n − 3, n − 3). One may verify that, for example, Band+(0, 0, 2, 2) =
Band+(0, 0, 1, 1) + Band+(1, 1, 1, 1), and Band+(dL, dU , bL + 3, bU + 4) =
Band+(dL, dU , 3, 4) +Band+(dL + 3, dU + 4, bL, bU).

Lemma 2 (multiplication of band matrices). If matrix An×n is Band+(0, 0, bL1
, bU1

),
Bn×n is Band+(0, 0, bL2 , bU2) and Cn×n is Band−(dL3 , dU3 , bL3 , bU3), then

1. AB is Band+(0, 0, bL4 , bU4), with bL4 = bL1 + bL2 and bU4 = bU1 + bU2 ;

SPARSE APPROXIMATE INVERSE PRECONDITIONERS 1069

2. AC is Band−(dL5
, dU5

, bL5
, bU5

), with dL5
= max(0, dL3

− bL1
),

dU5 = max(0, dU3 − bU1), bL5 = bL1 + bU1 + bL3 , and bU5 = bL1 + bU1 + bU3 .
Proof. The proof is made by simple inductions.
We are now in a position to study the singularity separation property of the

preconditioned matrix AM−1.
Theorem 2. The DBAI preconditioner admits a diagonal operator splitting.

Therefore for singular BIEs, the preconditioned matrix and its normal matrix have
clustered eigenvalues.

Proof. Partition matrix A as follows (as illustrated in Figure 3)

A = D +B2 + C2,

where D is the diagonal matrix of A, B2 is Band
+(0, 0, 2, 2) (with a zero diagonal),

and C2 is Band
−(2, 2, n− 5, n− 5). That is,

B2 =

A12 A13 A1n−1 A1n

A21 A23 A24 A2n

A31 A32 A34 A35

A42 A43 A45
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . An−2n

An−11
. . .

. . . An−1n

An1 An2 Ann−2 Ann−1

.

First, from a similar matrix splitting of the operator A, we can show that the off di-
agonal operators are compact due to smooth kernels. Therefore assuming the original
operator A is bounded, using Lemma 1, we see that Aj has a bounded inverse and so
M−1 is bounded.

Secondly, to work out an explicit formula for AM−1− I in terms of D,B2, C2, we
have

AM−1 = DM−1 +B2M
−1 + C2M

−1,

where DM−1 is Band+(0, 0, 1, 1) as with M−1. From Lemma 2, B2M
−1 is

Band+(0, 0, 3, 3) with a nonzero diagonal and C2M
−1 is Band−(1, 1, n − 3, n − 3).

Now do a simple splitting B2M
−1 = B

(1)
2 + B

(2)
2 with B

(1)
2 as a Band+(0, 0, 1, 1)

matrix and B
(2)
2 as Band+(1, 1, 2, 2). So defining C3 = B

(2)
2 + C2M

−1 gives

AM−1 = DM−1 +B
(1)
2 + C3.(11)

From the construction of M−1, we see that

DM−1 +B
(1)
2 = I.

1070 KE CHEN

1 2 3 4 5 6 7 8 9 1011121314

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Matrix D

1 2 3 4 5 6 7 8 9 1011121314

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Matrix A

1 2 3 4 5 6 7 8 9 1011121314

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Matrix B2

1 2 3 4 5 6 7 8 9 1011121314

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Matrix C2

1 2 3 4 5 6 7 8 9 1011121314

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Matrix D*M−1

1 2 3 4 5 6 7 8 9 1011121314

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Matrix A*M−1

1 2 3 4 5 6 7 8 9 1011121314

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Matrix B2*M−1

1 2 3 4 5 6 7 8 9 1011121314

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Matrix C2*M−1

Fig. 3. Illustration of operator splitting of DBAI (n = 14).

SPARSE APPROXIMATE INVERSE PRECONDITIONERS 1071

Therefore the matrix D is implicitly inverted because (11) becomes

AM−1 = I + C3.(12)

In this formula, notice that C3 is solely determined by terms B2 and C2 which corre-
spond to compact operators. Thus matrix C3 can be viewed as from a discretization
of a compact operator and its eigenvalues and those of its normal matrix are thus
clustered at 1.

The present DBAI is specified by the pattern in (8), that is, using the nearest
neighbors. As is known from [42, 26, 44, 16], one may use more than one level of neigh-
bors. In our notation, this means that we use the new pattern of a Band+(0, 0, s, s)
matrix or a band k = 2s+1 matrix instead of a Band+(0, 0, 1, 1) matrix or a band 3
matrix. For brevity, we name such a preconditioner DBAI(k). Thus s = 1 (or k = 3)
gives the same DBAI as before. We now consider s > 1 (or odd k ≥ 5).

Then to solve for the jth column of M−1, we solve a new k × k system

Ajm̂j =

Aj1j1 · · · Aj1js+1
· · · Aj1jk

... · · · ... · · · ...
Ajs+1j1 · · · Ajs+1js+1

· · · Ajs+1jk
... · · · ... · · · ...
Ajkj1 · · · Ajkjs+1

· · · Ajkjk

Mj1j

...
Mjs+1j

...
Mjkj

=

0
...
0
1
0
...
0

,(13)

where js+1 = j always, j = j + − s− 1 for = 1, . . . , k, and j’s take wrap-around
index values outside the range of [1, n] as with (9). Compare to (10).

It remains to identify the operator splitting implied in this DBAI(k). We can
prove the following.

Theorem 3. The DBAI(k) admits the same diagonal operator splitting as DBAI.
Therefore for singular BIEs, the preconditioned matrix and its normal have clustered
eigenvalues.

Proof. Follow the similar lines of proving Theorem 2, partition matrix A as
follows:

A = D +B2s + C2s,

where B2s is Band
+(0, 0, 2s, 2s) and C2s is Band

−(2s, 2s, n− 2s− 1, n− 2s− 1), to
complete the proof.

We have thus shown that DBAI is an OSP (having a small cluster size), although
it appears more like an LSAI method (having a small cluster radius). So DBAI
possesses advantages of both methods: inverse approximation (of LSAI) and operator

splitting (of OSP). Using Definition 1, we may write for DBAI λ(AM−1) ∈∑[n1,µOSP]
[1,µLSAI]

,

where the cluster radius µLSAI is related to the approximation error (that can be made
smaller by increasing k) and µOSP is small due to operator splitting.

It remains to specify what k should be used. Since working out the preconditioner
M−1 takes O(k3n) operations, to ensure that this work does not exceed n2 operations
(one step of matrix vector multiplication), we suggest to choose k as an odd integer
satisfying 3 ≤ k ≤ cn1/3 for some fixed constant c (say c = 1). This will be used in
the experiments below.

1072 KE CHEN

6. Analysis of the 3D case. The analysis presented so far is mainly for two
dimensional (2D) problems. However, for 3D problems, a similar analysis can be
done. For LSAI and DBAI, the essential difference is that the sparsity pattern S due
to mesh neighbors, depending on the geometry of the surface and ordering, is more
irregular and complex than that from (8). This is because the mesh neighbors are
not always related to neighboring entries in matrix A. In the 3D example of section
7, the number of mesh neighbors varies from element to element (say one case with 4
neighbors and another with at least 9 neighbors).

However, it is not difficult to understand why the analysis presented for DBAI
can be generalized to this case in a similar way since all we need to do is to replace
band matrices by pattern matrices. Let S denote the sparsity pattern of a mesh
neighboring strategy (see section 7 for both edge and edge/vertex based strategies).
This includes the case of introducing levels of neighbors as in the 2D case.

Definition 4. For any matrix B, given the sparsity pattern S, define the pattern
S splitting of B as

B = PattS(B) + PatoS(B),

where PattS(B) is the sparse matrix taking elements of B at location S and zeros
elsewhere and PatoS(B) is the complement matrix for B.

If we use M−1 to denote the DBAI preconditioner based on S, then M−1 =
PattS(M−1).

We can now establish that the DBAI preconditioner admits a diagonal splitting.
As in the proof of Theorem 2, partition matrix A as follows:

A = D + C,

where D = diag(A). Then

AM−1 = DM−1 + CM−1

= PattS(DM−1 + CM−1) + PatoS(CM−1)
= I + PatoS(CM−1)
= I + C3,

because PattS is not affected by diagonal scaling and it also has the simple summation
property. As with (12), matrix C3 is solely determined by matrix C, which corresponds
to a compact operator. Thus DBAI admits a diagonal operator splitting. Therefore
the DBAI preconditioned matrix and its normal matrix have clustered eigenvalues at
1 with a small cluster size. Also from the approximation inversion property of DBAI,
we know that the eigenvalues have a small cluster radius.

Remark. For both OSP- and LSAI-type methods, as is known, one may improve
the eigenvalue clustering (in particular the cluster size for OSP and cluster radius
for LSAI). However, as our analysis shows, the DBAI using a more complex sparsity
pattern S does not imply a similar operator splitting beyond the diagonal splitting
(i.e., one cannot observe much change in the cluster size) although the cluster radius
will be reduced. It is straightforward to establish that a block matrix version of DBAI
admits a block diagonal splitting. More work is needed to find a DBAI-like method
admitting more than the block diagonal splitting (say, tridiagonal in two dimensions).

7. Numerical experiments. We describe the application of three types of pre-
conditioners, OSP, LSAI, and DBAI(k), discussed in the paper to three examples.
For simplicity, we shall use the following abbreviations.

SPARSE APPROXIMATE INVERSE PRECONDITIONERS 1073

Code name Preconditioning method Set up work (flops)

OSP OSP preconditioning A (M−1
1 A, section 3) O(n)

LSAI LSAI preconditioning A (AM−1
2 , section 4) 3n2

DBAI(k) DBAI preconditioning A (AM−1
3 , section 5) n2

No Unpreconditioned case 0

On the above list, column three indicates the amount of work needed to compute the
preconditioner M−1 (or to prepare for solving Mx = z) and this set up is only done
once. The amount of work needed (by all three methods) at each iterative step is
only O(n). We remark that DBAI(k), as a preconditioner, has been used successfully
to solve other examples. See [43, 26, 44] for solving the 3D Laplace’s equation in
potential theory and [42] for solving differential equations with multigrid methods.

Example 1. Cauchy SIE. Singular integral equations (SIE) of Cauchy type
are important in fracture mechanics. Consider a Cauchy SIE

1

π

∫ 1

−1

w(t)φ(t)

t− x
dt+

∫ 1

−1

(t2 − x2)2

t2 + x2
w(t)φ(t)dt = f(x), x ∈ (−1, 1),

1

π

∫ 1

−1

w(t)φ(t)dt = 0,

(14)

with the exact solution φ(x) = x|x|, where w(t) = (1− t2)−1/2; see [19, 21, 24, 32] for
full details. Here

f(x) =
2

π

(
1 + x2ω log

∣∣∣∣ (1− x)ω + 1

(x− 1)ω + 1
∣∣∣∣
)

with ω =
1√

1− x2
.

We choose this example because the integral equation resembles a singular BIE
in the sense that the operator has a singular principal part and a smooth part.

Example 2. Singular BIE for 2D Helmholtz equation. The exterior
Helmholtz equation (see [2])

(∇2 + k2)φ(p) = 0

is of importance in acoustic scattering problems. The interior boundary Γ is the
ellipse (x/0.5)2 + (y/2)2 = 1. For Neumann’s boundary conditions, a unique BIE
formulation due to Burton and Miller is the following:

(
−1
2
I +Mk + iηNk

)
φ =

[
Lk + iη

(
1

2
I +MT

k

)]
∂φ

∂n
.

Here Lk andMk are the usual single and double layer potential operators, respectively,

(Lkφ)(p) =
∫

Γ

Gk(p, q)φ(q)dS, (Mkφ)(p) =

∫
Γ

∂Gk

∂nq
φ(q)dS,

andMT
k is the adjoint ofMk and Nk is the hypersingular operator. Recall that the

2D Green function is Gk(p, q) =
i
4H

(1)
0 (k|p− q|) with H

(1)
0 the Hankel function. Refer

to [2, 3, 4, 28]. Here we have tested the case of wavenumbers k = 1, 5, 10 using η = 1/k
and the collocation method.

1074 KE CHEN

Example 3. Singular BIE for 3D Helmholtz equation. Following the
last example, we solve the exterior Helmholtz equation with Neumann’s boundary
conditions in a 3D domain of a cylinder of radius 0.6 and height 1.8. Again the
Burton and Miller formulation is used. Here the free space Green function is Gk =
eik|p−q|/(4π|p − q|). The 3D surface is approximated by quadratic functions over
a triangular mesh; see [2, 6, 28]. In this 3D case, for DBAI(k), k can be a fixed
integer depending on n as discussed above and used in [26]. However, we have found
that making k variable for the number of columns of M−1 and dependent on the
actual number of mesh neighbors is a better strategy. This does not complicate the
algorithm. Specifically, we have implemented two cases: type I—near neighbors share
a common edge (k = 4) and type II—near neighbors share either a common edge or
a common vertex (k ≥ 9). Correspondingly, the OSP and DBAI preconditioners are
given code names: OSP(I), OSP(II) and DBAI(I), DBAI(II). As the unpreconditioned
case and the LSAI method are not competitive, we omit the details but show the cpu
time from using a direct solver (Gaussian elimination with partial pivoting) instead.

Tables 1–3 show both the number of iteration steps and the corresponding cpu
seconds required to reduce the residual error to be of the same magnitude as the
discretization error, respectively, for the above three examples; see [39] for an earlier
use of this kind of stopping criteria. This error refers to the root mean square (RMS)
error of the computed solution against the exact solution at all nodal points. An “*”
entry indicates that the method cannot converge within N iteration steps or diverges.
The tests were carried out on a SGI IP30 using double precision (Fortran). For
DBAI(k), k varies with N as discussed. The performance of the CGN and GMRES
are similar, although CGN is slightly better. As the preconditioning step takes O(n)
operations (negligible), cpu times for each case are proportional to the number of
iterations.

The results clearly demonstrate that for dense linear systems arising from singular
BIEs, all preconditioners are effective. In particular, as our theory predicted, DBAI(k)
type preconditioners perform better than OSP and LSAI, and OSP is better than
LSAI. Because LSAI has more “*” entries, it is the least robust method. Note that
although our choice of k for DBAI(k) appears to be adequate, it may be possible that
an optimal (and better) choice exists. For the restarted GMRES(m), we have used
a fixed number m = 5 and it may be possible to find a better value; this is beyond
the scope of the paper. For Helmholtz equations, all preconditioners show some
dependence on the wavenumbers (k) and CGN is less sensitive to k than GMRES.
Although for practical applications the size N should depend on k (or frequency) to
achieve a certain accuracy, it is of interest to find a reason for such behaviors.

8. Conclusions. We have discussed three types of sparse approximate inverse
preconditioners suitable for dense linear systems arising from singular integral equa-
tions: the operator splitting preconditioner, the least squares approximate inverse
preconditioner, and the diagonal block approximate inverse preconditioner. Both the
operator splitting preconditioner and the least squares approximate inverse precondi-
tioner can cluster eigenvalues—the former gives a small cluster size but not necessarily
a small cluster radius, and the latter produces a small cluster radius but not neces-
sarily a very small cluster size. We have shown that DBAI, appearing to be a LSAI
preconditioner, is an OSP. Therefore it can cluster eigenvalues of the preconditioned
matrix giving a small cluster size as well as a small cluster radius and it can also
cluster eigenvalues of the normal matrix.

Numerical experiments show that, for the type of problems considered here, the

SPARSE APPROXIMATE INVERSE PRECONDITIONERS 1075

Table 1
Iterative solution of Example 1.

CGN method
Size N No [cpu] OSP [cpu] LSAI [cpu] DBAI(k) [cpu]
256 129 5.76 97 4.40 138 6.55 61 2.85
512 274 80.2 132 38.8 163 50.1 72 20.0
1024 582 714 167 208 185 226 84 105
2048 1546 8154 215 1149 206 1075 100 530

GMRES(5) method
Size N No [cpu] OSP [cpu] LSAI [cpu] DBAI(k) [cpu]
256 385 48.86 28 3.52 * * 22 2.85
512 * * 37 41.7 * * 29 33.1
1024 * * 51 251 * * 31 140
2048 * * 58 1275 * * 43 974

Table 2
Iterative solution of Example 2.

Size N No [cpu] OSP [cpu] LSAI [cpu] DBAI(k) [cpu]

CGN method (wavenumber k=1)
256 128 14.4 28 3.44 * * 16 1.73
512 257 118 58 28.4 * * 26 15.2
1024 513 954 118 225 * * 41 91.2
2048 1027 7120 258 1957 * * 68 538
CGN method (wavenumber k=5)
256 91 9.63 17 2.09 * * 12 1.91
512 199 83.8 42 18.9 * * 17 10.2
1024 421 717 86 151 * * 30 65.4
2048 925 6413 183 1394 * * 54 441
CGN method (wavenumber k=10)
256 90 9.53 23 2.72 * * 25 3.14
512 198 83.4 41 18.5 * * 27 14.4
1024 419 714 87 153 * * 31 67.1
2048 898 6226 181 1275 * * 53 434

GMRES(5) method (wavenumber k=1)
N = 256 70 34.8 12 6.37 89 44.6 10 5.72
N = 512 132 271 16 34.5 142 293 13 30.2
N =1024 252 2049 26 218 252 1957 18 162
N =2048 526 15459 33 995 410 12080 24 777
GMRES(5) method (wavenumber k=5)
N = 256 62 28.5 25 11.8 95 43.9 18 8.94
N = 512 140 255 28 52.5 145 266 27 52.4
N =1024 255 1852 34 253 269 1960 36 275
N =2048 559 16428 43 1289 455 13401 43 1335
GMRES(5) method (wavenumber k=10)
N = 256 57 26.2 34 15.9 121 55.8 17 8.48
N = 512 198 83.4 41 18.5 173 317 29 56.1
N =1024 305 2214 50 369 319 2322 47 356
N =2048 640 18806 62 1847 542 15956 67 2040

preconditioner DBAI(k) is indeed more robust than LSAI and OSP. For other types
of problems where diagonal operator splitting is not appropriate, we expect LSAI may
be more useful. Experiments involving further generalizations are in progress.

Appendix. Proof of Theorem 1.

Proof. For an orthogonal matrix Q = [q1, . . . , qn], let the QR-decomposition of

1076 KE CHEN

Table 3
Iterative solution of Example 3.

Size Direct OSP (I) OSP (II) DBAI (I) DBAI (II)
N cpu Steps cpu Steps cpu Steps cpu Steps cpu

CGN method (wavenumber k=1)
576 102 31 20.2 15 24.4 41 19.5 25 15.0
2304 7188 63 641 31 943 83 605 51 430
CGN method (wavenumber k=5)
576 102 15 13.5 14 24.0 16 9.1 17 11
2304 7188 24 377 15 835 31 253 19 213
CGN method (wavenumber k=10)
576 102 17 14.3 15 24.4 19 10.3 18 21.1
2304 7188 18 337 17 848 18 165 19 213

GMRES(5) method (wavenumber k=1)
576 102 14 33.9 7 31.6 17 34.7 12 27.5
2304 7188 26 1011 15 1195 36 1143 21 728
GMRES(5) method (wavenumber k=5)
576 102 6 18.8 4 26.0 7 15.9 5 14.3
2304 7188 11 554 7 951 14 474 9 363
GMRES(5) method (wavenumber k=10)
576 102 4 15.1 3 24.1 4 10.2 3 10.6
2304 7188 7 433 4 860 9 322 6 272

Âj be

Âj = QT

(
R
0

)

and let Qej = qj . Define qj = [ĉT d̂T]T where ĉT is of size 3 and d̂T is of size
n− 3. Then (9) is equivalent in the least squares sense to Rm̂j = ĉT . The solution is

m̂j = R−1ĉT . The residual error will be rj = ej − Âjm̂j = QT [0 d̂T]T .

The first result is trivial because qj is a unit vector and so ‖rj‖2 = ‖d̂‖2 ≤
‖qj‖2 = 1. For the second result, we first multiply a permutation matrix P1,j (also
orthogonal), permuting rows 1 and j, to (9). The resulting equation can be applied
by three Householder transformations giving rise to the reduced 4× 3 problem.

Further, a sequence of three successive Givens transformations

1
1

cos θ3 sin θ3

− sin θ3 cos θ3

1
cos θ2 sin θ2

− sin θ2 cos θ2

1

cos θ1 sin θ1

− sin θ1 cos θ1

1
1

can reduce the 4 × 3 matrix Bj to an upper triangular matrix (R
T 0T)T and the

right-hand side to

ĉ = [cos θ1 − sin θ1 cos θ2 sin θ1 sin θ2 cos θ3 − sin θ1 sin θ2 sin θ3]
T

for some θi’s. Note that |r̄j | ≤ 1 but if b11 = A1j1 �= 0, | sin θ1| �= 1 so ‖rj‖2 < 1.
Thus the second result follows.

Acknowledgments. The author wishes to thank the anonymous referees who
gave critical and useful comments to help clarify and improve the paper in a substantial
way. He is also grateful to Peter Appleby for reading a draft version of the manuscript
and making comments.

SPARSE APPROXIMATE INVERSE PRECONDITIONERS 1077

REFERENCES

[1] S. Amini and K. Chen, Conjugate gradient method for second kind integral equations—
applications to the exterior acoustic problem, Engrg. Anal. Bound. Elem., 6 (1989), pp.
72–77.

[2] S. Amini, P. J. Harris, and D. T. Wilton, Coupled Boundary and Finite Element Methods
for the Solution of the Dynamic Fluid-Structure Interaction Problem, Springer-Verlag,
New York, 1992.

[3] S. Amini and N. Maines, Preconditioned Krylov subspace methods for boundary element solu-
tion of the Helmholtz equation, Internat. J. Numer. Meth. Engrg., 41 (1998), pp. 875–898.

[4] S. Amini and N. Maines, Qualitative Properties of Boundary Integral Operators and Their
Discretizations, Mathematics Technical report MCS-95-12, University of Salford, UK, 1995.

[5] K. E. Atkinson, Iterative variants of the Nystrom method for the numerical solution of integral
equations, Numer. Math., 22 (1973), pp. 17–31.

[6] K. E. Atkinson, Two-grid iteration methods for linear integral equations of the second kind
on piecewise smooth surfaces in R3, SIAM J. Sci. Comput., 15 (1994), pp. 1083–1104.

[7] K. E. Atkinson, The Numerical Solution of Fredholm Integral Equations of the Second Kind,
Cambridge University Press, Cambridge, UK, 1996.

[8] K. E. Atkinson and I. G. Graham, Iterative solution of the linear systems arising from the
boundary integral method, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 694–722.

[9] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.
[10] M. W. Benson and P. O. Frederickson, Iterative solution of large sparse linear systems

arising in certain multidimensional approximation problems, Util. Math., 22 (1982), pp.
127–140.

[11] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[12] K. Chen, Conjugate gradient methods for the solution of boundary integral equations on a

piecewise smooth boundary, J. Comput. Phys., 97 (1991), pp. 127–143.
[13] K. Chen, Efficient iterative solution of linear systems from discretizing singular integral equa-

tions, Electron. Tran. Numer. Anal., 2 (1994), pp. 76–91.
[14] K. Chen, On a class of preconditioning methods for dense linear systems from boundary ele-

ments, SIAM J. Sci. Comput., 20 (1998), pp. 684–698.
[15] K. Chen and S. Amini, Numerical analysis of boundary integral solution of the Helmholtz

equation in domains with non-smooth boundaries, IMA J. Numer. Anal., 13 (1994), pp.
43–66.

[16] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners,
SIAM J. Sci. Comput., 21 (2000), pp. 1804–1822.

[17] E. Chow and Y. Saad, Parallel approximate inverse preconditioners, in Proceed-
ings of the 8th SIAM Conference on Parallel Processing for Scientific Com-
puting, Minneapolis, MN, March 1997, pp. 14–17; also available online from
http://www.llnl.gov/CASC/people/chow/pubs/history.ps.

[18] J. D. F. Cosgrove, J. C. Diaz, and A. Griewank, Approximate inverse preconditioners for
sparse linear systems, Int. J. Comput. Math., 44 (1992), pp. 91–110.

[19] J. A. Cuminato, On the uniform convergence of a collocation method for a class of singular
integral equations, BIT, 27 (1987), pp. 190–202.

[20] M. Embree, How Descriptive Are GMRES Convergence Bounds?, University of Ox-
ford Computing Lab., Oxford, UK, NA Report 99/08 1999; http://web.comlab.
ox.ac.uk/oucl/work/mark.embree/estimates.ps.gz.

[21] F. Erdogan and G. D. Gupta, On the numerical solution of singular integral equations,
Quart. Appl. Math., 30 (1972), pp. 525–534.

[22] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of linear systems,
Acta Numerica, Cambridge University Press, UK, 1992, pp. 57–100.

[23] A. Gerasoulis, Nyström’s iterative variant methods for the solution of Cauchy singular inte-
gral equations, SIAM J. Numer. Anal., 26 (1989), pp. 430–441.

[24] G. H. Golub and C. Van Loan, Matrix Computation, 2nd ed., Johns Hopkins University
Press, Baltimore, MD, 1989.

[25] N. I. M. Gould and J. A. Scott, Sparse approximate-inverse preconditioners using norm-
minimization techniques, SIAM J. Sci. Comput., 19 (1998), pp. 605–625.

[26] A. Grama, V. Kumar, and A. Sameh, Parallel hierarchical solvers and preconditioners for
boundary element methods, SIAM J. Sci. Comput., 20 (1999), pp. 337–358.

[27] W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, New York, 1985.
[28] P. J. Harris, A boundary element method for the Helmholtz equation using finite part inte-

gration, Comput. Methods Appl. Mech. Engrg., 95 (1992), pp. 331–342.

1078 KE CHEN

[29] P. W. Hemker and H. Schippers, Multigrid methods for the solution of Fredholm integral
equations of the second kind, Math. Comp., 36 (1981), pp. 215–232.

[30] H. Holm, M. Maischak, and E. P. Stephan, The hp-Version of the Boundary Ele-
ment Method for Helmholtz Screen Problems, Institute For Applied Mathematics report,
IFAM 7, University of Hannover, Germany, 1995. (Available via ftp from ftp.ifam.uni-
hannover.de/pub/preprints.)

[31] T. Huckle and M. Grote, Parallel preconditioning with sparse approximate inverses, SIAM
J. Sci. Comput., 18 (1998), pp. 838–853.

[32] N. I. Ioakimidis and P. S. Theocaris, A comparison between the direct and the classical
numerical methods for the solution of Cauchy type singular integral equations, SIAM J.
Numer. Anal., 17 (1980), pp. 115–118.

[33] L. Y. Kolotilina and A. Y. Yeremin, On a family of two-level preconditionings of the in-
complete block factorization type, Soviet J. Numer. Anal. Math. Modelling, 1 (1986), pp.
293–320.

[34] F. R. Lin, M. K. Ng, and R. Chan, Preconditioners for Wiener-Hopf equations with high-
order quadrature rules, SIAM J. Numer. Anal., 34 (1997), pp. 1418–1431.

[35] S. V. Parter and S. P. Wong, Preconditioning second-order elliptic operators: Condition
numbers and the distribution of the singular values, J. Sci. Comput., 6 (1991), pp. 129–
157.

[36] I. Moret, A note on the superlinear convergence of GMRES, SIAM J. Numer. Anal., 34 (1997),
pp. 513–516.

[37] N. M. Nachtigal, S. Reddy, and N. Trefethen, How fast are nonsymmetric matrix itera-
tions?, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778–795.

[38] L. Reichel, A method for preconditioning matrices arising from linear integral equations for
elliptic boundary value problems, Computing, 37 (1986), pp. 125–136.

[39] L. Reichel, Parallel iterative methods for the solution of Fredholm integral equations of the
second kind, in Hypercube Multiprocessors 1987, M. T. Heath, ed., SIAM, Philadelphia,
1987, pp. 520–529.

[40] L. Reichel, A matrix problem with application to rapid solution of integral equations, SIAM
J. Sci. Statist. Comput., 11 (1990), pp. 263–280.

[41] Y. Saad, Iterative Solution for Sparse Linear Systems, PWS, Boston, 1996.
[42] W. P. Tang and W. L. Wan, Sparse approximate inverse smoother for multigrid, SIAM J.

Matrix Anal. Appl., 21 (2000), pp. 1236–1252.
[43] S. Vavasis, Preconditioning for boundary integral equations, SIAM J. Matrix Anal. Appl., 13

(1992), pp. 905–925.
[44] K. Nabors, F. T. Korsmeyer, F. T. Leighton, and J. White, Preconditioned, adaptive,

multipole-accelerated iterative methods for three-dimensional first-kind integral equations
of potential theory, SIAM J. Sci. Comput., 15 (1994), pp. 713–735.

[45] R. Winther, Some superlinear convergence results for the conjugate gradient method, SIAM
J. Numer. Anal., 17 (1980), pp. 14–17.

[46] Y. Yan, Sparse preconditioned iterative methods for dense linear systems, SIAM J. Sci. Com-
put., 15 (1994), pp. 1190–1200.

SUCCESSIVELY ORDERED ELEMENTARY BIDIAGONAL
FACTORIZATION∗

CHARLES R. JOHNSON† , D. D. OLESKY‡ , AND P. VAN DEN DRIESSCHE§

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1079–1088

Abstract. Let D be a diagonal matrix and Eij denote the n-by-n matrix with a 1 in entry (i, j)
and 0 in every other entry. An n-by-n matrix A has a successively ordered elementary bidiagonal
(SEB) factorization if it can be factored as

A =

n−1∏

k=1

k+1∏
j=n

Lj(sjk)

 D

 1∏

k=n−1

n∏
j=k+1

Uj(tkj)

 ,

in which Lj(sjk) = I + sjkEj,j−1 and Uj(tkj) = I + tkjEj−1,j for some scalars sjk, tkj . Note that
some of the parameters sjk, tkj may be zero, and the order of the bidiagonal factors is fixed. If this
factorization corresponds to reduction of A toD via successive row/column operations in the specified
order, it is called an elimination SEB factorization. New rank conditions are formulated that are
proved to be necessary and sufficient for matrix A to have such a factorization. These conditions are
related to known but more restrictive properties that ensure a bidiagonal factorization as above, but
with all parameters sjk, tkj nonzero.

Key words. bidiagonal matrix, elimination, factorization, rank

AMS subject classification. 15A23

PII. S0895479800373322

1. Introduction. We begin by defining an elementary bidiagonal factorization
and then focus on a particular order for the factors. Let I denote the n-by-n identity
matrix, and Eij , 1 ≤ i, j ≤ n, denote the n-by-n 0,1 matrix whose (i, j) entry, and no
other, is 1. Define Li(s) = I+sEi,i−1 and Uj(t) = I+tEj−1,j = LTj (t), for 2 ≤ i, j ≤ n
and parameters s, t ∈ F , a given field. Matrices of the form Li(s) or Uj(t) are called
elementary bidiagonal (EB) matrices. A matrix A ∈ Mn(F) has an EB factorization
if A can be written as a product of EB matrices and at most one diagonal matrix.
Without restriction upon order or number of factors, such a factorization of A always
exists [6].

Most previous work on EB factorization has dealt with the factorization of totally
nonnegative matrices (that is, matrices in which all minors are nonnegative); see, for,
example, [1, 3, 5, 7, 8]. In this context, a factorization that corresponds to elimination
of entries in the following order

(n, 1), . . . , (2, 1), (n, 2), . . . , (3, 2), . . . , (n, n− 1),

(1, n), . . . , (1, 2), (2, n), . . . , (2, 3), . . . , (n− 1, n)(1)

∗Received by the editors June 7, 2000; accepted for publication (in revised form) by R. Brualdi
November 13, 2000; published electronically March 7, 2001.

http://www.siam.org/journals/simax/22-4/37332.html
†Department of Mathematics, College of William and Mary, PO Box 8795, Williamsburg, VA

23187-8795 (crjohnso@math.wm.edu).
‡Department of Computer Science, University of Victoria, Victoria, BC, V8W 3P6 Canada

(dolesky@csr.uvic.ca). The research of this author was supported in part by an NSERC research
grant.

§Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 3P4
Canada (pvdd@math.uvic.ca). The research of this author was supported in part by an NSERC
research grant.

1079

1080 CHARLES R. JOHNSON, D. D. OLESKY, AND P. VAN DEN DRIESSCHE

is particularly appropriate. This factorization always exists for a nonsingular totally
nonnegative matrix, and we study it for more general matrices, a special case of which
has already been considered in [4].

A successively ordered EB (SEB) factorization of a general n-by-n matrix A is a
factorization

A =

n−1∏
k=1

k+1∏
j=n

Lj(sjk)

 D

 1∏
k=n−1

n∏
j=k+1

Uj(tkj)

(2)

in which each parameter sjk, tkj may be zero or nonzero. (We adopt the convention in∏
that factors are written from left to right with the one corresponding to the bottom

index of
∏

on the left.) For example, if a 4-by-4 matrix A has an SEB factorization,
then it is of the form

A = L4(s41)L3(s31)L2(s21) L4(s42)L3(s32) L4(s43) D

×U4(t34) U3(t23)U4(t24) U2(t12)U3(t13)U4(t14)(3)

in which D is diagonal and some EB factors may not be included.
Example 1.

A =

 1 0 0

0 1 0
1 0 1

has an EB factorization A = L2(−1)L3(1)L2(1)L3(−1); see [6, Theorem 11]. How-
ever, A has no SEB factorization.

In the event that all possible EB factors are included (with nonzero parameters),
the SEB factorization (2) is called generic. Matrices with generic SEB factorizations
were studied in [4, 5]. For lists α, β from 1, 2, . . . , n, the submatrix of the n-by-n
matrix A lying in the rows α and columns β is denoted by A[α|β]. As in [4, (1)] and
earlier with different terminology in [5, (2.3)], the n-by-n matrix A is said to have the
consecutive-column (CC) property if the

(
n
2

)
submatrices A[r − s + 1, . . . , r|1, . . . , s]

are nonsingular, for 1 ≤ r ≤ n and 1 ≤ s ≤ r, and A has the consecutive-row (CR)
property if AT has the CC property. It was shown in [4] that a nonsingular matrix A
has a generic SEB factorization if and only if it has the CC and CR properties, and
when the factorization exists, it is unique.

Our interest is in the SEB factorization of matrices, but in which not all of
the factors Lj(sjk) and Uj(tkj) are necessarily included (i.e., nongeneric SEB). The
following example shows that for a unit lower triangular matrix, all

(
n
2

)
EB factors

may not be needed in an SEB factorization with the ordering (2).
Example 2.

A =

 1 0 0

1 1 0
1 1 1

 =

 1 0 0

0 1 0
0 1 1

 1 0 0

1 1 0
0 0 1

 = L3(1)L2(1)

requires only 2 EB factors instead of the generic number 3, and D = I. Since s32

must be 0 and L3(0) = I, this factor is not included. Note that A does not have the
CC property, since A[2, 3|1, 2] is singular.

Unfortunately, nongeneric SEB factorizations of a given matrix (when they ex-
ist) are not in general unique; it is also natural to consider factorization of singular

ELEMENTARY BIDIAGONAL FACTORIZATION 1081

matrices (those of [4, 5] are necessarily nonsingular). Thus we narrow somewhat the
SEB factorizations that we study in order to understand existence and to achieve
uniqueness. We call an SEB factorization (2) an elimination SEB (ESEB) if it
results from the reduction of an n-by-n matrix A to the diagonal matrix D by elim-
inating nonzero entries via elementary bidiagonal row/column operations performed
in the order (1). Each such operation in the elimination is called a successive row
(column) operation. An elimination process consisting of such operations has been
called Neville elimination by some authors. Note that the subscripts on sjk and tkj
correspond to the entry being eliminated. If sjk or tkj can be 0 in any factor, then
that factor can be I, and it is not included in the ESEB factorization.

Example 3.

A =

1 0 0 0
a 1 0 0
0 b 1 0
0 bc c 1

with a, b, c �= 0 has an SEB factorization A = L4(c)L2(a)L3(b). However, the ESEB
factorization is A = L2(a)L4(c)L3(b). This illustrates the fact that SEB factoriza-
tions are not necessarily unique.

Example 4. The singular matrix

A =

 1 0 0

1 0 0
0 0 1

has the ESEB factorization

A =

 1 0 0

1 1 0
0 0 1

 1 0 0

0 0 0
0 0 1

 = L2(1)D.

Note that A = L2(1)L3(s32)D for all values of s32 (including s32 = 0), which is an
SEB factorization of A.

In an SEB factorization, the factors Lj (or Uj) occur in “stretches” left to right
(right to left). The kth L-stretch , k = 1, . . . , n− 1, is the product

k+1∏
j=n

Lj(sjk) = Ln(snk)Ln−1(sn−1,k) · · ·Lk+1(sk+1,k),

and the kth U-stretch , k = 1, . . . , n− 1, is the product

n∏
j=k+1

Uj(tkj) = Uk+1(tk,k+1)Uk+2(tk,k+2) · · ·Un(tkn).

For example, if A is a 4-by-4 matrix with an SEB factorization as in (3), then the 1st
L-stretch is L4(s41)L3(s31)L2(s21). We sometimes refer to a stretch without specifying
L or U . In an ESEB factorization, the parameters sjk (tkj) in the kth stretch are
chosen to eliminate the entries in the kth column (row) of A. The smallest indexed
L or U that may appear in the kth stretch is k + 1 and the largest is n, although
some factors may not be included in a stretch in which they are allowed, and in fact
a stretch may be empty.

1082 CHARLES R. JOHNSON, D. D. OLESKY, AND P. VAN DEN DRIESSCHE

We call an SEB factorization proper (PSEB) if, in each nonempty stretch, the
included EB factors are indexed consecutively and include the smallest index allowed
(i.e., if Li(sik) or Ui(tki), i > k, does not appear in the kth stretch, then neither does
Lj(sjk) or Uj(tkj) for all j > i). This turns out to be a natural requirement that
narrows the possible SEB factorizations from the point of view of elimination, and
corresponds to the ESEB factorization for a nonsingular matrix (see section 3).

2. Existence of ESEB factorization. We formulate our characterization of an
ESEB factorization in terms of new rank conditions given in the following definition.

Definition 5. An n-by-n matrix A satisfies the column descending rank condi-
tion if for all l such that 1 ≤ l ≤ n− 1, for all m such that 0 ≤ m ≤ l− 1, and for all
p such that l −m ≤ p ≤ n−m− 1,

rank A[p, . . . , p+m|1, . . . , l] ≥ rank A[p + 1, . . . , p+m+ 1|1, . . . , l].(4)

Matrix A satisfies the row descending rank condition if AT satisfies the column
descending rank condition, namely,

rank A[1, . . . , l|p, . . . , p+m] ≥ rank A[1, . . . , l|p + 1, . . . , p+m+ 1],(5)

in which the indices are as above.
The relation between the CC property and the column descending rank condition

is now considered. An analogous relation holds between the CR property and the row
descending rank condition.

Observation 6. Let A be an n-by-n nonsingular matrix. If A has the CC property,
then A satisfies the column descending rank condition (and, in fact, all of the rank
conditions (4) hold with equality and every submatrix in (4) has full rank).

Proof. All of the square submatrices (the case m = l − 1) in (4) are included
in the CC property and are therefore nonsingular. For each of the inequalities in
(4) between the ranks of two nonsquare submatrices, each of the submatrices has full
rank, as it consists of one or more complete rows of a nonsingular matrix. Thus all
of the submatrices in (4) have full rank, and the result follows.

Example 2 shows that the column descending rank condition may hold without
the CC property. The proof of the above observation leads to the following further
observation.

Observation 7. If all of the rank conditions in (4) on square submatrices hold
with equality and all of the submatrices involved have full rank, then all of the other
rank conditions in (4) also hold with equality.

The following lemma, showing that the rank conditions are preserved under a
successive row (column) operation during the computation of an ESEB factorization,
is central to the proof of our characterization.

Lemma 8. Assume that A is an n-by-n matrix with i, r such that 1 ≤ i ≤ n− 1,
i ≤ r ≤ n − 1 and every entry in A below the main diagonal in columns 1, . . . , i − 1
and entries ar+2,i, . . . , ani are zero, but ari �= 0. (Entry ar+1,i is arbitrary.) Let
A′ = Lr+1(s)A. Then A′ satisfies the column and row descending rank conditions if
and only if A satisfies these rank conditions. The conclusion also holds if AT satisfies
the above assumptions on A and A′ = AUr+1(t).

Proof. Since Lr+1(0) = I, the result is obvious for s = 0; thus suppose that
s �= 0. Assume that A satisfies the column and row descending rank conditions.
Since the submatrices on both sides of the inequality (5) have the same row indices,
the row descending rank condition (5) is unchanged by any successive row operation.

ELEMENTARY BIDIAGONAL FACTORIZATION 1083

Thus A′ satisfies the row descending rank condition. To show that A′ satisfies the
column descending rank condition, let B = A[p + 1, . . . , p + m + 1|1, . . . , l] and
C = A[p, . . . , p + m|1, . . . , l] for 1 ≤ l ≤ n − 1, 0 ≤ m ≤ l − 1, and l − m ≤
p ≤ n −m − 1. By assumption rank C ≥ rank B, and it is necessary to show that
rank C ′ ≥ rank B′, where C ′ and B′ are the corresponding submatrices of A′. Assume
that i ≤ l (otherwise C ′ = C and B′ = B, and the result is obvious). Depending on
the value of r, there are 5 ways that multiplication by Lr+1(s) (i.e., adding multiple
s of row r of A to row r + 1 of A) may change B or C; each is considered separately.

(i) p + 1 ≤ r ≤ p + m − 1 with m ≥ 2 and 1 ≤ i ≤ n − 3 (i.e., both rows r and
r + 1 of A are in B and C). The ranks of B and C are unchanged by multiplication
by Lr+1(s). Thus rank C ′ = rank C ≥ rank B = rank B′.

(ii) i ≤ r ≤ p− 2 or p+m+ 1 ≤ r ≤ n− 1 (i.e., neither row r nor row r + 1 of A
are in B or C, but they are above C or below B). Multiplication by Lr+1(s) leaves
B and C unchanged, thus rank C ′ ≥ rank B′.

(iii) r = p+m with m ≥ 1 (i.e., the bottom rows of B and C are involved). Since
the successive row operation is within B, rank B′ = rank B. Also C ′ = C. Thus
rank C ′ ≥ rank B′.

(iv) r = p (i.e., the top rows of B and C are involved). If m = 0, then C ′ = C
with rank C ′ = 1 ≥ rank B′. If m ≥ 1, then the successive row operation is within
C, and so rank C ′ = rank C. If rank B′ ≤ rank B, then rank C ′ ≥ rank B′.
Otherwise rank B′ = rank B + 1 (since a row operation can change the rank by
at most one). Let Rj = A[j|1, . . . , l] for p ≤ j ≤ p + m + 1. Since rank B =
rank span{Rp+1, . . . , Rp+m+1}, and rank B′ = rank span{sRp+Rp+1, Rp+2, . . . ,
Rp+m+1}, it must be that Rp /∈ span{Rp+1, . . . , Rp+m+1}. Also {Rp+1, . . . , Rp+m+1}
must be linearly dependent, as rank B′ = rank B + 1 implies that rank B < m + 1.
If Rp+m+1 is not a linear combination of {Rp+1, . . . , Rp+m}, then there exists Rp+q,
such that, Rp+q is a linear combination of {Rp+q+1, . . . , Rp+m}, where 1 ≤ q ≤ m−1.
Then

rank span{Rp+q, . . . , Rp+m} = rank span{Rp+q+1, . . . , Rp+m+1} − 1,

which violates the column descending rank condition. Therefore rank B′ ≤ rank B.
Finally, if Rp+m+1 is a linear combination of {Rp+1, . . . , Rp+m}, then rank B′ =
rank C, and thus rank C ′ ≥ rank B′.

(v) r = p − 1 (i.e., the row above C and the top row of C are involved). B
remains unchanged, thus B′ = B. If rank C ′ ≥ rank C, then the result is obvious.
So assume that rank C ′ = rank C − 1. Note that this implies that ar+1,i �= 0,
since by assumption ari �= 0. Let B+ = A[p, . . . , p + m + 1|1, . . . , l] and C+ =
A[p − 1, . . . , p + m|1, . . . , l]. Then rank B+ = 1 + rank B′ as column i of B′ is zero
but api = ar+1,i �= 0. By the column descending rank condition, rank B+ ≤ rank C+.
Since rank C ′ = rank C − 1, it follows that sRp−1 + Rp ∈ span{Rp+1, . . . , Rp+m}.
Thus Rp−1 ∈ span{Rp, . . . , Rp+m}, which gives rank C+ = rank C. Therefore
rank B′ < rankB+ ≤ rank C+ = rank C = rank C ′ + 1, giving rank C ′ ≥ rank B′.

Collecting (i)–(v), A′ = Lr+1(s)A satisfies the column descending rank condition.
For the converse, assume that A′ = Lr+1(s)A satisfies the rank conditions. Then

A = L−1
r+1(s)A

′ = Lr+1(−s)A′. Thus the arguments in the 5 cases above show that
A also satisfies the rank conditions. The last statement of the theorem follows by
applying the above to AT .

Theorem 9. An n-by-n matrix A has an ESEB factorization if and only if it
satisfies the column and row descending rank conditions. Furthermore, if an ESEB
factorization exists, then it is unique.

1084 CHARLES R. JOHNSON, D. D. OLESKY, AND P. VAN DEN DRIESSCHE

Proof. Suppose that A satisfies the rank conditions. Let i, r be such that
1 ≤ i ≤ n − 1, i ≤ r ≤ n − 1 and every entry in A below the main diagonal in
columns 1, . . . , i− 1 and entries ar+2,i, . . . , ani are zero, but ar+1,i �= 0. The column
descending rank condition implies that ari is nonzero, so a successive row operation
using ari to eliminate ar+1,i can be applied to A yielding A′. Lemma 8 implies that A′

satisfies the column and row descending rank conditions. Clearly this procedure can
be repeated (a total of at most

(
n
2

)
times) until A is reduced to an upper triangular

matrix T that satisfies the row descending rank condition. Similarly, using at most(
n
2

)
successive column operations, T can be reduced to diagonal form, completing the

ESEB factorization. Since the order of elimination is fixed by (1), each parameter
sjk, tjk is uniquely determined and so the ESEB factorization is unique.

For the converse, assume that A has an ESEB factorization, written as A = LDU ,
where D is a diagonal matrix, L =

∏n−1
k=1

∏k+1
j=n Lj(sjk) and U =

∏1
k=n−1

∏n
j=k+1 Uj(tkj).

Thus D = L−1AU−1 and D satisfies the rank conditions. Working from column n−1,
the lower triangular part of A can be reconstructed from D by successive row oper-
ations. After each operation the resulting matrix satisfies the conditions of Lemma
8, and thus the rank conditions hold. Similarly, starting from row n − 1, the upper
triangular part of A is reconstructed, and the rank conditions remain satisfied.

The following example illustrates that determinant conditions alone may not suf-
fice to determine when a matrix has an ESEB factorization; cf. the CC and CR
properties.

Example 10. Consider the unit lower triangular matrix

A =

1 0 0 0
1 1 0 0
0 0 1 0
0 1 0 1

 ,

which satisfies all the column descending rank conditions on square submatrices. How-
ever, rank A[3|1, 2] = 0 < rank A[4|1, 2] = 1; thus by Theorem 9 A has no ESEB
factorization.

3. Relations between SEB factorizations. As we have seen it is possible for
some of the parameters to be zero in the ESEB factorization, and the corresponding
factors are then not included. In (i) of the following result, it is shown that an
ESEB factorization is in fact a PSEB factorization; this was observed (with different
terminology) in [5, Theorem 2.2]. In (ii) a necessary rank condition corresponding to
a zero parameter is given.

Theorem 11. Given the ESEB factorization of an n-by-n matrix A, let 1 ≤
q ≤ n− 1, q + 1 ≤ i ≤ n and assume that siq = 0 (thus Li(siq) is not included in the
qth L-stretch of the ESEB factorization of A). It follows that

(i) if i is the smallest such index, then the qth L-stretch is just
∏q+1
j=i−1 Lj(sjq)

(in the case i = q + 1, the qth L-stretch has no factors); and
(ii) A[i− q + 1, . . . , i|1, . . . , q] does not have full rank.
Analogous statements hold for the qth U-stretch.
Proof. From (2), all entries below the main diagonal in the first q − 1 columns

of Â = (
∏q−1
k=1

∏k+1
j=n Lj(sjk))

−1A = [âij] are 0. The product of the inverses of the

factors in the qth L-stretch are used to zero out the entries of Â in column q below
the main diagonal. Since Li(siq) does not occur in the qth L-stretch, âiq must already
be zero. Since A has an ESEB factorization, it satisfies the column descending rank

ELEMENTARY BIDIAGONAL FACTORIZATION 1085

condition (by Theorem 9), and thus so does Â (by Lemma 8). Therefore, ârq = 0

for i + 1 ≤ r ≤ n. Thus none of the factors
∏i+1
j=n Lj(sjq) are included in the qth

L-stretch, proving (i).
To prove (ii), suppose that Li(siq) is not included in the qth L-stretch, but that

rank A[i− q + 1, . . . , i|1, . . . , q] = q,

i.e., this submatrix has full rank. Since A has an ESEB factorization, A satisfies the
column descending rank condition (by Theorem 9). Consider the reduction of A to
the diagonal matrix D as in the ESEB factorization of A. After elimination of entries
in positions (n, 1), (n− 1, 1), . . . , (i− q+2, 1), we obtain A1 = (

∏i−q+2
j=n Lj(sj1))

−1A,
in which

rank A1[i− q + 1, . . . , i|1, . . . , q] = q.

Thus

rank A1[i− q + 2, . . . , i|2, . . . , q] = q − 1,

i.e., this submatrix has full rank. Now continue with the elimination of entries
of A as in the ESEB factorization, eliminating the entries in positions (i − q +
1, 1) . . . , (2, 1), (n, 2), (n− 1, 2), . . . , (i− q + 3, 2), giving

A2 =

 2∏
j=i−q+1

Lj(sj1)

i−q+3∏
j=n

Lj(sj2)

−1

A1.

After these elementary row operations

rank A2[i− q + 2, . . . , i|2, . . . , q] = q − 1,

and thus

rank A2[i− q + 3, . . . , i|3, . . . , q] = q − 2,

which is full rank. Proceeding with the ESEB factorization, after the elimination
of all entries below the main diagonal in columns 1, . . . , q − 2 and the elimination of
entries in positions (n, q−1), (n−1, q−1), . . . , (i, q−1) we obtain the matrix Aq−1 in
which rank Aq−1[i|q] = 1. Continuing with the ESEB factorization, the elementary
row operations used to eliminate the entries in positions (i − 1, q − 1), . . . , (q, q −
1), (n, q), (n− 1, q), . . . , (i + 1, q) leave the (i, q) entry of Aq−1 unchanged. But this
implies that Li(siq) is included in the qth L-stretch of the ESEB factorization of A,
which is a contradiction. Thus rank A[i− q + 1, . . . , i|1, . . . , q] cannot be full.

The results of Theorem 11 are illustrated in the following example.
Example 12. Let A be the 5-by-5 unit lower triangular matrix with ESEB

factorization

A =

1 0 0 0 0
2 1 0 0 0
1 1 1 0 0
1 1 2 1 0
1 1 4 4 1

 = L5(1)L4(1)L3

(
1

2

)
L2(2) L3

(
1

2

)
L5(2)L4(1) L5(1).

1086 CHARLES R. JOHNSON, D. D. OLESKY, AND P. VAN DEN DRIESSCHE

Here the 2nd L-stretch is just L3(
1
2) since s52 = s42 = 0, thus L5(s52) and L4(s42)

are not included in the 2nd L-stretch of the ESEB factorization (2). Further-
more, rank A[3, 4|1, 2] = rank A[5, 4|1, 2] = 1, illustrating Theorem 11(ii). However,
rank A[3, 4, 5|1, 2, 3] = 2 (i.e., is not full), but L5(s53) = L5(2) is included in the
ESEB factorization. Thus the converse of Theorem 11(ii) is not in general true.

By Theorem 11(i), the ESEB factorization of a matrix A is also a PSEB fac-
torization. The following result addresses the converse.

Theorem 13. If A is an n-by-n matrix with a PSEB factorization (2), then A
also has an ESEB factorization. Furthermore, if A is nonsingular, then any PSEB
factorization coincides with the (unique) ESEB factorization.

Proof. Assume that A has a PSEB factorization. We prove the results by
induction for an n-by-n lower triangular matrix A. An analogous proof holds if A is
upper triangular, and these two cases give the general results. The theorem is clearly
true if n = 2. Assume that it is true for lower triangular matrices of order n− 1, and
let A be an n-by-n lower triangular matrix.

If the 1st L-stretch in the PSEB factorization (2) is empty, then a21 = · · · =
an1 = 0 (but a11 may be zero or nonzero). By the induction hypothesis, since a PSEB
factorization of A[2, . . . , n|2, . . . , n] exists, this leads to an ESEB factorization of A.
If A is nonsingular, then a11 �= 0 and A[2, . . . , n|2, . . . , n] is nonsingular. The second
statement of the theorem then follows by the inductive hypothesis. If the 1st L-stretch
is nonempty, then it is F = Lm(sm1)Lm−1(sm−1,1) · · ·L2(s21), with m ≥ 2. Then A
can be written as A = FA′D, in which either

(a) a11, . . . , an1 are all zero and the first diagonal entry of D is 0,
or

(b) a11, . . . , am1 are all nonzero, but aq1 = 0 for all q > m.
In either case (A′D)[2, . . . , n|2, . . . , n] has a PSEB factorization, given from the
PSEB factorization of A. Thus, (A′D)[2, . . . , n|2, . . . , n] has an ESEB factorization
by the induction hypothesis. In the event (a), A clearly has an ESEB factorization
(although it need not coincide with the given PSEB factorization). In the event (b),
since the inverses of the EB matrices of the 1st L-stretch are exactly the elementary
factors that eliminate up the first column, A also has an ESEB factorization, which
coincides with the given PSEB factorization if A is nonsingular.

Example 4 shows that the conclusion of Theorem 13 in the nonsingular case
is not in general true for a singular matrix, since A = L2(1)L3(s32)D is a PSEB
factorization of A for all values of s32, but the (unique) ESEB factorization is A =
L2(1)D.

The following example shows that (for n ≥ 4) it is possible for a nonsingular
matrix A to have an SEB factorization, but not an ESEB factorization (and thus
not a PSEB factorization).

Example 14.

A =

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

has an SEB factorization A = L3(−1)L4(1)L3(1)L4(−1). However, by Theorem 9,
A has no ESEB factorization, since rank A[3|1, 2] = 0 < rank A[4|1, 2], and thus no
PSEB factorization by Theorem 13. If the (4, 4) entry of A is changed to 0, then the
new matrix is singular, and has an SEB factorization L3(−1)L4(1)L3(1)L4(−1)D,
with D = diag(1, 1, 1, 0), but no ESEB or PSEB factorization.

ELEMENTARY BIDIAGONAL FACTORIZATION 1087

By using the relations (see, e.g., [1, p. 57])

Li(r)Lj(s) = Lj(s)Li(r), |i− j| ≥ 2,

and

Li(r)Li±1(s)Li(t) = Li±1

(
st

r + t

)
Li(r + t)Li±1

(
rs

r + t

)
, r + t �= 0,(6)

an SEB factorization can usually be transformed into a PSEB factorization. For
example, if a+ c �= 0, then

L3(a)L4(b)L3(c)L4(d) = L4

(
bc

a+ c

)
L3(a+ c)L4

(
ab

a+ c

)
L4(d)

= L4

(
bc

a+ c

)
L3(a+ c)L4

(
d +

ab

a+ c

)
,

by using (6). This is a PSEB factorization (with the 1st stretch empty) of

1 0 0 0
0 1 0 0
0 a+ c 1 0
0 bc b + d 1

 .

Matrices (such as A in Example 14, in which a+c = 0) that have an SEB factorization
but no PSEB factorization are a set of measure zero in the vector space of n-by-n
matrices.

For the generic SEB factorization, the parameters in (2) are given in our notation
by the following formulae from [4, Theorems 3.2, 3.3].

Theorem 15. Let A be an n-by-n nonsingular matrix with the generic factoriza-
tion (2). Then for 1 ≤ k ≤ n− 1,

sk+1,1 =
ak+1,1

ak1
,(7)

and for 2 ≤ q ≤ n− 1 and 1 ≤ k ≤ n− q,

sk+q,q =
1

Pkq

det(A[k + 1, . . . , k + q|1, . . . , q])
det(A[k + 1, . . . , k + q − 1|1, . . . , q − 1])

,(8)

where Pkq = sk+q−1,q · · · sq+1,q, with P1q = 1. Similar formulae hold for tq,k+q with
the rows and columns of the minors of A interchanged.

For fixed q, the result of Theorem 11(ii) can be obtained from (7) and (8) only if
i is the smallest index such that siq = 0. (Note that if siq = 0, then (8) is undefined
for sjq if j > i.)

4. Additional remarks on the ESEB factorization. As remarked in the
introduction, if A is a nonsingular totally nonnegative matrix, then it is known to
have an ESEB factorization; see [7, 8]. The following observation follows from The-
orem 9 and generalizes known facts about the zero pattern of a nonsingular totally
nonnegative matrix; see the double echelon form in [2].

Observation 16. If A is a nonsingular totally nonnegative matrix, then A satisfies
the column and row descending rank conditions.

1088 CHARLES R. JOHNSON, D. D. OLESKY, AND P. VAN DEN DRIESSCHE

It is clear from the definition that if A has an ESEB factorization, then A has
an LU factorization. However, the matrix A in Example 1 shows that the converse
of this statement is not in general true, since a21 = 0 but a31 �= 0. In fact there is no
permutation matrix P such that PA has an ESEB factorization.

We conclude with an inheritance property of the leading principal submatrices
of matrices that have an ESEB factorization, which is just like the corresponding
property for LU factorization. We denote the leading principal submatrix
A[1, . . . , w|1, . . . , w] by A[w].

Theorem 17. Let A be an n-by-n matrix that has the ESEB factorization (2).
Then A[w] has the ESEB factorization

A[w] =

w−1∏
k=1

k+1∏
j=w

Lj(sjk)[w]

 D[w]

 1∏
k=w−1

w∏
j=k+1

Uj(tkj)[w]

 .

Proof. From the ESEB factorization (2) of A,

A[w] =

n−1∏
k=1

k+1∏
j=n

Lj(sjk)

 D

 1∏
k=n−1

n∏
j=k+1

Uj(tkj)

 [w].

Let M = max{w + 1, k + 1}. In the above matrix product, the factors

n−1∏
k=1

M∏
j=n

Lj(sjk),

1∏
k=n−1

n∏
j=M

Uj(tkj),

and the diagonal entries of D in rows w + 1, . . . , n have no effect on this product in
rows and columns 1, . . . , w, which gives the result.

REFERENCES

[1] A. Berenstein, S, Fomin, and A. Zelevinsky, Parameterizations of canonical bases and totally
positive matrices, Adv. Math., 122 (1996), pp. 49–149.

[2] A.S. Crans, S.M. Fallat, and C.R. Johnson, The Hadamard core of the totally nonnegative
matrices, Linear Algebra Appl., to appear.

[3] C.W. Cryer, Some properties of totally nonnegative matrices, Linear Algebra Appl., 15 (1976),
pp. 1–25.

[4] M. Fiedler and T.L. Markham, Consecutive-column and -row properties of matrices and the
Loewner-Neville factorization, Linear Algebra Appl., 266 (1997), pp. 243–259.

[5] M. Gasca and J.M. Peña, On factorizations of totally positive matrices, in Total Positivity
and Its Applications, M. Gasca and C.A. Micchelli, eds., Kluwer, Norwell, MA, 1996, pp.
109–130.

[6] C.R. Johnson, D.D. Olesky, and P. van den Driessche, Elementary bidiagonal factorizations,
Linear Algebra Appl., 292 (1999), pp. 233–244.

[7] C. Loewner, On totally positive matrices, Math Z., 63 (1955), pp. 338–340.
[8] A.M. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math., 2 (1952), pp.

88–92.

NONSTATIONARY MULTISPLITTINGS WITH GENERAL
WEIGHTING MATRICES∗

VIOLETA MIGALLÓN† , JOSÉ PENADÉS† , AND DANIEL B. SZYLD‡

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1089–1094

Abstract. In the convergence theory of multisplittings for symmetric positive definite (s.p.d.)
matrices it is usually assumed that the weighting matrices are scalar matrices, i.e., multiples of the
identity. In this paper, this restrictive condition is eliminated. In its place it is assumed that more
than one (inner) iteration is performed in each processor (or block). The theory developed here is
applied to nonstationary multisplittings for s.p.d. matrices, as well as to two-stage multisplittings
for symmetric positive semidefinite matrices.

Key words. iterative methods, linear systems, symmetric positive definite matrices, block
methods, parallel algorithms, multisplitting, two-stage, nonstationary

AMS subject classifications. 65F10, 65F15

PII. S0895479800367038

1. Introduction. Multisplitting methods, first introduced by O’Leary and
White [18], developed into an important theoretical tool in the study of parallel block
iterative methods for the solution of linear (and nonlinear) systems of equations; see,
e.g., [4], [12], [16], and the extensive references therein. In these methods, for the
solution of a nonsingular system Ax = b, several splittings A =M�−N�, � = 1, . . . , p,
(M� nonsingular) are used, together with a set of diagonal nonnegative (weighting)
matrices E�, such that they add up to the identity; see Algorithm 1.1 below.

Most of the convergence results obtained with the philosophy of multisplittings
throughout the literature relate to nonsymmetric matrices. The reason for this is that
in these cases, general convergence results were obtained for quite general weighting
matrices thus allowing the study of truly parallel methods (with or without overlap),
i.e., methods in which each processor computes an approximation to the solution of
a problem which is much smaller than the original problem.

In contrast, most results for general symmetric positive definite (s.p.d.), or more
generally, Hermitian positive definite, linear systems require the assumption that
weighting matrices are multiples of the identity

E� = α�I, � = 1, . . . , p(1.1)

(see, e.g., [7], [8], [15], [18]), thus these results have little applicability for analysis of
parallel processing. We note here that in [21], condition (1.1) is not present, but the
splittings of A have a very special structure. We also mention [6] where a nonstandard
multisplitting is used for s.p.d. matrices.

The main reason for the requirement (1.1) becomes apparent with examples found
in the literature, e.g., in [7], [18], showing that relaxing (1.1) may lead to a divergent

∗Received by the editors February 4, 2000; accepted for publication (in revised form) by D.
O’Leary October 19, 2000; published electronically March 7, 2001.

http://www.siam.org/journals/simax/22-4/36703.html
†Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante,

E-03080 Alicante, Spain (violeta@dccia.ua.es, jpenades@dccia.ua.es). This research was supported
by Spanish DGESIC grant PB98-0977.

‡Department of Mathematics, Temple University, Philadelphia, PA 19122-2585 (szyld@
math.temple.edu). This author was supported by National Science Foundation grants INT-9521226
and DMS-9973219.

1089

1090 VIOLETA MIGALLÓN, JOSÉ PENADÉS, AND DANIEL B. SZYLD

multisplitting method. In this note we prove new convergence theorems which, for
the first time, show that one can use the multisplitting idea on s.p.d. matrices without
the restriction (1.1), i.e., with quite general weighting matrices. As we show later, the
price we pay for this generality is a few extra inner iterations.

In the following version of the multisplitting method, which is a special case of
the nonstationary two-stage multisplitting method [20] (see also section 3 for another
special case), the sequence s(�, k) indicates, e.g., the number of local iterations used
to approximate the solution of the �th system, at the kth iteration; see also [3]. We
call them local iterations, since they correspond to work performed in each processor.
In the standard multisplitting method of [18], one has s(�, k) = 1 for all � and k.

Algorithm 1.1 (Nonstationary Multisplitting). Given an initial vector
x0 and a sequence of numbers of local iterations s(�, k), � = 1, . . . , p, k = 1, 2, . . .

For k = 1, 2, . . . , until convergence.

For � = 1 to p

y�,0 = xk−1

For j = 1 to s(�, k)

M�y�,j = N�y�,j−1 + b(1.2)

xk =

p∑
�=1

E�y�,s(�,k) .

The iteration matrix at the kth step of this multisplitting method is

Tk =

p∑
�=1

E�(M
−1
� N�)

s(�,k),(1.3)

i.e., ek = Tkek−1, where the error at each step is ek = xk−x� and x� is the solution of
Ax = b. Convergence of the method is obtained for any initial vector x0 by showing
that Hk → O as k →∞, where Hk = TkTk−1 · · ·T2T1; see, e.g., [4].

The strength of these methods stems from having many zeros in the weighting
matrices, indicating that only a small number of variables of y�,j in (1.2) need to be
computed. This is why multisplittings developed into such a valuable tool for the
analysis of block methods, with or without overlap. By overlap we mean that a vari-
able received contributions from more than one processor, i.e., that the corresponding
diagonal entry is nonzero in more than one weighting matrix; see, e.g., [5], [9], [10],
[13].

In this note we present a convergence theorem for (nonstationary) multisplittings
(section 2), where the condition (1.1) is not needed. We apply this general theorem to
the case of s.p.d. matrices. Then, in section 3, we use this result to prove convergence
of two-stage multisplittings for symmetric positive semidefinite linear systems.

2. Convergence with general weighting matrices. We begin with our gen-
eral convergence result. To that end, consider any matrix norm such that the norm
of the identity is equal to one. Thus, from the fact that

∑p
�=1E�=I , we have that

p∑
�=1

‖E�‖ ≥ 1.(2.1)

Furthermore, if each splitting A =M�−N� is convergent, i.e., if ρ(M−1
� N�) < 1, where

ρ is the spectral radius, then, since limk→∞ ‖(M−1
� N�)

k‖ = 0, given any positive

MULTISPLITTINGS WITH GENERAL WEIGHTING MATRICES 1091

number η < 1 there is an integer s̃ = s̃(η) (which also depends on the chosen norm),
so that

‖(M−1
� N�)

s‖ ≤ η for all s ≥ s̃, � = 1, . . . , p.(2.2)

Theorem 2.1. Let A be nonsingular, and let every splitting A = M� −N�, � =
1, . . . , p, be convergent. Given a fixed positive number θ < 1, let η = θ/ (

∑p
�=1‖E�‖).

Let s̃ be such that (2.2) holds. If the sequence of number of local iterations satisfies
s(�, k) ≥ s̃, � = 1, . . . , p, k = 1, 2, . . ., then the nonstationary multisplitting Algorithm
1.1 converges to the solution of Ax = b with convergence factor θ.

Proof. From (1.3) it follows that

‖Tk‖ ≤
p∑
�=1

‖E�‖‖(M−1
� N�)

s(�,k)‖ ≤
(
max
�
‖(M−1

� N�)
s(�,k)‖

) p∑
�=1

‖E�‖ ≤ θ < 1.

Thus ‖Hk‖ = ‖TkTk−1 · · ·T2T1‖ ≤ θk → 0 as k →∞.
It follows from Theorem 2.1 that even if the standard multisplitting algorithm

(s(�, k) = 1) does not converge, the price to pay for convergence is more local itera-
tions. Furthermore, we can have convergence as fast as desired, i.e., we can prescribe a
smaller convergence factor θ, and obtain the desired convergence by performing more
local iterations to satisfy the corresponding condition (2.2).

Of course, we do not know a priori how many local iterations are needed for
condition (2.2) to hold, and thus, Theorem 2.1 can be seen more as a theoretical
result than a computational tool. On the other hand, Theorem 2.1 implies that one
can experiment by increasing a value of s̃, until convergence is achieved. In fact, our
discussion before Theorem 2.1 guarantees that such s̃ exists.

We remark that unlike some results in the literature, here we do not need that
the sequence s(�, k) go to infinity; see [4] and the references therein. On the contrary,
all we need is that this sequence be bounded from below by s̃ defined by (2.2). We
also mention that similar theorems exist, with the sequence either going to infinity or
bounded for two-stage iterative methods; see [11], [17].

In the remainder of this section we apply Theorem 2.1 specifically to the s.p.d.
case, using the A-norm, for which (2.1) holds.

If a matrix A is s.p.d., it induces a vector norm ‖x‖A = (xTAx)1/2. A splitting
A =M −N of A is called P -regular if MT +N is positive definite [19]. The following
characterization can be found in [2], [12], or [22].

Theorem 2.2. Let A be s.p.d. A splitting A = M −N is P -regular if and only
if ‖M−1N‖A < 1.

Thus, condition (2.2) can be easily satisfied for P -regular splittings of an s.p.d.
matrix.

Corollary 2.3. Let A = M� − N� be P -regular splittings of the symmetric
positive definite matrix A, � = 1, . . . , p. Given a fixed positive number θ < 1, let
η = θ/ (

∑p
�=1‖E�‖A). Let s̃ be such that ‖(M−1

� N�)
s‖A ≤ η, for all s ≥ s̃ , � =

1, . . . , p. If the sequence of number of local iterations satisfies s(�, k) ≥ s̃, � = 1, . . . , p,
k = 1, 2, . . ., then the nonstationary multisplitting Algorithm 1.1 converges to the
solution of Ax = b with convergence factor θ. Furthermore, we have that for each
iteration k, ‖Tk‖A ≤ θ < 1.

We emphasize that in Corollary 2.3 no condition is imposed on the weighting
matrices other than adding to the identity, so that (2.1) holds. In other words, we do
not have the restriction (1.1).

1092 VIOLETA MIGALLÓN, JOSÉ PENADÉS, AND DANIEL B. SZYLD

In Example 2.3 of [7], where there is no convergence, the two splittings are P -
regular, and the smallest integer s̃ for which ‖(M−1

� N�)
s̃‖A < 1/

∑p
�=1‖E�‖A, is s̃ = 8.

Thus, for s(�, k) ≥ 8, ‖Tk‖A < 1. We mention here also that if s(1, k) = s(2, k) = 4,
k = 1, 2, . . ., then ρ(Tk) < 1, and this is the smallest integer for which this is true.

3. Two-stage multisplittings for symmetric positive semidefinite matri-
ces. In this section we extend the convergence theory of multisplittings with general
weighting matrices to two-stage multisplittings, when the coefficient matrix of the
linear system is s.p.d. (and in particular our result applies to the symmetric positive
semidefinite case). Here we assume that s(�, k) = s(�), i.e., that the number of inner
iterations may change from one (inner) splitting to another (or from block to block),
but it is the same for all (outer) iterations; it is a stationary method.

In the nonsingular case, as in Theorem 2.1, convergence of an algorithm was shown
by having the iteration matrix having norm less than one. Here, in the singular case,
we consider a consistent linear system Ax = b. The iteration matrix T has spectral
radius equal to one, and convergence to some solution is achieved when the iteration
matrix T is convergent, i.e., when the limit limk→∞ T k exists; see, e.g., [2].

Let A =M −N be the outer splitting, and let M = F� −G�, � = 1, . . . , p.
Algorithm 3.1 (Two-stage Multisplitting). Given an initial vector x0,

and a sequence of numbers of inner iterations s(�), � = 1, . . . , p.
For k = 1, 2, . . . , until convergence.

For � = 1 to p

y�,0 = xk−1

For j = 1 to s(�)

F�y�,j = G�y�,j−1 +Nxk−1 + b

xk =

p∑
�=1

E�y�,s(�) .

For this two-stage multisplitting algorithm, it follows, e.g., as in [4], that the
iteration matrix is

T =

p∑
�=1

E�(F
−1
� G�)

s(�) +

(
I −

p∑
�=1

E�(F
−1
� G�)

s(�)

)
M−1N.(3.1)

For our convergence proof we will use the following two results. The first can be
found, e.g., in [1], and the second, e.g., in [2].

Lemma 3.2. Given a nonsingular matrix A and a matrix T such that (I − T)−1

exists, there exists a unique pair of matrices P and Q, P nonsingular, such that
A = P −Q and T = P−1Q. The matrices are P = A(I − T)−1 and Q = P −A.

Theorem 3.3. Let A = M − N be a P -regular splitting of a symmetric matrix
A. Then the matrix M−1N is convergent if and only if A is positive semidefinite.

Theorem 3.4. Let A be a symmetric positive semidefinite matrix. Let the split-
ting A = M −N be such that M is a s.p.d. matrix and N is a positive semidefinite
matrix. Let M = F� −G�, � = 1, . . . , p, be P -regular splittings. Given a fixed positive
number θ < 1, let η = θ/ (

∑p
�=1‖E�‖M). Let s̃ be such that

‖(F−1
� G�)

s‖M ≤ η for all s ≥ s̃, � = 1, . . . , p.(3.2)

If the numbers of inner iterations satisfies s(�) ≥ s̃, � = 1, . . . , p, then the two-stage
multisplitting Algorithm 3.1 converges to a solution of the consistent linear system
Ax = b for any initial vector x0.

MULTISPLITTINGS WITH GENERAL WEIGHTING MATRICES 1093

Proof. All we need to prove is that T defined in (3.1) is convergent. Observe
first that the matrix S =

∑p
�=1E�(F

−1
� G�)

s(�) can be viewed as the iteration matrix
of a nonstationary multisplitting method based on the splittings M = F� − G� and
s(�, k) = s(�), k = 1, 2, . . . , � = 1, . . . , p; cf. (1.3). Furthermore, since M = F� −G�,
� = 1, . . . , p are P -regular splittings of the s.p.d. matrix M , from Corollary 2.3 it
follows that ‖S‖M < 1. Then, using Lemma 3.2, this iteration matrix induces a
unique splitting M = P − Q such that P−1Q = S. Moreover, by Theorem 2.2, this
splitting is P -regular. Thus, with these matrices, we have

T = P−1Q+ (I − P−1Q)M−1N

= P−1(Q+ (P −Q)M−1N) = P−1(Q+N).

Thus, the splitting A = P − (Q + N) is a splitting induced by T (this splitting is
not unique [1]). Since PT + Q is positive definite and N is positive semidefinite,
PT + Q + N is positive definite, and thus this splitting is P -regular. Therefore, by
Theorem 3.3, T is a convergent matrix and the proof is complete.

We mention that the second part of the proof of Theorem 3.4 resembles the proof
of Theorem 2.1 of [14], although the context is different.

As in Corollary 2.3, no special condition is imposed on the weighting matrices.
Instead we may need to increase the number of inner iterations so that (3.2) holds.

Acknowledgments. We thank Michele Benzi for helpful comments on an early
manuscript. We also thank the referees for their suggestions. These comments and
suggestions helped improve our presentation.

REFERENCES

[1] M. Benzi and D. B. Szyld, Existence and uniqueness of splittings for stationary iterative
methods with applications to alternating methods, Numer. Math., 76 (1997), pp. 309–321.

[2] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, 3rd
ed., Academic Press, New York, 1979. Reprinted by SIAM, Philadelphia, 1994.

[3] R. Bru, L. Elsner, and M. Neumann, Models of parallel chaotic iteration methods, Linear
Algebra Appl., 103 (1988), pp. 175–192.

[4] R. Bru, V. Migallón, J. Penadés, and D. B. Szyld, Parallel, synchronous and asynchronous
two-stage multisplitting methods, Electron. Trans. Numer. Anal., 3 (1995), pp. 24–38.

[5] Z.-H. Cao, Nonstationary two-stage multisplitting methods with overlapping blocks, Linear
Algebra Appl., 285 (1998), pp. 153–163.

[6] Z.-H. Cao and Z.-Y. Liu, Symmetric multisplitting of a symmetric positive definite matrix,
Linear Algebra Appl., 285 (1998), pp. 309–319.

[7] M. J. Castel, V. Migallón, and J. Penadés, Convergence of non-stationary multisplitting
methods for Hermitian positive definite matrices, Math. Comp., 67 (1998), pp. 209–220.

[8] J.-J. Climent and C. Perea, Convergence and comparison theorems for multisplittings, Nu-
mer. Linear Algebra Appl., 6 (1999), pp. 93–107.

[9] A. Frommer and B. Pohl, A comparison result for multisplittings and waveform relaxation
methods, Numer. Linear Algebra Appl., 2 (1995), pp. 335–346.

[10] A. Frommer, H. Schwandt, and D. B. Szyld, Asynchronous weighted additive Schwarz
methods, Electron. Trans. Numer. Anal., 5 (1997), pp. 48–61.

[11] A. Frommer and D. B. Szyld, Asynchronous two-stage iterative methods, Numer. Math., 69
(1994), pp. 141–153.

[12] A. Frommer and D. B. Szyld, Weighted max norms, splittings, and overlapping additive
Schwarz iterations, Numer. Math., 83 (1999), pp. 259–278.

[13] M. T. Jones and D. B. Szyld, Two-stage multisplitting methods with overlapping blocks,
Numer. Linear Algebra Appl., 3 (1996), pp. 113–124.

[14] V. Migallón and J. Penadés, Convergence of two-stage iterative methods for Hermitian
positive definite matrices, Appl. Math. Lett., 10 (1997), pp. 79–83.

[15] R. Nabben, A note on comparison theorems of splittings and multisplittings of Hermitian
positive definite matrices, Linear Algebra Appl., 233 (1996), pp. 67–80.

1094 VIOLETA MIGALLÓN, JOSÉ PENADÉS, AND DANIEL B. SZYLD

[16] M. Neumann and R. J. Plemmons, Convergence of parallel multisplitting iterative methods
for M-matrices, Linear Algebra Appl., 88/89 (1987), pp. 559–573.

[17] N. K. Nichols, On the convergence of two-stage iterative processes for solving linear equations,
SIAM J. Numer. Anal., 10 (1973), pp. 460–469.

[18] D. P. O’Leary and R. E. White, Multisplittings of matrices and parallel solution of linear
systems, SIAM J. Algebraic Discrete Methods, 6 (1985), pp. 630–640.

[19] J. M. Ortega, Numerical Analysis, A Second Course, Academic Press, New York, 1972.
Reprinted by SIAM, Philadelphia, 1990.

[20] D. B. Szyld and M. T. Jones, Two-stage and multisplitting methods for the parallel solution
of linear systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 671–679.

[21] R. E. White, Multisplitting of a symmetric positive definite matrix, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 69–82.

[22] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

A DECOMPOSITION METHOD FOR POSITIVE SEMIDEFINITE
MATRICES AND ITS APPLICATION TO RECURSIVE

PARAMETER ESTIMATION∗

LIYU CAO† AND HOWARD M. SCHWARTZ†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1095–1111

Abstract. A matrix decomposition method for positive semidefinite matrices based on a given
subspace is proposed in this paper. It is shown that any positive semidefinite matrix can be decom-
posed uniquely into two positive semidefinite parts with specified rank one of which is orthogonal
to the subspace. This method is then compared with the rank-additivity decomposition, and the
difference as well as the close connection between these two decompositions are given. Finally, the
proposed decomposition method is used to develop a new recursive parameter estimation algorithm
for linear systems.

Key words. positive semidefinite matrices, matrix decomposition, rank additivity, least squares
method, recursive estimation

AMS subject classifications. 15A23, 15A24, 93E12, 93E24

PII. S0895479899364027

1. Introduction. It is assumed that all matrices involved in this paper have
real elements. The identity matrix and the null matrix are designated as I and 0,
respectively, and their sizes are determined by the context. For any matrix A, we
designate the image and the kernel space of A, respectively, as ImA and KerA.

In this paper, we consider the problem of decomposing a positive semidefinite
matrix A into the form A = B + C, where B and C are required to be positive
semidefinite, and, furthermore, C should satisfy CV = 0(or BV = AV), where V is
a full column rank matrix. The columns of V define a subspace, which is its image
space. Therefore, the above decomposition requires that one of the decomposed parts
is “orthogonal” to a given subspace. It will be shown that if the rank of B is required
to be equal to the dimension of the given subspace, then such a decomposition exists
and is unique. It will also be shown that such a decomposition has the rank-additivity
property, that is, rank(A)=rank(B)+rank(C).

Our motivation for considering such a matrix decomposition method comes from
the authors’ effort in developing a new recursive parameter estimation algorithm
for linear systems [1], where the decomposition is the key in establishing the new
algorithm that can overcome the main drawbacks of the well-known exponentially
weighted least squares algorithm (see section 4).

In the recent paper by Chu, Funderlic, and Golub [2], rank modifications of
semidefinite matrices are analyzed. In particular, the following rank reduction prob-
lem is addressed in their paper. Given a positive semidefinite matrix A, seek a matrix
B such that C = A−B is positive semidefinite and that rank(C)=rank(A)−rank(B).
The sufficient and necessary condition for such a rank reduction is given in their paper.
Obviously, the matrix rank reduction problem in the form A−B can be viewed as a
matrix decomposition problem: decompose a given matrix A into the form A = B+C
so that rank(A)=rank(B)+rank(C). To distinguish this decomposition from the one

∗Received by the editors November 16, 1999; accepted for publication (in revised form) by P. Van
Dooren November 10, 2000; published electronically March 7, 2001.

http://www.siam.org/journals/simax/22-4/36402.html
†Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive,

Ottawa, ON K1S 5B6, Canada (cao@sce.carleton.ca, schwartz@sce.carleton.ca).

1095

1096 LIYU CAO AND HOWARD M. SCHWARTZ

addressed in this paper, we call the former the rank-additivity decomposition and the
latter the orthogonal decomposition along a subspace. It will be shown that (see sec-
tion 3) although the starting points of these two decomposition are different, they
achieve almost the same results in nature.

The most fundamental result for the rank-additivity decomposition is the so-called
symmetric rank-subtractivity lemma, which is given in [2] (also refer to Theorem 3.1
in this paper). This result is obtained from a general rank-subtractivity lemma,
which is proven in [3, Corollary 3.1], where the rank of A − B is characterized for
arbitrary A and B. Although the main results in this paper can be proven by using
the symmetric rank-subtractivity lemma and related results in [3], we will provide
alternative proofs that do not depend on these existing results. We believe such a
treatment is useful both theoretically and practically. The proofs provided in section
2 show that the rank-additivity decomposition can be obtained from another starting
point: the orthogonal decomposition along a subspace. On the other hand, these
proofs are easy to understand because they use only basic principles of matrix analysis
which can be found in a standard textbook.

This paper is organized as follows. We begin in section 2 with a description of
the orthogonal decomposition along a given subspace and then indicate some basic
facts related with the decomposition. We present our main result in Theorem 2.1,
which shows that the decomposition exists and is unique. Based on Theorem 2.1,
we further get Lemma 2.6 and Lemma 2.9, which show that the decomposition is
rank additive and image space additive. In section 3, we compare the orthogonal
decomposition along a subspace with the rank-additivity decomposition and show the
difference as well as the close connection between these two decompositions. It is
proven that given the rank of B(or C) there are infinite pairs of positive semidefinite
matrices B and C which satisfy A = B + C and rank(A)=rank(B)+rank(C). It is
also shown how to select such a B so that the rank-additivity condition is satisfied.
In section 4 an application of the new theoretical contributions presented in sections
2 and 3 is illustrated. The orthogonal decomposition method along a subspace is
used to develop a new recursive parameter estimation algorithm and, furthermore, to
prove that the new algorithm can overcome the main drawbacks of the widely used
exponentially weighted least squares algorithm.

2. Decomposition of nonnegative definite matrices along a given sub-
space.

2.1. Decomposition of a positive semidefinite matrix. Given an n × n
positive semidefinite matrix A and an m-dimensional subspace S in Rn such that
S∩KerA = 0, the problem is to decompose A as

A = B + C(2.1)

in such a way that for any vector x ∈ S, x �= 0,

Cx = 0.(2.2)

In other words, it is required that S ⊆KerC. Let v1, v2, . . . , vm be a basis of S. Define
the matrix V as follows:

V = [v1 v2 · · · vm].(2.3)

Obviously, (2.2) means that

CV = 0,(2.4)

A MATRIX DECOMPOSITION METHOD 1097

and hence B satisfies

BV = AV.(2.5)

Equations (2.4) and (2.5) are equivalent. We can solve one of them to determine the
decomposition. Consider the matrix equation (2.5). If there are not any restrictions on
B, then, according to Prasolov [4, p. 193], many solutions exist for the equation. Here,
we are interested in the symmetric positive semidefinite solutions. In the following, it
will be shown that if we seek the positive semidefinite solution to (2.5) with rank m,
then such a solution is unique. Furthermore, the solution to (2.4) under the restriction
of (2.1) is also positive semidefinite.

Before we present the main results, we should note three facts concerning the
decomposition.

Fact 2.1. The condition S∩KerA = 0 means that the rank of A is not less than
m, the dimension of S.

Proof. Obviously, ui = Avi �= 0, i = 1, . . . ,m, and ui belongs to the image space
of A. Consider the linear combination of ui

u = a1u1 + a2u2 + · · ·+ amum

= A(a1v1 + a2v2 + · · ·+ amvm)

= Av,

where v = a1v1 + a2v2 + · · · + amvm. Obviously, v ∈ S. From the above equation,
we can see that u = 0 means v ∈KerA. Since S∩KerA = 0, we get v = 0. However,
since the set of v1, . . . , vm is linearly independent, v = 0 means ai = 0, i = 1, . . . ,m.
Therefore, we conclude that the set of vectors u1, . . . , um is linearly independent.
Thus there are at least m linearly independent vectors in the image space of A, which
indicates the rank of A is not less than m.

Fact 2.2. Equation (2.5) implies the rank of B is not less than m.
Proof. Refer to Lemma 2.2 in the following; it can be seen that the rank of AV

is equal to m. Then from (2.5) we get

m = rank(AV) ≤ min{rank(B), rank(V)},

which means rank(B) ≥ m.
Fact 2.3. Equation (2.4) means ImC ⊆ S⊥, where S⊥ denotes the orthogonal

complement of S.
Proof. For any vector x ∈ImC, there exists a vector y such that x = Cy. Then

for the matrix V defined by (2.3), we have xTV = yTCV = 0 (because C is assumed
to be symmetric), which means x ∈ S⊥.

We now give the main results on the positive semidefinite decomposition of a
positive semidefinite matrix.

Theorem 2.1. Assume that A is an n×n positive semidefinite matrix with rank
r < n, and S is an m-dimensional subspace S in Rn such that S∩KerA = 0. Given
the decomposition (2.1), where B and C are required to be positive semidefinite, and
B satisfies (2.5) and its rank is equal to the dimension of S, then the decomposition
defined in (2.1) is unique. Furthermore, the matrices B and C are given by

B = AV (V TAV)−1V TA,(2.6)

C = A−B,(2.7)

1098 LIYU CAO AND HOWARD M. SCHWARTZ

where V is defined by (2.3).
To prove this theorem, we need the following two lemmas.
Lemma 2.2. Assume that the n×n matrix A is positive semidefinite with rank r,

and V is an n×m matrix (m ≤ r). Then the matrix D = V TAV is positive definite
if and only if V has full column rank and KerA∩ImV = 0.

Proof. Obviously, D is positive semidefinite. If V has full column rank, then for
any x ∈ Rm, x �= 0, we have y = V x �= 0 and y ∈ImV . Furthermore, if KerA∩ImV =
0, then y /∈KerA. Thus we have AV x = Ay �= 0. We know that for the positive
semidefinite matrix A, yTAy = 0 if and only if Ay = 0. Therefore,

xTDx = (V x)TA(V x) = yTAy �= 0.(2.8)

Since D is nonnegative definite, from (2.8) we get xTDx > 0, which shows that D is
positive definite.

Conversely, if D is positive definite, then for any x ∈ Rm, x �= 0, xTDx =
(V x)TA(V x) > 0. Obviously, y = V x �= 0, which shows that V has full column rank.
We can easily see that y ∈ImV . From xTDx = yTAy > 0, we get y /∈KerA. Since the
above arguments are applicable to all x ∈ Rm and hence to all y ∈ImV , we conclude
that KerA∩ImV = 0.

Lemma 2.2 ensures that the matrix B defined by (2.6) is well defined.
The following lemma is from [5, p. 406].
Lemma 2.3. Assume that P is a positive definite matrix. Then any solution Q

to the equation

QTQ = P(2.9)

is of the form Q = UP
1
2 , where U is an orthogonal matrix and P

1
2 denotes the unique

positive definite square root of P .
Lemma 2.3 is a key in obtaining the unique B.
With the above lemmas, we can now prove Theorem 2.1.
Proof of Theorem 2.1. From the assumption, B is a positive semidefinite matrix

with rank m. According to [5, p. 407], B can be written in the form

B = XTX,(2.10)

where X is an m× n matrix with rank m.
Then X should satisfy the following equation:

XTXV = AV.(2.11)

Multiplying V T to the above equation from the left, one gets

(XV)T (XV) = V TAV.(2.12)

By Lemma 2.2, the matrix V TAV is positive definite. Matrix equation (2.12) has the
same form as (2.9). By Lemma 2.3, we get

XV = U(V TAV)
1
2 ,(2.13)

where U is an arbitrary orthogonal matrix. By substituting (2.13) into (2.11) we can
get

XT = AV (V TAV)−
1
2 UT .(2.14)

A MATRIX DECOMPOSITION METHOD 1099

Thus the positive semidefinite matrix B which satisfies (2.5) is given by

B = XTX = AV (V TAV)−1V TA.(2.15)

Although X is dependent on the choice of U and hence is not unique, B is independent
of U and is uniquely determined by A and V according to (2.15).

From Lemma 2.2, we can see that the rank of AV is m. Then from (2.14) it can
be seen that the rank of X is also equal to m. Therefore, the rank of B given by
(2.15) is equal to m.

To show the matrix C given by (2.7) is positive semidefinite, we use the approach
given in [2, Acknowledgment 1]. Since A is positive semidefinite, it can be written as
A = ETE, where E is a positive semidefinite matrix. Then

C = A−B = ET (I − EV (V TAV)−1V TET)E.(2.16)

Noting that the middle factor I −EV (V TAV)−1V TET is an idempotent matrix and
hence is positive semidefinite, then from the above equation one can see that C = A−B
is positive semidefinite.

Remark 2.4. The factorization given by (2.10) is the key in the proof of Theorem
2.1. Although the general solution of matrix equations in the form of (2.5) is available
(refer to [5, p. 193]), it is not easy from the general solution to get a positive semidefi-
nite solution with specified rank restriction. By factorizing B into the form (2.10), the
original linear matrix equation (2.5) is transformed into the nonlinear matrix equation
(2.11). The nonlinear matrix equation enables us to get a positive semidefinite solu-
tion with the specified rank and, furthermore, to prove that this positive semidefinite
solution is unique.

Remark 2.5. It is worth noting that the decomposition is independent of the
choice of the basis of S, which constitutes the columns of V . This can be shown as
follows.

Let w1, w2, . . . , wm be another basis of S, and define the matrix V1 as

V1 = [w1 w2 · · · wm].(2.17)

Then, according to Theorem 2.1, B1 = AV1(V
T
1 AV1)

−1V T
1 A, C1 = A−B1 are a pair

of matrices that satisfy (2.4) and (2.5). Since vi, i = 1, . . . ,m and wi, i = 1, . . . ,m
are the basis of S, there exists an invertible matrix W such that V1 = V W . Then we
have

B1 = AV1(V
T
1 AV1)

−1V T
1 A

= BV W (WTV TAV W)−1WTV TA

= BV (V TAV)−1V TA = B

and hence C1 = C. Thus the decomposition is uniquely determined by the subspace
S and is independent of the choice of its basis.

Theorem 2.1 shows C is a nonnegative definite matrix but does not give its rank.
The rank of C is given by the following lemma.

Lemma 2.6. The rank of C given by (2.7) is equal to r −m, where r is the rank
of A.

Remark 2.7. Lemma 2.6 indicates that the decomposition given by Theorem
2.1 has the rank-additivity property, that is, rank(A)=rank(B)+rank(C). In [2] this
property is proven based on a general rank-subtractivity lemma given by Cline and

1100 LIYU CAO AND HOWARD M. SCHWARTZ

Funderlic [3]. Here, we will give an alternative proof, which uses only standard matrix
analysis results.

Proof. For any x ∈ S, we have Bx = Ax. For y ∈KerA, we have Ay = 0 and
By = AV (V TAV)−1V TAy = 0. Thus, for any vector x+ y ∈ S+KerA, we have

C(x+ y) = Ax−Bx+Ay −By = 0.(2.18)

This indicates S+KerA ⊆KerC. Therefore,

dim(KerC) ≥ dim(S +KerA)

= dim(S) + dim(KerA)− dim(S ∩KerA)
= m+ n− r.(2.19)

From the above inequality, we get

rank(C) = dim(ImC) = n− dim(KerC)

≤ n− n−m+ r = r −m.(2.20)

On the other hand, from the well-known rank inequality rank (A = B + C) ≤
rank(B)+rank(C), we have

rank(C) ≥ rank(A)− rank(B) = r −m.(2.21)

The inequalities (2.20) and (2.21) show that rank(C) = r −m.
Remark 2.8. It should be noted that the conditions for the unique decomposition

are (2.4) (or (2.5)) and rank(B) = m. On the other hand, if we require that B satisfies
(2.5) (or C satisfies (2.4)) restrict the rank of C, say, according to Lemma 2.6, let
rank(C) = r−m, and leave the rank of B free, then the decomposition is not unique.
This can be explained as follows.

As in the proof of Theorem 2.1, C can be expressed as

C = XTX,

where X is an (r − m) × n matrix with rank r − m. We have CV = XTXV = 0.
Since XT is a full column rank matrix, we get XV = 0 or V TXT = 0. We can see
that if the columns of XT are a set of linearly independent vectors in the subspace
S⊥, then X is a solution of V TXT = 0 and the rank of X is r − m. There are
many sets of linearly independent vectors in S⊥. Therefore, there are many solutions
for the equation XV = 0 or CV = 0. Thus the decomposition A = B + C is not
unique under the conditions CV = 0 and rank(C) = r −m. As stated in Fact 2.2,
all of the decompositions satisfy rank(B) ≥ m. Theorem 2.1 states that the unique
decomposition is obtained when the rank of B takes its minimal value m.

For the decomposition described in Theorem 2.1, there are some striking rela-
tionships among the image spaces and kernel spaces of A, B, and C. These are
demonstrated by the following lemma.

Lemma 2.9. Let A, B, and C be the matrices given in Theorem 2.1. Then

ImA = ImB ⊕ ImC,(2.22)

KerA = KerB ∩KerC,(2.23)

Rn = KerB +KerC.(2.24)

A MATRIX DECOMPOSITION METHOD 1101

Proof. First, it is shown that B and AV have the same image space, that is,
ImB =ImAV . For any vector x ∈ImB, there exists y ∈ Rn such that

x = By = AV (V TAV)−1V TAy = AV z,

where z = (V TAV)−1V TAy ∈ Rm. This shows x ∈ImAV and therefore ImB ⊆ImAV .
On the other hand, assume x ∈ImAV . Then there exists a vector y ∈ Rm such that

x = AV y = AV (V TAV)−1V TAV y

= Bz,

where z = V y ∈ Rn. The above equation shows x ∈ImB and therefore ImAV ⊆ImB.
Thus, we conclude that ImB =ImAV .

Assume x ∈ImB∩ImC. Since ImB =ImAV , x can be written as x = AV y, where
y is a vector in Rm. On the other hand, from Fact 2.3 we have x ∈ S⊥. Therefore,
xTV = yTV TAV = 0. But Lemma 2.2 says the matrix V TAV is positive definite.
Therefore, we get y = 0 and hence x = 0. Then we conclude that

ImB ∩ ImC = 0.(2.25)

From A = B + C we get Ax = Bx+ Cx for any x, which means

ImA ⊆ ImB + ImC.(2.26)

From Theorem 2.1 and Lemma 2.6, we have

dim(ImB + ImC) = dim(ImB) + dim(ImC)− dim(ImB ∩ ImC)

= m+ r −m = r.(2.27)

We know dim(ImA)=r. Then from (2.26) and (2.27) we get

ImA = ImB + ImC.(2.28)

Equations (2.25) and (2.28) show (2.22) is true.
For any x ∈KerA, from (2.6) we get Bx = 0 and hence x ∈KerB. Furthermore,

Cx = Ax−Bx = 0 and hence x ∈KerC. Thus we get

KerA ⊆ (KerB ∩KerC).(2.29)

On the other hand, if x ∈KerB∩KerC, then Ax = Bx+ Cx = 0. Therefore, we get

KerB ∩KerC ⊆ KerA.(2.30)

From (2.29) and (2.30), (2.23) follows.
Obviously, KerB+KerC ⊂ Rn. Furthermore, we can get the dimension of KerB

+KerC as

dim(KerB +KerC) = dim(KerB) + dim(KerC)− dim(KerB ∩KerC)

= n−m+ n− (r −m)− dim(KerA)

= 2n− r − (n− r) = n,

which shows that (2.24) is true.
In section 3, Lemma 2.9 is further developed and it is shown that (2.22), (2.23),

and (2.24) are equivalent to the rank-additivity decomposition.

1102 LIYU CAO AND HOWARD M. SCHWARTZ

2.2. Decomposition of a positive definite matrix. The results in section
2.1 can be applied to positive definite matrices directly. In the following, some main
results on the decomposition of a positive definite matrix along a subspace are given.

From Theorem 2.1 and Lemma 2.6 we can get the following theorem.
Theorem 2.10. Given an n×n positive definite matrix A and an m-dimensional

subspace S in Rn, let V be an n ×m matrix whose columns constitute a basis of S.
Then there exists a unique pair of positive semidefinite matrices B and C such that
A = B + C, where B is given by

B = AV (V TAV)−1V TA(2.31)

and has rank m, and C satisfies CV = 0 and has rank n−m.
Proof. The proof is the same as that for Theorem 2.1.
The next result is an analogue of Lemma 2.9.
Lemma 2.11. Let A, B, and C be the matrices defined in Theorem 2.10. Then

Rn = ImB ⊕ ImC,(2.32)

Rn = KerB ⊕KerC.(2.33)

Proof. The proof is the same as that for Lemma 2.9. Since A is positive definite
and KerA = 0, (2.23) and (2.24) in Lemma 2.9 reduce to (2.33).

3. Rank-additivity decomposition of nonnegative definite matrices. In
this section, some insights are given into the rank-additivity decomposition addressed
in [2], and a brief comparison with the decomposition developed in this paper is also
provided. The rank-additivity decomposition is characterized in terms of the image
spaces and the kernel spaces of the related matrices.

First, we rewrite the so-called symmetric rank-subtractivity lemma given in [2,
Lemma 2.4] in the following form with a minor modification.

Theorem 3.1. Let A, B, and C be positive semidefinite matrices satisfying
A = B +C. Then rank (A) =rank(B)+rank(C) if and only if B or C is in the form
AR(RTAR)−1RTA, where R is a full column rank matrix and satisfies ImR∩KerA =
0.

Remark 3.2. In the original version of Theorem 3.1 [2, Lemma 2.4] the condition
ImR∩KerA = 0 is not included. However, by Lemma 2.2 this condition is necessary
and sufficient to ensure that the matrix RTAR is invertible.

If the condition ImR∩KerA = 0 is satisfied and B = AR(RTAR)−1RTA, then one
can see rank(B)=rank(R), and therefore rank(A)=rank(R)+rank(C). By Fact 2.1 the
condition ImR∩KerA = 0 implies that the number of the columns of R is not larger
than the rank of A. Therefore, if one wants to seek a rank-additivity decomposition of
A under the restriction that the matrix B has rank l, where l < n is a given number,
one can do it in the following way. First, select arbitrary l linearly independent vectors
which do not belong to KerA. Second, use these vectors as columns to constitute a
matrix R. Then, the matrix B = AR(RTAR)−1RTA is the intended matrix.

On the other hand, it is easy to see that there are infinite sets of the l linear
independent vectors which do not belong to KerA. Thus, from Theorem 3.1 and the
above arguments, we get the following corollary.

Corollary 3.3. Let A, B, and C be n × n positive semidefinite matrices such
that A = B +C. Furthermore, let the rank of B be l. Then there are infinite pairs of
matrices B and C which satisfy rank (A)=rank(B)+rank(C), and each B is given by

B = AR(RTAR)−1RTA,(3.1)

A MATRIX DECOMPOSITION METHOD 1103

where R is an arbitrary n× l full column rank matrix satisfying ImR∩KerA = 0.
Corollary 3.3 shows that with only the rank-additivity condition, the pair of B

and C cannot be determined uniquely. To determine B and C uniquely, an additional
condition is necessary. From Theorem 2.1, it can be seen that the additional condition
to determine B and C uniquely is given by a subspace S, which satisfies KerA∩S = 0.
Furthermore, the matrix R is determined by S in the sense of ImR = S. With such a
subspace, from Theorem 2.1 and Remark 2.5 it can be seen that the rank-additivity
decomposition can be determined uniquely. Therefore, Theorem 2.1 determines a
unique rank-additivity decomposition of a given positive semidefinite matrix, while
Theorem 3.1 gives the general form of the rank-additivity decomposition.

The next result shows that the rank-additivity decomposition can be characterized
in terms of the image spaces and the kernel spaces of the involved matrices.

Theorem 3.4. Let A, B, and C be n×n positive semidefinite matrices such that
A=B+C. Then the following are equivalent:

(i) rank(A)=rank(B)+rank(C),
(ii) ImA =ImB⊕ImC,
(iii) KerA=KerB∩KerC and dim (KerB+KerC)=n.
Proof. For the proof that (i) leads to (ii) and (iii), refer to the proof of Lemma

2.9. Here we need to prove that (ii) leads to (i) and (iii) leads to (i).
First we prove that (ii) leads to (i). If ImA=ImB⊕ImC, then we have

ImA=ImB+ImC and ImB∩ImC=0. Therefore,

rank(A) = dim(ImA) = dim(ImB + ImC).(3.2)

However, we have

dim(ImB + ImC) = dim(ImB) + dim(ImC)− dim(ImB ∩ ImC)

= rank(B) + rank(C)− 0.(3.3)

From (3.2) and (3.3) we get (i).
Next, we prove (iii) leads to (i). From (iii) we get

n = dim(KerB +KerC)

= dim(KerB) + dim(KerC)− dim(KerB ∩KerC)

= n− rank(B) + n− rank(C)− dim(KerA)

= 2n− rank(B)− rank(C)− n+ rank(A).

From the equation above, we see that (i) is true.

4. Application to recursive parameter estimation algorithm. In this sec-
tion, we will use the orthogonal decomposition method developed in section 2 to
derive a new recursive parameter estimation algorithm, which can overcome the main
drawbacks of the widely used exponentially weighted least squares algorithm, that is,
the algorithm gain increases unboundedly when the input is not sufficiently excited.
Although this algorithm was originally presented in reference [1], it is derived here
to illustrate the practical use of the original theoretical contributions developed in
sections 2 and 3 of this paper. Here, we also provide some new results, such as the
modified definition of persistency of excitation, Lemmas 4.4 and 4.5. These results
are important in proving one of the key properties of the algorithm (refer to Theorem
4.3).

1104 LIYU CAO AND HOWARD M. SCHWARTZ

In adaptive systems such as adaptive control and adaptive signal processing, it is
necessary to identify systems’ parameters on-line in order to track the time-varying
system dynamics and to keep the whole system adaptive. This leads to the world
of recursive parameter estimation. For a detailed discussion on recursive parameter
estimation methods, refer to [6]. One of the most popular recursive parameter esti-
mation methods is the exponentially weighted recursive least squares algorithm. To
explain how this algorithm works, consider a dynamic system (whose parameters are
to be estimated) described by the following linear difference equation:

y(t) + a1y(t− 1) + · · ·+ apy(t− p) = b1u(t− 1) + · · ·+ bqu(t− q) + e(t),(4.1)

where u(t) and y(t) are the input and output of the system sampled at time t, and
e(t) is a disturbance term. Let

ϕ(t) = [−y(t− 1) · · · −y(t− p)u(t− 1) · · · u(t− q)]T ,(4.2)

θ = [a1 · · · apb1 · · · bq]T .(4.3)

The vector ϕ(t) represents the data measured up to t − 1, while θ represents the
unknown parameters which may be time-varying. Then (4.1) can be rewritten as

y(t) = ϕT (t)θ + e(t).(4.4)

This equation describes the measured output y(t) as a product of the measured data
vector ϕ(t) and the unknown parameter vector θ plus a disturbance. The task of
parameter estimation is to determine θ from the measurements y(t) and ϕ(t) based
on a criterion function. One of the most popular ways to do this is to minimize the
following criterion function:

Vt(θ) =

t∑
k=1

µt−k(y(k)− ϕT (k)θ)2,(4.5)

where µ < 1 is called the forgetting factor. Since the square of the error term
y(t) − ϕT (t)θ is exponentially weighted, the corresponding algorithm is called the
exponentially weighted least squares method.

The solution to the exponentially weighted least squares problem can be written
in a recursive form as follows:

θ̂(t) = θ̂(t− 1) +R−1(t)ϕ(t)[y(t)− ϕT (t)θ̂(t− 1)],(4.6)

R(t) = µR(t− 1) + ϕ(t)ϕT (t),(4.7)

where θ̂(t) denotes the estimated parameter vector at time t, and R(t) is called the
information matrix and plays an important role in determining the algorithm’s per-
formance. Equation (4.6) is called the parameter update equation and (4.7) is called
the information matrix update equation. Equation (4.7) can be rewritten as

R(t) = µtR(0) +

t∑
k=1

µt−kϕ(k)ϕT (k),(4.8)

where R(0) is the initial value of R(t), which is necessary to start the algorithm.
In order to ensure the algorithm is well defined, R(t) must be positive definite

for all t. Therefore, R(0) should be chosen as a positive definite matrix. As has

A MATRIX DECOMPOSITION METHOD 1105

been shown in [10], a sufficient condition for R(t) to be positive definite is the so-
called persistency of excitation of the sequence ϕ(t). The concept of the persistency
of excitation is a key in this section and its definition is given as follows [8].

Definition 4.1 (definition of persistency of excitation). A sequence x(t) ∈ Rn

is said to be persistently exciting in N steps if there exists a positive number a such
that

t+N∑
k=t+1

x(k)xT (k) ≥ aI(4.9)

for all t.
The above definition states that Rn can be spanned by x(t) uniformly in N

steps when x(t) is persistently exciting. In the other words, the sum of N matrices,∑t+N
k=t+1 x(k)xT (k), is a full rank matrix when x(t) is persistently exciting. Therefore,

if the rank of
∑t+N
k=t+1 x(k)xT (k) is less than n, then x(t) is not persistently exciting.

Here, in order to handle both persistent excitation and nonpersistent excitation in a
unified way, a modified version of the above definition is given, where the order of
persistency of excitation is introduced.

Definition 4.2 (modified definition of persistency of excitation). A sequence
x(t) ∈ Rn is said to be persistently exciting of order m(m ≤ n) in N steps if

(1)

max
N

[
rank

(
t+N∑
k=t+1

x(k)xT (k)

)]
= m for all t;(4.10)

(2) there exists a positive number a such that all nonzero eigenvalues of∑t+N
k=t+1 x(k)xT (k) are not less than a.
By using the order of persistent excitation, most widely-used excitation signals

in adaptive systems are included in the above definition. In addition, the concepts
of excited subspace and unexcited subspace of a sequence are closely connected to
its order of persistent excitation. When the order of a persistently exciting sequence
x(t) in Rn is less than n, then there exists a subspace S in Rn such that for any
u ∈ S, uTx(t) = 0 for all t. We call this subspace the unexcited subspace of x(t) and
its orthogonal complement the excited subspace. When the unexcited subspace of the
sequence x(t) is not 0, we say that x(t) is not sufficiently exciting.

Equation (4.8) shows that the old data ϕ(k) is forgotten according to the expo-
nential function µt−k, k < t; therefore, this algorithm is also called the exponentially
forgetting recursive least squares algorithm. To simplify the notation, we call it the
EFRLS algorithm. The forgetting mechanism is necessary to track time-varying pa-
rameters. This can be shown as follows. Assume that the sequence ϕ(t) is sufficiently
exciting; that is, it satisfies (4.9). Then without forgetting(µ = 1), from (4.8) it can
be seen that all of the elements of R(t) will tend to infinity and hence the algorithm

gain R−1(t)ϕ(t) will tend to zero if ϕ(t) is bounded. In such a case, θ̂ will tend to a
constant and the algorithm will eventually turn itself off.

In practice, it is not guaranteed that the sequence ϕ(t) satisfies the condition (4.9).
When ϕ(t) is not sufficiently exciting, a phenomenon known as estimator windup
occurs in the EFRLS algorithm [7]. In such a situation, no matter how large a
number t takes, the second term in (4.8) cannot be a positive definite matrix. The
first term in (4.8) will tend to a zero matrix exponentially as t→∞. Therefore, some

1106 LIYU CAO AND HOWARD M. SCHWARTZ

eigenvalues of R(t) will degenerate and the algorithm gain R−1(t)ϕ(t) will tend to be
unbounded. Estimator windup is unacceptable because it makes the algorithm very
sensitive to noise and thus the estimation may be completely unreliable. Therefore,
for the algorithm to be well behaved, a necessary condition is that there exists a
positive constant β such that

R(t) ≥ βI.(4.11)

Many methods have been suggested to overcome the above drawback of the
EFRLS algorithm. For a survey on these methods refer to [9]. Here we will de-
rive a new algorithm based on the decomposition method proposed in section 2. It
will be shown that the new algorithm satisfies condition (4.11).

It can be observed from (4.6) that estimator windup in the EFRLS algorithm is
due to the fact that the forgetting operation is applied to all elements in R(t − 1)
through the forgetting factor µ. When ϕ(t) is not sufficiently exciting, then some
forgotten data in R(t − 1) cannot be compensated by ϕ(t), and eventually some
eigenvalues of the information matrix will tend to zero. This fact motivates us to
derive an algorithm which forgets only a part of R(t− 1) which can be compensated
by the new data ϕ(t). For such a strategy it is necessary to decompose R(t− 1) into
two parts before performing forgetting. In the following, it will be shown that the
matrix decomposition method addressed in section 2 is suitable for such a strategy
and the estimator windup phenomenon disappears in the resulting algorithm.

Under the direction of the above considerations, before forgetting is applied,
R(t− 1) is divided into two parts as

R(t− 1) = R1(t− 1) +R2(t− 1)(4.12)

and R1(t− 1) is required to satisfy the equation

R1(t− 1)ϕ(t) = 0, ϕ(t) �= 0,(4.13)

which means that ϕ(t) is in the kernel space of R1(t − 1). If we further require that
the rank of R1(t− 1) is n − 1 and the rank of R2(t− 1) is 1, where n = p + q is the
size of R(t− 1), then by Theorem 2.10 we can get

R2(t− 1) =
1

ϕT (t)R(t− 1)ϕ(t)
[R(t− 1)ϕ(t)][R(t− 1)ϕ(t)]T(4.14)

and

R1(t− 1) = R(t− 1)−R2(t− 1),(4.15)

where R1(t − 1) and R2(t − 1) are nonnegative definite. Performing forgetting only
on R2(t− 1), the update equation for the information matrix becomes

R(t) = R1(t− 1) + µR2(t− 1) + ϕ(t)ϕT (t).(4.16)

Substituting (4.14) and (4.15) into (4.16), we get

R(t) = F (t)R(t− 1) + ϕ(t)ϕT (t),(4.17)

where F (t) is a matrix and is given by

F (t) = I − (1− µ)α(t)R(t− 1)ϕ(t)ϕT (t),(4.18)

α(t) =
1

ϕT (t)R(t− 1)ϕ(t)
.(4.19)

A MATRIX DECOMPOSITION METHOD 1107

Here, in order to ensure that α(t) is well defined, we assume that ϕ(t) �= 0. Equation
(4.17) is the new update equation for R(t). Comparing (4.17) with (4.7), we find that
the forgetting factor µ in the EFRLS algorithm has been replaced by the matrix F (t)
in the new algorithm. Therefore, F (t) is called the forgetting matrix. With F (t), the
various eigenvalues of R(t− 1) are forgotten with different scaling, which is in sharp
contrast to the EFRLS algorithm. Assume R(0) > 0; then it can be shown that R(t)
given in (4.17) is positive definite for all t.

In the following it will be shown that even when ϕ(t) is not sufficiently exciting
condition (4.11) is also satisfied.

Theorem 4.3. Assume that R(0) > 0. Then the information matrix given by
(4.17) satisfies the boundedness condition (4.11) when ϕ(t) is not sufficiently exciting.

Theorem 4.3 also appeared in [1]. However, the proof of Theorem 4.3 presented
here is more complete than that presented in [1], and Lemmas 4.4 and 4.5 are new
contributions.

The key idea to proving Theorem 4.3 is to decompose the information matrix
along the excited subspace of ϕ(t). In the excited subspace, ϕ(t) behaves just like
a sufficiently exciting signal, and therefore the known result in the case of sufficient
excitation (refer to [10]) is applicable.

To prove the theorem, we need the following preliminary lemmas.
Lemma 4.4. Assume that A is a positive semidefinite matrix, u is a vector

satisfying Au �= 0, and ρ < 1 is a scalar. Then the following matrix

B = A− ρ
AuuTA

uTAu
(4.20)

is positive semidefinite and has the same rank as that of A.
Proof. The matrix B can be rewritten as

B = B1 + (1− ρ)
AuuTA

uTAu
,(4.21)

where B1 is given by

B1 = A− AuuTA

uTAu
.(4.22)

From Theorem 2.1 we know that B1 is positive semidefinite. Therefore, B is also
positive semidefinite.

Assume that the vector x ∈KerB. Then from (4.20) we have

Bx = Ax− ρ
uTAx

uTAu
Au

= A

(
x− ρ

uTAx

uTAu
u

)
= 0.(4.23)

From the above equation we see that the vector x−ρu
TAx
uTAu

u belongs to KerA. There-
fore, x can be written in the form

x = y + au,(4.24)

where y ∈KerA and a is a scalar. From (4.24) and (4.20) we get

Bx = aAu− aρAu

= a(1− ρ)Au = 0.(4.25)

1108 LIYU CAO AND HOWARD M. SCHWARTZ

However, we know that ρ �= 1 and Au �= 0. Therefore, the equation above indicates
a = 0 and hence x = y. Thus we get KerB ⊆KerA. On the other hand, from (4.20)
we get KerA ⊆KerB. Then we can conclude that B and A have the same kernel space
and therefore the same rank.

Lemma 4.5. Assume that the sequence x(t) ∈ Rn is persistently exciting of order
m(< n) in N steps and W is an m × n matrix whose rows constitute a base of the
excited subspace of x(t). Then the sequence y(t) = Wx(t) ∈ Rm is persistently exciting
of order m in N steps (sufficiently exciting).

Proof. From Definition 4.2 we know that in the vectors set x(k), x(k+1), . . . , x(k+
N)(k is an arbitrary integer) there exist m vectors which are linearly independent. Let
these vectors be denoted by x(ki), i = 1, 2, . . . ,m, and let y(ki) = Wx(ki). Consider
the linear combinations of y(ki) given by

c1y(k1) + · · ·+ cmy(km)

= W (c1x(k1) + · · ·+ cmx(km)),

where ci, i = 1, . . . ,m, are scalar. Since x(ki), i = 1, 2, . . . ,m, are linearly independent
and the rows of W are a base of the subspace spanned by x(ki), i = 1, 2, . . . ,m, we can
see that the above linear combination cannot be zero unless ci = 0 for all i. Therefore,
the set y(ki), i = 1, 2, . . . ,m, are linearly independent. In other words, the matrix

t+N∑
k=t+1

y(k)yT (k)(4.26)

has full rank m for all t, which shows that y(t) = Wx(t) is persistently exciting of
order m.

Proof of Theorem 4.3. Assume that ϕ(t) is persistently exciting of order m,
m < n. We denote the excited subspace of ϕ(t) by φ. The dimension of φ is m. The
orthogonal complement of φ, denoted by φ⊥, is the unexcited subspace.

The update equation for the information matrix can be rewritten as

R(t) = R(t− 1)− (1− µ)α(t)R(t− 1)ϕ(t)ϕT (t)R(t− 1) + ϕ(t)ϕT (t).(4.27)

Therefore, we have

R(1) = R(0)− (1− µ)α(1)R(0)ϕ(1)ϕT (1)R(0) + ϕ(1)ϕT (1).(4.28)

Assume R(0) is positive definite; then, according to Theorem 2.10, it can be decom-
posed along the excited subspace φ into two parts,

R(0) = Ro(0) +Rp(0),(4.29)

where Ro(0) is orthogonal to the excited space in the following sense:

Ro(0)ϕ(t) = 0 for all ϕ(t) ∈ φ(4.30)

and is positive semidefinite with rank n − m. Rp is also positive semidefinite with
rank m.

Equation (4.28) can be rewritten as

R(1) = Ro(0) +Rp(0)− (1− µ)α(1)Rp(0)ϕ(1)ϕ
T (1)Rp(0)

+ϕ(1)ϕT (1)(4.31)

= Ro(1) +Rp(1),(4.32)

A MATRIX DECOMPOSITION METHOD 1109

where

Ro(1) = Ro(0),(4.33)

Rp(1) = Rp(0)− (1− µ)α(1)Rp(0)ϕ(1)ϕ
T (1)Rp(0) + ϕ(1)ϕT (1).(4.34)

The first two terms in (4.34) are in the same form as that of the matrix B in Lemma
4.4. Then from Lemma 4.4 it can be seen that the matrix Rp(1) is positive semidefinite
and its rank is not less than m.

Thus generally we have

R(t) = Ro(t) +Rp(t),(4.35)

Ro(t) = Ro(t− 1) = Ro(t− 2) = · · · = Ro(0),(4.36)

Rp(p) = Rp(t− 1)− (1− µ)α(t)Rp(t− 1)ϕ(t)ϕT (t)Rp(t− 1)

+ϕ(t)ϕT (t).(4.37)

Define the following matrix:

U = [U1 U2],(4.38)

where U1 is an n×m matrix whose columns are the orthonormal basis of the excited
subspace φ, and U2 is an n×(n−m) matrix whose columns are the orthonormal basis
of the unexcited subspace φ⊥. U is an orthogonal matrix.

One can get

UTRo(0)U =

[
0 0
0 UT

2 Ro(0)U2

]
,(4.39)

UTϕ(t)ϕT (t)U =

[
ψ(t)ψT (t) 0

0 0

]
,(4.40)

where ψ(t) = UT
1 ϕ(t) is an m× 1 column vector. By setting x(t) = ϕ(t),W = UT

1 in
Lemma 4.5 we can see that ψ(t) is sufficiently exciting.

Thus we have

S(t) = UTR(t)U =

[
0 0
0 UT

2 Ro(0)U2

]
+ UTRp(t)U.(4.41)

We need to show that as t→∞, the eigenvalues of S(t) and hence R(t) keep bounded
from below away from zero. For this purpose, recall the update equation in the EFRLS
algorithm

R′
p(t) = µR′

p(t− 1) + ϕ(t)ϕT (t).(4.42)

Here R′
p(t) corresponds to Rp(t) in (4.37). Assume that the recursive equations (4.37)

and (4.42) have the same initial condition, that is, Rp(0) = R′
p(0) = Rp0 ≥ 0. Then

it can be seen that

Rp(1)−R′
p(1) = (1− µ)

(
Rp0 − Rp0ϕ(1)ϕ

T (1)Rp0

ϕT (1)Rp0ϕ(1)

)
≥ 0.(4.43)

That is, Rp(1) ≥ R′
p(1). Similarly, in general we have

Rp(t) ≥ R′
p(t).(4.44)

1110 LIYU CAO AND HOWARD M. SCHWARTZ

In the following, it is shown how R′
p(t) changes as t→∞. We have

UTR′
p(t)U = µUTR′

p(t− 1)U + UTϕ(t)ϕT (t)U(4.45)

= µ

[
UT

1 R′
p(t− 1)U1 UT

1 R′
p(t− 1)U2

UT
2 R′

p(t− 1)U1 UT
2 R′

p(t− 1)U2

]
+

[
ψ(t)ψT (t) 0

0 0

]
.(4.46)

From the equation above it can be seen that when µ < 1 and t is sufficiently large,
UTR′

p(t)U can be approximately expressed as

UTR′
p(t)U ≈

[
µUT

1 R′
p(t− 1)U1 + ψ(t)ψT (t) 0

0 0

]
.(4.47)

The equation above shows that the update equation for UT
1 Rp(t)U1 is the same as

that of the EFRLS algorithm. The vector ψ(t) acts as a sufficiently exciting signal.
From the known result obtained in [10], we can see that as t→∞ the eigenvalues of
UT

1 R′
p(t)U1 keep bounded from below by a positive number.

From (4.41) and (4.44), we have

S(t) = UTR(t)U ≥
[
0 0
0 UT

2 Ro(0)U2

]
+ UTR′

p(t)U.(4.48)

Thus when t is sufficiently large we can get

S(t) ≥
[
0 0
0 UT

2 Ro(0)U2

]
+

[
µUT

1 R′
p(t− 1)U1 + ψ(t)ψT (t) 0

0 0

]
.(4.49)

The columns of U2 belong to φ⊥; therefore, Ro(0)U2 �= 0 and UT
2 Ro(0)U2 is positive

definite. The inequality (4.49) proves that as t→∞ all eigenvalues of S(t) and hence
R(t) keep bounded from below by a positive number.

Finally, the computational complexity of the new algorithm is discussed briefly.
In order to avoid matrix inversion computation in (4.6), we need to rewrite the update
equation (4.17) in terms of the inverse of R(t). Let P (t) = R−1(t). By applying the
matrix inversion lemma to (4.17), we can get

P (t) = P̄ (t− 1)− P̄ (t− 1)ϕ(t)ϕT (t)P̄ (t− 1)

1 + ϕT (t)P̄ (t− 1)ϕ(t)
,(4.50)

where P̄ (t− 1) is defined by the following equations:

P̄ (t− 1) = R̄−1(t− 1) = P (t− 1)F−1(t)

= P (t− 1) +
1− µ

µ

ϕ(t)ϕT (t)

ϕT (t)R(t− 1)ϕ(t)
.(4.51)

From (4.6), (4.50), and (4.51), we see that there are three matrices (P (t), P̄ (t), and
R(t)) which need to be updated at each step. In terms of matrix computations, the
computational requirement is three times as much as that of the EFRLS algorithm,
where only P (t) needs to be updated. This is the price paid for performing forget-
ting only in the excited subspace. This also motivates further effort to improve the
algorithm’s complexity.

A MATRIX DECOMPOSITION METHOD 1111

5. Conclusions. In this paper, the problem of orthogonally decomposing a pos-
itive semidefinite matrix A along a given subspace into the form A = B+C has been
analyzed. It has been proven that when the rank of B is required to be equal to the
dimension of the given subspace, then such a decomposition is unique and has the
rank-additivity property rank(A)= rank(B)+rank(C). The difference and close con-
nection between this decomposition and the existing rank-additivity decomposition
have been discussed. It has been shown that there are infinite pairs of matrices which
have the rank-additivity property. In addition, the rank-additivity decomposition has
been characterized in terms of the image space and the kernel space of the involved
matrices, which has given some new insights into the rank-additivity property. As
an application example, a new recursive parameter estimation algorithm has been
developed based on the proposed matrix decomposition method. This algorithm can
overcome the main drawbacks of the widely used exponentially weighted least squares
algorithm.

REFERENCES

[1] L. Cao and H. Schwartz, A directional forgetting algorithm based on the decomposition of
the information matrix, Automatica J. IFAC, 36 (2000), pp. 1725–1731.

[2] M. T. Chu, R. E. Funderlic, and G. H. Golub, Rank modifications of semidefinite matrices
associated with a secant update formula, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 428–
436.

[3] R. E. Cline and R. E. Funderlic, The rank of a difference matrices and associated generalized
inverses, Linear Algebra Appl., 24 (1979), pp. 185–215.

[4] V. V. Prasolov, Problems and Theorems in Linear Algebra, AMS, Providence, RI, 1994.
[5] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,

UK, 1985.
[6] L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, MIT Press,

Cambridge, MA, 1983.
[7] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd ed., Addison-Wesley, Reading,

MA, 1995.
[8] E. W. Bai and S. S. Sastry, Persistency of excitation, sufficient richness and parameter

convergence in discrete time adaptive control, Systems Control Lett., 6 (1985), pp. 153–
163.

[9] J. E. Parkum, N. K. Poulsen, and J. Holst, Recursive forgetting algorithms, Internat. J.
Control, 55 (1992), pp. 109–128.

[10] R. M. Johnstone, C. R. Johnson, Jr., R. R. Bitmead, and B. D. O. Anderson, Exponential
convergence of recursive least squares with exponential forgetting factor, Systems Control
Lett., 2 (1982), pp. 77–82.

APPROXIMATING THE LOGARITHM OF A MATRIX TO
SPECIFIED ACCURACY∗

SHEUNG HUN CHENG† , NICHOLAS J. HIGHAM‡ , CHARLES S. KENNEY§ , AND

ALAN J. LAUB¶

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1112–1125

Abstract. The standard inverse scaling and squaring algorithm for computing the matrix
logarithm begins by transforming the matrix to Schur triangular form in order to facilitate subsequent
matrix square root and Padé approximation computations. A transformation-free form of this method
that exploits incomplete Denman–Beavers square root iterations and aims for a specified accuracy
(ignoring roundoff) is presented. The error introduced by using approximate square roots is accounted
for by a novel splitting lemma for logarithms of matrix products. The number of square root stages
and the degree of the final Padé approximation are chosen to minimize the computational work.
This new method is attractive for high-performance computation since it uses only the basic building
blocks of matrix multiplication, LU factorization and matrix inversion.

Key words. matrix logarithm, Padé approximation, inverse scaling and squaring method,
matrix square root, Denman–Beavers iteration

AMS subject classification. 65F30

PII. S0895479899364015

1. Introduction. Logarithms of matrices arise in various contexts. For example,
for a physical system governed by a linear differential equation of the form

dy

dt
= Xy,

we may be interested in determining the matrix X from observations of the state
vector y(t) [1], [20]. If y(0) = y0 then y(t) = eXty0, where the exponential of a matrix
is defined by

eX =

∞∑
k=0

Xk

k!
.

By observing y at t = 1 for initial states consisting of the columns of the identity
matrix, we obtain the matrix A = eX . Under certain conditions on A and X, we
can then solve for X as X = logA. This raises the question of how to compute a
logarithm of a matrix.

When A is near the identity matrix several methods can be used to approximate
logA directly, that is, without any nontrivial transformation of A. For example,

∗Received by the editors November 16, 1999; accepted for publication (in revised form) by A.
Edelman August 23, 2000; published electronically March 13, 2001.

http://www.siam.org/journals/simax/22-4/36401.html
†Centre for Novel Computing, Department of Computer Science, University of Manchester,

Manchester, M13 9PL, England (scheng@cs.man.ac.uk, http://www.cs.man.ac.uk/˜scheng/). The
work of this author was supported by Engineering and Physical Sciences Research Council grant
GR/L94314.

‡Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
(higham@ma.man.ac.uk, http://www.ma.man.ac.uk/˜higham/). The work of this author was sup-
ported by Engineering and Physical Sciences Research Council grant GR/L94314.

§ECE Department, University of California, Santa Barbara, CA 93106-9560 (kenney@seidel.
ece.ucsb.edu).

¶College of Engineering, University of California, Davis, CA 95616-5294 (laub@ucdavis.edu). The
work of this author was supported by NSF grant ECS-9633326.

1112

APPROXIMATING THE LOGARITHM OF A MATRIX 1113

we can truncate the Taylor series log(I −W) = −W −W 2/2 −W 3/3 − · · ·, where
W = I−A. Alternatively, we can use Padé approximations of log(I−W); see [16] and
section 5 below. Unfortunately, if A is not near the identity then these methods either
do not converge or converge so slowly that they are not of practical use. The standard
way of dealing with this problem is to use the square root operator repeatedly to bring
A near the identity:

logA = 2k logA1/2k

.(1.1)

(Definitions of the logarithm and square root functions for matrices are given in

the next section.) As k increases, A1/2k → I, so for sufficiently large k we can

apply a direct method to A1/2k

. This procedure for the logarithm was introduced
by Kenney and Laub [15] and is referred to as inverse scaling and squaring, since it
reverses the usual scaling and squaring method of evaluating the matrix exponential:

eX =
(
eX/2

k)2k

[19], [21].
Two related questions arise with the inverse scaling and squaring method. First,

potentially the most expensive part of the method is the computation of the square
roots. For cases where only modest accuracy is required in the logarithm it is natural
to ask whether the cost of this part of the computation can be reduced by comput-
ing approximate square roots. The second question concerns the effect of errors in
computing the square roots on the accuracy of the computed logarithm. In [15] the
square roots are computed using the Schur method [4], [9], [12], which has essentially
optimal accuracy and stability properties, but the effects of rounding errors are not
analyzed.

In partial answer to these questions we develop an extension of the inverse scaling
and squaring method with two key properties.

1. It aims for a specified accuracy in the computed logarithm, requiring less
work when more modest accuracy is requested. When full accuracy (that
of the underlying arithmetic) is requested, our method becomes a new and
attractive implementation of the original inverse scaling and squaring method.

2. It can be implemented using only the basic building blocks of matrix mul-
tiplication, LU factorization, and matrix inversion. The method is therefore
attractive for high-performance computation.

In view of these two properties our method may also be of interest for computing the
logarithm in variable precision computing environments, such as in symbolic manipu-
lation packages. Our bounds for the various truncation errors are developed for exact
arithmetic. In floating point arithmetic, rounding errors also influence the accuracy.
We do not rigorously bound the effect of rounding errors, but rather estimate it in
terms of the conditioning of the problem.

Our new method is based on a splitting lemma for the logarithm (Lemma 2.1
below), which says that if A = BC and B and C commute then, under certain
conditions,

logA = logB + logC.

In the special case B = C = A1/2 we recover the basis of (1.1): logA = 2 logA1/2.
We apply the splitting lemma to the Denman–Beavers (DB) iteration for the matrix
square root [5]:

Yk+1 =
(
Yk + Z−1

k

)
/2, Y0 = A,

Zk+1 =
(
Zk + Y −1

k

)
/2, Z0 = I.

1114 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

The DB iteration converges quadratically with Yk → A1/2 and Zk → A−1/2. The
splitting lemma can be used to show that

logA = 2 log Yk − log YkZk.

The matrix product YkZk converges to the identity and so its logarithm converges
to zero. Our approach is to iterate until log YkZk is sufficiently small, then apply
the process recursively on Yk, monitoring the error build-up as we proceed. We thus
apply an incomplete square root cascade that brings A close enough to the identity
so that the logarithm can be approximated directly.

To increase the efficiency of our method we develop in section 3 a product form of
the DB iteration that trades one of the matrix inversions for a matrix multiplication
and automatically generates the products YkZk. We also incorporate scaling to reduce
the overall number of iterations. The product form iteration turns out to be closely
related to the standard Newton iteration for the matrix sign function, as explained
in section 4. In section 5 we develop the implementation details for the incomplete
square root cascade. Our method uses a Padé approximation, explained in section 6,
whose order is chosen in section 7 together with the number of square root stages in
order to minimize the computational work. Numerical experiments are described in
section 8 and conclusions are given in section 9.

2. Splitting lemma. We begin by defining the matrix logarithm and square
root functions. Let A be a real or complex matrix of order n with no eigenvalues on
R

− (the closed negative real axis). Then there exists a unique matrix X such that [15]

1. eX = A;
2. the eigenvalues of X lie in the strip { z : −π < Im(z) < π };

We refer to X as the (principal) logarithm of A and write X = logA. Similarly, there
is a unique matrix S such that [9], [15]

1. S2 = A;
2. the eigenvalues of S lie in the open halfplane: 0 < Re(z).

We refer to S as the (principal) square root of A and write S = A1/2.

If A is real then its principal logarithm and principal square root are also real.

For our first result, we need to define the open halfplane associated with z = ρeiθ,
which is the set of complex numbers w = ζeiφ such that −π/2 < φ− θ < π/2.

Lemma 2.1 (splitting lemma). Suppose that A = BC has no eigenvalues on R
−

and

1. BC = CB;
2. every eigenvalue of B lies in the open halfplane of the corresponding eigen-

value of A1/2 (or, equivalently, the same condition holds for C).

Then logA = logB + logC.

Proof. First we show that the logarithms of B and C are well defined. Since A =
BC = CB it follows that A commutes with B and C. Thus there is a correspondence
between the eigenvalues a, b, and c of A,B, and C: a = bc. Express these eigenvalues
in polar form as

a = αeiθ, b = βeiφ, c = γeiψ.

Since A has no eigenvalues on R
−,

−π < θ < π.(2.1)

APPROXIMATING THE LOGARITHM OF A MATRIX 1115

The eigenvalues of B lie in the open halfplanes of the corresponding eigenvalues of
A1/2, that is,

−π

2
< φ− θ

2
<

π

2
.(2.2)

The relation a = bc gives θ = φ+ψ, from which we have ψ−θ/2 = θ/2−φ. It follows
from (2.2) that the eigenvalues of C lie in the open halfplanes of the corresponding
eigenvalues of A1/2. Thus, in view of (2.1), B and C have no eigenvalues on R

− and
their logarithms are well defined.

Next, we show that elogB+logC = A. The matrices logB and logC commute
since B and C do. Using the well-known result that the exponential of the sum of
commuting matrices is the product of the exponentials [14, Thm. 6.2.38], we have

elogB+logC = elogBelogC = BC = A.

It remains to show that the eigenvalues of logB + logC have imaginary parts in
(−π, π). This follows since, in view of the commutativity of B and C, the eigenvalues
of logB + logC are log b + log c = log a.

Note that for A = BC the commutativity condition BC = CB is not enough
to guarantee that logA = logB + logC, as the following scalar example shows. Let
a = e−2εi and b = c = e(π−ε)i for ε small and positive. Then a = bc but

log a = −2εi �= (π − ε)i + (π − ε)i = log b + log c.

The reason for this behavior is that b and c are equal to a nonprincipal square root
of a, and hence are not in the halfplane of a1/2.

3. DB square root iteration. The DB iteration [5] for the square root of a
matrix A with no eigenvalues on R

− is

Yk+1 =
(
Yk + Z−1

k

)
/2, Y0 = A,

Zk+1 =
(
Zk + Y −1

k

)
/2, Z0 = I.

(3.1)

The iteration has the properties [8] (and see Theorem 4.1, below)

lim
k→∞

Yk = A1/2, lim
k→∞

Zk = A−1/2

and, for all k,

Yk = AZk,

YkZk = ZkYk,

Yk+1 = (Yk + AY −1
k)/2.(3.2)

The next lemma is the basis for our use of the DB iteration for computing the loga-
rithm.

Lemma 3.1. The DB iterates satisfy the splitting relations

logA = log Yk − logZk

= 2 log Yk − log YkZk

= −2 logZk + log YkZk.

1116 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

Proof. Since A = YkZ
−1
k , Yk and Zk commute and logZ−1

k = − logZk, the
first equality follows from Lemma 2.1 if we can show that the eigenvalues of Yk are
in the halfplane of the corresponding eigenvalues of A1/2. By (3.2), the individual
eigenvalues of Yk follow the scalar iteration

yk+1 = (yk + ay−1
k)/2, y0 = a,

where a is an eigenvalue of A. This is just the scalar Newton iteration for the square
root of a and it has the property that the iterates yk remain in the halfplane of a1/2

(see, e.g., [8]). Similar arguments show that log YkZk = log Yk + logZk, which yields
the remaining two equalities.

To see how to use Lemma 3.1, note that since Yk → A1/2 and Zk → A−1/2,
YkZk → I and log YkZk → 0. Suppose we terminate the DB iteration after k itera-
tions; we can write

logA = 2 log Yk − E1,

where we wish E1 = log YkZk to be suitably small. Define Y (1) = Yk, Z(1) = Zk. We
now apply the DB iteration to Y (1), again for a finite number of iterations. Continuing
this process leads after s steps to

logA = 2s log Y (s) − E1 − 2E2 − · · · − 2s−1Es, Ei = log Y (i)Z(i),(3.3)

where Y (i) and Z(i) are the final iterates from the DB iteration applied to Y (i−1).
Our aim is that log Y (s) be easy to compute and the Ei terms be small enough to be
ignored. Note that we could apply the DB iteration to the Z(i) instead of the Y (i);
all the following analysis is easily adapted for this choice.

We need to bound the error terms Ei = log Y (i)Z(i) without computing a matrix
logarithm. One way to do this is as follows. Using the Taylor expansion of log(1 + x)
it is easy to show that if ‖I − Y Z‖ < 1 then

‖ log Y Z‖ ≤ | log(1− ‖I − Y Z‖)|.(3.4)

Here, and throughout, the norm is any subordinate matrix norm. The terms YkZk
are not formed during the DB iteration. However, a little manipulation shows that
Yk+1Zk+1 − I = (Yk+1 − Yk)(Zk+1 − Zk) and hence

‖Yk+1Zk+1 − I‖ ≤ ‖Yk+1 − Yk‖‖Zk+1 − Zk‖.(3.5)

Thus, if this upper bound does not exceed 1, we have a bound for ‖Ei‖ that can
be computed at no extra cost and can be used to decide when the Ei terms can be
neglected. However, both the bounds (3.4) and (3.5), and hence the bound for ‖Ei‖,
can be weak. Fortunately, there is a better approach: we can reformulate the DB
iteration in terms of Yk (or Zk) and the required product Mk = YkZk, as the next
lemma shows.

Lemma 3.2 (product form of DB iteration). Let Yk and Zk be the DB iterates
for A and define Mk = YkZk. Then

Mk+1 =
1

2

(
I +

Mk + M−1
k

2

)
, M0 = A,

Yk+1 = Yk(I + M−1
k)/2, Y0 = A,(3.6)

Zk+1 = Zk(I + M−1
k)/2, Z0 = I.

APPROXIMATING THE LOGARITHM OF A MATRIX 1117

In a high-performance computing environment, iterating with Mk and Yk from
(3.6), at the cost of one inversion and one multiplication per iteration, is preferable to
iterating with Yk and Zk from (3.1), at the cost of two inversions per iteration, since
matrix multiplication is faster than matrix inversion.

In practice, it is vital to scale matrix iterations to produce reasonably fast over-
all convergence. Higham [11] derives a scaling for the DB iteration based on θ =
det(Yk) det(Zk): it requires Yk and Zk to be multiplied by |θ−1/(2n)| at the start of
the (k + 1)st iteration, where A is of order n. For the product form of the iteration,
since det(Yk) det(Zk) = det(Mk) and we invert and hence factorize Mk, θ is available
at no extra cost.

Matrix iterations such as the DB iteration can suffer from numerical instability.
Although an iteration may be globally convergent for the specified starting matrices,
rounding errors can introduce perturbations that grow unboundedly, this phenomenon
usually being associated with loss of commutativity of the iterates. We define an
iteration Xk+1 = f(Xk) to be stable in a neighborhood of a solution X = f(X) if the
error matrices Ek = X −Xk satisfy

Ek+1 = L(Ek) + O(‖Ek‖2),

where L is a linear operator that has bounded powers, that is, there exists a constant
c such that for all p > 0 and arbitrary E of unit norm, ‖Lp(E)‖ ≤ c. The DB iteration
is stable [8], [11]; the iteration (3.2), which is a standard Newton iteration for A1/2,
is unstable unless the eigenvalues λi of A satisfy [8] maxi,j

∣∣1− (λi/λj)
1/2
∣∣ ≤ 2.

It is easy to show that the product form of the DB iteration is stable. Define
the error terms Gk = Yk − A1/2, Hk = Zk − A−1/2, and Jk = Mk − I. Simple
manipulations show that, to first order in Gk, Hk, and Jk,

 Gk+1

Hk+1

Jk+1

 =

 I 0 −A1/2/2

0 I −A−1/2/2
0 0 0

 Gk

Hk

Jk

 ≡ C

Gk
Hk

Jk

 .

The coefficient matrix C is idempotent (C2 = C) and hence has bounded powers.
Thus the iteration is stable.

Before explaining the use of the modified DB iteration, we develop more insight
into its properties by relating it to a well-known iteration for the matrix sign function.

4. Relation to matrix sign function iteration. For a matrix N with no
eigenvalues on the imaginary axis the sign function is defined by [10], [18]

signN = N
(
N2
)−1/2

.

The standard approach to compute signN is to use the Newton iteration

Nk+1 =
(
Nk + N−1

k

)
/2, N0 = N.

This iteration converges quadratically to S = signN , with error evolving in the Cayley
metric according to [17]

(Nk+1 − S)(Nk+1 + S)−1 =
(
(Nk − S)(Nk + S)−1

)2
.

The following theorem shows that the DB iterates are scaled versions of the Newton
iterates for signA1/2.

1118 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

Theorem 4.1. Let A have no eigenvalues on R
−. Let Nk be the Newton iterates

for signA1/2 (= I) and Yk, Zk, and Mk = YkZk be the DB iterates for A in (3.1) and
(3.6). Then

Yk = A1/2Nk, Zk = A−1/2Nk, Mk = N2
k .

Proof. A straightforward induction, making use of the fact that Nk commutes
with A1/2.

Theorem 4.1 implies that the DB iterates Yk, Zk, and Mk converge quadratically
to A1/2, A−1/2, and I, respectively, with errors evolving in the Cayley metric according
to

(Yk+1 −A1/2)(Yk+1 + A1/2)−1 = ((Yk −A1/2)(Yk + A1/2)−1)2,

(Zk+1 −A−1/2)(Zk+1 + A−1/2)−1 = ((Zk −A−1/2)(Zk + A−1/2)−1)2,

(Nk+1 − I)(Nk+1 + I)−1 = ((Nk − I)(Nk + I)−1)2,

where Nk = M
1/2
k .

From [18] we know that k steps of the Newton iteration for the sign function
generate the kth diagonal Padé approximation to the sign function, which is given
by rk = pk/qk, where pk and qk are the even and odd parts, respectively, of the

polynomial (1 + x)2
k

. Using Theorem 4.1 we can therefore obtain explicit rational
expressions for the DB iterates. For example, Yk = p̃k(A)q̃−1

k (A), where

p̃k(A) =

(
2k

0

)
+

(
2k

2

)
A +

(
2k

4

)
A2 + · · ·+

(
2k

2k

)
A2k−1

,

q̃k(A) =

(
2k

1

)
I +

(
2k

3

)
A +

(
2k

5

)
A2 + · · ·+

(
2k

2k − 1

)
A2k−1−1.

5. Incomplete square root cascade. We return now to the use of the product
form of the DB iteration to compute the logarithm. The following algorithm describes
how we use the DB iteration, but omits convergence tests.

Algorithm 5.1. This algorithm runs an incomplete square root cascade on the
matrix A of order n, using the product form of the DB iteration with scaling. The DB
iteration is invoked s times, with ki iterations on the ith invocation.

for i = 1: s
if i = 1
M0 = A, Y0 = A

else
M0 = Y (i−1), Y0 = Y (i−1)

end
for k = 0: ki − 1

γk = |(det(Mk))−1/(2n)|

Mk+1 =
1

2

(
I +

γ2
kMk + γ−2

k M−1
k

2

)

Yk+1 = 1
2γkYk(I + γ−2

k M−1
k)

end
M (i) = Mki , Y

(i) = Yki
end

APPROXIMATING THE LOGARITHM OF A MATRIX 1119

With the notation of Algorithm 5.1, we can rewrite (3.3) as

logA = 2s log Y (s) − logM (1) − 2 logM (2) − · · · − 2s−1 logM (s).(5.1)

Rather than simply discard the terms logM (i) = logMk, we can approximate them
using

logMk ≈Mk − I.(5.2)

The error in this approximation satisfies

‖ logMk − (Mk − I)‖ ≈ ‖(Mk − I)2‖/2.(5.3)

For comparison, the error resulting from continuing for one more iteration and then
discarding logMk+1 is

‖ logMk+1‖ ≈ ‖Mk+1 − I‖.(5.4)

It can be shown that

Mk+1 − I =
1

4
(Mk − I)2M−1

k ,

and hence the error term in (5.4) is approximately half that in (5.3) close to con-
vergence (recall that Mk → I). The product form of the DB iteration thus has an
advantage over the original iteration; because it generates Mk explicitly it allows us
to use the approximation (5.2) and thus to obtain similar accuracy in the logarithm
with one less iteration.

Define the approximation L(s) to logA by

L(s) = 2s log Y (s) − (M (1) − I
)− 2

(
M (2) − I

)− · · · − 2s−1
(
M (s) − I

)
.(5.5)

Then, subtracting (5.5) from (5.1) gives

logA = L(s) − Ẽ1 − 2Ẽ2 − · · · − 2s−1Ẽs,(5.6)

where

Ẽi = logM (i) − (M (i) − I
)
.

Theorem 5.2. Let δ > 0. In the ith product DB square root stage of Algo-
rithm 5.1 let ki be large enough so that

∣∣∣ ‖W (i)‖+ log(1− ‖W (i)‖)
∣∣∣ ≤ δ/4i−1,(5.7)

where W (i) = I −M (i). Then

‖ logA− L(s)‖ ≤ 2δ

(
1− 1

2s

)
.(5.8)

Proof. Using the bound

‖Ẽi‖ = ‖W (i) + log(I −W (i))‖ ≤ |‖W (i)‖+ log(1− ‖W (i)‖)| ≤ δ/4i−1

in (5.6) and summing a geometric series yields the result.

1120 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

To obtain a logarithm approximation, the final step is to approximate log Y (s),
by L̃, say. Then our approximation to logA is

X̃ = 2sL̃−
s∑

k=1

2k−1
(
M (k) − I

)
.(5.9)

Assuming we choose the ki as in Theorem 5.2, then (5.8) leads to

‖X̃ − logA‖ ≤ 2s‖L̃− log Y (s)‖+ 2δ

(
1− 1

2s

)
.(5.10)

It is natural to require that the error due to our approximation of logY (s) satisfy the
same bound as the error introduced by the incomplete square roots; thus we require

‖L̃− log Y (s)‖ ≤ 21−sδ
(

1− 1

2s

)
.(5.11)

Then we have the overall error bound

‖X̃ − logA‖ ≤ 4δ

(
1− 1

2s

)
< 4δ.(5.12)

Two questions arise: How shall we select s and how can we find L̃ such that
(5.11) is satisfied? These questions are treated in the next two sections. We close
this section by noting that (5.10) shows that the error in approximating log Y (s) is
magnified by a factor 2s. This is a fundamental limitation of the inverse scaling and
squaring approach that is also identified in [7].

6. Padé approximants. If A is near the identity matrix then rational approx-
imation of logA is practical. Diagonal Padé approximants preserve some important
properties of the logarithm and offer rapid convergence as the degree of the approxi-
mant increases [16]. For a given scalar function

f(x) =
∞∑
n=0

anx
n,

we say that the rational function rkm = pkm/qkm is a [k/m] Padé approximant of f
if pkm is a polynomial in x of degree at most k, qkm is a polynomial in x of degree
at most m, and f(x) − rkm(x) = O

(
xk+m+1

)
. In addition, we usually require that

pkm and qkm are relatively prime (have no common zeros) and that qkm has been
normalized so that qkm(0) = 1. These conditions ensure that if a [k/m] approximant
exists then it is unique; see [2] and [3]. Following Kenney and Laub [16] we restrict
our attention to the diagonal (k = m) Padé approximants of f(x) = log(1 − x), the
first three of which are (here, for convenience we have not normalized qmm)

r11(x) =
−2x

2− x
, r22(x) =

−6x + 3x2

6− 6x + x2
, r33(x) =

−60x + 60x2 − 11x3

60− 90x + 36x2 − 3x3
.

Kenney and Laub [16] show that the error in the Padé approximant evaluated
at a matrix argument X is bounded by the error in the scalar approximation with
x = ‖X‖, provided that ‖X‖ < 1:

‖rmm(X)− log(I −X)‖ ≤ |rmm(‖X‖)− log(1− ‖X‖)|.(6.1)

This bound can be evaluated at negligible cost given rmm.

APPROXIMATING THE LOGARITHM OF A MATRIX 1121

7. Inverse scaling and squaring with specified accuracy. The availability
of the error bound (6.1) for the Padé approximation makes possible a strategy for
choosing s (the number of incomplete DB square root stages) and the order m of
the final Padé approximation in order to achieve the desired accuracy with minimal
work. For Padé approximation to be applicable s must be large enough so that
‖I − Y (s)‖ < 1. Once this point is reached, we can compare the work required to
produce an acceptable Padé approximation at the current square root stage with
the work required to carry out another square root stage and then evaluate a Padé
approximation.

In view of (5.11) and (6.1), a suitable order mk of the Padé approximation at the
kth square root stage is the smallest m for which

|rmm(‖X‖)− log(1− ‖X‖)| ≤ 21−kδ
(

1− 1

2k

)
, X = I − Y (k),(7.1)

where rmm is the Padé approximant of order m as described in section 6. With this
choice of m, and with the number of DB iterations ki chosen as in Theorem 5.2, we
have the bound (5.12), that is,

‖X̃ − logA‖ < 4δ,(7.2)

where X̃ is given by (5.9) with L̃ = rmm(I − Y (k)). Note that this bound does
not incorporate the effects of rounding errors. We comment below on the effects of
roundoff.

Having determined mk, we can consider whether to iterate further or not, by
examining the cost of evaluating the Padé approximation. Several methods of evalu-
ation are described and compared with respect to cost, storage, and accuracy in [13].
The best overall method is based on the partial fraction expansion

rmm(x) =

m∑
j=1

α
(m)
j x

1 + β
(m)
j x

,(7.3)

where the α
(m)
j are the weights and the β

(m)
j the nodes of the m-point Gauss–Legendre

quadrature rule on [0, 1]. Evaluating rmm at the matrix argument X with m = mk

requires the solution of mk linear systems each having n right-hand sides, which we
will regard as equivalent to mk matrix inversions.

To estimate the cost of proceeding for a further square root stage we need to know
the number of iterations in that stage and the degree mk+1 of the Padé approximation

at the end of the stage. Since A1/2k → I as k increases, the square roots become easier
to compute with increasing k, but this is compensated for by the more stringent
accuracy demanded by the condition (5.7). In practice, the number of square root
iterations frequently stays the same or decreases by 1 from one stage to the next. For
our calculations we assume that the number of square root iterations on the (k+ 1)st
stage is the same as that on the kth stage, which we denote by itk. The estimated cost
of the next square root stage is therefore itk matrix multiplications and itk matrix
inversions.

To estimate mk+1 we note that

(
I −A1/2k+1

)(
I + A1/2k+1

)
= I −A1/2k

.(7.4)

1122 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

Since A1/2k → I we have

‖I −A1/2k+1‖ ≈ 1

2
‖I −A1/2k‖.(7.5)

We therefore use the approximation ‖I−Y (k+1)‖ ≈ ‖I−Y (k)‖/2 in (7.1) to determine
mk+1.

Denoting by α the ratio “cost of matrix inversion divided by cost of matrix mul-
tiplication,” we terminate the square root iterations if

mk ≤ mk+1 + (1 + α)itk.(7.6)

For our tests we have taken α = 1 (as suggested by the operation counts), but on
many computers a value of α bigger than 1 and possibly depending on n would be
more appropriate.

It is worth stressing that if any of the assumptions underlying our choice of s and
m are not satisfied then the efficiency of the computation may be less than optimal
but the error bound (7.2) still holds.

We summarize our overall algorithm as follows.
Algorithm 7.1. Given a matrix A with no eigenvalues on R

−, and a tolerance
δ > 0, this algorithm approximates X = logA to within absolute accuracy 4δ (ignoring
roundoff).

1. Run Algorithm 5.1 with the ki chosen as in Theorem 5.2, choosing s, the
number of DB iteration stages, as the first k for which ‖I−Y (k)‖ ≤ 0.99, and
(7.6) is satisfied with mk ≤ 16.

2. Use (7.3) to evaluate X, the [ms/ms] Padé approximation rms,ms(B) to
log(I −B), where B = I − Y (s).

3. X = 2sX −∑s
k=1 2k−1

(
M (k) − I

)
.

Now we return to the effects of roundoff. We do not attempt here a full rounding
error analysis of Algorithm 7.1, as experience shows that it is difficult to obtain useful
error bounds for iterations for the matrix square root and sign function. However,
several observations can be made. First, it is shown in [13] that with the parameters
0.99 and 16 in step 1 of Algorithm 7.1 the Padé approximation is evaluated to high
accuracy, because the matrices that are inverted are very well conditioned. Second,
for tolerances δ sufficiently larger than u the rounding errors can be subsumed in the
truncation errors. Finally, even if the computed X̂ has perfect backward stability,
that is,

X̂ = log(A + ∆A), ‖∆A‖ ≤ u‖A‖,(7.7)

where u is the unit roundoff, then the best forward error bound is [6], [15]

‖X̂ −X‖
‖X‖ ≤ ‖G′(A)‖ ‖A‖‖X‖u + O(u2),

where G′(A) is the Fréchet derivative of G(A) = logA = X at A. The term

condG(A) = ‖G′(A)‖ ‖A‖‖X‖
is a condition number for the logarithm function and it is notably absent in (7.2).
Since no numerical algorithm can be expected to do better than achieve (7.7), we

must accept that the computed X̂ will at best satisfy the modified version of (7.2)

‖X̂ − logA‖1 ≤ condG(A)‖X‖u + 4δ.(7.8)

Methods for estimating condG(A) are developed in [15].

APPROXIMATING THE LOGARITHM OF A MATRIX 1123

8. Numerical experiments. We have implemented Algorithm 7.1 in MAT-
LAB, for which the unit roundoff u = 2−53 ≈ 1.1 × 10−16. The various tests in
Algorithm 7.1 use the 1-norm. We describe results for three matrices A ∈ R

16×16.

Matrix 1: κ2(A) = 108, condG(A) ≈ 108. A is a random symmetric positive
definite matrix with eigenvalues exponentially distributed between 10−8

and 1, formed using MATLAB’s gallery(’randsvd’,...).
Matrix 2: κ2(A) = 1.2 × 106, condG(A) ≈ 5 × 109. A = QTQT ,

where Q is a random orthogonal matrix and T , obtained using
gallery(’rschur’,...), is in real Schur form with eigenvalues αj +
iβj , αj = −j2/10, βj = −j, j = 1:n/2 and (2j, 2j+1) elements µ (thus
µ controls the nonnormality of the matrix). We took µ = 25.

Matrix 3: κ2(A) = 13, condG(A) ≈ 1. A = QTQT is the same as matrix 2, but
with µ = 0.

For the tests we needed the exact logarithm, which we approximated by X∗ com-
puted using our own implementation of the inverse scaling and squaring method. Our
code computes a Schur decomposition, computes square roots by the Schur method

[4], [9], [12], and uses the [8/8] Padé approximation once ‖A1/2k − I‖1 ≤ 0.25. (Then
the Padé approximation has error safely less than u [16, sect. 3].)

For each matrix we applied Algorithm 7.1 with tolerance δ = ε‖X∗‖F /4, with ε
ranging from 10−16 to 10−1. The results are shown in Figure 8.1. In each plot ε is
on the x-axis. The plots in the first row show the total number

∑s
i=1 ki of inner DB

iterations (using the notation of Algorithm 5.1), and those in the second row show
the total number of matrix multiplications for the complete logarithm computation
(counting a matrix inversion as a multiplication). In the third row is plotted an

approximation ‖X̂ −X∗‖F /‖X∗‖F to the relative error.

The number of square roots computed by the inverse scaling and squaring method
for Matrices 1–3 was 7, 20, and 5, respectively. The corresponding operation counts
are about 32n3–40n3 flops. The number of incomplete square root stages used by Al-
gorithm 7.1 for Matrices 1–3 was in the ranges 5–7, 18–20, and 4–5, respectively. From
the second row of Figure 8.1 we can see that the operation count for Algorithm 7.1
varies between about 20n3 and 150n3 flops, and only for very relaxed tolerances does
Algorithm 7.1 better the flop count of the inverse scaling and squaring method. How-
ever, these operation counts do not reflect the fact that Algorithm 7.1 is built from
high-level computational kernels that can be implemented very efficiently.

The results reported are for the Y form of the DB iteration, as specified in Algo-
rithm 5.1. The corresponding Z form performs similarly.

We make the following comments on the results.

1. The number of inner iterations and the number of matrix multiplications
both vary with the tolerance δ by factors up to 3.2, confirming that incomplete
square root iterations with careful choice of the degree of Padé approximation
can produce substantial savings in work.

2. Ideally, the relative error would be approximately equal to ε. For Matrix 1 this
is the case down to ε = 10−8, at which point the relative error levels off due
to ill-conditioning: the condG term in (7.8) starts to dominate. For Matrix
2 the relative errors are approximately constant at about 10−6. Given that
condG(A) ≈ 5× 109 this is the level of relative error we would expect for the
smallest δ. Why the relative error increases only slightly with increasing δ is
unclear, but may be related to the large number of (incomplete) square roots
required and the consequent rapid decrease in the convergence tolerance. For

1124 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

10
−16

10
−8

10
−1

10

20

30

40
Matrix 1

In
ne

r
ite

ra
tio

ns

10
−16

10
−8

10
−1

20

40

60

80

M
at

rix
 m

ul
tip

lic
at

io
ns

10
−16

10
−8

10
−1

10
−16

10
−8

10
−1

R
el

at
iv

e
er

ro
r

ε

10
−16

10
−8

10
−1

30

40

50

60

70
Matrix 2

10
−16

10
−8

10
−1

50

100

150

10
−16

10
−8

10
−1

10
−16

10
−8

10
−1

ε

10
−16

10
−8

10
−1

5

10

15

20

25
Matrix 3

10
−16

10
−8

10
−1

0

20

40

60

10
−16

10
−8

10
−1

10
−16

10
−8

10
−1

ε

Fig. 8.1. Results for Matrices 1–3.

Matrix 3 the relative errors are somewhat less than ε, again for reasons that
are not clear.

3. We also implemented the inverse scaling and squaring method using the DB
iteration (3.1) with scaling, with the standard convergence test of the form
‖Yk+1 − Yk‖/‖Yk+1‖ ≤ θ and using the [8/8] Padé approximation. With θ =
nu the number of inner iterations was 85, 506 (due to convergence problems,
even with this relaxed tolerance), and 35 for Matrices 1–3, compared with
31, 68, and 25 for Algorithm 7.1 with δ = 10−16‖X‖F /4; the accuracy of the
computed logarithms was similar in both cases. The improved efficiency of
Algorithm 7.1 is due to the better convergence test (based on ‖Mk − I‖) and
the use of the free approximation (5.2).

9. Conclusion. This work makes three main contributions. First, we have ob-
tained a splitting result, Lemma 2.1, which gives conditions under which the logarithm
of a matrix product is the sum of the logarithms. Second, we have derived a product
form (3.6) of the DB iteration for the matrix square root; it trades a matrix inversion
for a matrix multiplication and, unlike the original iteration, has a natural stopping
test (based on ‖Mk − I‖). We used the lemma and the iteration to derive a new
version of the inverse scaling and squaring method for computing the matrix loga-
rithm. The key features of our method are that it adapts itself to a specified accuracy
(modulo the effects of roundoff) by carrying out incomplete square root computations
and choosing a suitable Padé approximation, and that the computational kernels are
matrix multiplication, LU factorization, and matrix inversion, making the method
attractive for high-performance computation.

APPROXIMATING THE LOGARITHM OF A MATRIX 1125

Acknowledgments. We thank the referees for their helpful comments.

REFERENCES

[1] R. C. Allen and S. A. Pruess, An analysis of an inverse problem in ordinary differential
equations, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 176–185.

[2] G. A. Baker, Jr., Essentials of Padé Approximants, Academic Press, New York, 1975.
[3] G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants, Encyclopedia Math. Appl.,

2nd ed., Cambridge University Press, Cambridge, England, 1996.
[4] Å. Björck and S. Hammarling, A Schur method for the square root of a matrix, Linear

Algebra Appl., 52/53 (1983), pp. 127–140.
[5] E. D. Denman and A. N. Beavers, Jr., The matrix sign function and computations in sys-

tems, Appl. Math. Comput., 2 (1976), pp. 63–94.
[6] L. Dieci, B. Morini, and A. Papini, Computational techniques for real logarithms of matrices,

SIAM J. Matrix Anal. Appl., 17 (1996), pp. 570–593.
[7] L. Dieci and A. Papini, Conditioning and Padé approximation of the logarithm of a matrix,

SIAM J. Matrix Anal. Appl., 21 (2000), pp. 913–930.
[8] N. J. Higham, Newton’s method for the matrix square root, Math. Comp., 46 (1986), pp.

537–549.
[9] N. J. Higham, Computing real square roots of a real matrix, Linear Algebra Appl., 88/89

(1987), pp. 405–430.
[10] N. J. Higham, The matrix sign decomposition and its relation to the polar decomposition,

Linear Algebra Appl., 212/213 (1994), pp. 3–20.
[11] N. J. Higham, Stable iterations for the matrix square root, Numer. Algorithms, 15 (1997), pp.

227–242.
[12] N. J. Higham, A New sqrtm for MATLAB, Numerical Analysis Report 336, Manchester Centre

for Computational Mathematics, Manchester, England, January 1999.
[13] N. J. Higham, Evaluating Padé approximants of the matrix logarithm, SIAM J. Matrix Anal.

Appl., 22 (2001), pp. 1126–1135.
[14] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,

Cambridge, England, 1991.
[15] C. Kenney and A. J. Laub, Condition estimates for matrix functions, SIAM J. Matrix Anal.

Appl., 10 (1989), pp. 191–209.
[16] C. Kenney and A. J. Laub, Padé error estimates for the logarithm of a matrix, Internat. J.

Control, 50 (1989), pp. 707–730.
[17] C. Kenney and A. J. Laub, Rational iterative methods for the matrix sign function, SIAM J.

Matrix Anal. Appl., 12 (1991), pp. 273–291.
[18] C. S. Kenney and A. J. Laub, The matrix sign function, IEEE Trans. Automat. Control, 40

(1995), pp. 1330–1348.
[19] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a

matrix, SIAM Rev., 20 (1978), pp. 801–836.
[20] B. Singer and S. Spilerman, The representation of social processes by Markov models, Amer.

J. Sociology, 82 (1976), pp. 1–54.
[21] R. C. Ward, Numerical computation of the matrix exponential with accuracy estimate, SIAM

J. Numer. Anal., 14 (1977), pp. 600–610.

EVALUATING PADÉ APPROXIMANTS OF THE MATRIX
LOGARITHM∗

NICHOLAS J. HIGHAM†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1126–1135

Abstract. The inverse scaling and squaring method for evaluating the logarithm of a matrix
takes repeated square roots to bring the matrix close to the identity, computes a Padé approximant,
and then scales back. We analyze several methods for evaluating the Padé approximant, includ-
ing Horner’s method (used in some existing codes), suitably customized versions of the Paterson–
Stockmeyer method and Van Loan’s variant, and methods based on continued fraction and partial
fraction expansions. The computational cost, storage, and numerical accuracy of the methods are
compared. We find the partial fraction method to be the best method overall and illustrate the
benefits it brings to a transformation-free form of the inverse scaling and squaring method recently
proposed by Cheng, Higham, Kenney, and Laub [SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1112–
1125]. We comment briefly on how the analysis carries over to the matrix exponential.

Key words. matrix logarithm, Padé approximation, inverse scaling and squaring method,
Horner’s method, Paterson–Stockmeyer method, continued fraction, partial fraction expansion

AMS subject classification. 65F30

PII. S0895479800368688

1. Introduction. Any nonsingular matrix A ∈ R
n×n having no eigenvalues on

the negative real axis has a real logarithm, that is, a real matrix W such that eW =
A [12, Thm. 6.4.15], [13]. Among all real logarithms there is a unique one whose
eigenvalues have imaginary parts lying strictly between −π and π; this is the principal
logarithm, which we denote by logA.

One of the most effective ways to compute logA is by inverse scaling and squaring

combined with Padé approximation. The idea is to compute Z = A1/2k

, with k large
enough so that Z is close to the identity, and then to compute a Padé approximant
of logZ. The logarithm of A is then obtained from the identity [5], [13]

logA = 2k logA1/2k

.(1.1)

We will refer to this method as the inverse scaling and squaring method. The method
was proposed by Kenney and Laub [13], who suggested obtaining the square roots by
computing a Schur decomposition of A and then taking square roots of the triangular
Schur factor, using the methods of [2], [10]. Recently, Cheng, Higham, Kenney, and
Laub [5] developed a transformation-free form of the inverse scaling and squaring
method in which the square roots are approximated using a matrix iteration and
certain parameters are chosen dynamically to minimize the computational cost subject
to achieving a specified accuracy. This new version can be implemented using only
matrix multiplication, LU factorization, and matrix inversion. The methods of [5]
and [13] must evaluate a diagonal Padé approximant

rm(x) = pm(x)/qm(x) = log(1 + x) +O(x2m+1)

∗Received by the editors March 7, 2000; accepted for publication (in revised form) by D. Calvetti
November 4, 2000; published electronically March 13, 2001.

http://www.siam.org/journals/simax/22-4/36868.html
†Department of Mathematics, University of Manchester, Manchester, M13 9PL, England

(higham@ma.man.ac.uk, http://www.ma.man.ac.uk/˜higham/). This work was supported by Engi-
neering and Physical Sciences Research Council grant GR/L94314 and a Royal Society Leverhulme
Trust Senior Research Fellowship.

1126

EVALUATING PADÉ APPROXIMANTS 1127

at a matrix argument X with ‖X‖ < 1. Here, pm and qm are polynomials of degree m
whose coefficients are known, and m ≤ 16 in practice. The norm is any subordinate
matrix norm. The question we consider here is how to evaluate the Padé approximant
for a given m.

Evaluation of rm(X) by applying Horner’s method to the numerator and denom-
inator polynomials is the most obvious approach and was used in [13] and during the
initial work of [5]. However, several alternatives are available and a hint that the use
of a different representation of the rational rm may be profitable is given by Dieci,
Morini, and Papini [7], who comment that “for diagonal Padé approximants, it might
instead be more desirable to pass to their quadrature formula equivalent . . . to avoid
ill-conditioning in the denominator of the rational function.”

In the next section we describe the Paterson–Stockmeyer method for evaluating
the pm/qm form and Van Loan’s variant of it, together with methods based on con-
tinued fraction and partial fraction representations. We count the operations and
storage required. The effect of rounding errors on the methods is described in sec-
tion 3 and numerical experiments are given in section 4. We finish, in section 5, with
a recommendation on the choice of method and a brief discussion of how the analysis
carries over to the evaluation of Padé approximants of the matrix exponential.

2. Methods of evaluation. We consider methods of evaluating the Padé ap-
proximant rm(X) at X ∈ R

n×n based on three representations. We note that in sev-
eral of our equations matrices can be reordered, since rational functions of a matrix
X commute, but such changes have no effect on the computational cost or accuracy.
When counting storage we will include that for X and rm(X) and assume that X
cannot be overwritten.

2.1. Rational evaluation. In this method the polynomials pm(X) and qm(X)
are evaluated and Y = rm(X) is computed by solving qmY = pm. We consider three
possibilities. First, Horner’s method can be used for the polynomial evaluations, as
in [5], [13]. Thus

pm(X) =

m∑
k=0

bkX
k(2.1)

is evaluated by
Sm = bmX + bm−1I
for j = m− 2:−1: 0

Sj = XSj+1 + bj
end
pm = S0

and similarly for qm(X). The total cost is 2(m − 1)M + I, where we denote by M
the cost of a matrix multiplication and I the cost of a matrix inversion or of solving
a linear system with n right-hand sides.

Instead of using Horner’s method we could explicitly compute the powers X2,
. . . , Xm and evaluate pm and qm as linear combinations of the powers, at a cost
of (m − 1)M + I (note that if the polynomial coefficients were matrices rather than
scalars, this method would cost 50 percent more than Horner’s method). However, a
potentially greater reduction in cost over Horner’s method is offered by a method of
Paterson and Stockmeyer [9, sect. 11.2.4], [16]. It writes pm as

pm(X) =

r∑
k=0

Bk · (Xs)k, r = floor(m/s),(2.2)

1128 NICHOLAS J. HIGHAM

where s is an integer parameter and

Bk =

{
bsk+s−1X

s−1 + · · ·+ bsk+1X + bskI, k = 0: r − 1,
bmXm−sr + · · ·+ bsr+1X + bsrI, k = r.

The powers X2, . . . , Xs are computed, then the Bk, and finally (2.2) is evaluated by
Horner’s method. The cost of evaluating pm is

(s+ r − 1− f(s,m))M, f(s,m) =
{
1 if s divides m,
0 otherwise.

(2.3)

The cost of evaluating rm by the Paterson–Stockmeyer method is
(
s + 2r − 1 −

2f(s,m)
)
M + I, which is approximately minimized1 by s =

√
2m. We therefore

take for s whichever of floor(
√
2m) and ceil(

√
2m) yields the smaller operation count.

Unfortunately, the method requires (s+2)n2 elements of storage. This can be reduced
to 4n2 by computing pm and qm a column at a time, as shown by Van Loan [18],
though the cost of evaluating rm then increases to (2s + 2r − 3 − 2f(s,m))M + I.
Since s =

√
m approximately minimizes the cost of Van Loan’s variant we take for s

whichever of floor(
√

m) or ceil(
√

m) yields the smaller operation count.

2.2. Continued fraction. The Padé approximant rm to log(1 + x) has the
continued fraction expansion [1, p. 174]

rm(x) =
c1x

1 +
c2x

1 +
c3x

· · ·
1 +

c2m−1x

1 + c2mx

,

where

c1 = 1, c2j =
j

2(2j − 1) , c2j+1 =
j

2(2j + 1)
, j = 1, 2,

This expansion can be evaluated at the matrix X in two ways. Top-down evaluation
(which converts the continued fraction to rational form) is effected by the recur-
rence [3]

A1 = c1X, B1 = I, A2 = c1X, B2 = I + c2X
for j = 3: 2m

Aj = Aj−1 + cjXAj−2

Bj = Bj−1 + cjXBj−2

end
rm = A2mB−1

2m.
The cost is 2(2m− 2)M + I.

Using bottom-up evaluation, rm(X) is evaluated by
Y2m = c2mX
for j = 2m− 1:−1: 1

Solve (I + Yj+1)Yj = cjX for Yj .
end
rm = Y0.

1In [7] s =
√
m is chosen, which minimizes the cost of evaluating pm or qm alone, but not both

together.

EVALUATING PADÉ APPROXIMANTS 1129

Table 1
Cost of evaluating rm(X). The optimal s are described in the text and f is defined in (2.3).

Method Computational cost Storage
Horner 2(m− 1)M + I 3n2

Paterson–Stockmeyer
(
s+ 2r− 1− 2f(s,m)

)
M + I >∼ (2

√
2
√
m−

1)M + I

(s+ 2)n2

Van Loan (2s + 2r − 3 − 2f(s,m))M + I >∼ (4
√
m −

3)M + I
4n2

Continued fraction top-down: 2(2m− 2)M + I 5n2

bottom-up: (2m− 1)I 3n2

Partial fraction mI 3n2

This evaluation costs (2m− 1)I.
Although the top-down evaluation is computationally expensive, it merits further

consideration as it is well suited to situations in which the whole sequence r1(X),
r2(X), . . . , needs to be evaluated; in this case the bottom-up evaluation has to start
afresh each time.

2.3. Partial fraction. The Padé approximant rm can be expressed in partial
fraction form as

rm(x) =

m∑
j=1

α
(m)
j x

1 + β
(m)
j x

,(2.4)

where the α
(m)
j are the weights and the β

(m)
j the nodes of them-point Gauss–Legendre

quadrature rule on [0, 1] [7, Thm. 4.3]. The connection with quadrature stems from
the integral representation

log(1 + x) = x

∫ 1

0

dt

1 + xt
.

Codes for computing the α
(m)
j and β

(m)
j are given in [6, App. 2], [8], [17, sect. 4.5];

these computations are of negligible cost if m � n and the coefficients can of course
be precomputed and stored. The cost of evaluating (2.4) at the matrix X is mI. An
advantage of (2.4) is its suitability for parallel evaluation; see [4] for a discussion and
extensive bibliography on parallel evaluation of matrix partial fraction expansions.

Table 1 summarizes the cost of the methods. The Paterson–Stockmeyer and Van
Loan methods clearly require the least computation for large m, since their costs
grow as

√
m for the optimal s rather than linearly with m as for the other methods.

In fact, both methods are more efficient than Horner’s method and the continued
fraction methods for all m, as shown by Figure 1, in which the total number of matrix
multiplications and inversions is plotted against m. For the range of m of interest the
partial fraction method is competitive with the O(

√
m) methods.

The sensitivity of the methods to rounding errors is another important factor in
the choice of method and we examine it in the next section.

3. Effects of rounding errors. Before beginning the error analysis we state
some properties of rm = pm/qm that will be needed [14]. First, qm(x) is an increasing,
positive function of x for x > −1. Second, the coefficients of pm and qm (with the
normalization qm(0) = 1) are nonnegative. To illustrate, in unnormalized form,

r3(x) =
60x+ 60x2 + 11x3

60 + 90x+ 36x2 + 3x3
.

1130 NICHOLAS J. HIGHAM

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

35

m

Continued fraction (top−down)
Horner and continued fraction (bottom−up)
Partial fraction
Van Loan
Paterson−Stockmeyer

Fig. 1. Total number of matrix multiplications and inversions to evaluate rm(X).

It is straightforward to derive an error bound for Horner’s method for evaluating
a polynomial pm of the form (2.1). The following result is a generalization of one for
the scalar case [11, sect. 5.1]. We use the standard model of floating point arithmetic
with unit roundoff u [11, sect. 2.2].

Lemma 3.1. The computed polynomial p̂m from Horner’s method applied to (2.1)
satisfies

‖p̂m − pm‖ ≤ m(n+ 1)u p̃m(‖X‖) +O(u2),

where p̃m(X) =
∑m
i=0 |bk|Xk.

The bound in the lemma is not the sharpest that can be obtained, but it is
adequate for our application, in which ‖X‖ < 1.

In view of the lemma, the system that is solved to determine Y = rm(X) is

(qm +∆Q)Y = pm +∆P,

‖∆Q‖ ≤ m(n+ 1)uqm(‖X‖) +O(u2), ‖∆P‖ ≤ m(n+ 1)upm(‖X‖) +O(u2),

where we have used the fact that our particular pm and qm have nonnegative coeffi-
cients. Assuming the system is solved by a stable method, the overall forward error
bound will be of the form

‖Y − Ŷ ‖
‖Y ‖ ≤ d1(m,n)uκ(qm)η(X) +O(u2),(3.1)

where dj(m,n) denotes a constant depending on m and n and η is given by

η1(X) =

(
pm(‖X‖)
‖qm‖‖Y ‖ +

qm(‖X‖)
‖qm‖

)
≥ 1.(3.2)

EVALUATING PADÉ APPROXIMANTS 1131

Kenney and Laub [14] show that

κ(qm(X)) ≤ qm(‖X‖)
qm(−‖X‖) , ‖X‖ < 1,(3.3)

and this bound is easily evaluated for particular m and x.
For the Paterson–Stockmeyer and Van Loan methods it is not difficult to show

that a bound of the same form as that in Lemma 3.1 holds, but with different con-
stants. Therefore (3.1) applies to these methods too.

Next, we consider top-down evaluation of the continued fraction. We can express
the recurrence for the Bj as[

Bj

Bj−1

]
=

[
I cjX
I 0

] [
Bj−1

Bj−2

]

=

[
I cjX
I 0

]
. . .

[
I c2X
I 0

] [
I
I

]
.

From a standard error bound for matrix multiplication [11, Prob. 3.8] we have

‖B̂2m −B2m‖ ≤ d2(m,n)u

2m∏
j=2

(1 + cj‖X‖).

Similarly,

‖Â2m −A2m‖ ≤ d3(m,n)uc1‖X‖
2m∏
j=3

(1 + cj‖X‖).

Therefore (3.1) holds with η given by

η2(X) =

∏2m
j=3(1 + cj‖X‖)
‖qm‖

(
c1‖X‖
‖Y ‖ + 1 + c2‖X‖

)
.(3.4)

For the bottom-up evaluation of the continued fraction, in which Yj is computed
by solving (I + Yj+1)Yj = cjXj , errors in Yj+1 can potentially be magnified by κ(I +
Yj+1) in passing to Yj . Therefore it is essential that maxj κ(I+Yj) is small. Assuming
‖Yj‖ < 1, we have

κ(I + Yj) ≤ 1 + ‖Yj‖
1− ‖Yj‖ ,(3.5)

and the ‖Yj‖ satisfy, with ‖Y2m‖ = c2m‖X‖,

‖Yj‖ ≤ |cj |‖X‖
1− ‖Yj+1‖ , j = 2m− 1:−1: 1.(3.6)

For a particular bound on ‖X‖ we can therefore compute a bound on κ(I + Yj) and
the overall error will be roughly bounded by maxj κ(I + Yj)u.

For the partial fraction method the accuracy is again dependent on the condition
of the linear systems that are solved, and we expect the normwise relative error to be
bounded approximately by d4(m,n)uφ, where

φ = max
j

[
α

(m)
j κ(I + β

(m)
j X)

]
(3.7)

1132 NICHOLAS J. HIGHAM

Table 2
Terms from error analysis. ε(m, ‖X‖) is defined in (3.8); η1 in (3.2) and η2 in (3.4) are terms

from the Horner and top-down continued fraction methods; the bound for κ(qm(X)) is from (3.3)
and that for κ(I + Yj) from (3.5) and (3.6); φ for the partial fraction method is defined in (3.7).

Approx. to Bounds for
‖X‖ m ε(m, ‖X‖) η1(X) η2(X) κ(qm(X)) maxj κ(I + Yj) φ

tol = 2−24 ≈ 6× 10−8

0.99 16 7.7e-3 6.8e2 1.9e3 4.5e10 8.3e0 1.8e0
0.95 16 1.9e-6 5.6e2 1.5e3 1.7e9 5.3e0 7.9e-1
0.90 14 3.5e-8 2.2e2 4.8e2 1.3e7 4.1e0 6.2e-1
0.75 8 4.7e-8 1.9e1 2.6e1 1.0e3 2.7e0 5.8e-1
0.50 5 2.3e-8 5.3e0 5.8e0 1.4e1 1.8e0 5.4e-1
0.25 3 5.7e-8 2.7e0 2.7e0 2.1e0 1.3e0 5.7e-1
0.10 3 5.1e-11 2.3e0 2.3e0 1.4e0 1.1e0 4.9e-1

tol = 2−53 ≈ 1× 10−16

0.90 16 2.9e-9 4.4e2 1.1e3 1.4e8 4.1e0 5.5e-1
0.75 16 2.6e-12 2.1e2 4.1e2 1.1e6 2.7e0 3.1e-1
0.50 16 3.4e-14 5.5e1 7.7e1 4.7e3 1.8e0 1.8e-1
0.25 7 0.0e0 4.2e0 4.4e0 5.9e0 1.3e0 2.7e-1
0.10 5 1.4e-17 2.5e0 2.5e0 1.7e0 1.1e0 3.1e-1

Largest ‖X‖, m permitted in earlier version of [5].

0.50 8 5.9e-13 1.0e1 1.2e1 6.9e1 1.8e0 3.5e-1

(note that α
(m)
j > 0 and

∑
j α

(m)
j = 1). We have

κ(I + β
(m)
j X) ≤ 1 + |β(m)

j |‖X‖
1− |β(m)

j |‖X‖
,

and since β
(m)
j ∈ (0, 1) the condition number is guaranteed to be small provided that

‖X‖ is not too close to 1.
The two key parameters to consider when investigating the accuracy of the meth-

ods are the degree m of the Padé approximant and the norm of the matrix argument,
X. In practice, these parameters are chosen so that rm(X) approximates log(I +X)
to the desired accuracy, with either a fixed choice of m [7], [13] or a dynamic choice
intended to minimize the overall computation time [5]. For a given X with ‖X‖ < 1
the bound

‖rm(X)− log(I +X)‖ ≤ |rm(−‖X‖)− log(1− ‖X‖)| =: ε(m, ‖X‖)(3.8)

from [14] enables a suitable m to be determined.
In Table 2 we compare approximations to and bounds for the quantities arising

in our analysis for a range of ‖X‖ and m, with m chosen as the smaller of 16 and
the minimal value for which ε(m, ‖X‖) ≤ tol, where tol is a tolerance. The values of
tol used for the table correspond to single and double precision accuracy in the Padé
approximant, and for the η values we approximated ‖Y ‖ = ‖ log(I +X)‖ ≈ ‖X‖ and
‖qm(X)‖ ≈ qm(0) = 1.

The table implies that the effect of rounding errors on the bottom-up evaluation
of the continued fraction and the partial fraction methods is negligible for all m and
‖X‖ of interest. But Horner’s method, the Paterson–Stockmeyer method, Van Loan’s
method, and the continued fraction evaluated top-down are all potentially unstable
unless ‖X‖ is much less than 1, as the denominator polynomial qm has a condition
number bound that grows rapidly with ‖X‖ and the η terms from the error bounds

EVALUATING PADÉ APPROXIMANTS 1133

Table 3
Normwise relative errors. The pairs (‖X‖,m) correspond to those in Table 2.

Paterson– Continued fraction Partial
‖X‖ m Horner Stockmeyer Van Loan top-down bottom-up fraction
0.99 16 6.7e-12 3.5e-11 1.3e-11 2.9e-12 1.5e-16 4.2e-16
0.95 16 1.4e-15 3.0e-15 2.7e-15 1.2e-14 1.4e-16 3.1e-16
0.90 14 9.4e-14 5.9e-14 4.0e-14 7.9e-14 9.1e-17 2.0e-16
0.75 8 5.9e-16 1.0e-15 1.0e-15 1.6e-15 1.9e-16 3.7e-16
0.50 5 2.7e-16 2.3e-16 1.8e-16 3.9e-16 1.0e-16 5.7e-17
0.25 3 1.8e-16 7.9e-17 2.6e-16 1.7e-16 6.1e-17 4.1e-16
0.10 3 9.8e-17 1.0e-16 1.0e-16 9.8e-17 1.7e-16 3.2e-16
0.90 16 2.8e-13 2.8e-13 9.9e-14 2.1e-13 9.1e-17 2.6e-16
0.75 16 6.0e-15 1.3e-14 8.6e-15 1.1e-14 1.7e-16 3.4e-16
0.50 16 1.7e-15 1.2e-14 6.0e-15 1.6e-14 1.4e-16 4.1e-16
0.25 7 1.5e-16 1.8e-16 1.9e-16 4.3e-16 1.4e-16 4.5e-16
0.10 5 5.2e-17 1.4e-16 4.0e-17 2.8e-16 8.1e-17 8.6e-17

also become significant for ‖X‖ close to 1. The last line of the table justifies a
restriction on ‖X‖ and m used in an earlier version of [5] in conjunction with Horner
evaluation of rm.

In the next section we check the actual errors via numerical experiments.

4. Numerical experiments. We report numerical experiments carried out in
MATLAB, for which u = 2−53 ≈ 1× 10−16.

First we test the predictions from the analysis of the previous section. For random
4 × 4 matrices X with elements from the normal N(0, 1) distribution we computed

the normwise relative errors ‖Ŷ − Y ‖2/‖Y ‖2 in Y = rm(X) for a range of values of
‖X‖2 and m corresponding to Table 2. The “exact” logarithm was obtained using
the variable precision arithmetic of MATLAB’s Symbolic Math Toolbox. The results
are shown in Table 3.

The results confirm that the Horner, Paterson–Stockmeyer, Van Loan, and top-
down continued fraction methods do indeed suffer instability when ‖X‖ is close to
1 and m is large, though the level of instability is much less than the bounds for
κ(qm(X)) in Table 2 would suggest. The actual κ(qm(X)) values in this experiment
are less than the square root of the bounds, showing that the bound (3.3) can be very
weak. As expected, the bottom-up continued fraction and partial fraction methods
give perfect accuracy.

Next we illustrate how the choice of method for evaluating the Padé approxi-
mant can affect the efficiency of Cheng, Higham, Kenney, and Laub’s version of the
inverse scaling and squaring method [5]. The implementation in [5] uses the partial
fraction expansion with the restrictions that ‖X‖ ≤ 0.99 and m ≤ 16. An earlier
implementation used Horner’s method with the stronger restrictions that ‖X‖ ≤ 1/2
and m ≤ 8. In view of our analysis in the previous section and the value of φ in the
first line of Table 2 these two implementations should have similar accuracy proper-
ties. We used both implementations to compute the logarithm of the 7 × 7 Frank
matrix (MATLAB’s gallery(’frank’,7)). The results are shown in Table 4 for two
choices of tolerance in the method corresponding to approximation of the logarithm
to single precision and double precision accuracy (all computations are carried out in
double precision arithmetic). The partial fraction-based implementation is about 10
percent more efficient than the Horner-based implementation in this example. The
improvement accrues from the algorithm being able to take fewer square roots and
use a higher degree Padé approximant, as well as from the more efficient evaluation

1134 NICHOLAS J. HIGHAM

Table 4
Comparison of current and earlier implementations of method from [5]. “Roots” is the number

of square roots, “Cost” the total number of matrix multiplications and matrix inversions, and m the
degree of Padé approximant chosen.

tol = 2−24 tol = 2−53

Roots Cost Degree m Roots Cost Degree m
Earlier (Horner) 9 63 5 9 93 8

Current (partial fraction) 8 58 8 9 86 8

of the Padé approximant.

5. Conclusions, and comments on the matrix exponential. We have ana-
lyzed alternatives to Horner’s method for evaluating Padé approximants to the matrix
logarithm. All but two of the alternatives are less expensive than Horner’s method and
the bottom-up continued fraction method and the partial fraction method have more
favorable accuracy properties. Based on operation counts the choice narrows down
to the Paterson–Stockmeyer method, Van Loan’s version of it, and partial fraction
expansion. For the degrees m of practical interest (m ≤ 16), the methods have similar
computational cost, but the Paterson–Stockmeyer and partial fraction methods are
rich in level 3 BLAS operations whereas Van Loan’s method is inherently level 2 BLAS-
based. If storage of size (

√
2m+ 2)n2 is not available then the Paterson–Stockmeyer

method must be ruled out. The partial fraction method has the advantage of being
readily parallelizable and of allowing ‖X‖ to be much closer to 1 without any loss of
stability. Therefore the partial fraction expansion emerges as the best overall method.

In special cases a different choice may be appropriate. For example, if matrix
multiplication is significantly faster than matrix inversion, as may be the case on
certain high-performance machines, if sufficient storage is available, and if ‖X‖ can
be kept significantly less than 1, the Paterson–Stockmeyer method may be the most
attractive choice.

An investigation similar to that given here can be done for the matrix exponential.
Padé approximants rm = pm/qm of the matrix exponential eA need to be evaluated

in the scaling and squaring method, which approximates eA/2
k

by rm(A/2k) in the

expression eA = (eA/2
k

)2
k

, where k is chosen so that ‖A/2k‖ ≤ 1 [19] or ‖A/2k‖ ≤ 1/2
[15], [9, sect. 11.3]. We briefly summarize some pertinent facts concerning the evalu-

ation of rm(A/2k). The coefficients α
(m)
j and β

(m)
j in the partial fraction expansion

(2.4) of rm are not known explicitly, and the α
(m)
j can be very large [4], leading to nu-

merical instability in the evaluation of the expansion. However, the techniques of [4]
can be used to obtain an incomplete partial fraction expansion with suitably bounded
coefficients. Ill conditioning of the denominator polynomial qm is not an issue, as
κ(qm(B)) < 5 for ‖B‖ ≤ 1 [19, Thm. 1]. Finally, qm(X) = pm(−X), and advantage
can be taken of this when applying the Paterson–Stockmeyer and Van Loan methods.
For the matrix exponential, then, the Paterson–Stockmeyer and Van Loan methods
have the advantage over the partial fraction expansion except, possibly, in a parallel
computing context.

Acknowledgments. Charlie Kenney suggested the possibility of using the con-
tinued fraction and partial fraction representations to evaluate rm during our work
on [5]. I thank Peter Graves-Morris for helpful comments on the manuscript.

EVALUATING PADÉ APPROXIMANTS 1135

REFERENCES

[1] G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants, 2nd ed., Encyclopedia Math.
Appl., Cambridge University Press, Cambridge, UK, 1996.

[2] A. Björck and S. Hammarling, A Schur method for the square root of a matrix, Linear
Algebra Appl., 52/53 (1983), pp. 127–140.

[3] G. Blanch, Numerical evaluation of continued fractions, SIAM Rev., 6 (1964), pp. 383–421.
[4] D. Calvetti, E. Gallopoulos, and L. Reichel, Incomplete partial fractions for parallel

evaluation of rational matrix functions, J. Comput. Appl. Math., 59 (1995), pp. 349–380.
[5] S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub, Approximating the logarithm of

a matrix to specified accuracy, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1112–1125.
[6] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., Academic Press,

Orlando, FL, 1984.
[7] L. Dieci, B. Morini, and A. Papini, Computational techniques for real logarithms of matrices,

SIAM J. Matrix Anal. Appl., 17 (1996), pp. 570–593.
[8] W. Gautschi, Algorithm 726: ORTHPOL—A package of routines for generating orthogonal

polynomials and Gauss-type quadrature rules, ACM Trans. Math. Software, 20 (1994), pp.
21–62.

[9] G. H. Golub and C. F. Van Loan. Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[10] N. J. Higham, Computing real square roots of a real matrix, Linear Algebra Appl., 88/89
(1987), pp. 405–430.

[11] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[12] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,

London, 1991.
[13] C. Kenney and A. J. Laub, Condition estimates for matrix functions, SIAM J. Matrix Anal.

Appl., 10 (1989), pp. 191–209.
[14] C. Kenney and A. J. Laub, Padé error estimates for the logarithm of a matrix, Internat. J.

Control, 50 (1989), pp. 707–730.
[15] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a

matrix, SIAM Rev., 20 (1978), pp. 801–836.
[16] M. S. Paterson and L. J. Stockmeyer, On the number of nonscalar multiplications necessary

to evaluate polynomials, SIAM J. Comput., 2 (1973), pp. 60–66.
[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes

in FORTRAN: The Art of Scientific Computing, 2nd ed., Cambridge University Press,
London, 1992.

[18] C. F. Van Loan, A note on the evaluation of matrix polynomials, IEEE Trans. Automat.
Control, AC-24 (1979), pp. 320–321.

[19] R. C. Ward, Numerical computation of the matrix exponential with accuracy estimate, SIAM
J. Numer. Anal., 14 (1977), pp. 600–610.

JOINT APPROXIMATE DIAGONALIZATION OF POSITIVE
DEFINITE HERMITIAN MATRICES∗

DINH TUAN PHAM†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1136–1152

Abstract. This paper provides an iterative algorithm to jointly approximately diagonalize K
Hermitian positive definite matrices Γ1, . . . , ΓK . Specifically, it calculates the matrix B which min-

imizes the criterion
∑K

k=1
nk[log det diag(BCkB

∗)− log det(BCkB
∗)], nk being positive numbers,

which is a measure of the deviation from diagonality of the matrices BCkB
∗. The convergence of the

algorithm is discussed and some numerical experiments are performed showing the good performance
of the algorithm.

Key words. diagonalization, principal components, separation of sources

AMS subject classifications. 49M20, 65F30

PII. S089547980035689X

1. Introduction. The need to diagonalize jointly approximately several posi-
tive definite matrices has arisen from (at least) two different problems: the common
principal components estimation and the blind source separation. The first problem
is statistical and has been introduced by Flury [5]. He considers k populations of
multivariate observations of size n1, . . . , nK , obeying the Gaussian distribution with
zero means and covariance matrices Γ1, . . . , ΓK , which are assumed to have common
eigenvectors, that is, Γk = AΛkA

∗, k = 1, . . . ,K, for some orthogonal matrix A and
diagonal matrices Λ1, . . . , ΛK , the symbol ∗ denoting the transpose. The goal is to
estimate the A (the columns of which are the common principal components) from
the sample covariance matrices Ck, . . . , CK of the populations. As is well known,
nkCk are distributed independently according to the Wishart distribution of nk de-
grees of freedom and covariance matrices Γk (see, for example, Seber [9], noting that
if the population means are unknown and have to be estimated, then nk should be
decreased by 1). Therefore the log likelihood function for Γ1, . . . , ΓK based on C1,
. . . , CK equals

C − 1

2

K∑
k=1

nk[log detΓk + tr(Γ−1
k Ck)],

where C is a constant and tr denotes the trace. Thus the maximum likelihood method
for estimating A and the Λ1, . . . , ΛK amounts to minimizing

1

2

K∑
k=1

nk[log detΛk + tr(B∗Λ−1
k BCk)− log det(BB∗)],

where we have put B = A−1 for compatibility with other notations introduced
later. Note that the term tr(B∗Λ−1

k BCk) in the above expression can be written
as tr(Λ−1

k BCkB
∗). Then it is not hard to see that for fixed B, the above expression

∗Received by the editors May 2, 2000; accepted for publication (in revised form) by A. Sayed
August 25, 2000; published electronically March 13, 2001.

http://www.siam.org/journals/simax/22-4/35689.html
†Laboratory LMC/IMAG, C.N.R.S., University of Grenoble, B.P. 53X, 38041 Grenoble cedex,

France (Dinh-Tuan.Pham@imag.fr).

1136

JOINT APPROXIMATE DIAGONALIZATION 1137

is minimized when Λk = diag(BCkB
∗), where diag(·) denotes the diagonal matrix

with the same diagonal as its argument. Thus substituting Λk by this value, the
above expression becomes

1

2

K∑
k=1

nk[log det diag(BCkB
∗) + K − log det(BB∗)],

which should now be minimized with respect toB. Note that in Flury [5] the matrixB
is assumed to be orthogonal and hence the term log det(BB∗) disappears. However,
we will not assume orthogonality and hence we have this term. Further, since the
matrix Ck does not depend on the parameter B, we may add log detCk to this term,
which becomes log det(BCkB

∗). This leads to the following cost function, dropping
the constant K:

1

2

K∑
k=1

nk[log det diag(BCkB
∗)− log det(BCkB

∗)].(1.1)

This function is precisely a measure of the global deviation of the matrices B∗CkB
from diagonality, since, from the Hadamard inequality (see, for example, Cover and
Thomas [4, p. 233 or 502]), det diag(M) ≥ detM with equality if and only if M is
diagonal. Thus minimizing (1.1) can be viewed as trying to find a matrix B which
diagonalizes jointly the matrices C1, . . . , CK as much as it can.

The blind source separation problem comes from the field of signal processing and
has received much attention recently because of its many potential applications. In
this problem, K linear mixtures of K sources have been recorded and the goal is to
extract the sources from the observations, without relying on any specific knowledge
about the sources other than that they are statistically independent (this is why the
separation is called blind). Let X(t) and S(t) denote the vectors of measurements
and of sources at time t, the mixture model can be written as X(t) = AS(t) for some
square matrix A. Since one can only rely on the independence of the sources for their
extraction, a natural idea is to find a matrix B such that the components of BX(t)
(which represent the reconstructed sources) are as independent as possible. As it is
easier to work with noncorrelation rather than independence, a simple method would
be to try to make the cross-covariances, including lagged cross-covariances, between
the sources, vanish. This would lead to the joint approximate diagonalization of a
certain set of covariance matrices, as proposed in Belouchrami et al. [1]. On the other
hand, Cardoso and Souloumiac [3] do not consider lagged covariances but higher order
cumulants between the sources instead. They construct a certain set of matrices in
which such cumulants appear as off-diagonal elements and then separate the sources
through a joint approximate diagonalization of these matrices.

It should be pointed out that the above authors use a different measure of devia-
tion to diagonality than that of Flury. Their measure is simply the sum of squares of
the off-diagonal elements of the considered matrices. But there is a common feature
in all the above works in that the diagonalizing matrix B is taken to be orthogonal. In
this work we shall drop this restriction. The orthogonality condition is part of the as-
sumption of Flury [5] but there is no clear statistical reason why it should be satisfied.
In principal components analysis, since the components are taken to be the eigenvec-
tors of a symmetric matrix, their orthogonality is automatically satisfied. Thus this
property is a mathematical property which happens to hold, but in our opinion is
not a statistical requirement. If the components are to be interpreted as underlying

1138 DINH TUAN PHAM

factors, in factor analysis for example, then one may need to drop the orthogonality
constraint. In fact, in practice factor rotations (actually nonorthogonal rotation!)
are performed quite often, based on a sparseness or parsimony criterion, to obtain
interpretable factors. When there are many covariance matrices involved, we don’t
see an appealing reason to insist that the components be the common eigenvector of
these matrices, while the requirement that these matrices be simultaneously diago-
nalized is of interest because it implies that the corresponding factors are statistically
uncorrelated. In the blind source separation problem, the orthogonality constraint is
introduced in the works of Cardoso and Souloumiac [3] and Belouchrami et al. [1] be-
cause these authors have prewhitened their observations so that they are uncorrelated
and have unit variance. We want to avoid this prewhitening stage, which can adversely
affect its performance of the method since the statistical error committed in this stage
cannot be corrected in the following “effective separation” stage (see Cardoso [2]). In
fact the method of these authors amounts to requiring a certain covariance matrix
be exactly diagonalized while other (covariance or cumulant) matrices can only be
approximately diagonalized. By dropping the orthogonality restriction, we obtain a
single-stage separation procedure which is simpler and can perform better, since the
matrices can be treated in equal footing. Note that without the orthogonality restric-
tion, exact joint diagonalization is possible for two positive definite matrices (see, for
example, Golub and van Loan [7, Algorithm 8.7.1]). This “double” diagonalization
has in fact been exploited in Pham and Garat [8] for blind source separation. But
for more than two matrices joint diagonalization can only be achieved approximately
relative to some measure of deviation to diagonality. We take this measure to be
(1.1) for two following reasons. First, it can be traced back to the likelihood crite-
rion, widely used in statistics. Second, it is invariant with respect to scale change: it
remains the same if the matrices to be diagonalized are pre- and postmultiplied by a
same diagonal matrix. The other measure, adopted by Cardoso and Souloumiac [3]
and Belouchrami et al. [1] does not have this nice invariant property. Of course, one
can introduce this property by first normalizing the matrices so that they have unit
diagonal elements, but then the resulting criterion would be very hard to manipulate.
Flury [5] uses the same criterion as ours, but with the orthogonality constraint.

After completing this work, we have been aware of the recent work of Yeredor
[10, 11], in which the author introduces a joint approximate diagonalization algorithm
without the orthogonality constraint. But the author uses the same measure of devi-
ation to diagonality as Cardoso and Souloumiac [3] and Belouchrami et al. [1], which
differs from ours and hence his algorithm is completely different. Yeredor [11] has
also introduced a set of weights in his criterion which takes into account the statis-
tical property of the covariance matrices Ck and could make his criterion closer to
the likelihood criterion. Our criterion, being likelihood-based, takes care of this in an
automatic way.

The main result of this paper is the derivation of an algorithm for the joint ap-
proximate diagonalization in the sense of the criterion (1.1) and without the restriction
that the diagonalizing matrix be orthogonal. Our algorithm has some similarity with
that of Cardoso and Souloumiac [3] and even more with that of Flury and Gautschi
[6]: it follows the classic Jacobi approach of making successive transformations on
pairs of rows and columns of the matrices to be diagonalized. However, our ele-
mentary transformation are not (and cannot be) the same as that of these authors.
Further, the convergence proof is completely different since we can no longer rely on
the orthogonality property. Incidentally, our method of proof can be adapted to prove

JOINT APPROXIMATE DIAGONALIZATION 1139

the convergence result in Flury and Gautschi [6] in a much simpler way. For ease of
reading, proofs of results are relegated to the appendix.

2. The algorithm. As complex data frequently arise in signal processing ap-
plications, we shall consider complex Hermitian (instead of real symmetric) positive
definite matrices C1, . . . , CK . (Note that Cardoso and Soulomiac [3], Bellouchrani et
al. [1], and Yeredor [10] also work in a complex setting.) The problem is to find a com-
plex matrix B such that the matrices BC1B

∗, . . . , BCKB
∗ are as close to diagonal as

possible, the notation ∗ now denoting the transpose complex conjugate. The measure
of deviation to diagonality is taken to be (1.1), where the nk are positive weights
(they need not be integers). Note that since the Ck do not depend of B, minimizing

(1.1) is the same as minimizing 1
2

∑K
k=1 nk[log det diag(BCkB

∗)− log |detB|].
The algorithm consists of performing successive transformations, each time on a

pair of rows of B, the ith row Bi· and the jth row Bj·, say, according to[
Bi·
Bj·

]
← Tij

[
Bi·
Bj·

]
,(2.1)

where Tij is a 2× 2 nonsingular matrix, chosen such that the criterion is sufficiently
decreased. Whether a decrease is sufficient is a question which we shall return to in
the next section. Once this is done, the procedure is repeated with another pair of
rows. The processing of all the K(K − 1)/2 is called a sweep. The algorithm consists
of repeated sweeps until convergence is achieved.

The decrease of the criterion (1.1) induced by the transformation (2.1) is

1

2

K∑
k=1

nk

{
2 log |detTij | − log det diag

(
Tij

[
(BCkB

∗)ii (BCkB
∗)ij

(BCkB
∗)ji (BCkB

∗)jj

]
T∗
ij

)

− log[(BCkB
∗)ii (BCkB

∗)ii]

}
,

where (BCkB
∗)ij denotes the element (i, j) of the matrix BCkB

∗. A natural idea is
to chose Tij to maximize this decrease. However, it does not seem possible to derive
explicit formulae for this maximization. Our idea is to maximize a lower bound of
it instead. Since the logarithm function is convex, by the Jensen inequality (see,
for example, Cover and Thomas [4, Theorem 2.6.2]) for any two sets of positive

numbers p1, . . . , pK and x1, . . . , xK with
∑K
k=1 pk = 1, one has

∑K
k=1 pk log xk ≤

log(
∑K
k=1 pkxk). Applying this inequality twice with pk = nk/

∑K
k=1 nk and with xk

being the first and second diagonal elements of[
(BCkB

∗)ii 0
0 (BCkB

∗)jj

]−1{
Tij

[
(BCkB

∗)ii (BCkB
∗)ij

(BCkB
∗)ji (BCkB

∗)jj

]
Tij

}
,

respectively, the above decrease can be seen to be bounded below by

(n/2)[2 log |detTij | − log(TijPT
∗
ij)11 − log(TijQT

∗
ij)22],(2.2)

where n =
∑K
k=1 nk,

P =
1

n

K∑
k=1

nk
(BCkB∗)ii

[
(BCkB

∗)ii (BCkB
∗)ij

(BCkB
∗)ji (BCkB

∗)jj

]
,(2.3a)

Q =
1

n

K∑
k=1

nk
(BCkB∗)jj

[
(BCkB

∗)ii (BCkB
∗)ij

(BCkB
∗)ji (BCkB

∗)jj

]
,(2.3b)

1140 DINH TUAN PHAM

and (TijPT
∗
ij)11 and (TijQT

∗
ij)22 denote the first and second diagonal elements of

TijPT
∗
ij and TijQT

∗
ij .

Since (2.2) clearly vanishes when Tij is the identity matrix, its maximum (with
respect to Tij) is nonnegative and can be zero only if the maximum is attained at the
identity matrix. Thus the transformation (2.1) with Tij being the matrix realizing the
maximum of (2.2) will decreases the criterion (1.1) unless (2.2) attains it maximum
at the identity matrix. The key point is that the maximization of (2.2) can be done
analytically, using the following result.

Proposition 2.1. A necessary and sufficient condition that the nonsingular
matrix Tij maximizes (2.2) is that the matrices TijPT

∗
ij and TijQT

∗
ij are diagonal

with diagonal elements p′1, p
′
2 and q

′
1, q

′
2 satisfying p

′
2q

′
1 ≥ p′1q

′
2.

The above result shows that the only case where the criterion (1.1) cannot be
decreased by the above technique is when both matrices P and Q are diagonal. If
this holds for a pair (i, j), one just skips this pair and process other pairs. If this holds
for all pairs, then the algorithm stops. Referring to the definition (2.3) of P and Q,
the last case can arise only when

gij
def
=

K∑
k=1

nk
n

(BCkB
∗)ij

(BCkB∗)ii
= 0, 1 ≤ i �= j ≤ K.(2.4)

But it can be seen that the above system of equations merely expresses that B is a
stationary point of the criterion (1.1). Indeed, consider a small change in B of the
form δB, matrix δ representing a relative change, then the corresponding change of
the criterion (1.1) is

K∑
k=1

nk
2

log det{diag−1(BCkB
∗) diag[BCkB

∗ + 2
(BCkB
∗δ∗) + δBCkB

∗δ∗]}(2.5)

− n log |det(I+ δ)|,
where diag−1(·) denotes the inverse of diag(·) and
 denotes the real part. Expanding
(2.5) with respect to δ up to the first order, one gets

K∑
k=1

nk
∑
i

[∑

j(BCkB
∗)ij δ̄ij

(BCkB∗)ii
− δii

]
= n

∑∑
i �=j

gij δ̄ij ,

where δij denotes the general element of δ and δ̄ij its complex conjugate and gij is
given by (2.4). This shows that ngij are the components of the (relative) gradient of
the criterion and our algorithm only stops when this vector vanishes.

Note. The Flury and Gautschi [6] algorithm operates on a similar principle.
However, these authors iterate the transformation (2.1) with a fixed pair (i, j) until
convergence and only then they change to another pair. We feel that this is less
efficient, because by using the same pair, the decrease of the criterion tends to be
smaller each time while by changing it one can get a large decrease in the first few
iterations. Our algorithm is also simpler to program.

2.1. Explicit formula for the transformation matrix. The application of
Proposition (2.1) requires the joint diagonalization of two matrices for which the
solution is known and, in the case of 2× 2 matrices, can be written down explicitly.

Proposition 2.2. Let P and Q be two nonproportional Hermitian matrices of
order two, with diagonal and upper off-diagonal elements p1, p2, p and q1, q2, q,

JOINT APPROXIMATE DIAGONALIZATION 1141

respectively. Then

α = p2q̄ − p̄q2, β = p1q2 − p2q1 + p̄q − pq̄, γ = pq1 − p1q

are not all zero and ∆ = β2 − 4αγ is real and P and Q are jointly diagonalized by
the matrix T if and only if one of the following conditions holds:

(i) T has a zero row,
(ii) the rows of T are nonzero and are proportional to [2α β + δ] or [β − δ 2γ]

and to [2α β − δ̄] or [β + δ̄ 2γ], where δ is any one of the two square roots of ∆.
Note that for each choice of δ, the matrix T under the condition (ii) above has

its rows uniquely defined up to a constant factor, since [2α β + δ] and [β− δ 2γ] and
[2α β − δ̄] and [β + δ̄ 2γ] are proportional if they are both nonzero (by the equality
β2 − δ2 = 4αγ). We provide two vectors for symmetry reasons and because one of
them might be zero, in this case the row of T should be proportional to the other.

The above result has been given in all its generality which allows ∆ ≤ 0. In this
case δ = −δ̄ and hence the matrix T under the condition (ii) has proportional rows;
therefore P and Q can only be diagonalized by a singular matrix which transforms
them to a matrix with at most a nonzero term on the diagonal. This case, however,
is excluded in the present application, by the following result.

Lemma 2.3. The quantity ∆ in Proposition 2.1 is positive if P and Q are not
proportional and detP > 0 or detQ > 0.

If ∆ > 0, it has a positive root, denoted as usual by
√

∆. Then taking δ in
Proposition 2.2 to be sign(p2q1 − q1p2)

√
∆, sign(·) denoting the sign function,1 the

vectors [β − δ 2γ] and [2α β − δ] will be nonzero and hence the matrix T must have
rows proportional to them (the trivial case where T has a zero row being excluded).
Similarly, if one takes δ to be −sign(p2q1− q1p2)

√
∆, then T must have rows propor-

tional to [2α β+δ] and [β+δ 2γ], but δ now has opposite sign of that of the previous
choice. Thus in all cases T must equal the product of a diagonal and a permutation
matrix with [

β − sign(p2q1 − p1q2)
√

∆ 2γ
2α β − sign(p2q1 − p1p2)

√
∆

]
.(2.6)

The ambiguity in T with respect to the premultiplication by a diagonal matrix is
intrinsic since (2.2) is unchanged when Tij is premultiplied by such a matrix. The
ambiguity with respect to the permutation must be lifted by using the last condition
in Proposition 2.1.

Lemma 2.4. With the same notations and under the same conditions as in
Proposition 2.2 and supposing that ∆ > 0, then the diagonal elements p′1, p

′
2 and q

′
1,

q′2 of the diagonalized matrices resulting from the pre- and postmultiplication of P and
Q by the matrix (2.6) and its transpose conjugate satisfy

p′2q
′
1 − p′1q

′
2 = 4sign(p2q1 − p1q2)

√
∆∆|β − sign(p2q1 − p1p2)

√
∆|2.

We now apply the above results to the matrices P and Q defined in (2.3). Their
diagonal and upper off-diagonal elements are 1, ωij , gij and ωji, 1, ḡji, where

ωij =

K∑
k=1

nk
n

(BCkB
∗)jj

(BCkB∗)ii
(2.7)

1sign(0) could be either 1 or −1.

1142 DINH TUAN PHAM

and gij is given in (2.4). Further, write ωijωji as

K∑
k=1

K∑
l=1

nk
n

nl
n

(BCkB
∗)jj

(BCkB∗)ii

(BClB
∗)ii

(BClB∗)jj

=
1

2

K∑
k=1

K∑
l=1

nk
n

nl
n

[
(BCkB

∗)
1/2
jj

(BCkB∗)
1/2
ii

(BClB
∗)

1/2
ii

(BClB∗)
1/2
jj

− (BClB
∗)

1/2
jj

(BClB∗)
1/2
ii

(BCkB
∗)

1/2
ii

(BCkB∗)
1/2
jj

]2
+ 1,

and one sees that ωijωji ≥ 1 with equality if and only if the ratio (BCkB
∗)ii/(BCkB

∗)jj
does not depend on k. The last condition is clearly equivalent to the condition that
the matrices P and Q are proportional. It is then a matter of straightforward calcu-
lation, noting that the α, β, and γ in Proposition 2.1 satisfy β =
β+ (αγ− ᾱγ̄)/
β,
to obtain the following result.

Corollary 2.5. Assuming that the sequence (BCkB
∗)ii/(BCkB

∗)jj is not con-
stant with respect to k, then a necessary and sufficient for the matrix Tij to satisfy
the conditions of Proposition 2.1 is that it is the product of a diagonal matrix with[

1 0
0 1

]
− 2

1 + hijhji − h̄ij h̄ji +
√

(1 + hijhji − h̄ij h̄ji)2 − 4hijhji

[
0 hij
hji 0

]
,

(2.8)
where hij and hji are the solution of[

ωij 1
1 ωji

] [
hij
h̄ji

]
=

[
gij
ḡji

]
,(2.9)

gij and ωij being given in (2.4) and (2.7).

2.2. Numerical considerations. The above corollary does not apply when the
sequence (BCkB

∗)ii/(BCkB
∗)jj is constant with respect to k, but in this case the

matrices P and Q in (2.3) will be proportional and hence diagonalizing one would
diagonalize the other and thus the conditions of Proposition 2.1 would be satisfied
(the last one with an equality), only that there is now an infinite number of choices
for the matrices Tij (choices differing by the premultiplication with a diagonal matrix
not counted as distinct).

However, when this sequence is nearly constant, direct computation of hij by
(ωjigij−ḡji)/(ωijωji−1) could be subjected to large error because of near cancellation
of the numerator and denominator in this ratio. For better accuracy, it is preferable
to solve (2.9) by the singular value decomposition. But since the matrix B have rows
defined only up to a constant, the ωij and ωji can have widely different magnitudes,
so we need to first “balance” the matrix in (2.9), by rewriting it as[√

ω̃ij 0

0
√
ω̃ji

] [√
ωijωij 1

1
√
ωijωji

] [√
ω̃ij 0

0
√
ω̃ji

]
,

where ω̃ij =
√
ωij/ωji = 1/ω̃ji. The above middle matrix then has the singular value

decomposition

1

2

[
1 −1
1 1

] [√
ωijωji + 1 0

0
√
ωjiωij − 1

] [
1 1
−1 1

]
.

It is thus inverted by simply inverting the diagonal elements of the above diagonal
matrix. This yields as the solution to (2.9)

hij =
ω̃jigij + ḡji

2(
√
ωijωji + 1)

+
ω̃jigij − ḡji

2(
√
ωijωji − 1)

(2.10)

JOINT APPROXIMATE DIAGONALIZATION 1143

and the same formula for hji by interchanging the indexes. When
√
ωijωji ≈ 1, the

singular decomposition method would drop the second term in the above formula, as
the numerator in this term should also be small.

There is an interesting interpretation of the above procedure. By the above
singular decomposition, (2.9) is equivalent to

[
(
√
ωijωji + 1)

√
ω̃ij (

√
ωijωji + 1)

√
ω̃ji

(1−√ωijωji)
√
ω̃ij (

√
ωijωji − 1)

√
ω̃ji

] [
hij
h̄ji

]
=

[√
ω̃ijgij +

√
ω̃ij ḡji√

ω̃ij ḡji −
√
ω̃jigij

]
.

One can recognize that the coefficients in the above equations and the corresponding
right-hand sides are the second and first diagonal elements and upper off-diagonal
elements of P̃ =

√
ω̃jiP +

√
ω̃ijQ and of Q̃ =

√
ω̃ijQ −

√
ω̃jiP, where P and Q

are defined in (2.3). Thus by the same argument leading to Corollary 2.5, the matrix
(2.8) diagonalizes P̃ and Q̃. While this result is trivial since P̃ and Q̃ are just linear
combinations of P and Q, it shows that when the second term in the right-hand side
of (2.10) is dropped, the matrix (2.8) would diagonalize P̃ and diag Q̃, since P̃ is
positive definite and hence the result of Lemma 2.3 applies yielding that (1 +hijhji−
h̄ij h̄ji)

2 − 4hijhji > 0. Thus this matrix also diagonalizes P +
√
ω̃ji(Q̃ − diag Q̃)/2

and Q−√ω̃ji(Q̃− diag Q̃)/2. As the off-diagonal elements of Q̃ are small, one sees
that it still nearly diagonalizes P and Q.

To avoid abrupt change in the way hij are computed, another possibility is to
replace

√
ωijωji− 1 in (2.10) by max(

√
ωijωji− 1, ε), where ε is a small number. The

above argument can be repeated to show that P and Q are still nearly diagonalized.

3. Convergence of the algorithm. We have seen in the previous section that
our algorithm decreases the criterion (1.1) and stops only when it reaches a stationary
point of the criterion. However, we have not yet quantified this decrease.

3.1. Convergence of the gradient. We first derive a lower bound for the
decrease of the criterion at each step of the algorithm, in terms of the gradient vector
which is the vector with components ngij defined in (2.4).

Lemma 3.1. Let Tij be the matrix satisfying the condition of Proposition 2.1 and
let p′1, p

′
2, q

′
1, q

′
2 be as defined there, then the decrease of the criterion (1.1) associated

with the transformation (2.1) is at least

n

[√
q′2/p

′
2 gij√

p′1/q
′
1 gji

]∗ [
1 ρ
ρ 1

]−1 [√
q′2/p

′
2 gij√

p′1/q
′
1gji

]
, ρ =

√
p′1q

′
2/(p′2q

′
1),

which can be bounded below by n[(q′2/p
′
2)|gij |2 + (p′1/q

′
1)|gji|2]/2.

Since the criterion always decreases during our algorithm, the decrease at each
step must converge to zero, implying that (q′2/p

′
2)|gij |2 + (p′1/q

′
1)|gji|2 tends to zero.

Still, this result hasn’t proved the convergence to zero of the gradient vector. The
difficulty is due to the lack of normalization. Indeed, our algorithm constructs the
transformation matrix B only up to a scaling of its rows; hence a row of B can be
arbitrary large or arbitrary small and this would affect the gradient. To avoid this,
we shall renormalize the transformation matrices B after each step of the algorithm.
Any reasonable normalization procedure will do, but for convenience, we will consider
the normalization which makes the rows of B having unit norm. Then the diagonal
elements of BCkB

∗ will be bounded between the smallest and the largest eigenvalue
of Ck. Thus let m and M be the minimum and the maximum of all the eigenvalues
of C1, . . . , CK , then m ≤ (BCkB

∗)ii ≤M for all i and k. Note that m > 0 since the

1144 DINH TUAN PHAM

matrices C1, . . . , CK are positive definite. It follows from the definition (2.3) of P
and Q that both matrices TijPT

∗
ij and TijQT

∗
ij are bounded below by 1/M times

the matrix

Tij

K∑
k=1

[
(BCkB

∗)ii (BCkB
∗)ij

(BCkB
∗)ji (BCkB

∗)jj

]
T∗
ij

and above by 1/m times the same matrix; hence both p′1/q
′
1 and p′2/q

′
2 must lie in the

interval [m/M,M/m]. This proves that the gradient vector of the criterion, evaluated
at each step of the algorithm, converges to zero.

The above result shows that if the algorithm converges, then the limit must be a
stationary point of the criterion. Further, since it always decreases the criterion, this
point is actually a local minimum, unless the algorithm is started at a stationary point,
in which case it stops immediately. Note that, the sequence of diagonalizing matrices
constructed by the algorithm, being normalized and hence belonging to a compact set,
will admit a convergent subsequence and this also holds for any of its subsequences.
Therefore, if the criterion admits a unique local minimum, the algorithm will converge
to it. However, Flury and Gautschi [6] have shown that in some extreme cases, the
criterion (1.1) with orthogonality constraint admits more than one local minimum.
Thus, it seems unlikely that the same criterion but without orthogonality constraint
would admit a unique local minimum in all cases. Nevertheless, if there are only a
finite number of local minima, one can still expect that the algorithm would converge
to one of them. If this is not so, then since we have proved that the gradient vector
converges to 0, the algorithm must jump continually from one local minimum to
another, a highly implausible scenario.

3.2. Quadratic convergence. Our algorithm also has the nice properties that
it behaves near the solution like the quasi-Newton–Raphson iteration, provided that
the matrices C1, . . . , CK can be nearly jointly diagonalized. To derive the Newton–
Raphson iteration, one makes a second order Taylor expansion of the criterion around
the current point, then minimizes this expansion (instead of the true criterion) to
obtain the new point. We have already derived the formula (2.5) for the change of
the criterion corresponding to a change δB of B and its expansion with respect to δ
up to the first order of the form n

∑
i �=j
(gij δ̄ij), where gij are given in (2.4) and δij

denote the elements of the matrix δ. We now need only to pursue the expansion to
the second order. Thus we expand (2.5) as

n
∑∑
i �=j

(gij δ̄ij) +
1

2

∑
i

∑
l

∑
m

δilδ̄im

K∑
k=1

nk
(BCkB

∗)lm
(BCkB∗)ii

−
∑
i

∑
l

∑
m

K∑
k=1

nk

[(BCkB

∗)ilδ̄il]

(BCkB∗)ii

[(BCkB
∗)imδ̄im]

(BCkB∗)ii
+ n

∑
i

∑
j

(δijδji).

Assume that the matrices C1, . . . , CK can be nearly jointly diagonalized, then near
the solution, the off-diagonal terms matrices BCkB

∗ would be small relative to the
diagonal terms. Hence we may neglect, in the above expression, the terms containing
(BCkB

∗)lm/(BCkB
∗)ii, l �= m or (BCkB

∗)il/(BCkB
∗)ii, l �= i (other than the gij ,

of course). With this approximations, the above expression reduces to

n
∑∑
i �=j

[

(gij δ̄ij) +

1

2
ωij |δij |2 +

1

2

(δijδji)

]
,

JOINT APPROXIMATE DIAGONALIZATION 1145

where ωij are as given in (2.7).
The quasi-Newton–Raphson algorithm consists of minimizing the above expres-

sion with respect to δ, then change B into B + δB, δ being the solution to this
minimization. Note that the above expression can be written as

n

2

∑
1≤i<j≤K

(
[δij δ̄ji]

[
ḡij
gji

]
+ [δ̄ij δji]

[
gij
ḡji

]
+ [δ̄ij δji]

[
ωij 1
1 ωji

] [
δij
δ̄ji

])
.

Therefore, one can see that its minimization yields precisely δij = −hij , where hij are
defined in (2.9). Note that the δii, since they do not appear in the above expansion,
can be anything as long as they are small. For convenience, we put them to zero.
This is justified by the fact that by dividing the ith row of B+ δB by 1 + δii, one is
led to the matrix B+ δ′B, where δ′ has zero diagonal element and (i, j) off-diagonal
element δij/(1 + δii), which is about the same as δij .

The above quasi-Newton–Raphson algorithm appears very similar to our joint
approximate diagonalization algorithm, with two differences as follows.

1. The off-diagonal term of Tij in (2.1) is not δij but contains the extra factor

2/[1 + hijhji − h̄ij h̄ji +
√

(1 + hijhji − h̄ij h̄ji)2 − 4hijhji].

2. Our algorithm operates on each pair of rows at a time while the quasi-
Newton–Raphson algorithm operates on the whole matrix. Thus a sweep of the our
algorithm is not quite the same as a Newton–Raphson iteration, since in our algorithm
after a transformation (2.1) is made on the pair (i, j), the hkl for k or l equal to i or
j would undergo some change.

However, it can be seen that the above differences become negligible when the hij
are small. Therefore, our algorithm should have about the same quadratic convergence
speed as the quasi-Newton–Raphson iteration near the solution. But far from the
solution (that is, at the beginning of the algorithm) it could have better convergence
behavior since it always decreases the criterion while the Newton–Raphson iteration
may not. It is true that we have been able to prove the convergence of our algorithm
to a local minimum, but this cannot even be guaranteed in the Newton–Raphson
iteration. Note, however, that our argument relies on the assumption that the matrices
can be nearly jointly diagonalized. In the case where they cannot (which is also the
case where more than one local minima often arise), this argument doesn’t apply.

4. Some numerical examples. We consider the same example as in Flury and
Gautschi [6]. The following 6× 6 matrices are to be diagonalized:

C1 =

45 10 0 5 0 0
10 45 5 0 0 0
0 5 45 10 0 0
5 0 10 45 0 0
0 0 0 0 16.4 −4.8
0 0 0 0 −4.8 13.6

,

C2 =

27.5 −12.5 −.5 −4.5 −2.04 3.72
−12.5 27.5 −4.5 −.5 2.04 −3.72
−.5 −4.5 24.5 −9.5 −3.72 −2.04
−4.5 −.5 −9.5 24.5 3.72 2.04
−2.04 2.04 −3.72 3.72 54.76 −4.68

3.72 −3.72 −2.04 2.04 −4.68 51.24

.

1146 DINH TUAN PHAM

We take n1 = n2 = 1 and start our algorithm with B being the identity matrix.
Table 1 reports the values of criterion after each sweep.

Table 1

Sweep 0 1 2 3 4
Criterion 0.809676 0.204339 0.00239435 1.65756·10−8 0

The last sweep produces a zero value of the criterion, because exact joint diago-
nalization can be achieved for two matrices. The above example is given only as a test
to check that the algorithm works well, but it is not intended for jointly diagonalizing
two matrices since in this case Algorithm 2.7.1 of Golub and van Loan [7] (based on
the eigenvalue decomposition) would be more efficient. Our algorithm is, however,
quite fast. Actually, after only 3 sweeps (sweep 0 corresponds to the initial matrices)
the diagonalization is already rather good. We have

C1 =

39.0322 −0.0038 0.0000 0.0000 −0.0000 −0.0000
−0.0038 29.8108 0.0000 −0.0000 0.0000 −0.0000

0.0000 0.0000 60.0000 0.0000 −0.0000 −0.0000
0.0000 −0.0000 0.0000 50.0000 −0.0000 −0.0000
−0.0000 0.0000 −0.0000 −0.0000 20.1550 0.0000
−0.0000 −0.0000 −0.0000 −0.0000 0.0000 10.0449

,

C2 =

30.7903 0.0023 −0.0000 −0.0000 0.0000 0.0000
0.0023 40.0132 −0.0000 0.0000 −0.0000 0.0000
−0.0000 −0.0000 10.0000 −0.0000 0.0000 0.0000
−0.0000 0.0000 −0.0000 20.0000 0.0000 0.0000

0.0000 −0.0000 0.0000 0.0000 59.1714 −0.0000
0.0000 0.0000 0.0000 0.0000 −0.0000 48.4716

,

which corresponds to the transformation matrix

B =

0.3975 −0.3975 −0.5754 0.5754 −0.0664 −0.1324
−0.5529 0.5529 −0.4204 0.4204 −0.1688 0.0817

0.5000 0.5000 0.5000 0.5000 0.0000 0.0000
−0.5000 −0.5000 0.5000 0.5000 0.0000 0.0000
−0.0749 0.0749 −0.0443 0.0443 0.7790 −0.6148

0.0073 −0.0073 −0.0272 0.0272 0.6082 0.7928

.

(For definiteness, the rows of B have been normalized to have unit norm.) One can see
that there are only two off-diagonal elements which are not quite zero, with a relative
error (to the geometric mean of the corresponding diagonal elements) less than 10−4.
The fourth sweep zeros all off-diagonal elements of C1 and C2, up to 6 digits after
the decimal point at least (we haven’t checked further) with only a slight change in
their diagonal elements: the first two diagonal elements of C1 and C2 become 39.0333
and 29.8099 and 30.7912 and 40.0120, the other are unchanged. The transformation
matrix B is also almost unchanged: in fact only its first two rows have changed, to

0.3977 −0.3977 −0.5752 0.5752 −0.0664 −0.1324 .
−0.5527 0.5527 −0.4206 0.4206 −0.1688 0.0817

JOINT APPROXIMATE DIAGONALIZATION 1147

This suggests that the algorithm has converged after the first transformation (2.1) of
the fourth sweep and does not need this whole sweep. The Flury and Gautschi [6]
algorithm needs 4 to 5 sweeps to converge and moreover it makes several iterations
for each pair of indexes while we make only one. However, although we have used the
same matrices, our algorithm does not solves quite the same problem, since we do not
require the transformation matrix to be orthogonal. A simple way to implement the
orthogonality constraint, at least approximately, is to add another matrix C3 which
is the identity matrix and give it a large weight n3. For n3 = 10, (n1 = n2 = 1), the
values of the criterion after each sweep are given in Table 2.

Table 2

Sweep 0 1 2 3 4 5
Criterion 0.809676 0.224022 0.0291158 0.0290464 0.0290454 0.0290454

The criterion does not decrease further after 4 sweeps. The change in the trans-
formation matrix B produced by the fifth sweep is also very slight, affecting only the
last digit and never more than 2 units. This matrix, after sweep 5, is

B =

0.5000 0.5000 −0.5000 −0.5000 0.0000 −0.0000
−0.5556 0.5556 −0.4227 0.4227 −0.1327 0.0878

0.5000 0.5000 0.5000 0.5000 0.0000 −0.0000
0.4219 −0.4219 −0.5664 0.5664 −0.0088 −0.0489
−0.0918 0.0918 −0.0523 0.0523 0.7918 −0.5922

0.0085 −0.0085 −0.0186 0.0186 0.5979 0.8010

and the corresponding matrices C1, C2 are

C1 =

50.0000 0.0000 0.0000 0.0000 −0.0000 −0.0000
0.0000 29.9224 0.0000 −1.8186 2.1943 0.1092
0.0000 0.0000 60.0000 0.0000 −0.0000 −0.0000
0.0000 −1.8186 0.0000 39.7221 −0.7660 1.0341
−0.0000 2.1943 −0.0000 −0.7660 20.2390 −0.0385
−0.0000 0.1092 −0.0000 1.0341 −0.0385 10.0240

,

C2 =

20.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000
−0.0000 40.2097 −0.0000 −2.2700 4.3681 1.7309
−0.0000 −0.0000 10.0000 −0.0000 −0.0000 −0.0000
−0.0000 −2.2700 −0.0000 31.7746 −1.2684 7.1501
−0.0000 4.3681 −0.0000 −1.2684 59.3949 0.5032
−0.0000 1.7309 −0.0000 7.1501 0.5032 48.3457

.

These results are very similar to that of Flury and Gautschi [6]. (Note that our matrix
B is the transpose of theirs.) Of course, the orthogonality constraint is not exactly
satisfied here. We have

BB∗ =

1.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000
−0.0000 1.0000 −0.0000 0.0117 −0.0182 −0.0047

0.0000 −0.0000 1.0000 −0.0000 0.0000 0.0000
−0.0000 0.0117 −0.0000 1.0000 0.0059 −0.0251

0.0000 −0.0182 0.0000 0.0059 1.0000 −0.0007
0.0000 −0.0047 0.0000 −0.0251 −0.0007 1.0000

,

1148 DINH TUAN PHAM

but the difference in this matrix from the identity matrix is slight. We should mention
here that our algorithm is not designed to enforce orthogonality, the above numerical
results are given only as examples showing its good convergence property.

Appendix. Proofs of results.
Proof of Proposition 2.1. Since the matrix Tij is nonsingular, one can write any

2× 2 matrix T in the form [ac
b
d]Tij and hence (2.2) with T in place of Tij equals

n log
|detTij |2

p′1q
′
2

(A.1)

− n log
(|a|2p′1 + ab̄p′ + ābp̄′ + |b|2p′2)(|d|2q′2 + dc̄q̄′ + d̄cq′ + |c|2q′1)

p′1q
′
2|ad− bc|2 ,

where p′1, p′2, p′ and q′1, q′2, q′ are the diagonal and upper diagonal elements ofTijPT
∗
ij

and TijQT
∗
ij , respectively. One can recognize that the first term in (A.1) is the value

of (2.2) at Tij , hence a necessary and sufficient condition that this point realizes the
maximum of (2.2) is that the other term in (without the minus sign) is nonnegative
for all a, b, c, d. But for a = d = 1 and b, c → 0, this term can be seen to be
equivalent to n[(b̄p′ + bp̄′)/p′1 + (c̄q̄′ + cq′)/q′2]; hence a necessary condition for it to
be nonnegative is that p′ = q′ = 0. Under this condition, (A.1) reduces to

n log
|detTij |2

p′1q
′
2

− n log
(|a|2p′1 + |b|2p′2)(|d|2q′2 + |c|2q′1)

p′1q
′
2(|ad|2 − ād̄bc− adb̄c̄ + |bc|2)

.(A.2)

Again, for a = d = 1 and b, c→ 0, the last term in (A.2) can be seen to be equivalent
to n(|b|2p′2/p′1 + |c|2q′1/q′2 + bc+ b̄c̄). Therefore it is also necessary that this quadratic
form in the variables b, c̄ be nonnegative. This condition is satisfied if and only if
p′2q

′
1 ≥ p′1q

′
2. This yields the necessary part of the proposition.

To prove the sufficient part, note that by the inequality − log x ≤ 1/x− 1, (A.2)
can be seen to be bounded above by

n log
|detTij |2

p′1q
′
2

− n
|bd|2p′2q′2 + |ac|2p′1q′1 + (ād̄bc + adb̄c̄)p′1q

′
2 + |bc|2(p′2q

′
1 − p′1q

′
2)

(|a|2p′1 + |b|2p′2)(|d|2q′2 + |c|2q′1)
.

But for p′2q
′
1 ≥ p′1q

′
2, this expression is bounded again by

n log
|detTij |2

p′1q
′
2

− n

(|a|2p′1 + |b|2p′2)(|d|2q′2 + |c|2q′1)

[
bd̄
ac̄

]∗ [
p′2q

′
2 p′1q

′
2

p′1q
′
2 p′1q

′
1

] [
bd̄
ac̄

]
(A.3)

and thus it cannot exceed n log[|detTij |2/(p′1q
′
2)] for all choices of a, b, c, d, since

the matrix in its second term is positive definite. This yields the sufficient part of the
proposition.

Proof of Proposition 2.2. SinceP andQ are nonproportional, the matrix [p1q1
p2
q2

�p
�q

	p
	q]

is of full rank. Hence it admits at least a 2× 2 submatrix with nonzero determinant,
which entails that α, β, γ are not all zero. To prove that ∆ is real, we expand it as

(A.4)

(p1q2 − p2q1 + p̄q − pq̄)2 − 4(p2q̄ − p̄q2)(pq1 − p1q)

= (p1q2 − p2q1 + p̄q − pq̄)2 − 4(p2q1pq̄ + p1q2p̄q) + 4(|p|2q1q2 + p1p2|q|2)

= (p1q2 − p2q1)2 + (p̄q − pq̄)2 − 2(p1q2 + p2q1)(p̄q + pq̄) + 4(|p|2q1q2 + p1p2|q|2).

JOINT APPROXIMATE DIAGONALIZATION 1149

Consider now the solution to the joint diagonalization problem. Let [a b] and
[c d] be the rows of the diagonalizing matrix T. The condition that the transformed
matrices be diagonal can be written as

[
[a b]P
[a b]Q

] [
c̄
d̄

]
=

[
0
0

]
or equivalently

[
[c d]P
[c d]Q

] [
ā
b̄

]
=

[
0
0

]
.(A.5)

We shall exclude the trivial case where [a b] or [c d] is zero. Then (A.5) implies that
the matrices in the left-hand side have zero determinants, i.e.,

(pa + p2b)(q̄b + q1a)− (qa + q2b)(p̄b + p1a) = 0,

and the same equation but with a, b replaced by c, d. After expansion, one gets the
equations αb2 − βab + γa2 = 0 and αd2 − βcd + γc2 = 0.

The solution [a b] to the equation αb2−βab+γa2 = 0 is clearly determined only
up to a multiplicative factor. Let δ be any one of the two square roots of ∆, it can be
seen that for αγ �= 0 the solution is proportional to [2α β+δ] or [β−δ 2γ], these two
vectors being proportional. If α = 0, then the solution is proportional to [0 1] while
if γ = 0, it is proportional to [1 0] and if both are zero, then it can be proportional
to [0 1] or [1 0]. Thus in all cases, the solution is proportional to [2α β + δ] or
[β − δ 2γ], since δ = ±β when αγ = 0. Similarly, the solutions [c d] to the equation
αd2 − βcd + γc2 = 0 must be proportional to [2α β + δ′] or [β − δ′ 2γ], where δ′ is
also a square root of ∆.

The above results provide only the necessary form of the solutions to the diago-
nalization problem and further they don’t say how δ′ is related to δ. To see if a choice
for [a b] and [c d] as given above is admissible, one must check that it satisfies (A.5).

We begin with the choice [a b] = [2α β + δ] and [c d] = [2α β ± δ̄]. We have

[a b]P[c d]∗ = (ap1 + bp̄)c̄ + (ap + bp2)d̄

= (2αp1 + βp̄ + δp̄)2ᾱ + (2αp + βp2 + δp2)(β̄ ± δ).

The last expression can be expanded as

2α(2p1ᾱ + pβ̄) + 2ᾱp̄β + |β|2p2 + [2ᾱp̄ + β̄p2 ± (2αp + βp2)]δ ±∆p2

= 2α(2p1ᾱ+2p2γ+pβ̄)+(p2β̄−p2β+2p̄ᾱ)β+(∆±∆)p2 +[2ᾱp̄+ β̄p2±(2αp+βp2)]δ.

Using the following relations, a consequence of the definition of α, β, and γ,

2(p1ᾱ + p2γ) + p(β + β̄) = 0, 2(p̄ᾱ− pα) = p2(β − β̄),(A.6)

the above expression can be seen to vanish if the minus sign is used in ±. Hence
[a b]P[c d]∗ = 0 for the choice [c d] = [2α β − δ̄]. A similar calculation, with q1, q2,
q in place of p1, p2, p and based on the relations

q1ᾱ + q2γ + q(β + β̄)/2 = 0, q̄ᾱ− qα = q2(β − β̄)/2,(A.7)

(which is also a consequence of the definition of α, β, and γ) yields that [a b]Q[c d]∗ =
0 for the same choice of [a b] and [c d]. One does not need to explore other choices
of [c d] for this [a b], since for a given [a b], the solutions [c d] to the first equation
in (A.5) must be all proportional to a same vector, unless [a b]P = [0 0] = [a b]Q,
which is excluded since this implies that P and Q are proportional.

1150 DINH TUAN PHAM

For the choice [a b] = [β − δ 2γ], observe that [a b]P[c d] and [a b]Q[c d]
remain the same by interchanging a with b, c with d, p1 with p2, p with p̄, q1 with q2,
and q with q̄. But then one is led to the same calculations as before by interchanging
α with γ and reversing the sign of δ. Noting that the second relations in (A.6) and
(A.7) still hold under these interchanges while the first relations remain the same, one
gets that the correct choice for [c d] is [β + δ̄ 2γ]. As before, for this [a b], one need
not explore other choices for [c d].

Proof of Lemma 2.3. We shall prove the result only for the case detQ > 0 since
the proof for the other case is similar. Continue the calculation of ∆ in (A.4) and
noting that q1q2 = detQ+ |q|2 > 0, we get

∆ = (p1q2 − p2q1)2 + (p̄q − pq̄)2 + 4p1p2|q|2

+ 4q1q2

∣∣∣p− p1q2 + p2q1
2q1q2

q
∣∣∣2 − (p1q2 + p2q1)2

q1q2
|q|2

= (p1q2 − p2q1)2
(

1− |q|
2

q1q2

)
+ (p̄q − pq̄)2 + 4q1q2

∣∣∣p− p1q2 + p2q1
2q1q2

q
∣∣∣2.

Putting r = p − [(p1q2 + p2q1)/(2q1q2)]q, the last two terms in the above right-hand
side can be written as

(r̄q − rq̄)2 + 4q1q2|r|2 = 4q1q2|r|2 − [2�(r̄q)]2 ≥ 4|r|2(q1q2 − |q|2).

Thus ∆ ≥ 0 with equality if and only if p1q2 − p2q1 = 0 and r = 0. Since q1q2 >
0, the first condition implies that p1 = λq1 and p2 = λq2 for some λ. Then the
second condition implies that p− λq = 0. These two conditions thus entail that P is
proportional to Q, contradicting our assumption.

Proof of Lemma 2.4. From the definition (2.6) of the diagonalizing matrix, one
has, putting D = β − sign(p2q1 − p1q2)

√
∆,

p′1 = p1|D|2 + 2(p̄γD̄ + pγ̄D) + 4p2|γ|2,
q′2 = q2|D|2 + 2(qαD̄ + q̄ᾱD) + 4q1|α|2.

Hence the product p′2q
′
1 equals

p2q1|D|4 + 4
(p2q̄γD̄ + q1pαD)|D|2 + 4(p2q2|γD|2 + p1q1|αD|2)

+ 8
(pq̄αγD̄2 + pqαγ̄|D|2) + 16
(pq2|γ|2αD̄ + p1q̄|α|2γD̄) + p1q2|4αγ|2.
The product p′1q

′
2 can be obtained from the above formula by interchanging p1, p2, p

with q1, q2, q. Therefore, the difference p′2q
′
1 − p′1q

′
2 equals

p′2q
′
1 − p′1q

′
2 = (p2q1 − p1q2)(|D|4 − |4αγ|2)(A.8)

+ 8
(αγD̄)|D|2 + 8
[(pq̄ − pq̄)αγD̄2]− 32
(|αγ|2D̄).

The last three terms in the right-hand side above may be regrouped as

[(8αγD̄2)(D + pq̄ − p̄q − 4ᾱγ̄/D̄)].(A.9)

However, putting δ = β − D = sign(p1q2 − p2q1)
√

∆, one has D = β + δ, 4αγ =
β2 − δ2 = D(β + δ); hence, noting that pq̄ − p̄q = (β̄ − β)/2,

D + pq̄ − p̄q − 4ᾱγ̄/D̄ = β − δ + (β̄ − β)/2− (β̄ + δ) = (β − β̄)/2− 2δ,

4αγD̄2 = |D|2(β + δ)(β̄ − δ) = |D|2[|β|2 −∆ + (β̄ − β)δ].

JOINT APPROXIMATE DIAGONALIZATION 1151

Therefore (A.9) reduces to

|D|2
{[|β|2 −∆ + (β̄ − β)δ](β − β̄ − 4δ)} = |D|2δ[4(∆− |β|2)− (β − β̄)2]

since β − β̄ is purely imaginary. Finally, from 4αγ = D(β + δ) and p2q1 − p1q2 =
−(β + β̄)/2, the first term in the right-hand side of (A.8) equals

1

2
(β + β̄)|D|2(|β + δ|2 − |β − δ|2) = |D|2δ(β + β̄)2.

Combining the above result, one gets

p′2q
′
1 − p′1q

′
2 = |D|2δ[(β + β̄)2 + 4(∆− |β|2)− (β − β̄)2] = 4|D|2δ∆,

yielding the result of the lemma.
Proof of Lemma 3.1. We have shown in the proof of Proposition 2.1 that the

expression (2.2) evaluated at the matrix [ac
b
d]Tij is given by (A.2), which is bounded

above by (A.3). Take a, b, c, d to be the elements of the inverse of Tij ; then (2.2)
becomes zero and thus (A.3) with these values of a, b, c, d is nonnegative. Therefore,
noting that a, b, c, d by definition satisfy

1 = |a|2p′1 + |b|2p′2, 1 = |d|2q′2 + |c|2q′1,
[
gij
gji

]
=

[
p′2 p′1
q′2 q′1

] [
bd̄
ac̄

]
,

one gets

n log
|detTij |2

p′1q
′
2

≥ n

[
gij
gji

]∗ [
p′2 q′2
p′1 q′1

]−1 [
p′2q

′
2 p′1q

′
2

p′1q
′
2 p′1q

′
1

] [
p′2 p′1
q′2 q′1

]−1 [
gij
gji

]
.

But the left-hand side of the above inequality is a lower bound for the decrease of
the criterion (1.1) associated with the transformation (2.1) while the right-hand side
can be rearranged to obtain the same bound as given in the lemma. Since the matrix
which appears there has eigenvalues 1 ± ρ and 0 ≤ ρ ≤ 1, one gets the second result
of this lemma.

REFERENCES

[1] A. Belouchrami, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, A blind source sep-
aration technique using second-order statistics, IEEE Trans. Signal Process., 45 (1977),
pp. 434–444.

[2] J.-F. Cardoso, On the performance of orthogonal source separation algorithms, in Signal Pro-
cessing VII, Proceedings of the European Association for Signal Processing ’94, Edinburgh,
Scotland, 1994, pp. 776–779.

[3] J.-F. Cardoso and A. Souloumiac, Blind beam forming for non Gaussian signals, IEE
Proceedings-F, 140 (1993), pp. 362–370.

[4] T. Cover and J. Thomas, Elements of Information Theory, Wiley, New York, 1991.
[5] B. N. Flury, Common principal components in k groups, J. Amer. Statist. Assoc., 79 (1984),

pp. 892–897.
[6] B. N. Flury and W. Gautschi, An algorithm for the simultaneous orthogonal transformation

of several positive definite symmetric matrices to nearly orthogonal form, SIAM J. Sci.
Statist. Comp., 7 (1986), pp. 169–184.

[7] G. H. Golub and F. van Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 1996.

[8] D. T. Pham and P. Garat, Blind separation of mixtures of independent sources through a
quasi maximum likelihood approach, IEEE Trans. Signal Process., 45 (1997), pp. 1712–
1725.

1152 DINH TUAN PHAM

[9] G. A. F. Seber, Multivariate Observations, Wiley, New York, 1984.
[10] A. Yeredor, Approximate joint diagonalization using non orthogonal matrices, in Proceedings

of the ICA 2000 Conference, Helsinki, University of Technology, Helsinki, Finland, 2000,
pp. 33–38.

[11] A. Yeredor, Optimization of a second-order statistics blind separation algorithm for Gaus-
sian signals, in Signal Processing X, Proceedings of the European Association for Signal
Processing 2000 Conference, Tempere, Finland, 2000, pp. 19–22.

ACCURATE SOLUTION OF WEIGHTED LEAST SQUARES BY
ITERATIVE METHODS∗

ELENA Y. BOBROVNIKOVA† AND STEPHEN A. VAVASIS‡

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1153–1174

Abstract. We consider the weighted least-squares (WLS) problem with a very ill-conditioned
weight matrix. WLS problems arise in many applications including linear programming, electrical
networks, boundary value problems, and structures. Because of roundoff errors, standard iterative
methods for solving a WLS problem with ill-conditioned weights may not give the correct answer.
Indeed, the difference between the true and computed solution (forward error) may be large. We
propose an iterative algorithm, called MINRES-L, for solving WLS problems. The MINRES-L
method is the application of MINRES, a Krylov-space method due to Paige and Saunders [SIAM
J. Numer. Anal., 12 (1975), pp. 617–629], to a certain layered linear system. Using a simplified
model of the effects of roundoff error, we prove that MINRES-L ultimately yields answers with small
forward error. We present computational experiments for some applications.

Key words. weighted least squares, iterative method, MINRES, conjugate gradient, Krylov-
space, achievable accuracy

AMS subject classifications. 65F10, 65N22

PII. S0895479897316576

1. Introduction. Consider the weighted least-squares (WLS) problem

min
x∈Rn

‖D1/2(b−Ax)‖2,(1.1)

where D ∈ Rm×m, A ∈ Rm×n, b ∈ Rm, m ≥ n, and x ∈ Rn is the unknown. In this
formula and for the remainder of this article, ‖ · ‖ indicates the 2-norm. The normal
equations for (1.1) have the form

ATDAx = ATDb.(1.2)

We make the following assumptions: D is a diagonal positive definite matrix and
rankA = n. These assumptions imply that (1.2) is a nonsingular linear system with
a unique solution.

WLS problems arise in several application domains including linear programming,
electrical power networks, elliptic boundary value problems, and structural analysis,
as observed by Strang [27]. This article focuses on the case when D is severely ill-
conditioned. This happens in certain classes of electrical power networks. In this
case, A is a node-arc adjacency matrix, D is matrix of load conductivities, b is the

∗Received by the editors February 12, 1997; accepted for publication (in revised form) by R.
Freund November 27, 2000; published electronically March 20, 2001. This work has been supported
in part by an NSF Presidential Young Investigator grant, with matching funds received from AT&T
and Xerox Corp. Research supported in part by NSF through grant DMS-9505155 and ONR through
grant N00014-96-1-0050. Support was also received from the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office of Computational and Technology Research,
U.S. Dept. of Energy, under contract W-31-109-Eng-38 through Argonne National Laboratory. Sup-
port was also received from the J. S. Guggenheim Foundation. This work was also supported in part
by NSF grants CCR-9619489 and EIA-9726388.

http://www.siam.org/journals/simax/22-4/31657.html
†Formerly of the Center for Applied Mathematics, Cornell University, Ithaca, NY 14853. Part of

this work was done while this author was visiting Lucent Bell Laboratories.
‡Department of Computer Science, Cornell University, Ithaca, NY 14853 (vavasis@ cs.cornell.edu).

Part of this work was done while this author was visiting the Argonne National Laboratory.

1153

1154 ELENA Y. BOBROVNIKOVA AND STEPHEN A. VAVASIS

vector of voltage sources, and x is the vector of voltages of the nodes. Ill-conditioning
occurs when resistors are out of scale, for instance, when modeling leakage of current
through insulators.

Ill-conditioning also occurs in linear programming when an interior-point method
is used. To compute the Newton step for an interior-point method, we need to solve a
weighted least-squares equation of the form (1.2). Matrix D becomes ill-conditioned
as the iterates approach the boundary of the feasible region, which always happens
in an interior point method. In section 8, we examine this application in more detail.
Ill-conditioning also occurs in finite element methods for certain classes of boundary
value problems, for example, in the heat equilibrium equation ∇ · (c∇u) = 0 when
thermal conductivity field c varies widely in scale.

An important property of problem (1.1) or (1.2) is the norm bound on the solu-
tion, which was obtained independently by Stewart [26], Todd [28], and several other
authors. See [10] for a more complete bibliography. Here we state this result as in
the paper by Stewart.

Theorem 1.1. Let D denote the set of all positive definite m×m real diagonal
matrices. Let A be an m× n real matrix of rank n. If we define

χA = sup{‖(ATDA)−1ATD‖ : D ∈ D} and(1.3)

χ̄A = sup{‖A(ATDA)−1ATD‖ : D ∈ D},(1.4)

then both χA, χ̄A are finite.
Note that the matrix appearing in (1.3) is the solution operator for the normal

equations (1.2). In other words, (1.2) can be rewritten as x = (ATDA)−1ATDb.
Since the bounds (1.3), (1.4) exist, we can hope that there exist algorithms for

(1.2) that possess the same property, namely, the forward error bound does not depend
on D. We will call these algorithms stable, where stability as defined by Vavasis [29]
means that forward error in the computed solution x̂ satisfies

‖x− x̂‖ ≤ ε · f(A) · ‖b‖,(1.5)

where ε is machine precision and f(A) is some function of A not depending on D.
Note that the underlying rationale for this kind of bound is that the conditioning
problems in (1.1) stem from an ill-conditioned D rather than an ill-conditioned A.

This stability property is not possessed by standard direct methods such as QR
factorization, Cholesky factorization, symmetric indefinite factorization, and range-
space and null-space methods nor by standard iterative methods such as conjugate
gradient applied to (1.2). The only two algorithms in the literature that are proved to
have this property are the NSH algorithm by Vavasis [29] and the complete orthogonal
decomposition (COD) algorithm by Hough and Vavasis [17], both of them direct. In
section 3 we consider previous work on iterative methods. See Björck [2] for more
information about algorithms for least-squares problems.

We would like to have stable iterative methods for this problem because iterative
methods can be much more efficient than direct methods for large sparse problems,
which is the common setting in applications.

This article presents an iterative algorithm for WLS problems called MINRES-L.
The description and theory of the algorithm is presented in sections 4 through 6. This
is followed by computational experiments in section 7. Briefly, MINRES-L consists
of applying the MINRES algorithm of Paige and Saunders [21] to a certain layered
linear system. We prove that MINRES-L satisfies (1.5). This proof of the forward

WEIGHTED LEAST SQUARES BY ITERATIVE METHODS 1155

error bound for MINRES-L is based on a simplified model (presented in section 5) of
how roundoff error affects Krylov space methods. An analysis of roundoff in MINRES-
L starting from first principles is not presented here because the effect of roundoff on
the MINRES iteration is not fully understood.

MINRES-L imposes the additional assumption on the WLS problem instance that
D is “layered.” In section 2 we state the layering assumption, and also present the
layered least-squares (LLS) problem. This assumption is made without loss of gener-
ality (i.e., every WLS problem can be rewritten in layered form), but the MINRES-L
algorithm is inefficient for problems with many layers.

Our analysis concerns the ultimate achievable accuracy of MINRES-L (versus
other iterative algorithms) and does not address the matter of convergence rate. In
section 7 we remark on this matter and on the use of preconditioners.

2. The layering assumption. Recall that we have already assumed that the
weight matrix D appearing in (1.1) is diagonal, positive definite, and ill-conditioned.
For the rest of this article we impose an additional “layering” assumption: we as-
sume, after a suitable permutation of the rows of (A,b) and corresponding symmetric
permutation of D, that D has the structure

D =

δ1D1

. . .

δpDp

 ,(2.1)

where each Dk is well-conditioned and scaled so that its smallest diagonal entry is 1,
and where δ1 ≥ δ2 ≥ · · · ≥ δp > 0. Let κ denote the maximum diagonal entry among
D1, . . . , Dp. The layering assumption is that κ is not much larger than 1.

Note that this assumption is made without any loss of generality (and we could
assume κ = 1), since we could place each diagonal entry of D in its own layer. Unfor-
tunately, the complexity of each iteration of our algorithm grows like a high power of
p. In particular, the size of the system under consideration grows quadratically with
p. The work per iteration grows approximately like p3, and the number of iterations
is also expected to grow with p. Thus, computational work is expected to grow at a
rate of perhaps p4. Furthermore, our upper bound on the forward error degrades as
p increases (see (6.11) below). Thus, a tacit assumption is that the number of layers
p is not too large.

From now on, we write A in partitioned form as

A =

A1

...
Ap

to correspond with the partitioning of D. We partition b = [b1; . . . ;bp] conformally.
Under this assumption, we say that (1.1) is a “layered WLS” problem. In the

context of electrical networks, this assumption means that there are several distinct
classes of wires in the circuit, where the resistance of wires in class l is of order 1/δl. For
instance, one class of wires might be transmission lines, whereas the other class might
consist of broken wires (open lines) where the resistance is much higher. In the context
of the heat equilibrium equation, the layering assumption means that the object under
consideration is composed of a small number of different materials. Within each
material the conductivity δl is roughly constant, but the different materials have very

1156 ELENA Y. BOBROVNIKOVA AND STEPHEN A. VAVASIS

different conductivities. In linear programming, taking p = 2 means that some of the
variables at the current interior-point iterate are “small” while others are “large.”

A limiting case of layered WLS occurs when the gaps between the δl’s tend to
infinity, that is, δ1 is infinitely larger than δ2 and so on. As the weight gaps tend to
infinity, the solution to (1.1) tends to the solution of the following problem, which we
refer to as layered least-squares (LLS). Construct a sequence of nested affine subspaces
L0 ⊃ L1 ⊃ · · · ⊃ Lp of R

n. These spaces are defined recursively: L0 = Rn, and

Ll = {minimizers of ‖D1/2
l (Alx− bl)‖ subject to x ∈ Ll−1}.

Finally, x, the solution to the LLS problem, is the unique element in Lp. The LLS
problem was first introduced by Vavasis and Ye [30] as a technique for accelerating
the convergence of interior-point methods. They also established the result mentioned
above in this paragraph: the solution to the WLS problem in the limit as δl+1/δl → 0
for all l converges to the solution of the LLS problem.

3. Previous work. A standard iterative method for least-squares problems,
including WLS problems, is the LSQR algorithm of Paige and Saunders [22]. Most of
our test cases below in section 7 compare MINRES-L to LSQR.

LSQR is closely related to CGNR, which is analytically equivalent to the conjugate
gradient method (see Golub and Van Loan [11] or Greenbaum [13]) applied to the
normal equations (1.2). There are several variants of CGNR in the literature; see,
e.g., Björck, Elfving, and Strakoš [3].

The difficulty with CGNR and LSQR is that an inaccurate solution can be re-
turned because ATDA can be ill-conditioned whenD is ill-conditioned. To understand
the difficulty, consider the two-layered WLS problem, which is obtained by substitut-
ing (2.1) in the case p = 2 into (1.2):

δ1A
T
1 D1A1x+ δ2A

T
2 D2A2x = δ1A

T
1 D1b1 + δ2A

T
2 D2b2.(3.1)

Observe that if δ1 � δ2, then the Krylov sequence

ATDb, (ATDA)ATDb, (ATDA)2ATDb, . . .

constructed by CGNR and LSQR is very close to

δ1A
T
1 D1b1, δ

2
1(A

T
1 D1A1)A

T
1 D1b1, δ

3
1(A

T
1 D1A1)

2AT1 D1b1,

Indeed, a naive implementation of CGNR would form ATDb on the first iteration
of the algorithm and never reintroduce any information about b again. This naive
implementation would clearly lose information about b2 due to roundoff error when
forming ATDb if δ1 � δ2, and the lost information is never recovered.

LSQR uses b in a more sophisticated manner than naive CGNR but nonetheless
still has a difficulty with loss of information in the Krylov space. The difficulty with
LSQR (as well as with a good implementation of CGNR like CGLS1 [3]) is as follows.
LSQR computes a basis for the Krylov space using a short recurrence. As noted
in the last paragraph, initially each basis vector contains mostly information from
AT1 plus a small contribution from AT2 . After a certain number of iterations, these
algorithms converge upon an approximate solution to the (possibly rank-deficient)
normal equations AT1 D1A1x = AT1 D1b1. At this point, the residual drops abruptly.
See, e.g., Figure 7.2 for an example of the sudden decrease in the residual. After this
point, in exact arithmetic, the future basis vectors for the Krylov space will contain

WEIGHTED LEAST SQUARES BY ITERATIVE METHODS 1157

information mostly about directions spanned by AT2 orthogonal to the approximate
basis already constructed for AT1 . Unfortunately, the information about A

T
2 , which is

present in the first iterate, is not propagated accurately to this transition step. Much
information is lost because of cancellation when the residual decreases abruptly. A
different framework for interpreting this difficulty is described in section 5.

In light of this explanation of the difficulty, one could consider a remedy of a
correction to the residual and search directions at the transition step mentioned in
the preceding paragraph. Indeed, several authors have proposed an iterative method
along these lines in the case of the heat equation for composite materials mentioned
in the introduction, e.g., [31]. (Note that the use of the word “layered” in the title of
[31] has a different meaning from the use of that word herein.) This class of methods
uses knowledge about the form of A and D that arise in discretizing a second-order
elliptic boundary value problem to come up with the correct adjustment.

We expect this class of algorithms to be more efficient than the MINRES-L al-
gorithm proposed in subsequent sections of this paper. On the other hand, they
require information about the problem domain; in contrast, MINRES-L requires only
(A,D,b) as problem input. Thus, MINRES-L appears to be more generally applicable
than adjustment.

We proposed another method based on correcting the search directions in our
own earlier work [4] that attempted to extract the necessary adjustment directly from
(A,D,b) and Krylov-space information computed by CG. We have not pursued that
approach because we found a case that was not correctly handled by our proposed
algorithm. That technique was reminiscent of reorthogonalization—a standard way to
combat ill-conditioning in iterative methods; see, for example, Paige [23] and Parlett
and Scott [24].

Another technique for addressing ill-conditioned linear systems with iterative
methods is called “regularization.” A typical regularization technique modifies the
ill-conditioned system with additional terms. See Hanke [14]. Regularization does
not appear to be a good approach for solving (1.1) because (1.1) already has a well-
defined solution (in particular, Theorem 1.1 implies that solutions are not highly
sensitive to perturbation of the data vector b). A regularization technique would
compute a completely different solution.

4. MINRES-L for two layers. In this section and the next we consider the
two-layered case, that is, p = 2 in (2.1). We consider the two-layered case separately
from the p-layered case because the two-layered case contains all the main ideas of the
general case but is easier to write down and analyze. In the p = 1 case, our algorithm
reduces to MINRES applied to (1.2) and hence is not novel. MINRES is not even
considered a good algorithm for (1.2) because it operates with the normal-equation
matrix AT1 D1A1. See the remarks in section 9 for more comments on this matter.
Furthermore, the p = 2 case is expected to occur commonly in practice. We mention
also that the two-layered WLS and LLS problems were considered in Chapter 22 of
Lawson and Hanson [18].

As noted in the preceding section, the two-layered WLS problem is written in the
form (3.1), in which the diagonal entries of D1, D2 are of order 1 and δ1 ≥ δ2. Let us
introduce a new variable v such that

AT1 D1A1v = (δ1/δ2)(A
T
1 D1A1x−AT1 D1b1).(4.1)

Note that this equation always has a solution v because the right-hand side is in the

1158 ELENA Y. BOBROVNIKOVA AND STEPHEN A. VAVASIS

range of AT1 . Multiplying (4.1) by δ2 and adding to (3.1) yields

AT1 D1A1v = AT2 D2b2 −AT2 D2A2x.(4.2)

Putting (4.1) and (4.2) together, we get

(
AT2 D2A2 AT1 D1A1

AT1 D1A1 (−δ2/δ1)AT1 D1A1

)(
x
v

)
=

(
AT2 D2b2

AT1 D1b1

)
.(4.3)

Our algorithm, which we call MINRES-L (for MINRES “layered”), is the application
of the MINRES iteration due to Paige and Saunders [21] to (4.3). Note that (4.3) is
a symmetric indefinite linear system.

In general, this linear system is rank-deficient because if (x;v) is a solution and
v′ satisfies A1v

′ = A1v, then (x;v
′) is also a solution. Thus, (4.3) is rank-deficient

whenever the rank of A1 is less than n. This means we must address existence and
uniqueness of a solution. Existence follows because the original WLS problem (3.1) is
guaranteed to have a solution. Uniqueness of x is established as follows: if we add δ2
times the first row of (4.3) to δ1 times the second row, we recover the original WLS
problem (3.1). Since (3.1) has a unique solution, (4.3) must uniquely determine x.
Since x is uniquely determined, so is A1v.

The question arises whether MINRES (in exact arithmetic) will find a solution of
(4.3). MINRES can find a solution only if it lies in the Krylov space, which (because
of rank deficiency) is not necessarily full dimensional. This question was answered
affirmatively by Theorem 2.4 of Brown and Walker [6]. (Their analysis concerns
GMRES, but the same result applies to MINRES in exact arithmetic.) Furthermore,
their result states that, assuming the initial guess is 0, the computed solution (x;v)
will have minimum norm over all possible solutions. Since x is uniquely determined,
their result implies that v will have minimum norm.

It may seem paradoxical that we remedy a difficulty caused by ill-conditioning
by transforming the problem to a truly rank-deficient system. One explanation of
this paradox concerns the limiting behavior as δ1/δ2 → ∞. In this case, (3.1) tends
to the linear system AT1 D1A1x = AT1 D1b1. This system will, in general, not have a
unique solution (because A1 is not assumed to have rank n), and LSQR and CGNR
will not have accurate information about b2 in their Krylov spaces. Thus, the LSQR
and CGNR solutions are not expected to have the forward accuracy that we demand.

On the other hand, as δ1/δ2 →∞, we see that (4.3) tends to
(

AT2 D2A2 AT1 D1A1

AT1 D1A1 0

)(
x
v

)
=

(
AT2 D2b2

AT1 D1b1

)
.

This system is easily seen to be the Lagrange multiplier conditions for the two-layered
LLS problem: recall from section 2 that the two-layered LLS problem is

minimize ‖D1/2
2 (A2x− b2)‖2

subject to AT1 D1A1x = AT1 D1b1.

This is the correct limiting behavior: the WLS solution tends to the LLS solution as
δ2/δ1 → 0. An in-depth explanation of MINRES-L’s convergence behavior follows.

5. Analysis of the error for two layers. In this section we consider conver-
gence of MINRES-L in the presence of roundoff error for the case p = 2. As mentioned

WEIGHTED LEAST SQUARES BY ITERATIVE METHODS 1159

in the introduction, we make a simplifying assumption concerning the effect of round-
off error in Krylov-space methods. Consider the symmetric linear system Mx = c. If
M is singular, we then assume that c lies in its range-space. For the purpose of this
analysis, we assume that there is no preconditioner, and the initial guess is x(0) = 0.
These assumptions could be relaxed, although some conditions would need to be im-
posed on x(0) and on the preconditioner to make this analysis work. Although our
analysis needs these restrictions, there is no restriction imposed by the algorithm itself
on the choice of x(0). The only restriction imposed by the algorithm on the precon-
ditioner is the same restriction that applies to MINRES generally, namely, that the
preconditioner must be positive definite. (If the system matrixM is singular, then the
preconditioner P may be positive semidefinite provided that its nullspace is contained
in the nullspace of M .)

Our assumption about the effect of roundoff is that after a sufficient number of
iterations, all of these Krylov methods will compute an iterate x̂ satisfying

‖c−M x̂‖ ≤ Cε · ‖M‖ · ‖x‖,(5.1)

where C is a modest constant, ε is machine epsilon, and x is the true solution. (If
multiple solutions exist, we take x to be the minimum-norm solution.) In other
words, we assume that in all of these methods, the true residual is ultimately driven
to machine epsilon in the relative sense.

As far as we know, this bound has not been rigorously proved for CG or LSQR,
but it is related to a bound proved by Greenbaum [12]. In particular, Greenbaum’s
result implies that (5.1) would hold for CG if we were guaranteed that the recursively
updated residual drops to well below machine precision, which always happens in our
test cases.

A bound similar to (5.1) is known to hold for GMRES implemented with House-
holder transformations as shown by Drkošová et al. [8]. Little is known about floating
point behavior of MINRES. GMRES is equivalent to MINRES augmented with a full
reorthogonalization process. For this paper, we tentatively assert (5.1) for MINRES
without proof. Our computational experiments in section 7 provide a bit of evidence
to support the assertion, but a more thorough computational study on whether (5.1)
applies to MINRES would be very useful.

This bound sheds light on why MINRES-L can attain much better accuracy than
CGNR. For CGNR, the error bound (5.1) implies that ‖ATDb − ATDAx̂‖ gets
very small, where x̂ is the computed solution. This latter quantity is the same as
‖(ATDA)(x− x̂)‖. But recall that we are seeking a bound on the forward error, that
is, on ‖x− x̂‖. In this case, the factor (ATDA) can greatly skew the norm when δ2/δ1
is close to zero, so there is no bound on ‖x − x̂‖ independent of δ1/δ2, that is, (1.5)
is not expected to be satisfied by CGNR. This is confirmed by our computational
experiments.

It is not known what bound to expect on forward error for LSQR. Our experiments
hint that LSQR satisfies (5.1) for the normal equations and may satisfy a stronger
bound.

In contrast, an analysis of MINRES-L starting from (5.1) does yield the accuracy
bound (1.5). We need the following preliminary lemma.

Lemma 5.1. Let A be an m × n matrix of rank n and Ā an r × n submatrix of
A. Suppose the linear system ĀT D̄Āx = AT c is consistent. Here, c is a given vector,
and D̄ is a given diagonal positive definite matrix. Then for any solution x,

‖Āx‖ ≤ ‖D̄−1‖ · χ̄A · ‖c‖(5.2)

1160 ELENA Y. BOBROVNIKOVA AND STEPHEN A. VAVASIS

and

‖Āx‖ ≤ ‖D̄−1‖ · χA · ‖AT c‖.(5.3)

Furthermore, there exists a solution x satisfying

‖x‖ ≤ ‖D̄−1‖ · χAχ̄A · ‖c‖.(5.4)

Proof. First, note the following preliminary result. Let H,K be two symmetric
positive semidefinite n × n matrices such that H +K is positive definite. Let b be
an n-vector in the range-space of H. Then (H + εK)−1b converges to a solution of
Hx = b as ε→ 0+. This is proved by reducing to the diagonal case using simultaneous
diagonalization of H,K.

Let D be the extension of D̄ to an m×m diagonal matrix obtained by padding
with zeros, so that ATDA = ĀT D̄Ā. Let M be an m × m diagonal matrix with
1’s in diagonal positions corresponding to D̄ and zeros elsewhere. Let N be the
complementary projection, i.e., N is also a diagonal matrix such that M + N = I.
Since ATDAx = AT c is consistent, the limit of (AT (D + εN)A)−1AT c as ε → 0+ is
some solution x of ĀT D̄Āx = AT c, as noted in the preceding paragraph. We have

‖Āx‖ = ‖MAx‖
= lim
ε→0+

‖MA(AT (D + εN)A)−1AT c‖
= lim
ε→0+

‖M(D + εN)−1(D + εN)A(AT (D + εN)A)−1AT c‖(5.5)

≤ lim
ε→0+

‖M(D + εN)−1‖ · sup
ε>0
‖(D + εN)A(AT (D + εN)A)−1AT ‖ · ‖c‖

≤ ‖D̄−1‖ · χ̄A · ‖c‖.

The last line was obtained from the transpose of (1.4). This proves (5.2). Note that
this holds for all x satisfying ĀT D̄Āx = AT c, since this latter equation uniquely
determines Āx. Similarly, to demonstrate (5.3), we start from (5.5):

‖Āx‖ ≤ lim
ε→0+

‖M(D + εN)−1(D + εN)A(AT (D + εN)A)−1AT c‖
≤ lim
ε→0+

‖M(D + εN)−1‖ · sup
ε>0
‖(D + εN)A(AT (D + εN)A)−1‖ · ‖AT c‖

≤ ‖D̄−1‖ · χA · ‖AT c‖.

Turning to the proof of (5.4), observe thatAT c = ĀT D̄Āx = ATDAx = ATDMAx =
AT (D + εN)MAx for any ε, since MN = 0. Hence,

x = lim
ε→0+

(AT (D + εN)A)−1AT c

= lim
ε→0+

(AT (D + εN)A)−1AT (D + εN)MAx

and thus

‖x‖ ≤ sup
ε>0
‖(AT (D + εN)A)−1A(D + εN)‖ · ‖MAx‖

≤ χA‖Āx‖.

Combining this with (5.2) proves (5.4).

WEIGHTED LEAST SQUARES BY ITERATIVE METHODS 1161

To resume the analysis of MINRES-L, we define residual vectors

r1 = AT2 D2A2x̂+AT1 D1A1v̂ −AT2 D2b2 and(5.6)

r2 = AT1 D1A1x̂− (δ2/δ1)AT1 D1A1v̂ −AT1 D1b1,(5.7)

where (x̂; v̂) is the solution of (4.3) computed by MINRES-L. Then (5.1) applied to
(4.3) yields the bounds

‖r1‖, ‖r2‖ ≤ Cε · ‖H2‖ · ‖(x;v)‖.(5.8)

In this formula, H2 is shorthand for the coefficient matrix of (4.3).
We can extract another equation from (5.6) and (5.7); in particular, if we multiply

(5.6) by δ2, multiply (5.7) by δ1 and then add, we eliminate the terms involving v̂:

δ2r1 + δ1r2 = δ1A
T
1 D1A1x̂+ δ2A

T
2 D2A2x̂− δ1AT1 D1b1 − δ2AT2 D2b2.

Let x be the exact solution to the WLS problem. The last two terms of this equation
can be replaced with terms involving x by using (3.1). Interchanging the left- and
right-hand sides yields

δ1A
T
1 D1A1(x̂− x) + δ2A

T
2 D2A2(x̂− x) = δ2r1 + δ1r2.(5.9)

The goal is to derive an accuracy bound like (1.5) from (5.8) and (5.9). We start
by bounding the quantity in the right-hand side of (5.8). Note that ‖H2‖ can be
bounded by 2κ‖A‖2 because the largest entries in D1, D2 are bounded by κ. We
can bound ‖x‖ by χA‖b‖ and ‖Ax‖ by χ̄A‖b‖ using Theorem 1.1. Next we turn to
bounding ‖v‖ in (5.8). Recall that, as mentioned in the preceding section, v is not
uniquely determined, but MINRES will find the minimum-norm v satisfying (4.3).
Recall that v is determined by the constraint

AT1 D1A1v = AT2 D2b2 −AT2 D2A2x.

One way to pick such a v is to use Lemma 5.1 with Ā chosen to be A1 and c chosen
to be [0;D2b2 −D2A2x]. In this case,

‖c‖ ≤ κ‖b‖+ κ‖Ax‖
≤ κ(χ̄A + 1)‖b‖.

Thus, by (5.4), we can select v so that

‖v‖ ≤ κχAχ̄A(χ̄A + 1)‖b‖.
Note that the derivation of this inequality used the fact that ‖D−1

1 ‖ ≤ 1, which follows
from the assumption that diagonal entries of each Di are 1 or greater. Combining the
x and v contributions means that we have bounded the right-hand side of (5.8); let
us rewrite (5.8) with the new bound:

‖r1‖, ‖r2‖ ≤ 2Cε · ‖A‖2 · κ2 · χAχ̄A(χ̄A + 2)‖b‖.(5.10)

Next, we write new equations for r1, r2. Observe that r1 lies in the range of
[AT1 , A

T
2], so we can find h1 satisfying

r1 = AT1 D1A1h1 +AT2 D2A2h1.(5.11)

1162 ELENA Y. BOBROVNIKOVA AND STEPHEN A. VAVASIS

Similarly, by (5.7) there exists h2 satisfying

r2 = AT1 D1A1h2.(5.12)

By applying (5.3) to r1 and r2 separately, with “A
T c” in the lemma taken to be first

r1 and then r2, we conclude from (5.11) and (5.12) that

‖[A1;A2]h1‖ ≤ χA · ‖r1‖ and(5.13)

‖A1h2‖ ≤ χA · ‖r2‖.(5.14)

Substituting (5.11) and (5.12) into (5.9) yields

δ1A
T
1 D1A1(x̂− x) + δ2A

T
2 D2A2(x̂− x) = δ1A

T
1 D1A1h2 + δ2A

T
1 D1A1h1

+ δ2A
T
2 D2A2h1

= δ1A
T
1 D1(A1h2 + (δ2/δ1)A1h1)

+ δ2A
T
2 D2A2h1.

Notice (by analogy with (3.1)) that the preceding equation is exactly a WLS com-
putation where the “unknown” is x̂ − x and the right-hand side data is (A1h2 +
(δ2/δ1)A1h1;A2h1). Thus, by Theorem 1.1,

‖x̂− x‖ ≤ χA‖(A1h2 + (δ2/δ1)A1h1;A2h1)‖.

We now build a chain of inequalities: the right-hand side of the preceding inequality is
bounded by (5.13) and (5.14), and the right-hand side of (5.13) and (5.14) is bounded
by (5.10). Combining all of this yields

‖x̂− x‖ ≤ 4Cε · χ3
A‖A‖2 · κ2 · χ̄A(χ̄A + 2) · ‖b‖.(5.15)

To obtain the preceding inequality, we used the assumption that δ2/δ1 ≤ 1. Thus, we
have an error bound of the form (1.5) as desired; in particular, there is no dependence
of the error bound on δ2/δ1. Note that this bound depends on κ. Recall that κ is
defined to be the maximum entry in D1, . . . , Dp and is assumed to be small. Indeed,
as noted in section 2, we can always assume that κ = 1 if we are willing to divide the
problem into many layers.

Also note that this bound depends on A because it includes factors like ‖A‖ and
χA, χ̄A. The reader may wonder why the bound does not depend explicitly on the
partitioning of A into A1, A2, This is because the parameters χA, χ̄A implicitly
involve a supremum over all possible such partitions. (See, e.g., [26] and [20] for some
theorems along these lines.) In particular, the parameter χA grows inversely with the
smallest nonzero singular value of any square submatrix of A. Thus, it is expected
that MINRES-L will perform poorly if A1 is ill-conditioned (in the sense that its
smallest nonzero singular value is close to zero). See further remarks in section 9.
Note that the algorithm does not need to know the values of either χA or χ̄A. In our
test cases below, some examples have matrices A for which χA and χ̄A are known to
be small. In others we do not have estimates of these parameters.

6. MINRES-L for p layers. In this section we present the MINRES-L algo-
rithm for the p-layered WLS problem. In particular, we describe a layered linear
system whose solution corresponds to the solution of the WLS problem. The proof
that this algorithm is stable in the sense of (1.5) is omitted but is available in the

WEIGHTED LEAST SQUARES BY ITERATIVE METHODS 1163

technical report version [5] of this paper. It is a generalization of the proof of (5.15)
in the previous section. The algorithm is the application of MINRES to the sym-
metric linear system Hpw = cp, where Hp is a square matrix of size qn × qn, where
q = (1 + p(p − 1)/2), cp is a vector of order qn, and w is the vector of unknowns.
Matrix Hp is partitioned into q × q blocks each of size n × n. Vectors cp and w are
conformally partitioned. The WLS solution vector is the first subvector of w.

In more detail, the vector w is composed of x concatenated with p(p − 1)/2 n-
vectors that we denote vi,j , where i lies in 2, . . . , p and j lies in 1, . . . , i − 1. Recall
that the p-layered WLS problem may be written as

δ1A
T
1 D1A1x+ · · ·+ δpA

T
pDpApx = δ1A

T
1 D1b1 + · · ·+ δpA

T
pDpbp.(6.1)

Let x be the solution to this equation. Then we see from this equation thatATpDpApx−
ATpDpbp lies in the span of [A

T
1 , . . . , A

T
p−1]. Therefore, there exists a solution v̄ to

ATpDpApx+ (δp−1/δp)A
T
p−1Dp−1Ap−1v̄ + · · ·+ (δ1/δp)AT1 D1A1v̄ = ATpDpb.(6.2)

Therefore, there exists a solution [vp,p−1; . . . ;vp,1] to the equation

ATpDpApx+ATp−1Dp−1Ap−1vp,p−1 + · · ·+AT1 D1A1vp,1 = ATpDpb(6.3)

which can be obtained from (6.2) by defining

vp,j = (δj/δp)v̄.(6.4)

Equation (6.3) is the first block-row of Hpw = cp. (Note that MINRES-L would likely
not compute the particular solution to (6.3) given by (6.4) since the norm of vp,j in
(6.4) is large when δj � δp. But nonetheless, this definition of vp,j is sufficient to
prove that the linear system constructed in this section is consistent.) In other words,
the first block-row of Hp contains one copy of each of the matrices A

T
i DiAi, and the

first block of cp is A
T
pDpb.

The next p − 1 block-rows continue this pattern. Specifically, the (p − i + 1)th
block-row of Hpw = cp, for i = 1, . . . , p, is the equation

ATi DiAix+

i−1∑
j=1

ATj DjAjvi,j −
p∑

j=i+1

δj
δi
ATi DiAivj,i = ATi Dibi.(6.5)

This completes the description of block-rows 1, . . . , p of Hpw = cp. We now establish
some properties of these block-rows, and we postpone the description of block-rows
p+ 1, . . . , q.

Lemma 6.1. Suppose w is a solution to the linear equation (6.5) for each i =
1, . . . , p, where w denotes the concatenation of x and all of the vi,j’s. Then x is the
solution to the WLS problem (6.1).

Proof. For each i, multiply (6.5) by δi and then sum all p equations obtained in
this manner. Observe that all the vi,j terms cancel out and we end up exactly with
(6.1).

We also need the converse to be true.
Lemma 6.2. Suppose x is the solution to (6.1). Then there exist vectors vi,j for

1 ≤ j < i ≤ p such that (6.5) is satisfied for each i = 1, . . . , p.
Proof. The proof is by induction on (decreasing) k = p, . . . , 1. We assume that

we have already determined vi,j for all i = k + 1, . . . , p and all j = 1, . . . , i − 1

1164 ELENA Y. BOBROVNIKOVA AND STEPHEN A. VAVASIS

so that (6.5) is satisfied for i = k + 1, . . . , p, and now we must determine vk,j for
j = 1, . . . , i − 1 to satisfy (6.5) for the particular value i = k. The base case of the
induction is that we can select vp,1, . . . ,vp,p−1 to satisfy (6.5) in the case i = p as
argued above.

Now for the induction case of k < p. Rewrite (6.5) for the case k = i, and multiply
through by δk:

δkA
T
kDkAkx+ δk

k−1∑
j=1

ATj DjAjvk,j −
p∑

j=k+1

δjA
T
kDkAkvj,k = δkA

T
kDkbk.(6.6)

Recall that our goal is to choose vk,j for j = 1, . . . , k− 1 to make this equation valid.
Multiply (6.5) for each i = k + 1, . . . , p by δi and add this to (6.6). After rear-

ranging the summations and cancelling common terms on the left-hand side, we end
up with

p∑
i=k

δiA
T
i DiAix+

p∑
i=k

k−1∑
j=1

δiA
T
j DjAjvi,j =

p∑
i=k

δiA
T
i Dibi.(6.7)

Dividing through by δk and separating out the vk,j terms from the second summation
yields

(6.8) AT1 D1A1vk,1 + · · ·+ATk−1Dk−1Ak−1vk,k−1

=

p∑
i=k

δi
δk
ATi Di(bi −Aix)−

p∑
i=k+1

k−1∑
j=1

δi
δk
ATj DjAjvi,j .

But from (6.1) we know that
∑p
i=k δiA

T
i Di(bi−Aix) lies in the range of [AT1 , . . . , ATk−1].

Clearly the rightmost summation of (6.8) also lies in the same range. Therefore, there
exist vk,j for j = 1, . . . , k − 1 to make (6.8) valid. But then these same choices will
make (6.6) valid because the algebraic steps used to derive (6.8) from (6.6) can be
reversed. This proves the lemma.

We now explain the remaining q − p = (p− 1)(p− 2)/2 block-rows of Hp. These
rows exist solely for the purpose of making Hp symmetric. First, we have to or-
der the variables and equations correctly. The variables will be listed in the order
(x;vp,p−1;vp,p−2; . . . ;vp,1;vp−1,p−2; . . . ;vp−1,1; . . . ;v2,1). The first p block equa-
tions will be listed in the order (6.5) for i = p, p− 1, . . . , 1. This means that the first
p block-rows of Hp have the format [Sp, Tp], where Sp is a matrix of p×p blocks, each
block n × n, and Tp is a p × (p − 1)(p − 2)/2 block matrix. Furthermore, it is easily
checked that Sp is symmetric: its first block-row and first block-column both consist
of ATi DiAi listed in the order i = p, . . . , 1; the (p− i+1)st entry of its main diagonal
is −(δp/δi)ATi DiAi for i = 1, . . . , p − 1; and all its other blocks are zeros. Then we
define Hp to be

Hp =

(
Sp Tp
TTp 0

)
.

WEIGHTED LEAST SQUARES BY ITERATIVE METHODS 1165

We define cp as

cp =

ATpDpbp
...

AT1 D1b1

0
...
0

,

where there are p(p − 1)/2 blocks of zeros. For example, the following linear system
is H3w = c3:

(6.9)

AT3 D3A3 AT2 D2A2 AT1 D1A1 0

AT2 D2A2 − δ3δ2AT2 D2A2 0 AT1 D1A1

AT1 D1A1 0 − δ3δ1AT1 D1A1 − δ2δ1AT1 D1A1

0 AT1 D1A1 − δ2δ1AT1 D1A1 0

x
v3,2

v3,1

v2,1

=

AT3 D3b3

AT2 D2b2

AT1 D1b1

0

 .

We must now consider whether Hpw = cp has any solutions; in particular, we
must demonstrate that the new group of equations TTp w

′ = 0 is consistent with
the first p block-rows. Here w′ denotes the first p blocks of w, that is, w′ =
(x;vp,p−1; . . . ;vp,1). Studying the structure of Tp, we see that there are (p−1)(p−2)/2
block-rows of TTp indexed by (i, j) for 1 ≤ j < i ≤ p− 1 (in correspondence with the
columns of Tp, which correspond to variables vi,j for i, j in that range). The row
indexed by (i, j) has exactly two nonzero block entries that yield the equation

ATj DjAjvp,i − δi
δj
ATj DjAjvp,j = 0.(6.10)

Our task is therefore to show that we can simultaneously satisfy (6.5) for i = 1, . . . , p
and (6.10) for (i, j) such that 1 ≤ j < i ≤ p − 1. But this follows immediately from
(6.4), which shows that there is at least one way to pick vp,p−1, . . . ,vp,1 to satisfy
(6.10).

This proof shows that the above method for selecting vp,1, . . . ,vp,p−1 is consistent
and satisfies (6.10). We also see that (6.3) is satisfied. Thus, the arguments of this
section have established the following theorem.

Theorem 6.3. There exists at least one solution w to Hpw = cp, and further-
more, any such solution has as its first n entries the vector x that solves (6.1).

As mentioned at the beginning of this section, we omit the analysis of the error of
this method for the case of p layers. That analysis is available in [5]. Here we present
only the final bound. Assuming that x̂ computed by MINRES-L satisfies (5.1), and
letting x denote the exact solution to (6.1),

‖x̂− x‖ ≤ Cεp6‖A‖2 · κ(χ̄A + 1)χ3
A · (4κχ̄A)p−1‖b‖.(6.11)

This is a bound of the form (1.5) as desired. Note that the exponential growth of the
right-hand side of (6.11) with respect to p is another reason why MINRES-L may not
be suitable for problems where p is large. Therefore, all of our test cases assume two
layers. We have also done a few experiments in the p = 3 case not reported here.

1166 ELENA Y. BOBROVNIKOVA AND STEPHEN A. VAVASIS

Fig. 7.1. An 18× 9 RNAI matrix based on this graph was used for the first group of tests. The
column corresponding to the top node is deleted. Edges marked with heavy lines are weighted 1, and
edges marked with light lines are weighted δ2, where δ2 varies from test to test.

7. Computational experiments. In this section we present computational ex-
periments on MINRES-L and LSQR to compare their achievable accuracy and effi-
ciency. Some experiments also involve CG, CGNR, and GMRES. Three main exper-
iments are presented. First is an idealized test on a small node-arc adjacency matrix
that illustrates the behavior of MINRES-L under the most favorable conditions. Sec-
ond is a slightly larger test case in which the theoretical bound still applies, but in
which a deficiency of MINRES-L appears, namely, the loss of orthogonality among the
Krylov residuals. Third is a large test-case in which MINRES-L eventually converges
according to predictions of the theory, but only when a preconditioner is used, and
even in that case, only after billions of flops.

The first test involves a small node-arc adjacency matrix. This test was conducted
in Matlab 5.2. Matlab is a software package and programming language for numerical
computation written by The Mathworks, Inc. All computations are in IEEE dou-
ble precision with machine-epsilon approximately 2.2 · 10−16. Matlab sparse matrix
operations were used in all tests.

In this test we compare LSQR on (1.1) to MINRES-L (i.e., to MINRES applied to
(4.3)). We also carried out this experiment with CGNR, based on CGLS1 as in (3.2)
of Björck, Elfving, and Strakoš [3]. These authors conclude that CGLS1 is a good
way to organize CGNR. Its behavior was almost identical to LSQR, so the results are
not shown.

Our implementation of MINRES is based on [21], except Givens rotations were
used instead of 2 × 2 Householder matrices (so that there are some inconsequential
sign differences). The MINRES-L iteration terminates when the scaled computed
residual ‖rk‖/‖[AT1 D1b1; . . . ;A

T
pDpbp]‖ drops below 10−13. The LSQR routine uses

the compound termination test described in [22].

The matrix A used in the following tests is the reduced node-arc adjacency matrix
of the graph depicted in Figure 7.1. A “node-arc adjacency” matrix contains one
column for each node of a graph and one row for each edge. Each row contains
exactly two nonzero entries, a “+1” and a “−1” in the columns corresponding to the
end-points of the edge. (The choice of which end-point is assigned +1 and which is
assigned −1 induces an orientation on the edge, but often this orientation is irrelevant
for the application.) A reduced node-arc incidence (RNAI) matrix is obtained from
a node-arc incidence matrix by deleting one column. RNAI matrices arise in the
analysis of an electrical network with batteries and resistors; see [29]. They also arise
in network flow problems. In the case of Figure 7.1, the column corresponding to the

WEIGHTED LEAST SQUARES BY ITERATIVE METHODS 1167

Table 7.1
Behavior of the two-layered MINRES-L algorithm compared to LSQR for decreasing values of

δ2. The error reported is the scaled error defined in the text. Note that the LSQR accuracy degrades
while the MINRES-L accuracy stays about the same.

MINRES-L MINRES-L MINRES-L LSQR LSQR LSQR
δ2 Flops Iterations Error Flops Iterations Error

10−3 19443 30 1.4e-15 5608 12 3.2e-15
10−6 17508 27 2.8e-15 6053 13 1.1e-11
10−9 19443 30 1.2e-15 6053 13 3.5e-8
10−12 18798 29 2.7e-15 6053 13 8.1e-6
10−15 18153 28 1.5e-15 2938 6 8.2e-1
10−18 18153 28 1.9e-15 2938 6 8.2e-1

top node was deleted. Thus, A is an 18× 9 matrix. It is well known that the RNAI
matrix for a connected graph always has full rank. RNAI matrices are known to have
small values of χA and χ̄A [29].

In all these tests, the weight matrix has two layers. We took D1 = I, D2 = I,
and δ1 = 1, while we let δ2 vary from experiment to experiment. The rows of A
in correspondence with D2 are drawn as thinner lines in Figure 7.1. Finally, the
right-hand side b was chosen to be the first 18 prime numbers.

The results are displayed in Table 7.1, and the cases when δ2 = 10−6 and δ2 =
10−12 are plotted in Figure 7.2. The scaled error that is tabulated and plotted in
all cases is defined to be ‖x̂ − x‖/‖b‖. We choose this particular scaling for the
error because our goal is to investigate stability bound (1.5). The true solution x is
computed using the COD method [17]. Note that the accuracy of LSQR decays as
δ2 gets smaller, whereas MINRES-L’s accuracy stays constant. MINRES-L requires
many more flops than LSQR because the system matrix is larger and the number of
iterations greater. The running time of LSQR is about the same for the first four rows
of the table as the ill-conditioning increases. In the last two rows the running time of
LSQR drops because the matrix ATDA masquerades as a low-rank matrix for small
values of δ2, causing early termination of the Lanczos process.

Besides returning an inaccurate solution, LSQR has the additional difficulty that
its residual (the quantity normally measured in practical use of this algorithm) does
not reflect the forward error, so there is no simple way to determine whether LSQR is
computing good answers. In contrast, the error and residual in MINRES-L are closely
correlated as indicated in Figure 7.2. This correlation is predicted by our theory.

We found that the results of the preceding experiment were fairly insensitive to
termination tests. In particular, we found that iterating beyond the step when the
residual is driven to a small number (in either MINRES-L or LSQR) does not appear
to lead to further reduction in the error compared to the results presented here.

The next computational test involved a slightly larger matrix A taken from the
Netlib linear programming test set, namely, the matrix in problem ADLITTLE, which
is 138× 56. The matrix D was defined to have 15 initial entries of size 10−13 followed
by 56 entries of size 1 followed by 67 entries again of size 10−13. (This pattern in D
yielded more interesting results than simpler patterns.) The right-hand side vector b
was chosen to contain the first 138 primes. MINRES-L required 1169 iterations and
5.6 Mflops and yielded a solution x̂ with scaled error 1.9·10−11 with respect to the true
solution computed by the COD method. For this matrix, χA and χ̄A are not known.
LSQR on this problem required 135 iterations and 0.49 Mflops and returned an answer
with scaled error 0.25. Interestingly, we found in this experiment that continuing to

1168 ELENA Y. BOBROVNIKOVA AND STEPHEN A. VAVASIS

0 10 20 30
10

−20

10
−15

10
−10

10
−5

10
0

10
5

0 10 20 30
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Legend:
—× = LSQR scaled error
· · · × = LSQR scaled residual
—◦ = MINRES-L scaled error
· · · ◦ = MINRES-L scaled residual

Fig. 7.2. Convergence behavior of LSQR and MINRES-L for the 18× 9 RNAI test case. The
plots are for δ2 = 10−6 (left) and δ2 = 10−12 (right). In these plots and all that follow, the x-axis is
the iteration number. For both algorithms the computed (i.e., recursively updated) residual is plotted
rather than the true residual. Other experiments (not reported here) indicate that these are usually
indistinguishable.

iterate with LSQR even after the termination test is satisfied increases the accuracy
substantially. After approximately 300 more iterations, the error of LSQR dropped
to 4.6 · 10−6 and then appeared to stay fixed at that level. It is not clear how one
could take advantage of this increased accuracy in practice since there is no obvious
way to detect the reduction in forward error.

The convergence plots are depicted in Figure 7.3. This plot shows the behavior
of LSQR extended beyond iteration 135 when the termination test was satisfied.
In contrast to other plots which depict the computed residual, the LSQR residual
depicted in Figure 7.3 is the true residual. In iterations after the usual termination
test is satisfied, the computed and true residuals start to diverge substantially. In this
example, CGNR (not plotted) performed worse than LSQR, even when CGNR was
allowed to take many extra iterations.

As mentioned above, MINRES-L required 1169 iterations even though the system
size, namely qn, is only 112. It is known that in exact arithmetic MINRES should
never require more iterations than the system size. The excessive number of iterations
required by MINRES-L is apparently caused by a loss of orthogonality in the Lanczos
process. To verify this hypothesis, we ran GMRES on the same layered matrix (4.3).
GMRES [25] on a symmetric matrix is equivalent to MINRES with full reorthogonal-
ization. In exact arithmetic the two algorithms produce identical iterates, errors, and
residuals. We call this algorithm GMRES-L. The same termination tests were used.
The GMRES-L result is also depicted in Figure 7.3. In this case, GMRES-L ran for
99 iterations (fewer than qn) and returned a more accurate answer, one with forward
error 4.3 ·10−14. The number of flops, 2.6M, was also lower than the MINRES-L flops
despite the expensive Gram–Schmidt process in the GMRES main loop.

Our final computational test involves a much larger matrix A arising from finite-

WEIGHTED LEAST SQUARES BY ITERATIVE METHODS 1169

0 200 400 600 800 1000 1200
10

−15

10
−10

10
−5

10
0

Fig. 7.3. Convergence behavior of LSQR, MINRES-L, and GMRES-L for ADLITTLE. The
MINRES-L and LSQR curves are labeled as in Figure 7.2. The GMRES-L curves are labeled “—∗”
for the scaled error and “· · · ∗” for the residual.

Fig. 7.4. Geometry of model used for large test of MINRES-L, which is a cylinder in three
sections.

element analysis. In particular, we consider computation of the displacements given
by linear elasticity in a three-dimensional cylindric rod. The domain is depicted in
Figure 7.4. Although the domain happens to be axisymmetric, it was treated as a
general three-dimensional object. The domain was meshed using QMG [19], a three-
dimensional unstructured finite-element mesh generator that produces tetrahedral
elements. The total number of elements in the mesh is 1090 and the number of nodes
is 1802. Therefore, the number of unknowns in the system (degrees of freedom) is
5406. The middle segment of the domain is composed of a very flexible material
compared to the outer two segments. In particular, the Young’s modulus for the
center segment is 10−12 times its value for the outer segments.

This system was obtained from the finite element formulator in FRANC3D [7]
and is not available in WLS form. Nonetheless, it is known (see, e.g., [27]) that
elasticity can be derived from first principles using least-squares theory. Furthermore,
the MINRES-L algorithm does not actually need A and D explicitly; instead, it needs
the partition of ATDA into the two terms δ1A

T
1 D1A1+δ2A

T
2 D2A2. This partition can

be obtained from the individual element stiffness matrices produced by FRANC3D
without reference to A and D.

1170 ELENA Y. BOBROVNIKOVA AND STEPHEN A. VAVASIS

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Fig. 7.5. Convergence behavior of MINRES-L on a large problem. The upper curve is the
scaled error, and the lower curve is the residual.

The absence of A and D in explicit form, however, does mean that the COD
method cannot be easily applied to give the “exact” solution. In addition, even if A
and D were available, this problem is too large for the COD method, which uses all
dense matrix operations. The COD method has not been extended to sparse matrices.

Therefore, we need a technique to measure the error in the MINRES-L solution
that does not require knowledge of the exact solution. To address this, we performed
the following experiment. We made up two random right-hand sides b1 and b2 and
used MINRES-L to compute solutions x1 and x2, respectively. Then we ran MINRES-
L a third time to solve for ATDAx3 = ATDA(b1+b2). The “error” in x3 was taken
to be the difference ‖x3 − x2 − x1‖.

A second difficulty was that MINRES-L did not converge (i.e., the residual was
not driven to a small number) for this problem without a preconditioner. Therefore,
we used a preconditioner of the form [I, 0; 0, P]. This form of preconditioner for
MINRES-L is (loosely) motivated by the ideas of Fischer et al. [9] for preconditioning
equilibrium (a.k.a. saddle-point or KKT) systems. In the limit δ2/δ1 → 0, the two-
layered MINRES-L system is a saddle-point system. The preconditioner P in turn
is the globally extracted element-by-element preconditioner for linear elasticity from
[15] and attributed to Bartelt [1]. This matrix P is based only on the rigid parts of
the domain.

The plot in Figure 7.5 shows the convergence behavior of the residual and “error”
(as explained above) for this problem. The total number of iterations (for obtaining
x3) was 36977 for a total of 128 Gflops. The termination test for this study was a
decrease in the computed residual by a factor 10−10. It appears from the plot, however,
that we could have extracted additional accuracy by continuing for more iterations.
Although convergence is very slow, the plot nonetheless shows the desirable correlation
between residual and error predicted by theory. We also tried the conjugate gradient
method applied to the normal equations (1.2) of this problem in both preconditioned
and unpreconditioned forms. CG diverged on this problem, so the results are not
plotted. (Note that CGNR and LSQR are not applicable to this problem since, as
mentioned above, we do not have access to its least-squares formulation.) The reason

WEIGHTED LEAST SQUARES BY ITERATIVE METHODS 1171

that CG diverged is suspected to be as follows. The matrix ATDA masquerades as
a very rank-deficient matrix. It is known that CG applied to a rank-deficient matrix
with a consistent right-hand side will, in exact arithmetic, converge. But it is also
known that for large problems, roundoff error causes components in the nullspace of A
to enter the Krylov basis and slowly get magnified, potentially leading to divergence.

The number of iterations for MINRES-L in this test, even with the preconditioner,
is still much larger than the size of the augmented system, which is 10812 × 10812.
In fact, it seems that MINRES-L is probably not appropriate for problems of this
scale until a better preconditioner can be found. We suspect that a preconditioner is
necessary for the following reason. As observed in the medium-scale test described
earlier, MINRES-L appears to suffer from loss of orthogonality. For large problems,
the loss is so severe that it prevents convergence entirely. The only workaround
known to us is to hasten convergence with a good preconditioner or with a novel
reorthogonalization scheme.

We also tried unpreconditioned MINRES-L on some of the larger Netlib linear
programming test problems. In all of the large cases it failed to converge, presumably
for the same reason as in the last paragraph. We are not aware of a good way to
precondition MINRES-L for that class of problems.

8. An issue for interior-point methods. In this section we describe an issue
that arises when using the MINRES-L algorithm in an interior-point method for linear
programming. Full consideration of this matter is postponed to future work.

It is well known that the system of equations for the Newton step in an interior-
point method can be expressed as a WLS problem. To be precise, consider the linear
programming problem

minimize cTx
subject to ATx = b,

x ≥ 0,

whose dual is

maximize bTy
subject to Ay + s = c,

s ≥ 0

(which is standard form, except that we have transposed A to be consistent with
least-squares notation). A primal-dual method starting at a feasible interior point
(x,y, s) for this problem computes an update ∆y to y satisfying

ATDA∆y = ATD(s− σµX−1e),(8.1)

where X = diag(x), S = diag(s), D = XS−1, σ is an algorithm-dependent parameter
usually in [0, 1], µ is the duality gap, and e is the vector of all 1’s. See Wright [32].
Since (8.1) has the form of a WLS problem, we can obtain ∆y using the MINRES-L
algorithm.

One way to compute ∆s is via ∆s := −A∆y. This method is not stable because
∆s has very small entries in positions where s has very small entries; these small
entries must be computed accurately with respect to the corresponding entry of s. In
contrast, the error in all components of ∆s arising from the product A∆y is on the
order of ε·‖s‖ (where ε is machine-epsilon). A direct method for accurately computing

1172 ELENA Y. BOBROVNIKOVA AND STEPHEN A. VAVASIS

all components of ∆s was proposed by Hough [16], who obtains a bound of the form

|∆si − ∆̂si|/si ≤ f(A) · ε(8.2)

for each i. We will consider methods for extending MINRES-L to accurate computa-
tion of ∆s in future work. As noted by Hough, ∆x is easily computed from ∆s with
a similar accuracy bound assuming ∆s satisfies (8.2).

9. Conclusions. We have presented an iterative algorithm MINRES-L for solv-
ing WLS. Theory and computational experiments indicate that the method is more
accurate than LSQR and CGNR when the weight matrix is highly ill-conditioned.
This work raises a number of questions.

1. The most pressing problem is the loss of orthogonality in MINRES. We have
proposed to handle the problem with a preconditioner. Is there another ap-
proach, for instance, reorthogonalization? So far we have not found any other
approach.

2. Speaking of preconditioners, what is the best way to precondition MINRES-
L? The technique of Fischer et al. [9] for equilibrium systems seems promising,
except that the technique must be generalized to the case that the upper-left
block does not have full rank.

3. An additional issue concerning preconditioning is that the analysis of MINRES-
L’s achievable accuracy in section 5 assumes that no preconditioner is used.
If a preconditioner is used, then the theorem of Brown and Walker [6] no
longer applies.

4. Can this work be extended to componentwise accurate computation of ∆x
and ∆s in an interior-point method? (This question was raised in section 8.)

5. Michael Saunders observed that MINRES-L uses normal-equation operators
of the form AT1 D1A1. Use of normal equations in iterative methods is gen-
erally considered inferior to using the factors separately. For example, the
CGNR and LSQR algorithms are more accurate than CG on the normal
equations unless the latter are well-conditioned. Is there a method to carry
out a layered computation without forming normal equations? Saunders de-
vised exactly such a method for the case when p = 2. In addition to the
variables (x;v) already present in (4.3), Saunders proposed additional new
variables:

u = −D1/2
1 A1v,

r = D
1/2
1 b1 −D1/2

1 A1x− δ2u/δ1,
s = D

1/2
2 b2 −D1/2

2 A2x.

Then one checks that (r;x; s;u;v) satisfies

I D
1/2
1 A1

AT2 D
1/2
2 AT1 D

1/2
1

D
1/2
2 A2 I

I D
1/2
1 A1 δ2I/δ1

AT1 D
1/2
1

r
x
s
u
v

 =

0
0

D
1/2
2 b2

D
1/2
1 b1

0

 .

(9.1)

Note that this matrix is symmetric and therefore may be solved with MIN-
RES.

WEIGHTED LEAST SQUARES BY ITERATIVE METHODS 1173

This method could be more accurate than MINRES-L whenA is ill-conditioned.
We constructed an artificial small example of this kind by adding a large
multiple of the matrix of all 1’s to the node-arc adjacency matrix used in the
first test in section 7. We found that Saunders’s algorithm was superior to
MINRES-L for this test case. Unfortunately, we were able to test Saunders’s
method only on smaller problems because MINRES did not converge for (9.1)
on larger problems (presumably because of loss of orthogonality), and we do
not know how to precondition (9.1).

Finally, we mention more recent work by Howle and Vavasis, not yet published on pre-
conditioned iterative methods for network problems. That paper raises (and solves)
an issue about accuracy similar to the accuracy issue raised in this paper. The dif-
ference between the two approaches is that the Howle–Vavasis method iterates with
(3.1) as the coefficient matrix, coupled with a particular preconditioner that prevents
the early drop in the residual. The use of a preconditioner alone is not enough to fix
the accuracy problem since there is still a loss of information in forming matrix-vector
products. The Howle–Vavasis method requires further the ability to rapidly project
a vector into the nullspace of A1. In some combinatorial settings such as network
problems, this projection is easy to compute. But it is not known how to generalize
the Howle–Vavasis algorithm to the case when projection into N(A1) is not available.
The MINRES-L method in this paper makes no such assumption.

Acknowledgments. We had helpful discussions of this work with Anne Green-
baum and Mike Overton of NYU; Roland Freund, David Gay, and Margaret Wright of
Bell Labs; Patty Hough of Sandia; Rich Lehoucq and Steve Wright of Argonne; Vicki
Howle of Cornell; Homer Walker of Utah State; and Zdeněk Strakoš of the Czech
Academy of Sciences. We thank Patty Hough and Gail Pieper for carefully reading
an earlier draft of this paper. Michael Saunders and the anonymous referee provided
many helpful comments and suggestions for improvement. The FRANC3D finite el-
ement formulator for the large test case was provided by members of the Cornell
Fracture Group. In addition, we received the Netlib linear programming test cases in
Matlab format from Patty Hough.

REFERENCES

[1] P. Bartelt, Finite Element Procedures on Vector/Tightly Coupled Parallel Computers, Verlag
der Fachvereine, Zürich, 1989.

[2] A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[3] A. Björck, T. Elfving, and Z. Strakoš, Stability of conjugate gradient and Lanczos methods

for linear least squares problems, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 720–736.
[4] E. Bobrovnikova and S. Vavasis, Iterative methods for weighted least squares, in Proceedings

of the Copper Mountain Conference on Iterative Methods, University of Colorado, Copper
Mountain, CO, 1996.

[5] E. Y. Bobrovnikova and S. A. Vavasis, Accurate Solution of Weighted Least Squares by It-
erative Methods, Tech. Report ANL/MCS-P644-0297, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL, 1997.

[6] P. N. Brown and H. F. Walker, GMRES on (nearly) singular systems, SIAM J. Matrix
Anal. Appl., 18 (1997), pp. 37–51.

[7] Cornell Fracture Group, Franc3d website. See http://www.cfg.cornell.edu, 1999.
[8] J. Drkošová, A. Greenbaum, M. Rozložńık, and Z. Strakoš, Numerical stability of GM-

RES, BIT, 25 (1995), pp. 309–330.
[9] B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, Minimum residual methods for

augmented systems, BIT, 38 (1998), pp. 527–543.
[10] A. L. Forsgren, On linear least-squares problems with diagonally dominant weight matrices,

SIAM J. Matrix Anal. App., 17 (1996), pp. 763–788.

1174 ELENA Y. BOBROVNIKOVA AND STEPHEN A. VAVASIS

[11] G. Golub and C. V. Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,
Baltimore, MD, 1996.

[12] A. Greenbaum, Estimating the attainable accuracy of recursively computed residual methods,
SIAM J. Matrix Anal. App., 18 (1997), pp. 535–551.

[13] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.
[14] M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Longman, Harlow, UK,

1995.
[15] I. Hlad́ık, M. B. Reed, and G. Swoboda, Robust preconditioners for linear elasticity FEM

analysis, Internat. J. Numer. Methods Engrg., 40 (1997), pp. 2109–2127.
[16] P. Hough, Stable Computation of Search Directions for Near-Degenerate Linear Program-

ming Problems, Tech. Report SAND97-8243, Sandia National Laboratories, Livermore,
CA, 1997.

[17] P. D. Hough and S. A. Vavasis, Complete orthogonal decomposition for weighted least squares,
SIAM J. Matrix Anal. Appl., 18 (1997), pp. 369–392.

[18] C. Lawson and R. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs,
NJ, 1974. Republished by SIAM, Philadelphia, 1995.

[19] S. A. Mitchell and S. A. Vavasis, Quality mesh generation in higher dimensions, SIAM J.
Comput., 29 (2000), pp. 1334–1370.

[20] D. P. O’Leary, On bounds for scaled projections and pseudoinverses, Linear Algebra Appl.,
132 (1990), pp. 115–117.

[21] C. Paige and M. Saunders, Solutions of sparse indefinite systems of linear equations, SIAM
J. Numer. Anal., 12 (1975), pp. 617–629.

[22] C. Paige and M. Saunders, LSQR: An algorithm for sparse linear equations and sparse least
squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71.

[23] C. C. Paige, Practical use of the symmetric Lanczos process with re-orthogonalization, BIT,
10 (1970), pp. 183–195.

[24] B. Parlett and D. Scott, The Lanczos algorithm with selective reorthogonalization, Math.
Comp., 33 (1979), pp. 217–238.

[25] Y. Saad and M. H. Schultz, GMRES: A generalized minimum residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[26] G. W. Stewart, On scaled projections and pseudoinverses, Linear Algebra Appl., 112 (1989),
pp. 189–193.

[27] G. Strang, A framework for equilibrium equations, SIAM Rev., 30 (1988), pp. 283–297.
[28] M. J. Todd, A Dantzig-Wolfe-like variant of Karmarkar’s interior-point linear programming

algorithm, Oper. Res., 38 (1990), pp. 1006–1018.
[29] S. A. Vavasis, Stable numerical algorithms for equilibrium systems, SIAM J. Matrix Anal.

Appl, 15 (1994), pp. 1108–1131.
[30] S. A. Vavasis and Y. Ye, A primal-dual interior point method whose running time depends

only on the constraint matrix, Math. Programming, 74 (1996), pp. 79–120.
[31] C. Vuik, A. Segal, and J. A. Meijerink, An Efficient Preconditioned CG Method for the

Solution of Layered Problems with Extreme Contrasts in the Coefficients, J. Comput.
Phys., 152 (1999), pp. 385–403.

[32] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.

INVERSION OF ANALYTIC MATRIX FUNCTIONS THAT ARE
SINGULAR AT THE ORIGIN∗

KONSTANTIN E. AVRACHENKOV† , MOSHE HAVIV‡ , AND PHIL G. HOWLETT§

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1175–1189

Abstract. In this paper we study the inversion of an analytic matrix valued function A(z). This
problem can also be viewed as an analytic perturbation of the matrix A0 = A(0). We are mainly
interested in the case where A0 is singular but A(z) has an inverse in some punctured disc around
z = 0. It is known that A−1(z) can be expanded as a Laurent series at the origin. The main purpose
of this paper is to provide efficient computational procedures for the coefficients of this series. We
demonstrate that the proposed algorithms are computationally superior to symbolic algebra when
the order of the pole is small.

Key words. matrix inversion, matrix valued functions, analytic perturbation, Laurent series

AMS subject classifications. 15A09, 41A58, 47A55, 47A56

PII. S0895479898337555

1. Introduction. Let {Ak}k=0,1,... ⊆ R
n×n be a sequence of matrices that de-

fines the analytic matrix valued function

A(z) = A0 + zA1 + z2A2 + · · · .(1)

The above series is assumed to converge in some nonempty neighborhood of z = 0. We
will also say that A(z) is an analytic perturbation of the matrix A0 = A(0). Assume
the inverse matrices A−1(z) exist in some (possibly punctured) disc centered at z = 0.
In particular, we are primarily interested in the case where A0 is singular. In this
case it is known that A−1(z) can be expanded as a Laurent series in the form

A−1(z) =
1

zs
(X0 + zX1 + · · ·),(2)

where X0 �= 0 and s is a natural number, known as the order of the pole at z = 0.
The main purpose of this paper is to provide efficient computational procedures for
the Laurent series coefficients Xk, k ≥ 0. As one can see from the following literature
review, few computational methods have been considered in the past.

The inversion of nearly singular operator valued functions was probably first stud-
ied in the paper by Keldysh [22]. In that paper he studied the case of a polynomial
perturbation

A(z) = A0 + zA1 + · · ·+ zmAm,(3)

where Ak, 1 ≤ k ≤ m, are compact operators on Hilbert space. In particular, he
showed that the principal part of the Laurent series expansion for the inverse operator

∗Received by the editors April 16, 1998; accepted for publication (in revised form) by A. Ran
August 4, 2000; published electronically March 20, 2001. This work was supported in part by
Australian Research Council grant A49532206.

http://www.siam.org/journals/simax/22-4/33755.html
†INRIA Sophia Antipolis, 2004 route des Lucioles, B.P. 93, 06902, Sophia Antipolis Cedex, France

(k.avrachenkov@sophia.inria.fr).
‡Department of Statistics, The Hebrew University, 91905 Jerusalem, Israel and Department of

Econometrics, The University of Sydney, Sydney, NSW 2006, Australia (haviv@mscc.huji.ac.il).
§CIAM, School of Mathematics, The University of South Australia, The Levels, SA 5095, Australia

(phil.howlett@unisa.edu.au).

1175

1176 K. E. AVRACHENKOV, M. HAVIV, AND P. G. HOWLETT

A−1(z) can be given in terms of generalized Jordan chains. The generalized Jordan
chains were initially developed in the context of matrix and operator polynomials
(see [13, 26, 30] and numerous references therein). However, the concept can be easily
generalized to the case of an analytic perturbation (1).

Following Gohberg and Sigal [15] and Gohberg and Rodman [14], we say that the
vectors ϕ0, . . . , ϕr−1 form a Jordan chain of the perturbed matrix A(z) at z = 0 if
ϕ0 �= 0 and if

k∑
i=0

Aiϕk−i = 0

for each 0 ≤ k ≤ r − 1. Note that ϕ0 is an eigenvector of the unperturbed matrix A0

corresponding to the zero eigenvalue. The number r is called the length of the Jordan

chain and ϕ0 is the initial vector. Let {ϕ(j)
0 }pj=1 be a system of linearly independent

eigenvectors, which span the null space of A0. Then one can construct Jordan chains

initializing at each of the eigenvectors ϕ
(j)
0 . This generalized Jordan set plays a crucial

role in the analysis of analytic matrix valued functions A(z).
Gantmacher [11] analyzed the polynomial matrix (3) by using the canonical

Smith form. Vishik and Lyusternik [37] studied the case of a linear perturbation
A(z) = A0 + zA1 and showed that one can express A−1(z) as a Laurent series as
long as A(z) is invertible in some punctured neighborhood of the origin. In addition,
an undetermined coefficient method for the calculation of Laurent series terms was
given in [37]. Langenhop [25] showed that the coefficients of the regular part of the
Laurent series for the inverse of a linear perturbation form a geometric sequence. The
proof of this fact was refined later in Schweitzer [33, 34] and Schweitzer and Stewart
[35]. In particular, [35] proposed a method for computing the Laurent series coef-
ficients. However, the method of [35] cannot be applied (at least immediately) to
the general case of an analytic perturbation. Many authors have obtained existence
results for operator valued analytic and meromorphic functions [3, 15, 23, 27, 29, 36].
In particular, Gohberg and Sigal [15] used a local Smith form to elaborate on the
structure of the principal part of the Laurent series in terms of generalized Jordan
chains. Recently, Gohberg, Kaashoek, and Van Schagen [12] have refined the results
of [15]. Furthermore, Bart, Kaashoek, and Lay [5] used their results on the stability of
the null and range spaces [4] to prove the existence of meromorphic relative inverses
of finite meromorphic operator valued functions. The ordinary inverse operator is a
particular case of the relative inverse. For the applications of the inversion of analytic
matrix functions, see, for example, [8, 9, 20, 23, 24, 28, 31, 32, 36].

Howlett [20] provided a computational procedure for the Laurent series coefficients
based on a sequence of row and column operations on the coefficients of the original
power series (1). Howlett used the rank test of Sain and Massey [32] to determine
s, the order of the pole. He also showed that the coefficients of the Laurent series
satisfy a finite linear recurrence relation in the case of a polynomial perturbation. The
method of [20] can be considered as a starting point for our research. The algebraic
reduction technique which is used in the present paper was introduced by Haviv and
Ritov [17, 18] in the special case of stochastic matrices. Haviv, Ritov, and Rothblum
[19] also applied this approach to the perturbation analysis of semisimple eigenvalues.

In this paper we provide three related methods for computing the coefficients of
the Laurent series (2). The first method uses generalized inverse matrices to solve a
set of linear equations and extends the work in [17] and [20]. The other two methods
use results that appear in [2, 17, 18, 19] and are based on a reduction technique

INVERSION OF ANALYTIC MATRIX FUNCTIONS 1177

[6, 10, 21, 23]. All three methods depend in a fundamental way on equating coefficients
for various powers of z. By substituting the series (1) and (2) into the identity
A(z)A−1(z) = I and collecting coefficients of the same power of z, one obtains the
following system which we will refer to as the fundamental equations:

(4.0) A0X0 = 0,
(4.1) A0X1 +A1X0 = 0,

...
...

(4.s) A0Xs + · · ·+AsX0 = I,
(4.s+ 1) A0Xs+1 + · · ·+As+1X0 = 0,

...
... .

A similar system can be written when considering the identity A−1(z)A(z) = I,
but of course the set of fundamental equations (4.0), (4.1), . . . is sufficient. Finally,
for matrix operators, each infinite system of linear equations uniquely determines the
coefficients of the Laurent series (2). This fact has been noted in [3, 20, 23, 37, 36].

2. Main results. Define the following augmented matrix A(t) ∈ R
(t+1)n×(t+1)n:

A(t) =

A0 0 0 · · · 0
A1 A0 0 · · · 0
A2 A1 A0 · · · 0
...

...
...

. . .
...

At At−1 · · · A1 A0

;

and let us prove the following basic lemma.
Lemma 1. Let s be the order of the pole at the origin for the inverse function

A−1(z). Any eigenvector Φ ∈ R
(s+1)n of A(s) corresponding to the zero eigenvalue

possesses the property that its first n elements are zero.
Proof. Suppose on the contrary that there exists an eigenvector Φ ∈ R

(s+1)n such
that

A(s)Φ = 0(5)

and not all of its first n entries are zero. Then, partition the vector Φ into s+1 blocks
and rewrite (5) in the form

A0ϕ0 = 0,

A0ϕ1 +A1ϕ0 = 0,

...

A0ϕs + · · ·+Asϕ0 = 0

with ϕ0 �= 0. This means that we have found a generalized Jordan chain of length
s + 1. However, from the results of Gohberg and Sigal [15], we conclude that the

1178 K. E. AVRACHENKOV, M. HAVIV, AND P. G. HOWLETT

maximal length of a generalized Jordan chain of A(z) at z = 0 is s. Hence, we came
to a contradiction and, consequently, ϕ0 = 0.

Remark 1. A direct proof of Lemma 1 is given in Appendix 1.

Remark 2. All vectors Φ ∈ R
(s+j+1)n in the null space of the augmented matrix

A(s+j), j ≥ 0, possess the property that the first (j + 1)n elements are zero.

The following theorem provides a theoretical basis for the recursive solution of
the infinite system of fundamental equations (4).

Theorem 1. Each coefficient Xk, k ≥ 0, is uniquely determined by the previous
coefficients X0, . . . , Xk−1 and the set of s fundamental equations (4.k)–(4.k + s).

Proof. It is obvious that the sequence of Laurent series coefficients {Xi}∞i=0 is a
solution to the fundamental equations (4). Suppose the coefficients Xi, 0 ≤ i ≤ k−1,
have been determined. Next we show that the set of fundamental equations (4.k)–
(4.k + s) uniquely determines the next coefficient Xk. Indeed, suppose there exists
another solution X̃k. Since Xk and X̃k are both solutions, we can write

A(s)

X̃k

...

X̃k+s

 =

Jk −
∑k
i=1 AiXk−i
...

Jk+s −
∑k
i=1 Ai+sXk−i

(6)

and

A(s)

Xk

...
Xk+s

 =

Jk −
∑k
i=1 AiXk−i
...

Jk+s −
∑k
i=1 Ai+sXk−i

 ,(7)

where the matrix Ji is defined as

Ji =

{
I, i = s,
0 otherwise

and where X̃k+1, . . . , X̃k+s are any particular solutions of the nonhomogenous linear
system (4.k)–(4.k+s). Note that (6) and (7) have identical right-hand sides. Of course,
the difference between these two right-hand sides, [X̃k−Xk · · · X̃k+s−Xk+s]

T , is in the
right null space of A(s). Invoking Lemma 1, the first n rows of [X̃k −Xk, . . . , X̃k+s −
Xk+s]

T are hence zero. In other words, X̃k − Xk = 0, which proves the theorem.

Using the above theoretical background, in the next section we provide three
recursive computational schemes which are based on the generalized inverses and on
a reduction technique. The reduction technique is based on the following result. A
weaker version of this result was utilized in [17] and in [19].

Theorem 2. Let {Ck}tk=0 ⊆ R
m×m and {Rk}tk=0 ⊆ R

m×n, with m ≤ n, and
suppose that the system of t+ 1 matrix equations

(8.0) C0V0 = R0,
(8.1) C0V1 + C1V0 = R1,

...
...

(8.t) C0Vt + · · ·+ CtV0 = Rt

INVERSION OF ANALYTIC MATRIX FUNCTIONS 1179

is feasible. Then the general solution is given by

Vk = C†
0

(
Rk −

k∑
i=1

CiVk−i

)
+QWk,(9)

where C†
0 is the Moore–Penrose generalized inverse of C0 and Q ∈ R

m×p is any matrix
whose columns form a basis for the right null space of C0. Furthermore, the sequence
of matrices Wk, 0 ≤ k ≤ t− 1, solves a reduced finite set of t matrix equations

(10.0) D0W0 = S0,
(10.1) D0W1 +D1W0 = S1,

...
...

(10.t− 1) D0Wt−1 + · · ·+DtW0 = St−1,

where the matrices Dk ∈ R
p×p and Sk ∈ R

p×n, 0 ≤ k ≤ t − 1, are computed by the
following recursion. Set U0 = C1 and calculate

Uk = Ck+1 −
k∑
i=1

CiC
†
0Uk−i, k = 1, . . . , t− 1.(11)

Then,

Dk = MUkQ and Sk = M

(
Rk+1 −

k∑
i=0

UiC
†
0Rk−i

)
,(12)

where M ∈ R
p×m is any matrix whose rows form a basis for the left null space of C0.

Proof. The general solution to the matrix equation (8.0) can be written in the
form

V0 = C†
0R0 +QW0,(13)

where W0 ∈ R
p×n is some arbitrary matrix.

In order for the equation

C0V1 = R1 − C1V0

to be feasible, we need that the right-hand side R1 − C1V0 belongs to R(C0) =
N⊥(CT

0), that is,

M(R1 −A1V0) = 0,

where the rows of M form a basis for N(CT
0). Substituting expression (13) for the

general solution V0 into the above feasibility condition, one finds that W0 satisfies the
equation

M(R1 − C1(C
†
0R0 +QW0)) = 0

which can be rewritten as

MC1QW0 = M(R1 − C1C
†
0R0).

1180 K. E. AVRACHENKOV, M. HAVIV, AND P. G. HOWLETT

Thus we have obtained the first reduced fundamental equation (10.0) with

D0 := MU0Q and S0 := M(R1 − U0C
†
0R0),

where U0 = C1. Next we observe that the general solution of (8.1) is represented by
the formula

V1 = C†
0(R1 − C1V0) +QW1(14)

with W1 ∈ R
p×n. Moving on and applying the feasibility condition to (8.2), we obtain

M(R2 − (C1V1 + C2V0)) = 0

and again the substitution of expressions (13) and (14) into the above condition yields

MC1(C
†
0(R1 − C1[C

†
0R0 +QW0]) +QW1) +MC2(C

†
0R0 +QW0) = MR2

which is rearranged to give

MC1QW1 +M(C2 − C1C
†
0C1)QW0 = M(R2 − C1C

†
0R1 − (C2 − C1C

†
0C1)C

†
0R0).

The last equation is the reduced equation (10.1) with

D1 := MU1Q and S1 := M(R2 − U0C
†
0R1 − U1C

†
0R0),

where U1 = C2−C1C
†
0U0. Note that this equation imposes restrictions on W1 as well

as on W0. By proceeding in the same way, we eventually obtain the complete system
of equations (9) with coefficients given by formulas (11) and (12) each of which can
be proved by induction in a straightforward way.

Remark 3. In the above theorem it is important to observe that the reduced sys-
tem has the same form as the original but the number of matrix equations is decreased
by one and the coefficients are reduced in size to matrices in R

p×p, where p is the
dimension of N(C0) or, equivalently, the number of redundant equations defined by
the coefficient C0.

In the next section we use this reduction process to solve the system of funda-
mental equations. Note that the reduction process can be employed to solve any
appropriate finite subset of the fundamental equations.

3. Solution methods. In this section we discuss three methods for solving
the fundamental equations. The first method is based on the direct application of
Moore–Penrose generalized inverses. The second method involves the replacement of
the original system of the fundamental equations by a system of equations with a
reduced dimension. In the third method we show that the reduction process can be
applied recursively to reduce the problem to a nonsingular system. Since all methods
depend to some extent on the prior knowledge of s, we begin by discussing a procedure
for the determination of s. A special procedure for determining this order for the case
where the matrices A(z) are stochastic and the perturbation series is finite is given
in [16]. It is based on combinatorial properties (actually, network representation) of
the processes and hence it is a stable procedure. However, as will be seen in section
3.4, it is possible to use the third method without prior knowledge of s. Actually,
the full reduction version of our procedure determines s as well. Of course, as in any
computational method which is used to determine indices which have discrete values,
using our procedures in order to compute the order of singularity might lack stability.

INVERSION OF ANALYTIC MATRIX FUNCTIONS 1181

3.1. The determination of the order of the pole. The rank test on the
matrix A(t) proposed by Sain and Massey in [32] is likely to be the most effective pro-
cedure for determining the value of s. The calculation of rank is essentially equivalent
to the reduction of A(t) to a row echelon normal form and it can be argued that row
operations can be used successively in order to calculate the rank of A(0),A(1),A(2),. . .
and find the minimum value of t for which rankAt = rankA(t−1) + n. This minimum
value of t equals s, the order of the pole. Note that previous row operations for reduc-
ing A(t−1) to row echelon form are replicated in the reduction of A(t) and do not need
to be repeated. For example, if a certain combination of row operations reduces A0

to row echelon form, then the same operations are used again as part of the reduction
of

[
A0 0
A1 A0

]

to row echelon form.

3.2. Basic generalized inverse method. In this section we obtain a recursive
formula for the Laurent series coefficients Xk, k ≥ 0, by using the Moore–Penrose
generalized inverse of the augmented matrix A(s).

Let G(s) def= [A(s)]† be the Moore–Penrose generalized inverse of A(s) and define

the matrices G
(s)
ij ∈ R

n×n for 0 ≤ i, j ≤ t by

G(s) =

G
(s)
00 · · · G

(s)
0s

...
. . .

...

G
(s)
s0 · · · G

(s)
ss

 .

Furthermore, we would like to note that in fact we use only the first n rows of

the generalized inverse G(s), namely, [G
(s)
00 · · · G(s)

0s].

Proposition 1. The coefficients of the Laurent series (2) can be calculated by
the recursive formula

Xk =

s∑
j=0

G
(s)
0j

(
Jj+k −

k∑
i=1

Ai+jXk−i

)
, k ≥ 1,(15)

where X0 = G
(s)
0s and the matrix Ji is defined by

Ji =

{
I, i = s
0 otherwise.

Proof. According to Theorem 1, once the coefficients Xi, 0 ≤ i ≤ k− 1 are deter-
mined, the next coefficient Xk can be obtained from the (4.k)–(4.k + s) fundamental
equations.

A(s)

Xk

...
Xk+s

 =

Jk −
∑k
i=1 AiXk−i
...

Jk+s −
∑k
i=1 Ai+sXk−i

 .

1182 K. E. AVRACHENKOV, M. HAVIV, AND P. G. HOWLETT

The general solution to the above system is given in the form

Xk

X̃k+1

...

X̃k+s

 =

G
(s)
00 · · · G

(s)
0s

G
(s)
10 · · · G

(s)
1s

...
. . .

...

G
(s)
s0 · · · G

(s)
ss

Jk −
∑k
i=1 AiXk−i

Jk+1 −
∑k
i=1 Ai+1Xk−i
...

Jk+s −
∑k
i=1 Ai+sXk−i

+

0
Φ1

...
Φs

 ,

where the first block of matrix Φ is equal to zero according to Lemma 1. Thus,
we immediately obtain the recursive expression (15). In particular, applying the
same arguments as above to the first s + 1 fundamental equations, we obtain that

X0 = G
(s)
0s .

Note that the matrices Jj+k in the expression (15) disappear when the regular
coefficients are computed.

Remark 4. The formula (15) is a generalization of the recursive formula for the
case where A0 is invertible. In this case,

Xk = −A−1
0

k∑
i=1

AiXk−i, k ≥ 1,

while initializing with X0 = A−1
0 .

Remark 5. Probably from the computational point of view it is better not to
compute the generalized inverse G(s) beforehand, but rather to find the SVD or LU
decomposition of A(s) and then use these decompositions for solving the fundamental
equations (4.k)–(4.k + s). This is the standard approach for solving linear systems
with various right-hand sides.

3.3. The one-step-reduction process. In this section we describe an alterna-
tive scheme that can be used in the case where it is relatively easy to compute the
bases for the right and for the left null spaces of A0. Specifically, let p = n − r(A0)
be the dimension of the null space of A0, let Q ∈ R

n×p be a matrix whose p columns
form a basis for the right null space of A0, and let M ∈ R

p×n be a matrix whose p
rows form a basis for the left null space of A0. Of course, although p = 0 and hence
s = 0 is possible, we are interested in the singular case where p ≥ 1.

Again, as before, we suppose that the coefficients Xi, 0 ≤ i ≤ k− 1, have already
been determined. Then, by Theorem 1, the next coefficient Xk is the unique solution
to the subsystem of fundamental equations

A0Xk = Jk −
k∑
i=1

AiXk−i,

A0Xk+1 +A1Xk = Jk+1 −
k∑
i=1

Ai+1Xk−i,

...

A0Xk+s + · · ·+AsXk = Jk+s −
k∑
i=1

Ai+sXk−i.

(16)

The above system is like the one given in (8) with Ci = Ai, 0 ≤ i ≤ s, and with

Rj = Jk+j −
∑k
i=1 Ai+jXk−i, 0 ≤ j ≤ s. Therefore, we can apply the reduction

INVERSION OF ANALYTIC MATRIX FUNCTIONS 1183

process described in Theorem 2. This results in the system

D0W0 = S0,
D0W1 +D1W0 = S1,

...
D0Ws−1 + · · ·+Ds−1W0 = Ss−1,

(17)

where the coefficients Di and Si, i = 0, . . . , s− 1, can be calculated by the recursive
formulae (11) and (12).

Remark 6. Note that in many practical applications p is much less than n and
hence the above system (17) with Di ∈ R

p×p is much smaller than the original system
(16).

Now we have two options. We can either apply the reduction technique again
(see the next subsection for more details) or we can solve the reduced system directly
by using the generalized inverse approach. In the latter case, we define

D(t) def=

D0 0 0 · · · 0
D1 D0 0 · · · 0
D2 D1 D0 · · · 0
...

...
...

. . .
...

Dt Dt−1 · · · D1 D0

and

H(t) =

H
(t)
00 · · · H

(t)
0t

...
. . .

...

H
(t)
t0 · · · H

(t)
tt

 def

= [D(t)]†.

Then, by carrying out a similar computation to the one presented in the proof of
Proposition 1, we obtain

W0 =

s−1∑
i=0

H
(s−1)
0i Si.

Once W0 is determined it is possible to obtain Xk from the formula

Xk = A†
0R0 +QW0 = A†

0R0 +Q

s−1∑
i=0

H
(s−1)
0i Si.

Furthermore, substituting for Si, 0 ≤ i ≤ s− 1, from (12) and changing the order of
summation gives

Xk =

(
A†

0 −
s−1∑
i=0

QH
(s−1)
0i MUiA

†
0

)
R0+

s∑
j=1

QH

(s−1)
0j−1 M −

s−1∑
i=j

QH
(s−1)
0i MUi−jA

†
0

Rj .

(18)
Note that by convention the sum disappears when the lower limit is greater than
the upper limit. Now, substituting Rj = Jk+j −

∑k
i=1 Ai+jXk−i, 0 ≤ j ≤ s, into

1184 K. E. AVRACHENKOV, M. HAVIV, AND P. G. HOWLETT

the expression (18), we obtain the explicit recursive formula for the Laurent series
coefficients

Xk =

(
A†

0 −
s−1∑
i=0

QH
(s−1)
0i MUiA

†
0

)(
Jk −

k∑
i=1

AiXk−i

)

+

s∑
j=1

QH

(s−1)
0j−1 M −

s−1∑
i=j

QH
(s−1)
0i MUi−jA

†
0

(
Jk+j −

k∑
i=1

Ai+jXk−i

)
(19)

for all k ≥ 1. In particular, the coefficient of the first singular term in (2) can be
given by the formula

X0 = QH
(s−1)
0s−1 M.(20)

3.4. The complete reduction process. As was pointed out in the previous
section, the reduced system has essentially the same structure as the original one and
hence one can apply again the reduction step described in Theorem 2. Note that each
time the reduction step is carried out, the number of matrix equations is reduced by
one. Therefore one can perform up to s reduction steps. We now outline how these
steps can be executed. We start by introducing the sequence of reduced systems. The
fundamental matrix equations for the lth reduction step are

(21.0) A
(l)
0 X

(l)
0 = R

(l)
0 ,

(21.1) A
(l)
0 X

(l)
1 +A

(l)
1 X

(l)
0 = R

(l)
1 ,

...
...

(21.s− l) A
(l)
0 X

(l)
s−l + · · ·+A

(l)
s−lX

(l)
0 = R

(l)
s−l.

With l = 0, one gets the original system of fundamental equations and with l = 1
one gets the reduced system for the first reduction step described in the previous

subsection. Initializing with R
(0)
i = 0, 0 ≤ i ≤ s − 1, and R

(0)
s = I and with

A
(0)
i = Ai, 0 ≤ i ≤ s, the matrices A

(l)
j and R

(l)
j , 0 ≤ j ≤ s − l, for each reduction

step 1 ≤ l ≤ s, can be computed successively by a recursion similar to (11) and (12).
In general we have

U
(l)
0 = A

(l−1)
1 , U

(l)
j = A

(l−1)
j+1 −

j∑
i=1

A
(l−1)
i A

(l−1)†
0 U

(l)
j−i, j = 1, . . . , s− l,

A
(l)
j = M (l)U

(l)
j Q(l), j = 0, . . . , s− l,

R
(l)
j = M (l)

(
−

j∑
i=0

U
(l)
j−iA

(l−1)†
0 R

(l−1)
i +R

(l−1)
j+1

)
, j = 0, . . . , s− l,

where Q(l) and M (l) are the basis matrices for the right and left null spaces, respec-

tively, of the matrix A
(l−1)
0 and where A

(l−1)†
0 is the Moore–Penrose generalized inverse

of A
(l−1)
0 . After s reduction steps, one gets the final system of reduced equations

A
(s)
0 X

(s)
0 = R

(s)
0 .(22)

INVERSION OF ANALYTIC MATRIX FUNCTIONS 1185

Since X0 is a unique solution to the subsystem of fundamental equations (4.0)–(4.s)
and Theorem 2 states the equivalence of the lth and (l + 1)st systems of reduced

equations, the system (22) possesses a unique solution, and hence matrix A
(s)
0 is

invertible. Thus,

X
(s)
0 = [A

(s)
0]−1R

(s)
0 .(23)

The original solution X0 = X
(0)
0 can now be retrieved by the backwards recursive

relationship

X
(l−1)
0 = A

(l−1)†
0 R

(l−1)
0 +Q(l)X

(l)
0 , l = s, . . . , 1.(24)

Now by taking R
(0)
j = Jk+j −

∑k
i=1 Ai+jXk−i, 0 ≤ j ≤ s, one gets the algorithm

for computing the Laurent series coefficients Xk, k ≥ 1. Of course, recursive formulae
similar to (15) and (19) can be obtained, but they are quite complicated in the general
case.

The order s of the pole can also be obtained from the reduction process by con-

tinuing the process until A
(l)
0 becomes nonsingular. The number of reduction steps

equals the order of the pole. Note also that the sequence of matrices A
(l)
0 , l ≥ 0, can

be computed irrespectively of the right hand sides. Once s is determined, one can

compute R
(l)
j , 1 ≤ l ≤ s, 0 ≤ j ≤ s− l.

4. Computational complexity and comparison with symbolic algebra.
In this section we compare the computational complexity of the one-step-reduction
process when applied to compute X0 with the complexity of symbolic algebra. In
particular, we show that the former comes with a reduced complexity in the case
where the pole has a relatively small order. The computational complexity of the
other two procedures can be determined similarly.

To compute the coefficients Di, 0 ≤ i ≤ s − 1, of the reduced fundamental
system (17), one needs to perform O(s2n3) operations. The total number of reduced
equations is sp. (Recall that p is the dimension of the null space of A0.) Hence,
the computational complexity for determining X0 by the one-step-reduction process
is O(max{s2n3, s3p3}). The Laurent series (2) in general, and the coefficient X0 in
particular, can also be computed by using symbolic algebra. This, for example, can be
executed by MATLAB symbolic toolbox and is done as follows. Since X0 is uniquely
determined by the first s+ 1 fundamental equations (4.0), . . . , (4.s), all one needs to
do in order to compute X0 is to invert symbolically the following matrix polynomial:

Â(z) = A0 + zA1 + · · ·+ zsAs.(25)

Symbolic computations here mean performing operations, such as multiplication and
division, over the field of rational functions (and not over the field of the reals). In
particular, if the degrees of numerators and of denominators of rational functions do
not exceed q, then each operation (multiplication or division) which is performed in the
field of rational functions translates into qlog(q) operations in the field of real numbers
[1]. Note that during the symbolic inversion of the polynomial matrix (25), the degree
of rational functions does not exceed sn. The latter fact follows from Cramer’s rule.
Thus, the complexity of the symbolic inversion of (25) equals O(n3)×O(snlog(sn)) =
O(sn4log(sn)). As a result, one gets a matrix Â−1(z) whose elements are rational
functions of z. The elements of the matrix X0 can then be immediately calculated by

1186 K. E. AVRACHENKOV, M. HAVIV, AND P. G. HOWLETT

dividing the leading coefficients of the numerator and denominator. Finally, one can
see that if s << n and p << n, which is typically the case, then our method comes
with a reduced computational burden.

5. Concluding remarks. In this paper we have shown that the Laurent series
for the inversion of an analytic matrix valued function can be computed by solving a
system of fundamental linear equations. Furthermore, we demonstrated that the sys-
tem of fundamental equations can be solved recursively. In particular, the coefficient
Xk is determined by the previous coefficients X0, . . . , Xk−1 and the next s+1 funda-
mental equations, where s is the order of the pole. We suggest three basic methods:
one without any reduction (see (15)), one with a single reduction step (see (19) and
(20)), and one using a complete reduction process with s steps (see (23) and (24)). Of
course, an intermediate process with the number of reductions between 1 and s could
be used too. We note that when the complete reduction process is used the order of
the pole can be determined through the execution of the algorithm. When s << n
and p << n, the proposed algorithms far outperform the method based on symbolic
algebra.

Appendix 1: Another proof of Lemma 1. A direct proof of Lemma 1 can
be carried out using augmented matrices. Specifically, define

X (t) =

X0 0 0 · · · 0
X1 X0 0 · · · 0
X2 X1 X0 · · · 0
...

...
...

. . .
...

Xt Xt−1 · · · X1 X0

,

where Xk, 0 ≤ k ≤ t, are the coefficients of the Laurent series (2). Then it follows
from the fundamental systems (4) and (5) that the augmented matrices A(t) and X (t)

satisfy the relationship

A(t)X (t) = X (t)A(t) = E(t),(26)

where the augmented matrix E(t) ∈ R
(t+1)n×(t+1)n is defined by setting E(t) =

[Epq]
t
p,q=0, where Epq ∈ R

n×n and

Epq =

{
I for p− q = s,
0 for p− q �= s.

Now, as before, let Φ ∈ R
(s+1)n satisfy the equation

A(s)Φ = 0.(27)

If we multiply (27) from the left by X (s), then it reduces to

E(s)Φ = 0.

The vector E(s)Φ has ϕ0 as the (s+ 1)st block, which gives the required result.

Appendix 2: A numerical example. Let us consider the matrix valued func-
tion

A(z) = A0 + zA1 =

 1 2 1
−1 1 0
0 3 1

+ z

 1 −1 0

0 1 −1
−1 0 1

 ,

INVERSION OF ANALYTIC MATRIX FUNCTIONS 1187

where rank(A0) = 2. Construct the augmented matrices

A(0) = A0 and A(1) =

[
A0 0
A1 A0

]
,

and note that rank(A(1)) − rank(A(0)) = 5 − 2 = 3, which is the dimension of the
original coefficients A0 and A1. Therefore, according to the test of Sain and Massey
[32], the Laurent expansion for A−1(z) has a simple pole. Alternatively, we can
compute a basis for N(A(1)), which in this particular example consists of only one
vector

q(1) =
[
0 0 0 1 1 −3]T .

The first three zero elements in q(1) confirm that the Laurent series has a simple pole.
Next we compute the generalized inverse of A(1) given by

A(1)† = G(1) =

[
G

(1)
00 G

(1)
01

G
(1)
10 G

(1)
11

]
=

1/3 −5/12 −1/12 1/8 1/8 −1/8
0 1/4 1/4 1/8 1/8 −1/8

1/3 −5/12 −1/12 −3/8 −3/8 3/8
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

.

Consequently,

X0 = G
(1)
01 =

1

8

 1 1 −1

1 1 −1
−3 −3 3

 .(28)

Alternatively, we know that X0 is uniquely determined by the fundamental equations

A0X0 = 0,
A0X1 +A1X0 = I.

After one reduction step these equations reduce to

MA1QW0 = M,

where

M =
[
1 1 −1] and Q =

[
1 1 −3]T .

Hence,

W0 = (MA1Q)−1M =
1

8

[
1 1 −1]

and

X0 = QW0 =

 1

1
−3

 1

8

[
1 1 −1] = 1

8

 1 1 −1

1 1 −1
−3 −3 3

 .

The latter expression is identical with (28) and coincides with the one computed by
expanding A−1(z) with the help of the MATLAB symbolic toolbox. Note that even for
this three-dimensional example the direct symbolic calculation of the Laurent series
takes a relatively long time.

1188 K. E. AVRACHENKOV, M. HAVIV, AND P. G. HOWLETT

Acknowledgment. The authors are grateful to Prof. Jerzy A. Filar for his help-
ful advice. Also the authors would like to thank the anonymous referees for their
valuable suggestions and for directing us to some existing literature.

REFERENCES

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, MA, 1974.

[2] K.E. Avrachenkov and J.B. Lasserre, The fundamental matrix of singularly perturbed
Markov chains, Adv. in Appl. Prob., 31 (1999), pp. 679–697.

[3] H. Bart, Meromorphic Operator Valued Functions, Thesis, Vrije Universiteit, Amsterdam,
Math. Center Tract 44, 1973.

[4] H. Bart, M.A. Kaashoek, and D.C. Lay, Stability properties of finite meromorphic operator
functions, Nederl. Akad. Wetensch. Proc. Ser. A, 36 (1974), pp. 217–259.

[5] H. Bart, M.A. Kaashoek, and D.C. Lay, Relative inverses of meromorphic operator func-
tions and associated holomorphic projection functions, Math. Ann., 218 (1975), pp. 199–
210.

[6] H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, Birkhäuser, Basel,
1985.

[7] S.L. Campbell and C.D. Meyer, Generalized Inverses of Linear Transformation, Pitman,
London, 1979.

[8] S.L. Campbell, Singular Systems of Differential Equations, Pitman Res. Notes Math. Ser. 40,
Longman, Harlow, UK, 1980.

[9] S.L. Campbell, Singular Systems of Differential Equations, Vol. II, Pitman Res. Notes Math.
Ser. 61, Longman, Harlow, UK, 1982.

[10] F. Delebecque, A reduction process for perturbed Markov chains, SIAM J. Appl. Math., 43
(1983), pp. 325–350.

[11] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.
[12] I. Gohberg, M.A. Kaashoek, and F. van Schagen, On the local theory of regular analytic

matrix functions, Linear Algebra Appl., 182 (1993), pp. 9–25.
[13] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Computer Science and

Applied Mathematics Series, Academic Press, New York, 1982.
[14] I. Gohberg and L. Rodman, Analytic matrix functions with prescribed local data, J. Analyse

Math., 40 (1981), pp. 90–128.
[15] I.C. Gohberg and E.I. Sigal, An operator generalization of the logarithmic residue theorem

and the theorem of Rouché, Math. USSR Sbornik, 13 (1971), pp. 603–625.
[16] R. Hassin and M. Haviv, Mean passage times and nearly uncoupled Markov chains, SIAM J.

Discrete Math., 5 (1992), pp. 386–397.
[17] M. Haviv and Y. Ritov, Series Expansions for Stochastic Matrices, unpublished manuscript,

1989.
[18] M. Haviv and Y. Ritov, On series expansions and stochastic matrices, SIAM J. Matrix Anal.

Appl., 14 (1993), pp. 670–676.
[19] M. Haviv, Y. Ritov, and U.G. Rothblum, Taylor expansions of eigenvalues of perturbed

matrices with applications to spectal radii of nonnegative matrices, Linear Algebra Appl.,
168 (1992), pp. 159–188.

[20] P.G. Howlett, Input retrieval in finite dimensional linear systems, J. Austral. Math. Soc.
Ser. B, 23 (1982), pp. 357–382.

[21] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966.
[22] M.V. Keldysh, On the characteristic values and characteristic functions of certain classes of

non-selfadjoint equations, Dokl. Akad. Nauk USSR, 77 (1951), pp. 11–14.
[23] V.S. Korolyuk and A.F. Turbin, Mathematical Foundations of the State Lumping of Large

Systems, Naukova Dumka, Kiev, 1978.
[24] P. Lancaster, Inversion of lambda-matrices and application to the theory of linear vibrations,

Arch. Ration. Mech. Anal., 6 (1960), pp. 105–114.
[25] C.E. Langenhop, The Laurent expansion for a nearly singular matrix, Linear Algebra Appl.,

4 (1971), pp. 329–340.
[26] A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl.

Math. Monographs 71, AMS, Providence, RI, 1988.
[27] M.V. Pattabhiraman and P. Lancaster, Spectral properties of a polynomial operator, Numer.

Math., 13 (1969), pp. 247–259.
[28] A.A. Pervozvanski and V.G. Gaitsgori, Theory of Suboptimal Decisions, Kluwer Academic

INVERSION OF ANALYTIC MATRIX FUNCTIONS 1189

Publishers, Dordrecht, The Netherlands, 1988.
[29] M. Ribarič and I. Vidav, Analytic properties of the inverse A−1(z) of an analytic operator

valued function A(z), Arch. Rational Mech. Anal., 32 (1969), pp. 298–310.
[30] L. Rodman, An Introduction to Operator Polynomials, Oper. Theory Adv. Appl. 38,

Birkhäuser, Boston, 1989.
[31] N.J. Rose, The Laurent expansion of a generalized resolvent with some applications, SIAM J.

Math. Anal., 9 (1978), pp. 751–758.
[32] M.K. Sain and J.L. Massey, Invertibility of linear time invariant dynamical systems, IEEE

Trans. Automat. Control, AC-14 (1969), pp. 141–149.
[33] P.J. Schweitzer, The Laurent Expansion for a Nearly Singular Pencil, Working Paper

QM8413, Graduate School of Management, University of Rochester, Rochester, NY, 1984.
[34] P.J. Schweitzer, Perturbation series expansions for nearly completely-decomposable Markov

chains, in Teletraffic Analysis and Computer Performance Evaluation, O.J. Boxma, J.W.
Cohen, and H.C. Tijms, eds., Elsevier Science Publishers, North-Holland, Amsterdam,
1986, pp. 319–328.

[35] P.J. Schweitzer and G.W. Stewart, The Laurent expansion of pencils that are singular at
the origin, Linear Algebra Appl., 183 (1993), pp. 237–254.

[36] M.M. Vainberg and V.A. Trenogin, Theory of Branching of Solutions of Non-Linear Equa-
tions, Noordhoff International Publishing, Leyden, 1969.

[37] M.I. Vishik and L.A. Lyusternik, The solution of some perturbation problems in the case of
matrices and self-adjoint and non-self-adjoint differential equations, Uspechi Mat. Nauk,
15 (1960), pp. 3–80.

ON INFINITE PRODUCTS OF FUZZY MATRICES∗

SY-MING GUU† , YUNG-YIH LUR‡ , AND CHIN-TZONG PANG†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1190–1203

Abstract. In this paper, we study the convergence of infinite products of a finite number of
fuzzy matrices, where the operations involved are max-min algebra. Two types of convergences in
this context will be discussed: the weak convergence and strong convergence. Since any given fuzzy
matrix can be “decomposed” of the sum of its associated Boolean matrices, we shall show that
the weak convergence of infinite products of a finite number of fuzzy matrices is equivalent to the
weak convergence of infinite products of a finite number of the associated Boolean matrices. Further
characterizations regarding the strong convergence will be established. On the other hand, sufficient
conditions for the weak convergence of infinite products of fuzzy matrices are proposed. A necessary
condition for the weak convergence of infinite products of fuzzy matrices is presented as well.

Key words. Boolean matrices, fuzzy matrices, convergence of infinite products of fuzzy matrices

AMS subject classifications. 03G05, 15A57

PII. S0895479800366021

1. Introduction. Unlike the convergence of infinite products of a finite number
of matrices that has been studied quite extensively for several decades [1], [6], the
same issue in the context of fuzzy matrices seems to be ignored. For a fuzzy matrix
A, we mean A = [aij] with aij ∈ [0, 1]. Let F denote the unit interval, i.e., F= [0, 1].
We let F

m×n denote the set of all the m×n fuzzy matrices. The algebraic operations
of fuzzy matrices in this paper are max-min operations. Clearly, a Boolean matrix is
a special fuzzy matrix. In practice, fuzzy matrices have been proposed to represent
fuzzy relations in a system based on fuzzy sets theory [9], [15], [20].

The study of convergence of products of a finite number of fuzzy matrices arises
from the field of time-invariant discrete-time fuzzy systems with nonfuzzy inputs (see
chapter 2 in Dubois and Prade [2]). The time-invariant fuzzy systems can be studied
within the same conceptual framework as classical dynamic systems. Precisely,1 let
ut, yt, and st denote the input, output, and state of a system Ω, respectively, at time
t. Let U, Y, S be the sets of possible inputs, outputs, and states. And St+1 and Yt are
fuzzy sets on S and Y . The dynamic fuzzy system may be represented by the fuzzy
transition relation δ and fuzzy output map σ, where

st+1 = δ(ut, st), yt = σ(st, ut), t ∈ N.(1)

An initial state is denoted by s0. Note that the δ and σ are fuzzy relations in S×U×S
and Y × S × U , respectively. If we assume further that all the state set S, input set
U , and the output set Y are finite, then δ and σ have fuzzy matrix representations,

∗Received by the editors February 1, 2000; accepted for publication (in revised form) by V.
Mehrmann October 11, 2000; published electronically March 20, 2001.

http://www.siam.org/journals/simax/22-4/36602.html
†Department of Information Management, Yuan Ze University, Taoyuan, Taiwan, 320, People’s

Republic of China. (iesmguu@saturn.yzu.edu.tw, imctpang@saturn.yzu.edu.tw). The work of the
first author was partially supported by National Science Council grant NSC-89-2213-E-155-018. The
research of the third author was supported in part by National Science Council grant NSC 89-2115-
M-155-001.

‡Department of Information Management, Fortune Institute of Technology, Kaohsiung, Taiwan,
842, People’s Republic of China.

1For easy reference, we shall follow the settings in [2].

1190

ON INFINITE PRODUCTS OF FUZZY MATRICES 1191

respectively. For instance, let S = {s1, . . . , sm} and Y = {y1, . . . , yk}. Then for each
input ut we may define an m×m fuzzy matrix

M(ut) = [Mij(ut)], where Mij(ut) = ν(si|sj , ut).

Here ν(•) is an appropriate membership function. Similarly, we may define

MY (ut) = [µ(yi|sj , ut)], where µ(•) is a membership function.

Let s̄t = [µs(s
1
t), . . . , µs(s

m
t)]T and ȳt = [µy(y1t), . . . , µy(ymk)]T , where µs and µy are

membership functions for St and Yt, respectively. Then with these matrix represen-
tations, (1) may become (see chapter 9 in Mizumoto [14])

s̄t+1 = M(ut) ◦ s̄t, ȳt = MY (ut) ◦ s̄t, t ∈ N,(2)

where ◦ stands for the max-min operations. It follows from (2) that the behavior of
the dynamic fuzzy system depends heavily on the products of fuzzy matrices M(ut)s.

Theory of fuzzy sets has played an active role in the field of medicine (see chapter
6 in Klir and Folger [10]). The states of (2) may be interpreted as diseases. For
instance, S may contain two elements: mild influenza and severe influenza. The
input part of (2) may be interpreted as the appropriate therapeutic actions. For
instance, during the treatment process, the physician may apply Panadol Cold & Flu
or Sinutab to treat the patient. The output part of (2) may be interpreted as the
clinical manifestations. For instance, the output set may contain elements such as
fever and cough.

When the input set U contains only one element, all M(ut)’s reduce to be a com-
mon fuzzy matrix. And the study of (2) depends on the understanding of the powers
of this fuzzy matrix. In the literature, convergence of power of a fuzzy matrix does
attract researchers to study. Thomason [19] proved that the powers of a fuzzy matrix
are either convergent to an idempotent fuzzy matrix or oscillating with finite period,
which is the same consequence of the powers of a Boolean matrix. Thomason pro-
posed some sufficient conditions to establish convergence as well. The main concept
employed in these sufficient conditions is to assume compactness for the given fuzzy
matrix. Hashimoto [7] assumed the fuzzy matrix to be transitive to have convergence.
Indeed, both compactness and transitivity induce convergence because of the mono-
tonicity of its powers. Later, Fan and Liu [3] defined the notion of maximum principle
and showed that if the fuzzy matrix satisfies the maximum principle, then its powers
possess the monotonicity (starting, however, from the second power) and hence the
sequence of its powers is convergent. Kolodziejczyk [11] showed that if the fuzzy ma-
trix is strongly transitive (s-transitive), then its powers either converge or oscillate
with period 2. Li [13] defined the notion of controllable fuzzy matrix and pointed out
that all the nilpotent fuzzy matrices, symmetric fuzzy matrices, (max-min) transitive
fuzzy matrices, and s-transitive fuzzy matrices are controllable fuzzy matrices but not
vice versa in general. He showed that the powers of a controllable fuzzy matrix either
converge or oscillate with period 2. Li [12] also studied the periodicity of powers of
a fuzzy matrix. Fan and Liu [4] explored the oscillating property of the powers of
a fuzzy matrix. They decomposed a fuzzy matrix to be the sum of a finite number
of corresponding Boolean matrices. Through this decomposition, they can derive re-
sults for the oscillation index and period index of the fuzzy matrix by studying the
respective index of the associated Boolean matrices. To understand the powers of a

1192 SY-MING GUU, YUNG-YIH LUR, AND CHIN-TZONG PANG

Boolean matrix [8], [17], we refer to De Schutter and De Moor [18] where they com-
pletely characterized the ultimate behavior of the sequence of the consecutive powers
of a matrix in Boolean algebra.

Guu, Chen, and Pang [5] generalized the study of convergence of powers of a fuzzy
matrix to consider the products of a finite number of fuzzy matrices. They showed
that the behavior of the infinite products is quite different from the powers of a fuzzy
matrix:

• When a path (to be defined in section 2) converges to a fuzzy matrix, this
“limiting” matrix is not necessarily idempotent.
• One cannot assert that in general an oscillating path should be with finite

period.
• Each path generated from these fuzzy matrices may converge. However, a

different path may converge to a different fuzzy matrix. This is the notion of
weak convergence. When all the paths happen to converge to the same limit,
the limit fuzzy matrix is idempotent. This is the notion of strong convergence.
Since the powers of a given fuzzy matrix is the unique path, the convergence
of the powers of a fuzzy matrix is exactly the strong convergence type.

Compactness and transitivity were extended as well to establish sufficient conditions
for weak convergence of infinite products of a finite number of fuzzy matrices.

In this paper, we shall explore further the convergence of infinite products of a
finite number of fuzzy matrices. Three main directions will be presented. First, similar
to Fan and Liu’s decomposition, we shall establish the weak convergence of infinite
products of a finite number of fuzzy matrices in terms of certain (finite) Boolean
matrices. Equivalence in strong convergence of infinite products of fuzzy matrices
and infinite products of the associated Boolean matrices will be established as well.
Further characterizations for infinite products of fuzzy matrices that converge strongly
to zero are given. These constitute the work of section 3. Second, monotone properties
such as compactness and transitivity are useful to establish the convergence of powers
of a fuzzy matrix. By following the strategy of monotonicity, we shall construct
suitable monotone conditions as sufficient conditions for the weak convergence. Third,
a sufficient condition which somehow violates the spirit of monotonicity, where all the
elements of infinite products are either increasing or decreasing, will be proposed to
establish the weak convergence. Under this sufficient condition, we can show that the
off-diagonal elements of infinite products are increasing, while the diagonal elements
are decreasing. These will appear in section 4. Section 2 contains the preliminaries
and some backgrounds in this study. Conclusions will be given in the final section.

2. Preliminaries. For any fuzzy matrices A and B of the same size, we have
the sum of A = [aij] and B = [bij] as follows:

[A⊕B]ij = aij ⊕ bij := max{aij , bij}.

If A ∈F
s×n and B ∈F

n×s, then the product A⊗B of A and B is defined as follows:

[A⊗B]ij = ⊕nk=1{aik ⊗ bkj} := max{aik ⊗ bkj |k = 1, 2, . . . , n},

where aij ⊗ bij := min{aij , bij}. The product A ⊗ B is of size s × s. For any fuzzy
matrices A and B of the same size, we say A ≤ B if and only if aij ≤ bij for all i and
j. For a fuzzy matrix A = [aij], we may denote aij by [A]ij .

Consider fuzzy matrices A(1), A(2), . . . , A(m) with each A(i) ∈ F
n×n. Let F denote

the set of underlying fuzzy matrices, that is, F = {A(1), A(2), . . . , A(m)}. Let Fk be

ON INFINITE PRODUCTS OF FUZZY MATRICES 1193

the set of all products of matrices in F of length k, that is,

Fk = {Ak ⊗Ak−1 ⊗ · · · ⊗A2 ⊗A1|Ai ∈ F ∀i = 1, 2, . . . , k}.
For our convenience, we denote F (k) = Ak ⊗Ak−1 ⊗ · · · ⊗A2 ⊗A1.

Definition 2.1. The sequence {F (k)} is a path in set ∪k≥1Fk if F (1) ∈ F and
for each k ≥ 1, F (k + 1) = Ak+1 ⊗ F (k), where Ak+1 ∈ F .

Let P denote the set containing all the paths in ∪k≥1Fk. We shall call (∪k≥1Fk,P)
the path system generated by F . We note that if F contains only one fuzzy matrix,
say F = {B}, then Fk = {Bk}, the kth power of B. This is the only one path
generated by F .

Definition 2.2. The fuzzy path system (∪k≥1Fk,P) is weakly convergent if each
path {F (k)} in P is convergent. Moreover, if all the paths {F (k)} in P converges to
the same fuzzy matrix, we say that the fuzzy path system (∪k≥1Fk,P) is strongly
convergent.

For λ ∈ [0, 1], we follow [4] to define for any fuzzy matrix A the λ-level cut matrix
Aλ by

[Aλ]ij =

{
1 if aij ≥ λ,
0 otherwise.

Note that the cut matrix Aλ is a Boolean matrix. We let ΦA denote the set of all
nonzero elements of A. It is easy to see that A = ⊕λ∈ΦA

λ⊗Aλ. The ΦF is the union

of ΦA(i) for all A(i) in F . For any λ, we denote Fλ = {A(1)
λ , A

(2)
λ , . . . , A

(m)
λ }. For our

purposes, we let λ := min{λ|λ ∈ ΦF}.
Let A be an n × n Boolean matrix. A nonzero element u ∈ {0, 1}n is called a

Boolean eigenvector of A if there exists an s in {0, 1} such that A⊗ u = s⊗ u. This
s is a Boolean eigenvalue associated with an eigenvector u. It is a well-known result
that all Boolean matrices have an eigenvalue. Define the Boolean spectral radius of A
by ρ(A), the largest Boolean eigenvalues of A. Note that ρ(A) is 0 or 1. We refer to
Robert [16] for further study in this area.

3. Connection between fuzzy matrices and Boolean matrices. From the
definitions of a fuzzy matrix and a Boolean matrix, we learn that a Boolean matrix
is a special type of the fuzzy matrix. As noted in the introduction, Fan and Liu [4]
have studied the oscillating property of the powers of a fuzzy matrix through the
framework of the associated Boolean matrices. Their idea can be extended to study
the convergence of the products of a finite number of fuzzy matrices, to which we now
turn.

Lemma 3.1. Let A,B ∈ F
n×n and λ ∈ [0, 1]. Then

(A⊗B)λ = Aλ ⊗Bλ.
Proof. By the definition of cut matrices, for 1 ≤ i, j ≤ n we have

[(A⊗B)λ]ij = 1⇔ [A⊗B]ij ≥ λ
⇔ ⊕nk=1(aik ⊗ bkj) ≥ λ

⇔ there exists a 1 ≤ k′ ≤ n such that aik′ ≥ λ and bk′ j ≥ λ
⇔ ⊕nk=1{[Aλ]ik ⊗ [Bλ]kj} = 1

⇔ [Aλ ⊗Bλ]ij = 1.

1194 SY-MING GUU, YUNG-YIH LUR, AND CHIN-TZONG PANG

By similar arguments, we have [(A⊗ B)λ]ij = 0 if and only if [Aλ ⊗ Bλ]ij = 0. This
completes the proof.

3.1. Results of weak convergence. Let F = {A(1), A(2), . . . , A(m)} with each

A(i) ∈ F
n×n. Let p̂ denote (m× n2)n

2

+ 1. Define

V := {[A(k)]ij |1 ≤ i, j ≤ n;A(k) ∈ F ∀k = 1, 2, . . . ,m}
and

T := {G ∈ F
n×n| for 1 ≤ i, j ≤ n, [G]ij ∈ V }.

Lemma 3.2. Let F = {A(1), A(2), . . . , A(m)}. Then

|T | ≤ (m× n2)n
2

and ∪k≥1 Fk ⊂ T.
Proof. Since each entry of G ∈ T has at most (m×n2) choices, the cardinality of

T is less than or equal to (m×n2)n
2

. The observation ∪k≥1Fk ⊂ T can be seen from
the fact that the max and min operations can’t yield an entry not in F .

Lemma 3.3. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)} ⊂
F
n×n. If the fuzzy path system (∪k≥1Fk,P) is weakly convergent, then for each path
{F (k)} there exist 1 ≤ i < j ≤ p̂ such that F (i) = F (i+ r) for all 1 ≤ r ≤ j − i.

Proof. By Lemma 3.2, we have F (k) ∈ T for all k = 1, 2, . . . and |T | < p̂. There
exist 1 ≤ i < j ≤ p̂ such that F (i) = F (j). In other words,

Ai ⊗ · · · ⊗A1 = Aj ⊗ · · · ⊗A1.

Construct a new path {F ′
(k)} by

{F ′
(k)} = {F (1), F (2), . . . , F (i), Ai+1 ⊗ F (i), . . . , (Aj ⊗ · · · ⊗Ai+1)⊗ F (i), . . . ,

(Aj ⊗ · · · ⊗Ai+1)⊗ (Aj ⊗ · · · ⊗Ai+1)⊗ F (i), . . .}.
Since the path system is weakly convergent, this new path is convergent. This implies
that

Ai ⊗ · · · ⊗A1 = Ai+r ⊗ · · · ⊗A1 for 1 ≤ r ≤ j − i.
Lemma 3.4. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)} ⊂

F
n×n. If the fuzzy path system (∪k≥1Fk,P) is weakly convergent, then there exists a

positive integer p such that Fp = Fp+1.
Proof. Choose p = p̂. Let Ap ⊗ · · · ⊗ A1 ∈ Fp. By Lemma 3.3, there exist

1 ≤ i < j ≤ p such that

Ai ⊗ · · · ⊗A1 = Ai+1 ⊗Ai ⊗ · · · ⊗A1.

Thus,

Ap ⊗ · · · ⊗A1 = Ap ⊗ · · · ⊗Ai+1 ⊗Ai+1 ⊗Ai ⊗ · · · ⊗A1 ∈ Fp+1.

Conversely, for any Ap+1 ⊗ · · · ⊗A1 ∈ Fp+1, by Lemma 3.3, there exist 1 ≤ i < j ≤ p
such that

Ap+1 ⊗ · · · ⊗A1 = Ap+1 ⊗ · · · ⊗Ai+2 ⊗Ai ⊗ · · · ⊗A1 ∈ Fp.
Thus Fp+1 = Fp. This completes the proof.

ON INFINITE PRODUCTS OF FUZZY MATRICES 1195

Lemma 3.5. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)} ⊂
F
n×n. For λ ∈ ΦF , let {Fλ(k)} ∈ Pλ. Then either {Fλ(k)} is convergent or there

are subpaths {Fλ(nk)} and {Fλ(mk)} converging to F̂1 and F̂2, respectively. Here
F̂1 �= F̂2.

Proof. It follows from the fact that the cardinality of ∪k≥1(Fλ)k is finite.
Theorem 3.6. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}

⊂ F
n×n. The fuzzy path system (∪k≥1Fk,P) is weakly convergent if and only if for

each λ ∈ ΦF , the Boolean path system (∪k≥1(Fλ)k,Pλ) is weakly convergent, where
Pλ denotes the set of all paths in ∪k≥1(Fλ)k.

Proof. Assume that the system (∪k≥1Fk,P) converges weakly. For λ ∈ ΦF , we
let {Fλ(k)} ∈ Pλ, where Fλ(k) = (Ak)λ ⊗ · · · ⊗ (A2)λ ⊗ (A1)λ with each Ai ∈ F .
Denote F̂ (k) = Ak ⊗ · · · ⊗A2 ⊗A1. Then {F̂ (k)} is a path in P. Lemma 3.1 implies
that

(F̂ (k))λ = (Ak ⊗ · · · ⊗A2 ⊗A1)λ = Fλ(k).

Since {F̂ (k)} is weakly convergent, there exists an n0 such that F̂ (n0 + j) = F̂ (n0)
for all j = 1, 2, Therefore,

Fλ(n0 + j) = (F̂ (n0 + j))λ = (F̂ (n0))λ = Fλ(n0) for j = 1, 2,

And we have that {Fλ(k)} is weakly convergent.
On the other hand, let {F (k)} ∈ P. Suppose that for each λ ∈ ΦF the Boolean

path system (∪k≥1(Fλ)k,Pλ) converges weakly. There exists a positive Nλ such that
Fλ(Nλ + j) = Fλ(Nλ) for j = 1, 2, Since the cardinal number of ΦF is finite,
N∗ = maxλ∈ΦF Nλ is finite. We then have

Fλ(N∗ + j) = Fλ(N∗), λ ∈ ΦF , and j = 1, 2,

The following relations now hold:

F (N∗ + j) = ⊕λ∈ΦF {λ⊗Fλ(N∗ + j)} = ⊕λ∈ΦF {λ⊗Fλ(N∗)} = F (N∗) ∀ j = 1, 2,

Therefore, {F (k)} is weakly convergent. The fuzzy path system (∪k≥1Fk,P) is weakly
convergent.

For any k ≥ m, we define the notation Fc := ∪k≥1Fck, where

Fck := {Mk ⊗Mk−1 ⊗ · · · ⊗M2 ⊗M1 ∈ Fk| each fuzzy matrix in F should appear at

least once in the product Mk ⊗Mk−1 ⊗ · · · ⊗M2 ⊗M1}.

Theorem 3.7. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}
⊂ F

n×n. For λ ∈ ΦF , the following statements (a) and (b) are mutually equivalent.
(a) (∪k≥1(Fλ)k,Pλ) is weakly convergent.

(b) (i) (∪k≥1(F̃λ)k, P̃λ) is weakly convergent for all proper subset F̃λ of Fλ.
(ii) (∪k≥1(Fcλ)k,Pcλ) is weakly convergent.

Proof. “(a) ⇒ (b)” is obvious.
“(b) ⇒ (a)”: Let {Fλ(k) = Mk ⊗ · · · ⊗M1} be a path in Pλ. There are two cases

to be discussed.
Case 1. There exist Ai ∈ Fλ and an index l0 such that

Ai ∈ {M1,M2, . . . ,Ml0−1} but Ai �∈ {Ml0 ,Ml0+1, . . .}.

1196 SY-MING GUU, YUNG-YIH LUR, AND CHIN-TZONG PANG

Let F̃λ = Fλ \ {Ai}. Consider the path

{F̃λ(k)|F̃λ(1) = Ml0 , . . . , F̃λ(k) = Ml0+k−1 ⊗ · · · ⊗Ml0 , . . .}

in the system (∪k≥1(F̃λ)k, P̃λ). By assumption (i), the path {F̃λ(k)} is convergent.
Note that for k large enough

Fλ(k + l0 − 1) = F̃λ(k)⊗ (Ml0−1 ⊗ · · · ⊗M1).

Thus, by letting k → ∞ and noting that F̃λ(k) is convergent, the path {Fλ(k)} is
convergent.

Case 2. Suppose that each Ai in Fλ appears an infinite number of times in {M1,
M2, . . .}. Let {Fλ(nk)} and {Fλ(mk)} be two subpaths of {Fλ(k)} which converge to
F1 and F2, respectively. Construct two subpaths {Fλ(n̂k)} and {Fλ(m̂k)} of {Fλ(nk)}
and {Fλ(mk)}, respectively, such that

Fλ(n̂1) = Mn̂1 ⊗ · · · ⊗M1,

Fλ(m̂1) = Mm̂1
⊗ · · · ⊗Mn̂1+1 ⊗Mn̂1

⊗ · · · ⊗M1,

Fλ(n̂2) = Mn̂2 ⊗ · · · ⊗Mm̂1+1 ⊗Mm̂1 ⊗ · · · ⊗M1,

Fλ(m̂2) = Mm̂2
⊗ · · · ⊗Mn̂2+1 ⊗Mn̂2

⊗ · · · ⊗M1

...

where Mn̂1
⊗ · · · ⊗M1, Mm̂1

⊗ · · · ⊗Mn̂1+1, Mn̂2
⊗ · · · ⊗Mm̂1+1, etc., are in Fcλ.

Now we have constructed a path {Fλ(n̂1), Fλ(m̂1), Fλ(n̂2), Fλ(m̂2), . . .} in the system
(∪k≥1(Fcλ)k,Pcλ). By the assumption (ii), the path is convergent, and hence, F1 = F2.
By Lemma 3.5, we have that the path {Fλ(k)} convergent. Since {Fλ(k)} is an
arbitrary path in (∪k≥1(Fλ)k,Pλ), the system (∪k≥1(Fλ)k,Pλ) is weakly
convergent.

Theorem 3.8. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}
⊂ F

n×n. Then the fuzzy path system (∪k≥1(F)k,P) is weakly convergent if and only
if

(i) (∪k≥1(F̃)k, P̃) is weakly convergent for all proper subset F̃ of F .
(ii) (∪k≥1(Fc)k,Pc) is weakly convergent.
Proof. It follows from Theorem 3.6 and Theorem 3.7.

3.2. Results of strong convergence. We first note that, by Definition 2.2 and
Lemma 3.4, if the fuzzy path system (∪k≥1Fk,P) is strongly convergent to C, then
there exists a k0 such that

Fk0 = Fk0+j = {C} ∀j ≥ 1.

Theorem 3.9. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}
⊂ F

n×n. Then the fuzzy path system (∪k≥1Fk,P) is strongly convergent if and only
if for each λ ∈ ΦF , the Boolean path system (∪k≥1(Fλ)k,Pλ) is strongly convergent,
where Pλ denotes the set of all paths in ∪k≥1(Fλ)k.

Proof. The proof is similar to that of Theorem 3.6.
Theorem 3.10. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}

⊂ F
n×n. Then the following statements are equivalent.

ON INFINITE PRODUCTS OF FUZZY MATRICES 1197

(i) The fuzzy path system (∪k≥1Fk,P) is strongly convergent to zero.
(ii) The Boolean path systems (∪k≥1(Fλ)k,Pλ) are strongly convergent to zero for

all λ ∈ ΦF .
(iii) The Boolean path system (∪k≥1(Fλ)k,Pλ) is strongly convergent to zero.
(iv) limk→∞[maxM∈(Fλ)k ρ(M)] = 0.

Proof. (i)⇒ (ii) is similar to the proof in Theorem 3.6. (ii)⇒ (iii) is obvious. We
prove now (iii) ⇒ (iv). Since the system (∪k≥1(Fλ)k,Pλ) is strongly convergent to
zero, there exists N0 such that for all paths {Fλ(k)} ∈ Pλ,

0 = Fλ(N0) = Fλ(N0 + j) for j = 1, 2,

Thus, ρ(M) = 0 forM ∈ (Fλ)N0+j j = 1, 2, Therefore, limk→∞[maxM∈(Fλ)k ρ(M)]
= 0.

(iv) ⇒ (i). Consider a path {F (k)} ∈ P. Let F (k) = Ak ⊗ · · · ⊗ A2 ⊗ A1 with
Ai ∈ F . For each λ ∈ ΦF , let

Fλ(k) = (Ak)λ ⊗ · · · ⊗ (A2)λ ⊗ (A1)λ = (F (k))λ for k = 1, 2,

Claim. Path {Fλ(k)} in Pλ is strongly convergent to zero.
Assume to the contrary that for N large enough

Fλ(N) = (AN)λ ⊗ · · · ⊗ (A2)λ ⊗ (A1)λ �= 0.

There exist i, j such that

[(AN)λ ⊗ · · · ⊗ (A2)λ ⊗ (A1)λ]ij = 1.

This implies that

[(AN)λ]ikN = · · · = [(A2)λ]k2k1 = [(A1)λ]k1j = 1

for some indices k1, k2, . . . , kN−1. Since kis are in between 1 and n and N is large
enough, there must be at least two equal indices kl and km with 1 < l < m < N such
that

[D]klkl = 1, where D = (Am)λ ⊗ · · · ⊗ (Al+1)λ.

Define B = [bij], where

bij =

{
1 if i = j = kl,

0 otherwise.

Then we have B ≤ D. Since ρ(B) = 1, we have ρ(D) = 1. Moreover, we have
ρ(Dk) = 1 for k = 1, 2, Now, since D ∈ (Fλ)m−l−1, we have

max
M∈(Fλ)(m−l−1)k

ρ(M) = 1 ∀ k = 1, 2,

This implies that

lim
k→∞

[
max

M∈(Fλ)k
ρ(M)

]
�= 0, a contradiction.

1198 SY-MING GUU, YUNG-YIH LUR, AND CHIN-TZONG PANG

This completes the proof of the claim. To finish the proof, we need to show that any
other path converges strongly to zero as well. Precisely, let λ ∈ Φλ. By the definitions
of cut matrix and λ, we have

Fλ(k) ≤ Fλ(k) for k = 1, 2,

Therefore, Fλ(N + j) = Fλ(N) = 0 for j = 1, 2, Since

F (k) = ⊕λ∈Φλ
{λ⊗ Fλ(k)},

we have

F (N + j) = F (N) = 0 for j = 1, 2,

This proves that any path {F (k)} is strongly convergent to zero. Hence, the system
(∪k≥1Fk,P) is strongly convergent to zero.

4. Sufficient conditions for the weak convergence. In this section, we shall
present several sufficient conditions for the weak convergence. Two kinds of strategies
employed in those sufficient conditions for the weak convergence are considered. One
strategy is to construct monotonicity for each path, where all the elements of products
in each path are either nondecreasing or nonincreasing. The other strategy is to define
the notion of row domination for F , which enables the off-diagonal elements of infinite
products in each path are nondecreasing, yet the diagonal elements are nonincreasing.

From the literature discussing the convergence of powers of a fuzzy matrix, we
learn that the monotonicity involving two consecutive powers (such as compactness,
A ≤ A2, transitivity, A2 ≤ A, or A2 ≤ A3 in [3]) plays a key role in establishing the
convergence. In [5], Guu, Chen, and Pang kept this spirit to generalize the concepts of
compactness and transitivity to F , where F contains a finite number of fuzzy matrices.
In this section, one way to provide sufficient conditions for the weak convergence will
be the assumption of a certain monotonicity for F . Precisely, we shall generalize the
idea of A2 ≤ A3, to which we now turn.

Definition 4.1. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}
⊂ F

n×n. The F is second order increasing if for any A, B, G in F

A⊗B ≤ G⊗ (A⊗B).(3)

For instance, consider the 8 inequalities involved in (3) for the fuzzy matrix set F =
{A,B}:

A⊗B ≤ A⊗ (A⊗B)

A⊗B ≤ B ⊗ (A⊗B)

B ⊗A ≤ A⊗ (B ⊗A)

B ⊗A ≤ B ⊗ (B ⊗A)

and

A⊗A ≤ A⊗ (A⊗A)

A⊗A ≤ B ⊗ (A⊗A)

B ⊗B ≤ B ⊗ (B ⊗B)

B ⊗B ≤ A⊗ (B ⊗B)

.(4)

We note that when A = B, (4) becomes A2 ≤ A3. We are ready to present the
following theorem.

Theorem 4.2. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}
⊂ F

n×n. If F is second order increasing, then the fuzzy path system (∪k≥1Fk,P) is
weakly convergent.

ON INFINITE PRODUCTS OF FUZZY MATRICES 1199

Proof. Consider a path {F (k)} in P. Since the underlying set F is second order
increasing, for large k, we have

F (k) = (Ak ⊗Ak−1)⊗ F (k − 2) ≤ Ak+1 ⊗ (Ak ⊗Ak−1)⊗ F (k − 2) = F (k + 1).

The sequence {F (k)} is monotone for k ≥ 3. Hence, the path {F (k)} is convergent.
This implies that the fuzzy path system (∪k≥1Fk,P) is weakly convergent.

Example 4.1. Consider the underlying fuzzy matrix set F = {A,B}, where

A =

0.5 1 0

0 0.6 0.3

0.2 0 0.7

 and B =

0.5 0.8 0.1

0.3 0.6 0.2

0.2 0.5 0.7

 .

Direct computation shows that

A⊗A = A⊗A⊗A =

0.5 0.6 0.3

0.2 0.6 0.3

0.2 0.2 0.7

 .

Comparing A and A⊗A shows that the monotonicity starts from the second power.
Similarly

B ⊗B = B ⊗B ⊗B =

0.5 0.6 0.2

0.3 0.6 0.2

0.3 0.5 0.7

 .

Since

A⊗B =

0.5 0.6 0.2

0.3 0.6 0.3

0.2 0.5 0.7

 ,

we have

A⊗ (A⊗B) =

0.5 0.6 0.3

0.3 0.6 0.3

0.2 0.5 0.7

 and B ⊗ (A⊗B)

0.5 0.6 0.3

0.3 0.6 0.3

0.3 0.5 0.7

 .

Both A⊗ (A⊗B) and B ⊗ (A⊗B) are greater than A⊗B. Similarly, since

B ⊗A =

0.5 0.6 0.3

0.3 0.6 0.3

0.2 0.5 0.7

 ,

we have

A⊗ (B ⊗A) =

0.5 0.6 0.3

0.3 0.6 0.3

0.2 0.5 0.7

 and B ⊗ (B ⊗A) =

0.5 0.6 0.3

0.3 0.6 0.3

0.3 0.5 0.7

 .

1200 SY-MING GUU, YUNG-YIH LUR, AND CHIN-TZONG PANG

Both A⊗ (B⊗A) and B⊗ (B⊗A) are greater than B⊗A. Computation shows that

A⊗ (B ⊗B) =

0.5 0.6 0.2

0.3 0.6 0.3

0.3 0.5 0.7

 and B ⊗ (A⊗A)

0.5 0.6 0.3

0.3 0.6 0.3

0.2 0.5 0.7

 .

We have A⊗ (B⊗B) ≥ (B⊗B) and B⊗ (A⊗A) ≥ (A⊗A). Thus, the 8 inequalities
in (4) hold for F . We have that F is second order increasing and the fuzzy path
system (∪k≥1Fk,P) is weakly convergent.

Remark. In Definition 4.1, we have defined the second order increasing property
of F . The main purpose is of course to have monotonicity of each path in P. Indeed,
we can define the second order decreasing of F to have weak convergence. This can
be done by reversing the direction of each inequality in (3). On the other hand, one
can define the kth order increasing (decreasing) of F to have weak convergence by
involving more matrices in (3). For instance, one can define the third order increasing
property for F if for any A, B, G, H in F ,

A⊗B ⊗G ≤ H ⊗ (A⊗B ⊗G).

Guu, Chen, and Pang generalized the compactness and transitivity of a fuzzy matrix
to a finite number of fuzzy matrices. For our settings here, we say F is transitive
(compact) if A ⊗ B ≤ B (A ⊗ B ≥ B) for all A,B in F . Hence, in the sense of Def-
inition 4.1, the compactness and transitivity correspond to the first order increasing
and the first order decreasing properties of F , respectively.

Theorem 4.3. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}
⊂ F

n×n. If Fλ is compact for each λ ∈ ΦF , then the fuzzy path system (∪k≥1Fk,P)
is weakly convergent.

Proof. Let {Fλ(k)} denote a path in Pλ for each λ ∈ ΦF . Since compactness of
Fλ implies that the Boolean path system (∪k≥1(Fλ)k,Pλ) converges weakly, we have
by Theorem 3.1 that the fuzzy path system (∪k≥1Fk,P) is weakly convergent.

Theorem 4.4. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}
⊂ F

n×n. If Fλ is transitive for each λ ∈ Φλ, then the fuzzy path system (∪k≥1Fk,P)
is weakly convergent.

Proof. The proof is similar to that of Theorem 4.3.
From above, it is easy to see that monotonicity is a useful mechanism to establish

the weak convergence. In the following theorem, we present a sufficient condition for
the weak convergence but do not count on monotonicity.

Definition 4.5. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}
⊂ F

n×n. Define S = max{A|A ∈ F} and D = min{A|A ∈ F}, where operations max
and min are implemented elementwise. F is said to be row dominated if for each
i �= j, Sij ≤ Dii.

Theorem 4.6. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}
⊂ F

n×n. If F is row dominated, then the fuzzy path system (∪k≥1Fk,P) is weakly
convergent.

Proof. Let {F (k + 1) = Ak+1 ⊗Ak ⊗ · · ·A2 ⊗A1} be a path in P. For i �= j, we
have

F (k + 1)ij = (Ak+1 ⊗Ak ⊗ · · ·A2 ⊗A1)ij

= ⊕nl=1(Ak+1)il ⊗ (Ak ⊗ · · ·A2 ⊗A1)lj

≥ (Ak+1)ii ⊗ (Ak ⊗ · · ·A2 ⊗A1)ij .

ON INFINITE PRODUCTS OF FUZZY MATRICES 1201

Let (Ak⊗· · ·A2⊗A1)ij = (Ak)il1⊗· · ·⊗(A2)lk−2lk−1
⊗(A1)lk−1j for some l1, . . . , lk−1.

Since i �= j, by the assumption of Sij ≤ Dii we can either select t∗ = min{x|lx �= i}
such that

(Ak+1)ii ≥ (Ak+1−t∗)ilt∗ ,

or when t∗ is not well defined, we have (Ak+1)ii ≥ (A1)ij . Thus,

(Ak+1)ii⊗(Ak)il1⊗· · ·⊗(A2)lk−2lk−1
⊗(A1)lk−1j ≥ (Ak)il1⊗· · ·⊗(A2)lk−2lk−1

⊗(A1)lk−1j .

Therefore, F (k + 1)ij ≥ F (k)ij . This implies that limk→∞(F (k))ij converges.
For i = j, we let

F (k + 1)ii = (Ak+1)il1 ⊗ (Ak)l1l2 ⊗ · · · ⊗ (A2)lk−1lk ⊗ (A1)lki

for some l1, . . . , lk. If l1 = i, then we have

F (k+1)ii = (Ak+1)ii⊗(Ak)il2⊗· · ·⊗(A2)lk−1lk⊗(A1)lki ≤ (Ak+1)ii⊗F (k)ii ≤ F (k)ii.

If l1 �= i, then by assumption we have (Ak+1)il1 ≤ (At)ii for all t = 1, 2, . . . , k + 1.
We then have

F (k + 1)ii ≤ (Ak+1)il1 ≤ (Ak)ii ⊗ (Ak−1)ii ⊗ · · · (A1)ii ≤ F (k)ii.

This implies that limk→∞(F (k))ii converges. The proof is completed.
Corollary 4.7. Let the set of underlying fuzzy matrices F = {A(1), A(2), . . . , A(m)}

⊂ F
n×n. Consider D = min{A|A ∈ F}. If Dii = 1 for all i = 1, 2, . . . , n, then the

fuzzy path system (∪k≥1Fk,P) is weakly convergent.
Remark. We have shown that if F is row dominated, then the fuzzy path system

(∪k≥1Fk,P) is weakly convergent. From the proof, one can see that the off-diagonal
elements F (k)ij are increasing, while the diagonal elements F (k)ii are decreasing.
Furthermore, if F contains only one matrix A, then by the fact that the diagonal
elements of the powers of A are increasing, the diagonal elements remain constant in
the powers of A. Since the off-diagonal elements of the powers are increasing, we have
that the row domination implies the compactness of A. Example 4.2 illustrates these
facts.

Example 4.2. Consider F = {A,B}, where

A =

0.5 0.4 0.3

0 0.6 0

0.4 0.3 0.5

 and B =

0.4 0.2 0.1

0.2 0.5 0.3

0 0.2 0.6

 .

F is row dominated for

S =

0.5 0.4 0.3

0.2 0.6 0.3

0.4 0.3 0.6

 and D =

0.4 0.2 0.1

0 0.5 0

0 0.2 0.5

 .

We note that

A⊗B =

0.4 0.4 0.3

0.2 0.5 0.3

0.4 0.3 0.5

 .

1202 SY-MING GUU, YUNG-YIH LUR, AND CHIN-TZONG PANG

One can see that the off-diagonal elements (comparing with A or B) are increasing,
yet the diagonal elements (comparing with A or B) are decreasing.

If F = {A}, then direct computation shows that we have A ≤ A⊗A = A⊗A⊗A.
Furthermore, the diagonal elements in the powers of A, A ⊗ A, A ⊗ A ⊗ A remain
unchanged.

5. Conclusions. Unlike the convergence of infinite products of a finite number
of matrices that has been studied quite extensively for several decades, the same issue
in the context of fuzzy matrices seems to be ignored. This paper concentrates on
the convergent aspects of infinite products of a finite number of fuzzy matrices, which
arise from the field of time-invariant discrete-time fuzzy systems with nonfuzzy inputs,
by exploring the fuzzy path system generated by these underlying fuzzy matrices.

Three main directions have been presented. First, similar to Fan and Liu’s decom-
position, we established the weak convergence of infinite products of a finite number
of fuzzy matrices in terms of certain (finite) Boolean matrices. Equivalence in strong
convergence of infinite products of fuzzy matrices and infinite products of the associ-
ated Boolean matrices were established as well. Further characterizations for infinite
products of fuzzy matrices to converge strongly to zero were given. Second, monotone
properties such as compactness and transitivity are useful to establish the convergence
of powers of a fuzzy matrix. By following the strategy of monotonicity, we constructed
suitable monotone conditions as sufficient conditions for the weak convergence. Un-
der the monotonicity, all the elements of infinite products are either nondecreasing
or nonincreasing. Third, a sufficient condition based on the concept of row domina-
tion was proposed to establish the weak convergence. Under this sufficient condition,
we showed that the off-diagonal elements of infinite products are increasing, yet the
diagonal elements are decreasing.

REFERENCES

[1] I. Daubechies and J. C. Lagarias, Sets of matrices all infinite products of which converge,
Linear Algebra Appl., 161 (1992), pp. 227–263.

[2] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press,
San Diego, 1980.

[3] Z.-T. Fan and D.-F. Liu, Convergence of the power sequence of a nearly monotone increasing
fuzzy matrix, Fuzzy Sets and Systems, 88 (1997), pp. 363–372.

[4] Z.-T. Fan and D.-F. Liu, On the oscillating power sequence of a fuzzy matrix, Fuzzy Sets and
Systems, 93 (1998), pp. 75–85.

[5] S.-M. Guu, H.-H. Chen, and C.-T. Pang, Convergence of products of fuzzy matrices, Fuzzy
Sets and Systems, to appear.

[6] D. J. Hartfiel, On infinite products of nonnegative matrices, SIAM J. Appl. Math, 26 (1974),
pp. 297–301.

[7] H. Hashimoto, Convergence of powers of a fuzzy transitive matrix, Fuzzy Sets and Systems,
9 (1983), pp. 153–160.

[8] K. H. Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York, 1982.
[9] K. H. Kim and F. W. Roush, Fuzzy matrix theory, in Analysis of Fuzzy Information, Vol. 1,

J. C. Bezdek, ed., CRC Press, Boca Raton, FL, 1987, pp. 107–129.
[10] G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty, and Information, Prentice-Hall, En-

glewood Cliffs, NJ, 1988.
[11] W. Kolodziejczyk, Convergence of powers of s-transitive fuzzy matrices, Fuzzy Sets and

Systems, 26 (1988), pp. 127–130.
[12] J.-X. Li, Periodicity of powers of fuzzy matrices, Fuzzy Sets and Systems, 48 (1992), pp.

365–369.
[13] J.-X. Li, Convergence of powers of controllable fuzzy matrices, Fuzzy Sets and Systems, 62

(1994), pp. 83–88.
[14] M. Mizumoto, Fuzzy Theory and Its Applications, Science Publications, 1988 (in Japanese).

ON INFINITE PRODUCTS OF FUZZY MATRICES 1203

[15] S. V. Ovchinnikov, Structure of fuzzy relations, Fuzzy Sets and Systems, 6 (1981), pp. 169–
195.

[16] F. Robert, Discrete Iterations: A Metric Study, Springer-Verlag, Berlin, 1986.
[17] D. Rosenblatt, On the graphs of finite idempotent Boolean relation matrices, J. Res. Nat.

Bur. Standards B, 67B (1963), pp. 249–259.
[18] B. De Schutter and B. De Moor, On the sequence of consecutive powers of a matrix in a

Boolean algebra, SIAM J. Matrix Anal. Appl., 21 (1999), pp. 328–354.
[19] M. G. Thomason, Convergence of powers of a fuzzy matrix, J. Math. Anal. Appl., 57 (1977),

pp. 476–480.
[20] L. A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci., 3 (1971), pp. 177–200.

CHOOSING REGULARIZATION PARAMETERS IN ITERATIVE
METHODS FOR ILL-POSED PROBLEMS∗

MISHA E. KILMER† AND DIANNE P. O’LEARY‡

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1204–1221

Abstract. Numerical solution of ill-posed problems is often accomplished by discretization
(projection onto a finite dimensional subspace) followed by regularization. If the discrete problem
has high dimension, though, typically we compute an approximate solution by projecting the discrete
problem onto an even smaller dimensional space, via iterative methods based on Krylov subspaces.
In this work we present a common framework for efficient algorithms that regularize after this second
projection rather than before it. We show that determining regularization parameters based on the
final projected problem rather than on the original discretization has firmer justification and often
involves less computational expense. We prove some results on the approximate equivalence of this
approach to other forms of regularization, and we present numerical examples.

Key words. ill-posed problems, regularization, discrepancy principle, iterative methods, L-
curve, Tikhonov, truncated singular value decomposition, projection, Krylov subspace

AMS subject classifications. 65F10, 65F22

PII. S0895479899345960

1. Introduction. Linear, discrete ill-posed problems of the form

min
x
‖Ax− b‖2(1.1)

arise, for example, from the discretization of first-kind Fredholm integral equations
and occur in a variety of applications. We shall assume that the full-rank matrix A is
m×n withm ≥ n. In discrete ill-posed problems, A is ill-conditioned and there is often
no gap in the singular value spectrum. Typically, the right-hand side b contains noise
due to measurement and/or approximation error. This noise, in combination with the
ill-conditioning of A, means that the exact solution of (1.1) has little relationship to
the noise-free solution and is worthless.

Instead, we use a regularization method to determine a solution that approximates
the noise-free solution. We replace the original operator by a better conditioned but
related one in order to diminish the effects of noise in the data. Sometimes this
regularized problem is too large to solve exactly. In that case, we typically project the
problem onto an even smaller dimensional space, perhaps via iterative methods based
on Krylov subspaces. Sometimes this projection provides enough regularization to
produce a good approximate solution, but often (see, for example, [28, 15]) additional
regularization is needed.

A fundamental decision to be made in such cases is whether to regularize before
or after the projection. One subtle issue is that the regularization parameter that
is optimal for the discretized problem may not be optimal for the lower-dimensional
problem actually solved by the iteration, and this leads to the research discussed in
this paper.

∗Received by the editors December 3, 1999; accepted for publication (in revised form) by P. C.
Hansen November 13, 2000; published electronically April 6, 2001. This work was supported by
the National Science Foundation under grants CCR 95-03126 and CCR 97-32022 and by the Army
Research Office, MURI grant DAAG55-97-1-0013.

http://www.siam.org/journals/simax/22-4/34596.html
†Department of Mathematics, Tufts University, Medford, MA 02155 (mkilme01@tufts.edu).
‡Department of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, MD 20742 (oleary@cs.umd.edu).

1204

CHOOSING REGULARIZATION PARAMETERS 1205

At first glance, there can appear to be a lot of work associated with the selection
of a good regularization parameter, and many algorithms proposed in the literature
are needlessly complicated, repeating a Krylov iteration multiple times. By regular-
izing after projection by the iterative method, so that we are regularizing the lower
dimensional problem that is actually being solved, this difficulty vanishes.

The purpose of this paper is to present a common framework for parameter se-
lection techniques applied to the problem resulting from iterative methods such as
Krylov subspace techniques. We show that by determining regularization parameters
based on the final projected problem rather than on the original discretization, we
can better approximate the optimal parameter and reduce the cost of solution.

Our paper is organized as follows. In section 2 we survey some methods for
choosing the corresponding regularization parameters. In section 3, we show how
any standard parameter selection technique for the original problem can be applied
instead to a projected problem obtained from an iterative method, greatly reducing
the cost without much degradation in the solution. We give experimental results in
section 4 and conclusions in section 5.

In the following we shall assume that b = btrue + e, where btrue denotes the
unperturbed data vector and e denotes zero-mean white noise. We will also assume
that btrue satisfies the discrete Picard condition; that is, the spectral coefficients of
btrue decay faster, on average, than the singular values.

Let ÛΣV̂ ∗ denote the singular value decomposition (SVD) ofA, where the columns
of Û and V̂ are the singular vectors, and the singular values are ordered as σ1 ≥ σ2 ≥
· · · ≥ σn. Then the solution (1.1) is given by

x =

n∑
i=1

û∗i b
σi
v̂i =

n∑
i=1

(
û∗i btrue
σi

+
û∗i e
σi

)
v̂i.(1.2)

As a consequence of the white noise assumption, |û∗i e| is roughly constant for all i,
while the discrete Picard condition guarantees that |û∗i btrue| decreases with i faster
than σi does. The matrix A is ill-conditioned, so small singular values magnify the
corresponding coefficients û∗i e in the second sum, and it is this large contribution of
noise that renders the exact solution x defined in (1.2) worthless. The following four
classes of regularization methods try in different ways to lessen the contribution of
noise. For further information on these methods, see, for example, [19, 15].

In Tikhonov regularization, (1.1) is replaced by

min
x
‖Ax− b‖22 + λ2‖Lx‖22,(1.3)

where λ is a positive scalar regularization parameter, and we choose L to be the
identity matrix I. Solving (1.3) is equivalent to solving

(A∗A+ λ2I)xλ = A∗b.(1.4)

In analogy with (1.2) we have

xλ =

n∑
i=1

(
σi û

∗
i btrue

σ2
i + λ

2
+
σi û

∗
i e

σ2
i + λ

2

)
v̂i.(1.5)

In truncated SVD we compute the regularized solution by truncating the ex-
pansion in (1.2) as

x	 =

	∑
i=1

û∗i b
σi
v̂i.(1.6)

1206 MISHA E. KILMER AND DIANNE P. O’LEARY

Here the regularization parameter is �, the number of terms retained in the sum. Rust
[33] introduced a related truncation strategy, including in the sum (1.2) only those
terms corresponding to a spectral coefficient û∗i b whose magnitude is greater than or
equal to some tolerance ρ, which can be regarded as the regularization parameter.

Solving (1.4) or (1.6) can be impractical if n is large, but fortunately, regular-
ization can be achieved through projection onto a k-dimensional subspace; see, for
example, [9]. The truncated SVD (TSVD) is one example, but projection is often
achieved through the use of iterative methods such as conjugate gradients, GMRES,
QMR, and other Krylov subspace methods [28, 1]. Krylov subspace algorithms tend
to produce, at early iterations, solutions that resemble xtrue more than later iterates.
Therefore, the choice of the regularization parameter k, the stopping point for the
iteration and the dimension of the subspace, is very important.

Another important family of regularization methods, termed hybrid methods
[19, 15], was introduced by O’Leary and Simmons [28]. These methods combine a
projection method with a direct regularization method such as TSVD or Tikhonov
regularization. Since the dimension k is usually small relative to n, regularization of
the restricted problem is much less expensive, but the end results can be very similar
to those achieved by applying the same direct regularization technique to the original
problem; see section 3.5.

2. Existing parameter selection methods. In this section, we discuss three
parameter selection techniques that have been proposed in the literature. They differ
in the amount of a priori information required as well as in the decision criteria.

The discrepancy principle [26] says that if δ is the expected value of ‖e‖2,
then the regularization parameter should be chosen so that the norm of the residual
corresponding to the regularized solution xreg is τδ; that is,

‖Axreg − b‖2 = τδ,(2.1)

where τ > 1 is some predetermined real number. Note that as δ → 0, xreg → xtrue.
Other methods based on knowledge of the variance are given, for example, in [3, 13, 7].

Generalized cross-validation (GCV) [11] does not depend on a priori knowl-
edge about the noise variance. We find the parameter λ that minimizes the GCV
functional

G(λ) =
‖(I −AA�λ)b‖22

(trace(I −AA�λ))2
,(2.2)

where A�λ denotes the matrix that maps the right-hand side b onto the regularized

solution xλ. In Tikhonov regularization, for example, A�λ is (A∗A+ λ2I)−1A∗.
The L-curve, the plot of the norm of the regularized solution versus the cor-

responding residual norm for each of a set of regularization parameter values, was
introduced by Lawson and popularized by Hansen [17, 25]. Intuitively, the best reg-
ularization parameter should lie on the corner of the L-curve, since for values higher
than this, the residual increases without reducing the norm of the solution much,
while for values smaller than this, the norm of the solution increases rapidly without
much decrease in residual. In practice, only a few points on the L-curve are computed
and the corner is located by estimating the point of maximum curvature [20].

The appropriate choice of regularization parameter—especially for projection
algorithms—is a difficult problem, and each method has severe flaws. The discrep-
ancy principle is convergent as the noise goes to zero, but it relies on information that

CHOOSING REGULARIZATION PARAMETERS 1207

Table 2.1
Summary of additional flops needed to compute the regularization parameter for each of four

regularization methods with various parameter selection techniques. Notation: q is the cost of mul-
tiplication of a vector by A; p is the number of discrete parameters that must be tried; k is the
dimension of the projection; m and n are problem dimensions.

Basic cost Added cost
Disc. GCV L-curve

Tikhonov O(mn2) O(p(m+ n)) O(p(n+m)) O(p(m+ n))
TSVD O(mn2) O(m) O(m) O(m+ n)
Rust’s TSVD O(mn2) O(m logm) O(m logm) O(m logm)
Projection O(qk) 0 O(q) O(q)

is often unavailable or erroneous. Even with a correct estimate of the variance, the
solutions tend to be oversmoothed [21, p. 96]. (See also the discussion in section 6.1 of
[17].) One noted difficulty with GCV is that G can have a very flat minimum, making
it difficult to determine the optimal λ numerically [37]. The L-curve is usually more
tractable numerically, but its limiting properties are nonideal. The solution estimates
fail to converge to the true solution as n→∞ [38] or as the error norm goes to zero
[8]. All methods that assume no knowledge of the error norm— including GCV—have
this latter property [8].

For further discussion and references about parameter choice methods, see [7, 19].
The cost of these methods is tabulated in Table 2.1.

2.1. Previous work on parameter choice for hybrid methods. At first
glance, it appears that for Tikhonov regularization, multiple systems of the form
(1.4) must be solved in order to evaluate candidate values of λ for the discrepancy
principle or the L-curve.

Chan and Ng [5] note that the systems involve matrices C(λ) = A∗A + λI,
which they solve using a Galerkin projection method on a sequence of “seed” systems.
Although economical in storage, this is unnecessarily expensive in time because they
do not exploit the fact that for each fixed k, the Krylov subspace Kk(A∗b, C(λ)) is
the same for all values of λ.

Frommer and Maass [10] propose two algorithms for approximating the λ that
satisfies the discrepancy principle (2.1). The first is a “truncated conjugate gradient
(CG)” approach, solving k systems of the form (1.4), truncating the iterative process
early for large λ, and using previous solutions as starting guesses for later problems.
Like Chan and Ng, this algorithm does not exploit the redundant Krylov subspaces.
In the second method, however, they update the CG iterates for all k systems simul-
taneously, stopping their “shifted CG” algorithm when ‖Axλ − b‖2 ≤ τδ for one of
their λ values. The methods we propose in section 3 will usually require less work
than the shifted CG algorithm because of less overhead.

Calvetti, Golub, and Reichel [4] use upper and lower bounds on the L-curve, gen-
erated by the matrices C(λ) using a Lanczos bidiagonalization process, to approximate
the best parameter for Tikhonov regularization before projection.

Kaufman and Neumaier [22] suggest an envelope guided conjugate gradient ap-
proach for the Tikhonov L-curve problem. Their method is necessarily somewhat
more expensive than ours because they maintain nonnegativity constraints on the
variables.

Substantial work has also been done on TSVD regularization of the projected
problems. Björck, Grimme, and van Dooren [2] use GCV to determine the truncation
point for the projected SVD. Their emphasis is on maintaining an accurate factor-

1208 MISHA E. KILMER AND DIANNE P. O’LEARY

ization when many iterations are needed, using full reorthogonalization and implicit
restart strategies. O’Leary and Simmons [28] take the viewpoint that the problem
should be preconditioned appropriately so that a massive number of iterations is un-
necessary. That viewpoint is echoed in this current work, so we implicitly assume that
the problem has been preconditioned [28] so that A = M−1Â and b = M−1b̂, where

Â and b̂ are the original data and M is a preconditioning matrix. See [16, 27, 24, 23]
for preconditioners appropriate for certain types of ill-posed problems.

3. Regularizing the projected problem. In this section we categorize a dozen
approaches to regularization of the projected problem that arise from using Krylov
methods, giving enough detail to make the costs apparent and to show that the ideas
are easy to program. Many Krylov methods have been proposed; for ease of exposition
we focus on just one of these: the LSQR algorithm of Paige and Saunders [30].

LSQR iteratively computes a bidiagonalization related to that introduced by
Golub and Kahan [12]. After k iterations, it has effectively computed three ma-
trices: an upper-bidiagonal matrix Bk and two matrices Uk ≡ [u1, . . . , uk] and Vk ≡
[v1, . . . , vk], with orthonormal columns, related by

b = β1u1 = β1Uk+1e1 ,(3.1)

AVk = Uk+1Bk ,(3.2)

ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1 ,(3.3)

where ei denotes the ith unit vector.
In numeric computations, the columns of Uk and Vk can fail to be orthonormal.

This has never given us convergence difficulties, but if it becomes troublesome, there
are well-known techniques to handle it [31, 32, 36, 6].

Now suppose we want to solve

min
x∈S
‖b−Ax‖2,(3.4)

where S denotes the k-dimensional subspace spanned by the first k vectors vi. The
solution we seek is of the form x(k) = Vky

(k) for some vector y(k) of length k. Define
r(k) = b−Ax(k) to be the corresponding residual and observe that

r(k) = β1u1 −AVky(k)
= Uk+1(β1e1 −Bky(k)).

Since Uk+1 has, in exact arithmetic, orthonormal columns, the projected problem we
wish to solve is

min
y(k)
‖β1e1 −Bky(k)‖2.(3.5)

Solving this minimization problem is mathematically equivalent to solving the normal
equations involving the bidiagonal matrix

B∗
kBky

(k) = β1B
∗
ke1,(3.6)

although more stable means are used in practice. Typically k is small, so reorthogo-
nalization to combat round-off error might or might not be necessary. The matrix Bk
may be ill-conditioned because some of its singular values approximate some of the
small singular values of A. Therefore, solving the projected problem might not yield

CHOOSING REGULARIZATION PARAMETERS 1209

Table 3.1
Summary of flops for projection plus inner regularization with various parameter selection

techniques, in addition to the O(qk) flops required for projection itself. Here k is the number of
iterations (i.e., the size of the projection) taken and p is the number of discrete parameters that
must be tried.

Projection plus – Disc. GCV L-curve
Tikhonov O(pk) O(k3) O(pk)
TSVD O(k3) O(k3) O(k3)
Rust’s O(k3) O(k3) O(k3)

Table 3.2
Summary of additional storage for each of four regularization methods under each of three

parameter selection techniques. The original matrix is m × n with q nonzeros, p is the number of
discrete parameters that must be tried, k iterations are used in projection, and the factorizations are
assumed to take q̂ storage.

Basic cost Added cost
Disc. GCV L-curve

Tikhonov O(q̂) O(1) O(p) O(p)
TSVD O(q̂) O(1) O(m) O(m)
Rust’s TSVD O(q̂) O(m) O(m) O(m)
Projection O(kn) O(1) O(k) O(k)

Table 3.3
Summary of storage, not including storage for the matrix, for projection plus inner regulariza-

tion approach and various parameter selection techniques. Here p denotes the number of discrete
parameters tried. Each of these regularization methods also requires us to save the basis V or else
regenerate it in order to reconstruct x.

Projection plus – Disc. GCV L-curve
Tikhonov O(1) O(p) O(p)
TSVD O(1) O(k) O(k)
Rust’s TSVD O(k) O(k + p) O(k + p)

a good solution y(k), but we can use any of the methods of section 2 to regularize this
projected problem; we discuss options in detail below.

If we used the algorithm GMRES [35] instead of LSQR, we would derive similar
relations. Here, though, the U and V matrices are identical and the B matrix is
upper Hessenberg rather than bidiagonal. Conjugate gradients would yield similar
relationships.

For cost comparisons for these methods, see Tables 2.1 and 3.1. Storage compar-
isons are given in Tables 3.2 and 3.3.

3.1. Regularization by projection. As mentioned earlier, if we terminate the
iteration after k steps, we have projected the solution onto a k-dimensional subspace
and this has a regularizing effect that is sometimes sufficient. Determining the best
value of k can be accomplished, for instance, by one of our three methods of parameter
choice. Efficient implementation relies on LSQR recurrences for determining ‖r(k)‖
and ‖x(k)‖ cheaply, without computing either r(k) or x(k) [30, 34].

For the discrepancy principle. we stop the iteration for the smallest value of
k for which ‖rk‖ ≤ τδ.

To apply GCV, we note that in LSQR (see section 3.1), the operator AA� is

given by Uk+1BkB
†
kU

∗
k+1, where B

†
k is the pseudoinverse of Bk. Thus from (2.2), the

1210 MISHA E. KILMER AND DIANNE P. O’LEARY

GCV functional is [19]

G(k) =
‖r(k)‖22
(m− k)2 .

We note that there are in fact two distinct definitions for A� and hence two definitions
for the denominator in G(k); for small enough k, the two are comparable, and the
definition we use here is less expensive to calculate [19, section 7.4].

To determine the L-curve associated with LSQR, values of ‖r(k)‖2 and ‖x(k)‖2
are needed for several values of k. In using this method or GCV, one must go a few
iterations beyond the optimal k in order to verify the optimum [20].

3.2. Regularization by projection plus TSVD. If projection alone does not
regularize, then we can compute the TSVD regularized solution to the projected
problem (3.6). We need the SVD of the (k + 1)× k matrix Bk. This requires O(k

3)
operations but can also be computed from the SVD of Bk−1 in O(k2) operations [14].

Clearly, we still need to use some type of parameter selection technique to find a
good value of �(k). First, notice that it is easy to compute the norms of the residual
and the solution resulting from retaining only the � largest singular values. If ξjk is
the component of e1 in the direction of the jth left singular vector of Bk, and if γj
is the jth singular value (ordered largest to smallest), then the residual and solution
2-norms are

‖r(k)	 ‖ = β1

 k+1∑
j=	(k)+1

ξ2jk

1/2

and ‖x(k)
	 ‖ = β1

	(k)∑
j=1

(
ξjk
γj

)2

1/2

.(3.7)

Using this fact, we can use any of our three sample methods.
For the discrepancy principle we choose �(k) to be the smallest value for which

‖r(k)	 ‖ ≤ τδ, if such a value exists. As k increases, the number of neglected singular
values will be monotonically nondecreasing (exact arithmetic).

The GCV functional for the kth projected problem is obtained by substituting
Bk for A and B�k for A�, and substituting the expression of the residual in (3.7) for
the numerator in (2.2):

Gk(�) =
β2

1

∑k+1
j=	+1 ξ

2
jk

(k − �+ 1)2
.

We now have many L-curves, one for each value of k. The coordinate values in
(3.7) form the discrete L-curve for a given k, from which the desired value of �(k) can
be chosen without forming the approximate solutions or residuals.

3.3. Regularization by projection plus Rust’s TSVD. As in standard
TSVD, to use Rust’s version of TSVD for regularization of the projected problem
requires computing the SVD of the (k + 1)× k matrix Bk. Using the previous nota-
tion, Rust’s strategy is to set

y(k)ρ =
∑
j∈I(k)

ρ

ξjk
γj
q
(k)
j ,

where q
(k)
j are the right singular vectors of Bk and I(k)

ρ = {i < k + 1 : |ξik| > ρ}. We
focus on three ways to determine ρ.

CHOOSING REGULARIZATION PARAMETERS 1211

For the discrepancy principle, the norm of the residual of the regularized solu-

tion is given by ‖r(k)ρ ‖2 = β1(
∑
j �∈I(k)

ρ
ξ2jk)

1/2. According to the discrepancy principle,

we must choose ρ so that the residual is less than τδ. In practice, this would require
that the residual be evaluated by sorting the values |ξik| and adding terms in that
order until the residual norm is less than τδ.

For GCV, let card(I(k)
ρ) denote the cardinality of the set I(k)

ρ . From (2.2), it
is easy to show that the GCV functional corresponding to the projected problem for
this regularization technique is given by

Gk(ρ) =
β2

1

∑
j∈I(k)

ρ
ξ2jk

(k + 1− card(I(k)
ρ))2

.

In practice, for each k we first sort the values |ξik|, i = 1, . . . , k, from smallest to
largest. Then we define k discrete values ρj to be equal to these values with ρ1 being
the smallest. We set ρ0 = 0. Note that because the values of ρj , j = 1, . . . , k, are the
sorted magnitudes of the SVD expansion coefficients, we have

Gk(ρj) =
β2

1(|ξ(k+1),k|2 +
∑j
i=1 ρ

2
i)

(j + 1)2
, j = 0, . . . , k.

Finally, we take the regularization parameter to be the ρj for which Gk(ρj) is a
minimum.

As with standard TSVD, we now have one L-curve for each value of k. For fixed
k, if we define the ρj , j = 0, . . . , k, as we did for GCV above and we reorder the γi in
the same way that the |ξik| were reordered when sorted, then we have

‖x(k)
ρj ‖22 = β2

1

k∑
i=j+1

(
ρi
γi

)2

; ‖r(k)ρj ‖22 = β2
1

(
|ξ(k+1),k|2 +

j∑
i=1

ρ2i

)
, j = 0, . . . , k.

When these solution and residual norms are plotted against each other as functions
of ρ, the value of ρj corresponding to the corner is selected as the regularization
parameter.

3.4. Regularization by projection plus Tikhonov. Finally, let us consider
using Tikhonov regularization to regularize the projected problem (3.5) for some in-
teger k. Thus, for a given regularization parameter λ, we would like to solve

min
y
‖β1e1 −Bky‖22 + λ2‖y‖22.(3.8)

The solution y
(k)
λ satisfies

(V ∗
k A

∗AVk + λ2I)y
(k)
λ = V ∗

k A
∗b.(3.9)

We need to address how to choose a suitable value of λ.
For the discrepancy principle, note that in exact arithmetic, we have

r
(k)
λ = b−Ax(k)

λ = U∗
k+1(β1e1 −Bky(k)λ).(3.10)

Hence ‖Bky(k)λ −β1e1‖2 = ‖r(k)λ ‖2. Therefore, to use the discrepancy principle requires
that we choose λ so that ‖r(k)λ ‖2 ≤ τδ with p discrete trial values λj . For a given k,

1212 MISHA E. KILMER AND DIANNE P. O’LEARY

we take λ to be the largest value λj for which ‖r(k)λ ‖2 < τδ, if it exists; if not, we
increase k and test again.

For GCV, let us define (Bk)
†
λ to be the operator mapping the right-hand side of

the projected problem onto the regularized solution of the projected problem:

(Bk)
†
λ = (B∗

kBk + λ
2I)−1B∗

k .

Given the SVD of Bk as above, the denominator in the GCV functional defined for
the projected problem (refer to (2.2)) is

k + 1−

k∑
j=1

γ2
j

γ2
j + λ

2

2

.

The numerator is simply ‖r(k)λ ‖22. For values of k � n, it is feasible to compute the
singular values of Bk.

The L-curve is comprised of the points (‖Bky(k)λ − β1e1‖2, ‖y(k)λ ‖2). But using
(3.10) and the orthonormality of the columns of Vk, we see these points are precisely

(‖r(k)λ ‖2, ‖x(k)
λ ‖2). For p discrete values of λ, λi, 1 ≤ i ≤ p, the quantities ‖r(k)λi

‖2
and ‖x(k)

λi
‖2 can be obtained by updating their respective estimates at the (k − 1)st

iteration.1

3.5. Correspondence between direct regularization and projection plus
regularization. In this section, we demonstrate why the projection plus regulariza-
tion approaches can be expected to yield regularized solutions nearly equivalent to
the direct regularization counterpart. The following theorem, a simple corollary of
the invariance of Krylov sequences under shifts, establishes the desired result for the
case of Tikhonov vs. projection plus Tikhonov.

Theorem 3.1. Fix λ > 0 and define x
(k)
λ to be the kth iterate of conjugate

gradients applied to the Tikhonov problem

(A∗A+ λ2I)x = A∗b.

Let y
(k)
λ be the exact solution to the regularized projected problem

(B∗
kBk + λ

2I)y = B∗
k(βe1),

where Bk, Vk are derived from the original problem A∗A = A∗b, and set z
(k)
λ = Vky

(k)
λ .

Then z
(k)
λ = x

(k)
λ .

Proof. See [15, p. 301].
Let us compare TSVD regularization applied to the original problem to the pro-

jection plus TSVD approach. Direct computation convinces us that the two methods
compute the same regularized solution if k = n and arithmetic is exact. An approxi-
mate result holds in exact arithmetic when we take k iterations, with � ≤ k ≤ n. Let
the SVD of Bk be denoted by Bk = ZkΓkQ

T
k , and define the s× � matrix Ws,	 as

Ws,	 =

[
I
0

]
.

1The technical details of the approach are found in [29, pp. 197–198], from which we obtain

‖r(k)
λ
‖ =
√
‖r̄(k)

λ
‖2 − λ2‖x(k)

λ
‖2. The implementation details for estimating ‖x(k)

λ
‖ and ‖r̄(k)

λ
‖ were

taken from the Paige and Saunders algorithm at http://www.netlib.org/linalg/lsqr.

CHOOSING REGULARIZATION PARAMETERS 1213

Then the regularized solution obtained from the TSVD regularization of the projected
problem is

x(k)
reg = Vk(QkWk,	Γ

−1
k,1W

T
k+1,	Z

T
k U

T
k b),

where Γk,1 denotes the leading � × � principal submatrix of Γk. If k is taken to be

sufficiently larger than � so that VkQkWk,	 ≈ V̂ Wn,	, W
T
k+1,	Z

T
k U

T
k+1 ≈WT

n,	Û
T , and

Γk,1 ≈ Σ1 with Σ1 the leading principal submatrix of Σ, then we expect x
(k)
reg to be a

good approximation to x	. This is made more precise in the following theorem.

Theorem 3.2. Let k ≥ � such that

(VkQkWk,) = V̂1 + E1 with ‖E1‖ ≤ δ1 � 1,

(Uk+1ZkWk+1,) = Û1 + E2 with ‖E2‖ ≤ δ2 � 1,

where V̂1 and Û1 contain the first � columns of V̂ and Û , respectively. Let D =
diag(d1, . . . , d) satisfy

Γk,1 = Σ1 +D with |di| ≤ δ3 � 1.

Then

‖x(k)
reg − x	‖ ≤ max

1≤i≤	
1

σi + di

(
δ3
σ	

+ 3max(δ1, δ2)

)
‖b‖.

Proof. Using the representations x	 = V̂1Σ
−1
1 ÛT1 b and x

(k)
reg = (V̂1+E1)Γ

−1
k,1(Û

T
1 +

ET2)b, we obtain

‖x(k)
reg − x	‖ ≤ (‖Γ−1

k,1 − Σ−1
1 ‖+ ‖Γ−1

k,1‖ ‖E2‖+ ‖E1‖ ‖Γ−1
k,1‖+ ‖E1‖ ‖Γ−1

k,1‖ ‖E2‖)‖b‖ ,

and the conclusion follows from bounding each term.

Note that typically σ	 � σn so that 1/σ	 is not too large. The bound says that the
better LSQR captures the first � singular values and vectors, the more we are assured
the solution obtained by projection plus TSVD is close to the TSVD regularized
solution to the original problem. For some results relating to the value of k necessary
for the hypothesis of the theorem to hold, refer to the theory of Kaniel-Paige and
Saad [31, section 12.4]. There is no universal recipe, but if k is large enough that the
projected problem satisfies the discrete Picard condition, then this is some indication
that the approximability property holds.

4. Numerical results. In this section, we present three numerical examples. All
experiments were carried out using Matlab with IEEE double precision floating point
arithmetic. Where noted, we made use of certain routines in Hansen’s Regularization
Tools [18]. Since the exact, noise-free solutions were known in these examples, we
evaluated the methods using the relative, 2-norm difference between the regularized
solutions and the exact solutions. When we applied Rust’s method to the original
problem, the ρi were taken to be the magnitudes of the spectral coefficients of b sorted
in increasing order.

1214 MISHA E. KILMER AND DIANNE P. O’LEARY

Table 4.1
Example 1: comparison of ‖xtrue − xreg‖2/‖xtrue‖2 for each of four regularization methods

on the original problem, where the regularization method was chosen using methods indicated. The
parameter values selected for each method are indicated in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 2.2E−2 (8.0E−2) 2.2E−2 (4.0E−2) 4.3E−2 (1.3E−1) 2.1E−2
TSVD (6) 1.1E−1 (9) 1.6E−2 (10) 1.6E−2 (9) 1.6E−2
Rust’s TSVD (1.6E−2) 2.5E−2 (5.3E−5) 2.2E + 4 (1.6E−2) 2.5E−2 (1.6E−2) 2.5E−2
Projection (5) 2.5E−2 (5) 2.5E−2 (10) 2.2E−2 (9) 2.2E−2

4.1. Example 1. The 200 × 200 matrix A and true solution xtrue for this ex-
ample were generated using the function phillips in Hansen’s Regularization Tools.
We generated btrue = Axtrue and then computed the noisy vector b as b + e, where
e was generated using the Matlab randn function and was scaled so that the noise

level, ‖e‖
‖btrue‖ , was 5× 10−3. The condition number of A was on the order of 4× 107.

Table 4.1 displays the values of the regularization parameters chosen when the
original problem was solved using one of the three parameter selection techniques
together with one of the four regularization methods. We set τδ for the discrepancy
principle to be 8E−2, close to the value ‖e‖2 = 7.65E−2.

The last column in the table gives the value of the parameter that yielded a
regularized solution with minimum relative error. Several values of λ were tested:
log10 λ = −4,−3.9, . . . , 0. The relative error values for regularized solutions corre-
sponding to the parameters are also presented in this table. The GCV and L-curve
parameters for projection were determined after 15 iterations. Note that using GCV
to determine a regularization parameter for Rust’s TSVD resulted in an extremely
noisy solution with huge error.

The corners of the L-curves for the Tikhonov, projection, and TSVDmethods were
determined using Hansen’s lcorner function, with the modification that sometimes
points not strictly on the portion of the curve that was L-shaped (that is, points
with very large residual or very small residual) were not considered (otherwise, a
false corner resulted); this was most often a concern with the TSVD method. Since
the corner was so clearly defined for Rust’s method but the function had trouble
automatically finding the corner, the corner was picked manually.

Next, we projected using LSQR and then regularized the projected problem with
one of the other three regularization methods together with one of the three parameter
selection techniques. Results at iterations 10 and 25 are given in Tables 4.2 and 4.3,
respectively. As before, the lcorner routine was used to determine the corners of the
respective L-curves, with the modifications as mentioned above.

Comparing Tables 4.1 and 4.2, we observe that using either the discrepancy prin-
ciple or the L-curve, 10 steps of projection plus Tikhonov gives results as good as
or much better than if those techniques had been used with Tikhonov on the orig-
inal problem. A similar statement can be made for projection plus Rust’s TSVD
when any of the 3 selection methods are used and for projection plus TSVD when
the discrepancy principle is used. After 25 iterations, the errors for projection plus
Tikhonov or Rust’s TSVD closely resemble the errors in Table 4.1 with one exception.
We note that at 25 iterations, the parameters chosen for projection plus Tikhonov by
the discrepancy principle or the L-curve method and their corresponding errors are
identical to those chosen for the original problem.

In fact, the L-curve, GCV, and discrepancy methods applied to the projected

CHOOSING REGULARIZATION PARAMETERS 1215

Table 4.2
Example 1, iteration 10: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. The parameter values for each method are indicated in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 2.1E−2 (2.5E−2) 2.5E−2 (2.0E−4) 2.2E−2 (2.0E−2) 2.0E−2
TSVD (7) 2.5E−2 (7) 2.5E−2 (10) 2.2E−2 (10) 2.2E−2
Rust’s TSVD (9.7E−3) 2.5E−2 (9.7E−3) 2.5E−2 (5.5E−4) 2.2E−2 (9.1E−3) 2.1E−2

Table 4.3
Example 1, iteration 25: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. The parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 2.2E−2 (2.0E−1) 2.3E−2 (4.0E−2) 4.3E−2 (1.3E−1) 2.1E−2
TSVD (17) 2.5E−2 (17) 2.5E−2 (21) 2.4E−2 (19) 1.6E−2
Rust’s TSVD (2.0E−2) 2.5E−2 (2.0E−2) 2.5E−2 (1.5E−2) 2.5E−2 (1.5E−2) 2.5E−2

problem with Tikhonov regularization consistently chose the same parameter for fu-
ture iterations (see Figure 4.1, for instance), and correspondingly the errors remain
constant; however, the results at earlier iterations are actually better than after the
parameter on the projected problem has converged to the L-curve parameter on the
original. For the projection plus TSVD, both the discrepancy principle and GCV
method yielded parameters for which the solutions had similar errors from one iter-
ation to the next for at least the first 80 iterations (see the top of Figure 4.2); the
L-curve behaved slightly less consistently for iterations beyond about 50. Discrepancy
and GCV when applied to projection plus Rust’s TSVD also gave consistent solutions
for about 40 iterations, after which the GCV solutions began to grow very large in
error, much like GCV applied to the original problem (refer to the bottom of Figure
4.2).

4.2. Example 2. The 3969× 3969 matrix A for this example was a symmetric,
block Toeplitz matrix with Toeplitz blocks formed according to A = T ⊗T . Here T is
a symmetric, banded Toeplitz matrix with entries Ti,j = ti−j ; the nonzero entries in
the first row were tk = (sin(k/B)/(k/B))2, 0 ≤ k ≤ 4, B = .8. The singular values of
this matrix range from 5.7 to 8.6×10−8 but do not decay very quickly, and the matrix
has a condition number of about 7× 107. x was obtained by stacking by columns the
63 × 63 image that was zero except for a rectangle with value 1 from rows 20 to 49,
columns 4 to 24, and another rectangle with value .8 at rows 23 to 53, columns 29
to 52. We generated btrue = Axtrue and then computed the noisy vector b as b + e,
where e was generated using the Matlab randn function and was scaled so that the

noise level, ‖e‖
‖btrue‖ , was 2× 10−3.

We generated our discrete λi using log10 λ = −4,−4.9, . . . , 0. The norm of the
noise vector was 3.66E−1, so we took τδ = 4.00E−1 for the discrepancy principle.

In this example, when no preconditioning was used, it took 90 iterations for
LSQR to reach a minimum relative error of 7.93E−2. Likewise, the dimension k of
the projected problem had to be at least 90 to obtain good results with the projection-
plus-regularization approaches and even larger for the parameter selection techniques
to work well on the projected problem. Therefore, for the projection based techniques,
we chose to work with a left preconditioned system (refer to the discussion at the end
of section 2.1). Our preconditioner was chosen as in [23] where the parameter defining
the preconditioner was taken to be m = 2080. Results for right preconditioning were

1216 MISHA E. KILMER AND DIANNE P. O’LEARY

0 10 20 30 40 50 60 70 80
10

−4

10
−3

10
−2

10
−1

10
0

iteration

λ k

Projection plus Tikhonov

0 10 20 30 40 50 60 70 80
10

−2

10
−1

10
0

iteration

rela
tive

 err
or

Projection plus Tikhonov

Fig. 4.1. Example 1. Top: λk as selected by L-curve method; bottom: relative error for
corresponding solution. The solid line indicates the optimal value on the original problem, and the
dashed line indicates value selected by L-curve on the original problem.

10 20 30 40 50 60 70 80
0.01

0.015

0.02

0.025

0.03

0.035

0.04

iteration

erro
r

Projection plus TSVD; errors w/ param. selected by Discrep. and GCV

Discrepancy
GCV

10 20 30 40 50 60 70 80
10

−2

10
−1

10
0

10
1

10
2

iteration

erro
r

Projection plus Rust TSVD; errors w/ param. selected by Discrep. and GCV

Discrepancy
GCV

Fig. 4.2. Example 1. Relative error between computed and exact solutions for projection
plus TSVD (top) and projection plus Rust’s TSVD (bottom) when the parameters for the projected
problem are selected by either the discrepancy principle (*) or GCV method (o).

similar, although the errors were not quite as small. On other examples, though, we
found that right preconditioning by this type of preconditioner was only effective in
certain instances, even when left preconditioning was effective.2

The results of the resulting regularization for the original problem parameters are
given in Table 4.4. We note that GCV with Rust’s TSVD was ineffective. Also, after
50 iterations on the left preconditioned system, the GCV functional for projection was
still decreasing, so the value in Table 4.4 corresponds to the value after 50 iterations.
The L-curve parameter in the table was determined after 20 iterations.

Although we projected using LSQR, we note that since the matrix and precondi-
tioner were symmetric, we could have used MINRES as in [23]. The results in each
case at iterations 10, 20, and 40 are given in Tables 4.5, 4.6, and 4.7, respectively, and
we summarize results up to 60 iterations in the discussion below.

Again, we used the lcorner routine to determine the corners of the respective
L-curves, with the modification that for 20 iterations and beyond for TSVD, we first
removed points on the curve with residual norm greater than 10 to avoid detecting a
false corner.

2In the language of [23], right preconditioning worked well only when K was a very good approx-
imation to C so that right preconditioning did not mix noise into early iterates; left preconditioning
was not nearly as sensitive to the approximation on the transition and noise subspaces.

CHOOSING REGULARIZATION PARAMETERS 1217

Table 4.4
Example 2: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for each of four regularization methods on

the original problem. The parameter values are given in parentheses. The projection was performed
on a left preconditioned system.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 8.5E−2 (5.0E−2) 8.0E−2 (3.2E−3) 5.3E−1 (6.3E−2) 7.8E−2
TSVD (2073) 9.9E−2 (2534) 8.1E−2 (1509) 1.2E−1 (2521) 8.0E−2
Rust’s TSVD (2.1E−2) 7.6E−2 (9.2E−2) 4.0E + 3 (1.6E−2) 2.3E−1 (2.0E−2) 7.6E−2
Projection (2) 9.7E−2 (50+) 2.7E−1 (13) 8.3E−2 (8) 7.9E−2

Table 4.5
Example 2, iteration 10: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (7.9E−2) 7.9E−2 (6.3E−2) 7.9E−2 (2.0E−4) 7.9E−2 (5.0E−2) 7.9E−2
TSVD (6) 9.9E−2 (6) 7.9E−2 (8) 9.8E−2 (10) 7.9E−2
Rust’s TSVD (2.2E−1) 8.5E−2 (2.6E−1) 9.9E−2 (2.3E−1) 9.9E−2 (3.9E−4) 7.9E−2

Table 4.6
Example 2, iteration 20: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (7.9E−2) 7.9E−2 (6.3E−2) 7.8E−2 (2.0E−4) 1.1E−1 (6.3E−2) 7.8E−2
TSVD (12) 9.9E−2 (12) 9.9E−2 (19) 8.3E−2 (19) 8.3E−2
Rust’s TSVD (1.6E−1) 9.5E−1 (7.9E−2) 1.1E−1 (4.6E−2) 1.1E−1 (1.3E−1) 8.3E−2

Table 4.7
Example 2, iteration 40: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (7.9E−2) 7.9E−2 (6.3E−2) 7.8E−2 (2.0E−1) 2.3E−1 (6.3E−2) 7.9E−2
TSVD (24) 9.9E−2 (24) 9.9E−2 (28) 9.9E−2 (38) 8.3E−2
Rust’s TSVD (1.5E−1) 9.2E−2 (5.8E−2) 2.3E−1 (1.6E−1) 9.2E−2 (1.5E−1) 9.2E−2

Discrepancy and GCV consistently chose the same regularization parameter and
hence gave the same error for projection plus Tikhonov for 10 to 60 iterations. From
the tables, we see that these are not the same parameters as those chosen when
applied to the original problem and that, in fact, the solutions for projection plus
Tikhonov have smaller error. The errors for the solutions obtained using any of the
3 parameter selection methods applied to find � for projection plus TSVD were also
consistent for 10 to 60 iterations, as alluded to in the tables. Figure 4.3 shows the
errors from iterations 5 to 60 for projection plus Tikhonov and projection plus TSVD
when GCV is used. For Rust’s TSVD, the L-curve and discrepancy rules are fairly
consistent at picking parameters that give solutions with similar error from iteration
to iteration. We note that GCV for Rust’s TSVD picked parameters giving solutions
with reasonably small errors, even though GCV for Rust’s TSVD on the original
problem failed, giving a solution with huge error. A similar statement can be made
for the L-curve with projection plus Tikhonov.

Summarizing, we observe two phenomena. First, the parameters selected to regu-
larize the projected problem can be different from those chosen on the original problem
but still yield solutions of better or comparable error. Second, as this and the previous

1218 MISHA E. KILMER AND DIANNE P. O’LEARY

5 10 15 20 25 30 35 40 45 50 55 60

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12
Projection plus Tikhonov and TSVD; errors for param. chosen via GCV

TSVD
Tikhonov

Fig. 4.3. Example 2: Errors for projection plus Tikhonov (*) and projection plus TSVD (o)
when the regularization parameter for the projected problem was given by GCV.

Table 4.8
Example 3: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for each of the 4 regularization methods on

the original problem. Parameter values are given in parentheses. Those for GCV and the L-curve
are those selected after 30 iterations.

Disc. GCV L-curve Optimal
Tikhonov (1.0) 3.9E−1 (1.3) 4.0E−1 (5.0E−1) 4.1E−1 (7.9E−1) 3.9E−1
TSVD (232) 4.2E−1 (400) 1.3E+4 (261) 4.0E−1 (241) 4.0E−1
Rust’s TSVD (3.0E−1) 7.4E+2 (1.8E−1) 1.2E+4 (3.7) 4.6E−1 (3.9E−1) 4.6E−1
Projection (9) 4.0E−1 (23) 4.3E−1 (16) 4.0E−1 (12) 3.9E−1

example show, loss of orthogonality does not seem to hamper the parameter selection
process, at least not for a reasonable number of iterations. This may be due to the
fact that the parameter selection methods are applied directly to the projected prob-
lem: for example, the denominator of our GCV function for projection plus TSVD is
different from the denominator of the GCV function given in [2, (3.8)].

4.3. Example 3. Our final example is from the field of computed tomography.
In this example, the true vector x corresponded to the 20 × 20 image created with
the phantom.m function. The matrix A was the corresponding 561 × 400 Radon
transform matrix where it is understood that the data was taken at angles from 0
to 179 degrees in increments of 11 degrees. The matrix itself was computed (albeit
naively) in Matlab column by column using successive applications of radon.m on
images of point sources. The singular values fall off very slowly at first (the first 260
of the 400 singular values range between 18 and about 1) after which they fall off
rapidly, resulting in a condition number for A of about 107.

Since the norm of the noise vector was about 3.44, we took the tolerance for the
discrepancy principle to be 3. The discrete values λi used for Tikhonov regularization
were 51 evenly log-spaced points between 10−4 and 101. The results computed using
discrepancy, GCV, and L-curve methods for Tikhonov, TSVD, Rust’s TSVD, and
projection on the original problem are given in Table 4.8.

Table 4.9 gives the results after 10 iterations of LSQR. Notice that the errors
for the projection plus Tikhonov solutions via GCV and L-curve are slightly better
than the corresponding error for Tikhonov without projection at only 10 iterations.
Also interesting is the fact that at 10 iterations the discrepancy and GCV methods
for projection plus Rust’s TSVD give solutions with reasonable errors, whereas these
techniques give solutions with very large errors when applied to the original problem.

CHOOSING REGULARIZATION PARAMETERS 1219

Table 4.9
Example 3, iteration 10: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.0) 4.0E−1 (2.2) 4.0E−1 (1.6E−4) 3.9E−1 (4.0E−1) 4.0E−1
TSVD (10) 3.9E−1 (1) 8.6E−1 (5) 8.3E−1 (10) 3.9E−1
Rust’s TSVD (1.0) 3.9E−1 (1.5) 4.0E−1 (2.2) 4.0E−1 (0.0) 3.9E−1

Table 4.10
Example 3, iteration 40: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.0) 3.9E−1 (1.2) 4.1E−1 (5.0E−1) 4.1E−1 (7.9E−1) 3.9E−1
TSVD (37) 4.0E−1 (15) 7.8E−1 (39) 4.1E−1 (38) 4.0E−1
Rust’s TSVD (6.0E−1) 4.2E−1 (1.2) 4.1E−1 (2.7E−1) 4.1E−1 (6.6E−1) 4.0E−1

10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

iteration

ρ k

Projection−plus−Rust TSVD; param chosen via GCV

10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

iteration

erro
r

Projection−plus−Rust TSVD; param chosen via GCV

Fig. 4.4. Example 3. Top: Value of ρk selected by GCV for projection plus Rust’s TSVD;
Bottom: Relative error of the corresponding solutions.

Table 4.10 shows the parameters and the errors after 40 iterations. From these
results, we see that the L-curve for projection plus Tikhonov eventually gives the
same regularization parameter and same solution error as when applied to the larger
problem, and we observed this to be true for several iterations beyond 40. Again, we
see that discrepancy and GCV used with projection plus Rust’s TSVD is effective,
whereas they are ineffective when used on the original problem; we observed this
behavior well beyond 40 iterations (see Figure 4.4).

5. Conclusions. In this work we have given a common framework for methods
based on regularizing a projected problem. We have shown that determining regular-
ization parameters based on the final projected problem rather than on the original
discretization has firmer mathematical justification and often involves less computa-
tional expense. We presented results that in fact the regularized solution obtained by
backprojecting the TSVD or Tikhonov solution to the projected problem is almost
equivalent to applying TSVD or Tikhonov to the original problem, where “almost”
depends on the size of k. The examples indicate the practicality of the method and
illustrate that our regularized solutions are usually as good as those computed using
the original system, and they can be computed in a fraction of the time, using a
fraction of the storage. We note that similar approaches are valid using other Krylov
subspace methods for computing the projected problem.

1220 MISHA E. KILMER AND DIANNE P. O’LEARY

In this work, we did not address potential problems from loss of orthogonality
as the iterations progress. In this discussion, we did, however, assume that either k
was naturally very small compared to n or that preconditioning had been applied to
enforce this condition. Possibly for this reason, we found that for modest k, round-off
did not appear to degrade either the LSQR estimates of the residual and solution
norms or the computed regularized solution in the following sense: the regularization
parameters chosen via the projection-regularization and the corresponding regularized
solutions were comparable to those chosen and generated for the original discretized
problem. Another possible reason for the success of our approach is that we chose
parameters for the projected problem directly, rather than for the backprojected,
larger problem. In our experiments, we found that the parameters selected usually
leveled out after a few iterations. The stagnation of the parameters themselves may
suggest when k is large enough.

For the Tikhonov approach in this paper, we have assumed that the regularization
operator L was the identity or was related to the preconditioning operator; this allowed

us to efficiently compute ‖r(k)λ ‖ and ‖x(k)
λ ‖ for multiple values of λ efficiently for each k.

If L is not the identity but is invertible, we can first implicitly transform the problem
to “standard form” [19]. With Ā = AL−1, x̄ = Lx, we can solve the equivalent system

min
x̄

= ‖Āx̄− b‖22 + λ2‖x̄‖22.

Then the projection plus regularization schemes may be applied to this transformed
problem. Clearly the projection based schemes will be useful as long as solving systems
involving L can be done efficiently.

REFERENCES

[1] Å. Björck, A bidiagonalization algorithm for solving large and sparse ill-posed systems of
linear equations, BIT, 28 (1988), pp. 659–670.

[2] Å. Björck, E. Grimme, and P. V. Dooren, An implicit shift bidiagonalization algorithm for
ill-posed systems, BIT, 34 (1994), pp. 510–534.

[3] P. Blomgren and T. F. Chan, Modular Solvers for Constrained Image Restoration Problems,
Tech. Report, Mathematics Department, UCLA, Los Angeles, 1999.

[4] D. Calvetti, G. Golub, and L. Reichel, Estimation of the L-curve via Lanczos bidiagonal-
ization, BIT, 39 (1999), pp. 603–619.

[5] T. Chan and M. Ng, Galerkin projection method for solving multiple linear systems, SIAM J.
Sci. Comput., 21 (1999), pp. 836–850.

[6] J. Cullum and R. A. Willoughby, Lanczos and the computation in specified intervals of the
spectrum of large, sparse real symmetric matrices, in Sparse Matrix Proceedings 1978, I. S.
Duff and G. W. Stewart, eds., SIAM, Philadelphia, 1979, pp. 220–255.

[7] L. Desbat and D. Girard, The “minimum reconstruction error” choice of regularization
parameters: Some more efficient methods and their application to deconvolution problems,
SIAM J. Sci. Comput., 16 (1995), pp. 1387–1403.

[8] H. W. Engl and W. Grever, Using the L-curve for determining optimal regularization pa-
rameters, Numer. Math., 69 (1994), pp. 25–31.

[9] H. E. Fleming, Equivalence of regularization and truncated iteration in the solution of ill-posed
image reconstruction problems, Linear Algebra Appl., 130 (1990), pp. 133–150.

[10] A. Frommer and P. Maass, Fast CG-based methods for Tikhonov-Phillips regularization,
SIAM J. Sci. Comput., 20 (1999), pp. 1831–1850.

[11] G. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosing
a good ridge parameter, Technometrics, 21 (1979), pp. 215–223.

[12] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J.
Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), pp. 205–224.

[13] W. Groetsch, Theory of Tikhonov Regularization for Fredholm Equations of the First Kind,
Pitman, Boston, 1984.

CHOOSING REGULARIZATION PARAMETERS 1221

[14] M. Gu and S. Eisenstat, A Stable and Fast Algorithm for Updating the Singular Value De-
composition, Tech. Report RR-939, Department of Computer Science, Yale University, New
Haven, 1993.

[15] M. Hanke and P. C. Hansen, Regularization methods for large-scale problems, Surveys Math.
Indust., 3 (1993), pp. 253–315.

[16] M. Hanke, J. Nagy, and R. Plemmons, Preconditioned iterative regularization for ill-posed
problems, in Numerical Linear Algebra and Scientific Computing, L. Reichel, A. Ruttan,
and R. S. Varga, eds. 1993, pp. 141–163.

[17] P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34
(1992), pp. 561–580.

[18] P. C. Hansen, Regularization tools: A Matlab package for analysis and solution of discrete
ill-posed problems, Numer. Algorithms, 6 (1994), pp. 1–35.

[19] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear
Inversion, SIAM Monogr. Math. Model Comput., SIAM, Philadelphia, 1998.

[20] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization of discrete
ill-posed problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487–1503.

[21] B. Hofmann, Regularization for Applied Inverse and Ill-Posed Problems, Teubner-Texte
Mathe. 85, Teubner, Leipzig, 1986.

[22] L. Kaufman and A. Neumaier, Regularization of ill-posed problems by envelope guided con-
jugate gradients, J. Comput. Graph. Statist., 6 (1997), pp. 451–463.

[23] M. Kilmer, Regularization of ill-posed problems using (symmetric) Cauchy-like precondition-
ers, in Proceedings of the SPIE Annual Meeting, Advanced Signal Processing Algorithms,
Architectures, and Implementations VIII, 1998, SPIE, San Diego, CA, pp. 381–392.

[24] M. Kilmer and D. P. O’Leary, Pivoted Cauchy-like preconditioners for regularized solution
of ill-posed problems, SIAM J. Sci. Stat. Comput., 21 (1999), pp. 88–110.

[25] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood
Cliffs, NJ, 1974.

[26] V. A. Morozov, On the solution of functional equations by the method of regularization, Soviet
Math. Dokl., 7 (1966), pp. 414–417.

[27] J. Nagy, R. Plemmons, and T. Torgersen, Iterative image restoration using approximate
inverse preconditioning, IEEE Trans. Image Process., 5 (96), pp. 1151–1163.

[28] D. P. O’Leary and J. A. Simmons, A bidiagonalization-regularization procedure for large scale
discretization of ill-posed problems, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 474–489.

[29] C. C. Paige and M. A. Saunders, Algorithm 583, LSQR: Sparse linear equations and least
squares problems, ACM Trans. Math. Software, 8 (1982), pp. 195–209.

[30] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse
least squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71.

[31] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ,
1980.

[32] B. N. Parlett and D. S. Scott, The Lanczos algorithm with selective orthogonalization,
Math. Comp., 33 (1979), pp. 217–238.

[33] B. W. Rust, Truncating the Singular Value Decomposition for Ill-Posed Problems, Tech. Re-
port NISTIR 6131, Mathematical and Computational Sciences Division, National Institute
of Standards and Technology, Gaithersburg, MD, 1998.

[34] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,
1996.

[35] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[36] H. D. Simon, Analysis of the symmetric Lanczos algorithm with reorthogonalization methods,
Linear Algebra Appl., 61 (1984), pp. 101–131.

[37] J. M. Varah, Pitfalls in the numerical solution of linear ill-posed problems, SIAM J. Sci.
Statist. Comput., 4 (1983), pp. 164–176.

[38] 1993, pp. 141–163. C. R. Vogel, Non-convergence of the L-curve regularization parameter
selection method, Inverse Problems, 12 (1996), pp. 535–547.

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES∗

M. A. PETERSEN† AND A. C. M. RAN‡

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1222–1244

Abstract. We consider the problem of parametrizing the set of square minimal spectral factors
of a rational matrix function taking positive semidefinite values on the imaginary axis in terms of
invariant subspaces and of the minimal unitary left divisors of a certain unitary function. We shall
use an approach which involves null-pole triples.

Key words. spectral factorization, minimal factorization, null-pole triples

AMS subject classifications. 47A68, 47A56, 15A24

PII. S0895479899357619

1. Introduction. In what follows, we will consider an m ×m rational matrix
function, Φ(λ), that has positive semidefinite values on the imaginary axis, iR. Note
that, in this case, it is possible that Φ may have poles or zeros on iR. Furthermore,
we shall assume that Φ(∞) = Im, and we denote the McMillan degree of Φ by 2n.
We say thatW (λ) is a minimal square spectral factor of Φ(λ) ifW is a rational m×m
matrix function and

Φ(λ) =W (λ)W (−λ)∗(1.1)

is a minimal factorization. In other words, the McMillan degree of Φ is twice that ofW.
Here we denote the McMillan degree of W by δ(W), and we assume that δ(Φ) = 2n.
We note that if Φ(λ) = W (λ)W (−λ)∗, then Φ takes positive semidefinite values on
the imaginary axis.

Various aspects of the problem of parametrizing all minimal square spectral fac-
tors of a given spectrum (i.e., a given positive semidefinite rational matrix function)
were discussed in papers such as [CG], [C], and [FMP]. For instance, in the first of
these, the problem was approached from a computational viewpoint. More recently,
in [R2], the author considered a rational matrix function, Φ, that has real Hermitian,
positive definite values on the imaginary axis and is invertible at infinity. Here, the
constraint imposed in [FMP] that Φ should not have a pole which is also a zero was
removed. In particular, it was proved that we may determine a parametrization of
all minimal square spectral factors of a positive semidefinite rational matrix function
in terms of invariant subspaces (see also [R1] and [RR3]). Also, it was proved that
there is a one-to-one correspondence between the minimal unitary factorizations of
some unitary matrix and the set of minimal square spectral factors. A strongly re-
lated parametrization was given in [F2]. Also, in [FG] and [LMP] minimal nonsquare
spectral factors were studied, but with additional requirements on the behavior of
the function Φ(λ) for pure imaginary values of λ. As in [R1], [R2], [F2], and [FMP]
we shall restrict ourselves to the case of square spectral factors, but as in [R1] and
[RR3] we allow for poles and zeros on the line. The problem of finding minimal square

∗Received by the editors June 22, 1999; accepted for publication (in revised form) by U. Helmke
August 23, 2000; published electronically April 6, 2001.

http://www.siam.org/journals/simax/22-4/35761.html
†Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch

7700, Cape Town, South Africa (mpetersen@yebo.co.za).
‡Divisie Wiskunde en Informatica, Faculteit Exacte Wetenschappen, Vrije Universiteit, Amster-

dam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands (ran@cs.vu.nl).

1222

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES 1223

spectral factors plays an important role in stochastic realization theory. For a detailed
account we refer to the fundamental papers [LP1] and [LP2].

In our discussion, we show that results comparable to those in [R2] and [FMP] may
be obtained in the positive semidefinite case. Here, the situation is more complicated,
as we have to take into account the possible poles and zeros on the imaginary axis.
However, a similar parametrization is possible, as we shall show. This parametrization
is in terms of the zero and pole structure in the open right half plane and on the
imaginary axis of the given positive semidefinite function.

Next, we define notions which are crucial in the development of the approach
that will be adopted later. First, given a nonempty set σ in the complex plane C,
we denote by Rm(σ) the set of rational vector functions with values in C

m that are
analytic outside σ. Now, let Φ(λ) be a regular m × m rational matrix function,
taking the value I at infinity. Introduce the space of rational vector functions S(Φ) =
{Φ(λ)f(λ) | f(λ) ∈ Rm(σ)}. (In case σ is the unit disc one can compare this space to
the usual invariant subspace ΦH2; in the study of rational matrix functions it plays
a comparable role.) The space S(Φ) gives information on the poles and zeros of Φ
inside σ. More precisely, a collection of matrices

ω = {(C1, A1); (A2, B2); Γ :M→ L}
is called a σ−null-pole triple of Φ(λ) if A1 : M → M and A2 : L → L both have
spectra in σ, and for C1 :M→ C

m and B2 : C
m → L we have that the pair (C1, A1)

is observable and (A2, B2) is controllable, and finally, the set S(Φ) is equal to{
C1(λ−A1)

−1x+ h(λ) | x ∈M, h ∈ Rm(σ)

such that
∑
ω∈σ

Resλ=ω[(λ−A2)
−1B2h(λ)] = Γx

}
.

Note that M and L are finite dimensional vector spaces here. As a consequence we
have that the pair (C1, A1) is a right pole pair of Φ over σ; in particular, there is
a matrix B1 such that Φ(λ) − C1(λ − A1)

−1B1 is analytic on σ. Likewise, the pair
(A2, B2) is a left null pair of Φ over σ, so there is a matrix C2 such that Φ(λ)

−1 −
C2(λ−A2)

−1B2 is analytic on σ. Finally, it can be shown that the coupling operator
Γ satisfies the Sylvester equation

ΓA1 −A2Γ = B2C1.

For a complete account of the theory connected to these notions, see, e.g., [BGR]. In
what follows typical choices for σ will be C+,C− or iR, i.e., the open right half plane,
the open left half plane, or the imaginary axis.

A null-pole triple is said to be global if Γ is invertible. In that case, the realization
I + C1(λ−A1)

−1Γ−1B2 is minimal. It defines a rational matrix function W (λ), say,
the inverse of which is W (λ)−1 = I + C1Γ

−1(λ − A2)
−1B2. Moreover, in that case,

W (λ) is a minimal divisor of Φ(λ) (see [GK] and also [BGR]).
The most important element of our strategy is that it must take pure imaginary

poles and zeros of Φ into account. The idea is the following: let {(C,A); (A×, B); Γ} be
a global null-pole triple for Φ, i.e., Φ(λ) = I+C(λ−A)−1Γ−1B is a minimal realization
of Φ, and assume that Φ takes positive semidefinite values on the imaginary axis. Let
H = −H∗ be the unique invertible skew-Hermitian matrix such that HA = −A∗H

1224 M. A. PETERSEN AND A. C. M. RAN

andHΓ−1B = C∗. (Such anH exists by Kalman’s state space isomorphism theorem.)
We have a representation of all minimal square spectral factors in terms of invariant
Lagrangian subspaces. As the sign condition holds (both for the pair (A,H) and the
pair (A×, H); see, e.g., [RR1], [RR2]) the part of the global triple of such a square
spectral factor corresponding to its pure imaginary poles and zeros does not depend
on the factor. In other words, this part of the global triple is the same for all factors,
modulo, of course, similarity. A proof of this fact is given in Lemma 3.1. We also
investigate the spectral factor W+ (resp., W−) which has the property that all its
zeros and poles are in the closed right (resp., left) half plane. For these functions we
consider a global triple, which is decomposed into the part corresponding to the open
right (resp., left) half plane and the part corresponding to iR. The strategy outlined
above is discussed in more detail in section 3 of this paper. It should be noted that
the main tools here come from the theory of null-pole triples [BGR]. Alternatively,
parametrizations of all minimal square spectral factors can be based on the approach
using [BGKvD] (see also [BGK] and [Sa]). The latter approach was taken in [R1] and
[RR3].

In section 2, we consider a first parametrization in the spirit of [RR3] but using
null-pole triples. The third section contains a statement and proof of the main re-
sult. Here we make use of the theory about invariant subspaces and null-pole triples.
In section 4, we explain how a right minimal square spectral factor W−(λ) can be
obtained from a left minimal square spectral factor W+(λ) by using the approach
outlined here instead of the approach using [BGK] and [BR2]. Some comments on
notation are in order here. In [FMP], [LP1], and [LP2] the notation W+ is used for
the stable spectral factor for which the zeros are in the right half plane (instead of
as here, the antistable function for which all zeros are in the right half plane). This
notation is different from ours, which is more in line with the notation used in the lit-
erature concerning Wiener–Hopf factorizations. That any choice here leads inevitably
to confusion for at least some of the readers who are accustomed to a different con-
vention is something we, as authors, regret, but have to live with. In section 5, we
show that it is also possible to solve the problem of parametrizing the set of square
minimal spectral factors in terms of the minimal unitary left divisors of the unitary
function U(λ) = W+(λ)

−1W−(λ). Also, in section 6 we determine a parametrization
in terms of the solutions of algebraic Riccati equations (compare [W], [FMP], [GLR],
[R4], and [S]).

2. Parametrization in terms of invariant subspaces I. In this section, we
discuss a first parametrization of all minimal square spectral factors of a positive
semidefinite rational matrix function in terms of certain invariant subspaces. First,
we provide an alternative formulation of the main results of [RR3] (compare also [R1]).
Suppose that

Φ(λ) = I + C(λ−A)−1Γ−1B(2.1)

is a minimal realization of Φ, and its inverse is represented by

Φ(λ)−1 = I − CΓ−1(λ− Z)−1B.

In other words, Θ = {(C,A), (Z,B),Γ} is a global null-pole triple for Φ. By Kalman’s
state space isomorphism theorem, there exist two unique invertible skew-Hermitian
matrices Hp and Hz such that

HpA = −A∗Hp , HpΓ
−1B = C∗,(2.2)

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES 1225

and

HzZ = −Z∗Hz , HzB = Γ
∗−1C∗.(2.3)

One easily shows (using the uniqueness of Hp and Hz) that

Γ∗HzΓ = Hp.(2.4)

Let M be an A-invariant Hp-Lagrangian subspace (i.e., HpM = M⊥), and let
M× be a Z-invariantHz-Lagrangian subspace. Let PM× be the orthogonal projection
alongM×, and denote by L its image. Then

{(C|M, A|M), (PM×Z|L, PM×B), PM×Γ|M}
is a corestriction of Θ in the sense of [GK].

Lemma 2.1. PM×Γ|M :M→ L is invertible.
Proof. Since dimM× = dimL = dimM, all we have to show is that PM×Γ|M is

injective. Suppose that PM×Γx = 0 for some x ∈ M. Then x ∈ M∩ Γ−1M×. Put
A× = A − Γ−1BC = Γ−1ZΓ. Then Γ−1M× is A×-invariant and Hp-Lagrangian. It
follows from Proposition 2.1.1 in [RR3] thatM∩ Γ−1M× = (0).

Next, we put

W (λ) = I + C|M(λI −A|M)−1(PM×Γ|M)−1PM×B.

According to Theorem 6.1 in [GK] we have that W (λ) is a minimal left divisor of
Φ(λ). Moreover, according to the proof of Theorem 6.1 in [GK] it is the minimal
left divisor corresponding to the supporting projection Π onto Γ−1M× along M,
associated with the realization (2.1). Thus W (λ) = I + C(λ − A)−1ΠΓ−1B. Then
we may apply Theorem 2.1.2 in [RR3] to see that W (λ)−1Φ(λ) = W (−λ̄)∗. Also, all
minimal square spectral factors are obtained in this way.

In fact, the remarks above prove the following result.
Theorem 2.2. Let Φ(λ) take positive semidefinite values on the imaginary axis,

and assume that Φ(∞) = I. Let {(C,A), (Z,B),Γ} be a global null-pole triple for
Φ, and assume that Hp and Hz satisfy the requirements (2.2), (2.3), and (2.4). Then
there is a one-to-one correspondence between all minimal square spectral factors W (λ)
of Φ(λ) and pairs of subspaces M, M× that are A-invariant Hp-Lagrangian and Z-
invariant Hz-Lagrangian, respectively. This one-to-one correspondence is given by

W (λ) = I + C|M(λ−A|M)−1(PM×Γ|M)−1PM×B.

This result provides a parametrization of all minimal square spectral factors of
a positive semidefinite rational matrix function in terms of invariant subspaces. In
the next section, we will investigate a parametrization in terms of other invariant
subspaces. For the case where Γ = I the parametrization above is comparable to the
one given in [R1].

3. Parametrization in terms of invariant subspaces II. First, we introduce
some notation. We denote the left half plane by C−, and the right half plane by C+.
Let us denote by W+ the minimal square factor which is analytic in the open left half
plane, C

0
− , and has an analytic inverse there.

Next, we give a brief description of the pole and null pair structure for the (left)
minimal square spectral factor, W+. Let τ+ = {(C+, A+); (Z+, B+); Γ+} denote the
null-pole triple of W+(λ) corresponding to the open right half plane. Suppose that

τ0 = {(C0, A0); (Z0, B0); Γ0}

1226 M. A. PETERSEN AND A. C. M. RAN

is an iR-null-pole triple for W+. A right pole pair for W+ may be represented as

[
(C+ C0),

(
A+ 0
0 A0

)]
,

where σ(A+) ⊂ C+ and σ(A0) ⊂ iR. Also, a left null pair for W+ may be given by

[(
Z+ 0
0 Z0

)
,

(
B+

B0

)]
,

where σ(Z+) ⊂ C+ and σ(Z0) ⊂ iR. Furthermore, we represent the coupling matrix
associated with W+ by

Γ =

(
Γ+ Γ12

Γ21 Γ0

)
.

Note that the formula for W+(λ) may be expressed in realization form as follows (see,
e.g., [BR1] and [BGR]):

W+(λ) = I +
(
C+ C0

) [
λI −

(
A+ 0
0 A0

)]−1(
Γ+ Γ12

Γ21 Γ0

)−1(
B+

B0

)
.

Here Γ12 and Γ21 are the unique solutions of the Lyapunov equations

Γ21A+ − Z0Γ21 = B0C+,

Γ12A0 − Z+Γ12 = B+C0.

Also we have the following representation for the inverse of W+(λ):

W+(λ)
−1 = I − (C+ C0

)(Γ+ Γ12

Γ21 Γ0

)−1 [
λI −

(
Z+ 0
0 Z0

)]−1(
B+

B0

)
.

For the sake of computations in what follows, it is useful to write

Γ−1 =

(
Γ+ Γ12

Γ21 Γ0

)−1

= Λ =

(
Λ+ Λ12

Λ21 Λ0

)
.

We know, from [R1] (see also [R3]) that if λ0 ∈ iR ∩ σ(A), then all partial
multiplicities of A at λ0 are even and all signs in the sign characteristics of (iA, iH)
are +1 (see [GLR] for the definition of the sign characteristic). Likewise, if λ0 ∈
iR ∩ σ(A×), then all partial multiplicities of A× at λ0 are even and all signs in the
sign characteristics of (iA×, iH) are −1. The fact that A0 and Z0 is the same for all
minimal square spectral factors is a direct consequence of this sign condition. In fact,
we have the following result which characterizes the iR null-pole triple for all minimal
square spectral factors. Our result is as follows.

Lemma 3.1. An iR null-pole triple for an arbitrary minimal square spectral factor
of Φ (modulo similarity), is always given by

τ0 = {(C0, A0); (Z0, B0); Γ0}.

Proof. Suppose that W1 and W2 are any two minimal square spectral factors.
Then Ũ(λ) =W1(λ)

−1W2(λ) is a unitary matrix, and henceW1(λ)
−1W2(λ) is analytic

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES 1227

on iR and does not have zeros there. Furthermore, by Theorem 4.5.8 of [BGR], the
iR null-pole triples of W1(λ) and W2(λ) are the same.

In the next theorem we give a parametrization of all minimal square spectral
factors of Φ in terms of the triples τ0 and τ+. The idea behind the proof is to use τ0
and τ+ and the corresponding realization of W+(λ) to first find a minimal realization
of Φ(λ) and its inverse Φ(λ)−1. Then, using the realization of W+(λ)

−1 we obtain
another minimal realization of Φ(λ)−1. We then have two minimal realizations of
Φ(λ)−1 and may use Kalman’s state space isomorphism theorem to obtain a global
triple Θ of Φ. Next, we use a result of [GK], combined with Theorem 2.2, to obtain
all minimal square spectral factors via certain corestrictions of Θ.

Theorem 3.2. The parametrization of all minimal square spectral factors of a
positive semidefinite rational matrix function may be described as follows. Suppose
that

W+(λ) = I +
(
C+ C0

) [
λI −

(
A+ 0
0 A0

)]−1(
Λ+ Λ12

Λ21 Λ0

)(
B+

B0

)

is a minimal realization of the left canonical spectral factor. Furthermore, assume
that P and P1 are the unique solutions of the Lyapunov equations

A+P + PA∗
+ = (Λ+B+ + Λ12B0)(Λ+B+ + Λ12B0)

∗,(3.1)

A0P1 + P1A
∗
+ = (Λ21B+ + Λ0B0)(Λ+B+ + Λ12B0)

∗,

respectively. Also, let Q and Q1 be the unique solutions of the Lyapunov equations

Z∗
+Q+QZ+ = −(C+Λ+ + C0Λ21)

∗(C+Λ+ + C0Λ21),(3.2)

Z∗
0Q1 +Q1Z+ = −(C+Λ12 + C0Λ0)

∗(C+Λ+ + C0Λ21),

respectively. Suppose that N is an A∗
+-invariant subspace and N× is a Z∗

+-invariant
subspace. Furthermore, let PN× denote the orthogonal projection onto N× and let PN
denote the orthogonal projection onto N . Then every minimal square spectral factor
may be expressed as

W (λ) = I +
(
C+|N⊥ C0 C+P + C0P1 − (Λ+B+ + Λ12B0)

∗|N
)

.

λI −

A+|N⊥ 0 0

0 A0 0
0 0 −A∗

+|N

−1

Γ−1
W(3.3)

·

 (I − PN×)B+

B0

PN×(QB+ +Q∗
1B0 + (C+Λ+ + C0Λ21)

∗)

,

where ΓW is the matrix

(
(I − PN×)Γ+(I − PN) (I − PN×)Γ12 (I − PN×)(Γ+P + Γ12P1)PN

Γ21(I − PN) Γ0 (Γ21P + Γ0P1)PN
−PN× (QΓ+ + Q∗

1Γ21)(I − PN) −PN× (QΓ12 + Q∗
1Γ0) PN× (Λ∗

+ + (QΓ+ + Q∗
1Γ21)P + (QΓ12 + Q∗

1Γ0)P1)PN

)
.

1228 M. A. PETERSEN AND A. C. M. RAN

Also, the inverse of W (λ) may be expressed as

W (λ)−1 = I − (C+|N⊥ C0 C+P + C0P1 − (Λ+B+ + Λ12B0)
∗|N
)
Γ−1
W

.

λI −

(I − PN×)Z+|N×⊥ 0 0

0 Z0 0
0 0 −PN×Z∗

+|N×

−1

(3.4)

·

 (I − PN×)B+

B0

PN×(QB+ +Q∗
1B0 + (C+Λ+ + C0Λ21)

∗)

.

Proof. First, we compute Φ(λ) =W+(λ)W+(−λ̄)∗ as
Φ(λ) = I + C(λI −A)−1B = I +

(
C+ C0 −(B∗

+ B∗
0

)
Λ∗)

.

λI −

A+ 0
0 A0

−Λ
(
B+

B0

)(
B∗

+ B∗
0

)
Λ∗

0 0
0 0

−A∗
+ 0
0 −A∗

0

−1

Λ

(
B+

B0

)

C∗
+

C∗
0

.(3.5)

Observe that with

H =

0 0 I 0
0 0 0 I
−I 0 0 0
0 −I 0 0

we have HA = −A∗H and HB = C∗. Moreover, H is skew-Hermitian.
From an earlier observation, we recall that

W+(λ)
−1 = I − (C+ C0

)
Λ

[
λI −

(
Z+ 0
0 Z0

)]−1(
B+

B0

)

= I − (C+ C0

) [
λI − Λ

(
Z+ 0
0 Z0

)
Γ

]−1

Λ

(
B+

B0

)
.

It is clear that we are able to find an explicit formula for Φ(λ)−1 by using these
expressions for W+(λ)

−1. For the associated main operator appearing in the formula
(3.5) for Φ(λ)−1, we have

A× =

A+ 0
0 A0

−Λ
(
B+

B0

)(
B∗

+ B∗
0

)
Λ∗

0 0
0 0

−A∗
+ 0
0 −A∗

0

−

Λ

(
B+

B0

)

C∗
+

C∗
0

(
C+ C0 −(B∗

+ B∗
0

)
Λ∗),

which, after using(
A+ 0
0 A0

)
Λ− Λ

(
Z+ 0
0 Z0

)
= Λ

(
B+

B0

)(
C+ C0

)
Λ,

is seen to equal

A× =

Λ

(
Z+ 0
0 Z0

)
Γ 0

−
(
C∗

+

C∗
0

)(
C+ C0

) −Γ∗
(
Z∗

+ 0
0 Z∗

0

)
Λ∗

.

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES 1229

Hence, we may express Φ(λ)−1 as

Φ(λ)−1 = I − (C+ C0 −(Λ+B+ + Λ12B0)
∗ −(Λ21B+ + Λ0B0)

∗)

λI −

Λ

(
Z+ 0
0 Z0

)
Γ 0

−
(
C∗

+

C∗
0

)(
C+ C0

) −Γ∗
(
Z∗

+ 0
0 Z∗

0

)
Λ∗

−1

Λ+B+ + Λ12B0

Λ21B+ + Λ0B0

C∗
+

C∗
0

 .(3.6)

Utilizing the relations above, we are able to determine a more transparent formula
for Φ. Let

S =

I 0 P P ∗

1

0 I P1 0
0 0 I 0
0 0 0 I

.

By using the equations in (3.1), we are able to compute that

S−1AS =

A+ 0 0 0
0 A0 0 A24

0 0 −A∗
+ 0

0 0 0 −A∗
0

,

where A24 = −(Λ21B++Λ0B0)(Λ21B++Λ0B0)
∗. Thus, we may rewrite the expression

for Φ(λ), appearing in (3.5), as

Φ(λ) = I +
(
C+ C0 C+P + C0P1 − (Λ+B+ + Λ12B0)

∗ C+P
∗
1 − (Λ21B+ + Λ0B0)

∗)
λI −

A+ 0 0 0
0 A0 0 A24

0 0 −A∗
+ 0

0 0 0 −A∗
0

−1

Λ+B+ + Λ12B0 − PC∗

+ − P1C
∗
0

Λ21B+ + Λ0B0 − P1C
∗
+

C∗
+

C∗
0

.(3.7)

In what follows, we put Hp = S∗HS. Note that Hp is skew-Hermitian.
We use Q and Q1 to find a more suitable formula for Φ

−1 given by (3.6). Put

T =

 Λ 0

Γ∗
(
Q Q∗

1

Q1 0

)
Γ∗

.

Using the Lyapunov equations in (3.2), we have

T−1A×T =

Z+ 0 0 0
0 Z0 0 0
0 0 −Z∗

+ 0
0 Z42 0 −Z∗

0

,

where Z42 = −(C0Λ0 + C+Λ12)
∗(C0Λ0 + C+Λ12). Thus, we have

Φ(λ)−1 = I − (C11 C12 C13 C14

)

λI −

Z+ 0 0 0
0 Z0 0 0
0 0 −Z∗

+ 0
0 Z42 0 −Z∗

0

−1

B+

B0

QB+ +Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

Q1B+ + (C+Λ12 + C0Λ0)
∗

 ,(3.8)

1230 M. A. PETERSEN AND A. C. M. RAN

where
(
C11 C12 C13 C14

)
=
(
C+ C0 −(B∗

+ B∗
0

)
Λ∗)T .

We also introduce Hz = T ∗HT . Obviously, Hz is skew-Hermitian.

By considering formulas (3.7) and (3.8) we may deduce a right pole pair and a
left null pair for Φ. As a right pole pair for Φ, from (3.7), we have

(
C+ C0 C+P + C0P1 − (Λ+B+ + Λ12B0)

∗ C+P
∗
1 − (Λ21B+ + Λ0B0)

∗),

A+ 0 0 0
0 A0 0 A24

0 0 −A∗
+ 0

0 0 0 −A∗
0

 .

From (3.8), a left null pair for Φ may be given by

Z+ 0 0 0
0 Z0 0 0
0 0 −Z∗

+ 0
0 Z42 0 −Z∗

0

,

B+

B0

QB+ +Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

Q1B+ + (C+Λ12 + C0Λ0)
∗

 .

Moreover, by considering (3.7), an alternative expression for (3.8) will be

Φ(λ)−1 = I +
(
C+ C0 C+P + C0P1 − (Λ+B+ + Λ12B0)

∗ C+P
∗
1 − (Λ21B+ + Λ0B0)

∗)

(λI − Ã)−1

Λ+B+ + Λ12B0 − PC∗

+ − P1C
∗
0

Λ21B+ + Λ0B0 − P1C
∗
+

C∗
+

C∗
0

,

where the associate matrix is given by

Ã =

A+ 0 0 0
0 A0 0 A24

0 0 −A∗
+ 0

0 0 0 −A∗
0

−

Λ+B+ + Λ12B0 − PC∗

+ − P1C
∗
0

Λ21B+ + Λ0B0 − P1C
∗
+

C∗
+

C∗
0

· (C+ C0 C+P + C0P1 − (Λ+B+ + Λ12B0)
∗ C+P

∗
1 − (Λ21B+ + Λ0B0)

∗).
It is important to note that both of these realizations for Φ(λ)−1 can be shown to be
minimal. In this case, it is well known that they are similar. The matrix that gives
the similarity is given by

ΓΦ = T−1S =

Γ Γ

(
P P ∗

1

P1 0

)

−
(
Q Q∗

1

Q1 0

)
Γ Λ∗ −

(
Q Q∗

1

Q1 0

)
Γ

(
P P ∗

1

P1 0

)

.

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES 1231

Hence, a global null-pole triple for Φ may be represented by

Θ =

(
C+ C0 C+P + C0P1 − (Λ+B+ + Λ12B0)

∗ C+P
∗
1 − (Λ21B+ + Λ0B0)

∗),

A+ 0 0 0
0 A0 0 A24

0 0 −A∗
+ 0

0 0 0 −A∗
0

 ;

Z+ 0 0 0
0 Z0 0 0
0 0 −Z∗

+ 0
0 Z42 0 Z∗

0

,

B+

B0

QB+ +Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

Q1B+ + (C+Λ12 + C0Λ0)
∗

 ; ΓΦ

.

Also, the matrices Hp and Hz satisfy the conditions (2.2), (2.3), and (2.4) for the
realization of Φ(λ) connected to this global null-pole triple.

Now, let N be A∗
+-invariant, and let N× be Z∗

+-invariant. Denote by PN and
PN× the orthogonal projections onto N and N×, respectively. Put

M =

x
y
z
0

 | x ∈ N⊥, y arbitrary , z ∈ N

(3.9)

and M̃ = S−1M. Then M̃ is A-invariant and H-Lagrangian. The latter assertion is
readily checked from the fact thatM is Hp-Lagrangian.

Also, we put

M× =

x
0
z
w

 | x ∈ N×⊥, z ∈ N×, w arbitrary

(3.10)

and M̃× = T−1M×. Then M̃× is A×-invariant and H-Lagrangian, as M× is Hz-
Lagrangian.

By [RR3] we have that M̃ ⊕ M̃× equals the whole state space. According to

[BGK] and [RR3] (see also [R1]) the supporting projection Π̃ along M̃ onto M̃×

gives rise to a minimal square spectral factorization. A formula for the corresponding
factor W (λ) may be obtained from the realization (3.7) and a formula for Π̃, which

may be derived in principle from the explicit representations of M̃ and M̃×.

However, we can also derive the formula forW (λ) in another way, namely, by using
[GK]. Indeed, a global null-pole triple for W (λ) may be obtained as a corestriction
of Θ. More specifically, the corestriction is connected toM andM× precisely in the
way described in Theorem 2.2 in the previous section. The corestriction of Θ that is

1232 M. A. PETERSEN AND A. C. M. RAN

involved is the following one:

(C+|N⊥ C0 (C+P + C0P1 − (Λ+B+ + Λ12B0)

∗)|N
)
,

A+|N⊥ 0 0

0 A0 0
0 0 −A∗

+|N

 ,

(I − PN×)A+|N×⊥ 0 0

0 Z0 0
0 0 −PN×Z∗

+|N×

,

 (I − PN×)B+

B0

PN×(QB+ +Q∗
1B0 + (C+Λ+ + C0Λ21)

∗)

 ,ΓW

 ,

where ΓW is given by

ΓW =

I − PN× 0 0 0

0 I 0 0
0 0 PN× 0

ΓΦ

I − PN 0 0
0 I 0
0 0 PN
0 0 0

,

which is equal to the ΓW given in the statement of this theorem.

For the converse, if W (λ) is a minimal square spectral factor, then there is a
corresponding corestriction of Θ. This corestriction is connected to two subspacesM
andM× as in Theorem 2.2, but it is now specialized to the null-pole triple Θ. Clearly,
keeping Lemma 3.1 in mind, M must have the form (3.9) and M× must have the
form (3.10) for some N that is A∗

+-invariant and some N× that is Z∗
+-invariant. It

then follows that W (λ) is given by (3.3).

4. Left versus right minimal square spectral factors. In this section, it is
our aim to solve the following problem: Suppose thatW+(λ) is a rational matrix func-
tion that has all its zeros and poles in the closed right half plane. Here it is explicitly
allowed that W+(λ) has zeros and poles on the imaginary axis. We form the rational
matrix function Φ(λ) =W+(λ)W+(−λ̄)∗. Then Φ(λ) has positive semidefinite values
on the imaginary axis (except for possible poles). We wish to find a rational matrix
function, W−(λ), having all its poles and zeros in the closed left half plane and satis-
fying Φ(λ) =W−(λ)W−(−λ̄)∗. In other words, given a left spectral factor we wish to
find a right spectral factor. That such a W−(λ) exists is an easy consequence of [R1].
The problem is solved in [BR2] for the case where W+(λ), and hence also Φ(λ), has
no poles and zeros on the imaginary axis. Here we consider the problem for the case
where there are zeros and poles in the imaginary axis.

As in section 3, let τ0 = {(C0, A0); (Z0, B0); Γ0} denote the iR null-pole triple
of W+(λ) and τ+ = {(C+, A+); (Z+, B+); Γ+} denote the null-pole triple of W+(λ)
corresponding to the open right half plane. As we have seen before, we may represent
a left minimal square spectral factor by

W+(λ) = I +
(
C+ C0

) [
λI −

(
A+ 0
0 A0

)]−1

Λ

(
B+

B0

)
.

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES 1233

Also, for the inverse, W+(λ)
−1, we have the realization

W+(λ)
−1 = I − (C+ C0

)
Λ

[
λI −

(
Z+ 0
0 Z0

)]−1(
B+

B0

)
.

To find W−(λ) and its inverse, in terms of all the matrices appearing in these real-
izations, obviously we may use the formulas from section 3, by taking N and N× in
such a way that PN = I and PN× = I. This yields

W−(λ) = I +
(
C0 C+P + C0P1 − (Λ+B+ + Λ12B0)

∗) [λI −
(
A0 0
0 −A∗

+

)]−1

Γ−1
W−

.

(
B0

QB+ +Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)
,

where

ΓW− =

(
Γ0 Γ21P + Γ0P1

QΓ12 +Q∗
1Γ0 Λ∗

+ +QΓ+P +Q1Γ21P +QΓ12P1 +Q∗
1Γ0P1

)
.

Also, for its inverse we have

W−(λ)−1 = I − (C0 C+P + C0P1 − (Λ+B+ + Λ12B0)
∗)Γ−1

W−

[
λI −

(
Z0 0
0 −Z∗

+

)]−1

.

(
B0

QB+ +Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)
.

5. Parametrization in terms of unitary divisors. Throughout this discus-
sion, we consider the rational matrix function

U(λ) =W+(λ)
−1W−(λ)

which has unitary values on iR. The function U(λ) here is not the phase function
because of our choice of W+(λ). It has poles in both the left half plane and the right
half plane. So U(λ) is not an inner function. The results in this section are close in
spirit to [FMP], [F2], and [R2]. In this case, as in the previous sections, we take

W+(λ)
−1 = I − (C+ C0

)
Λ

[
λI −

(
Z+ 0
0 Z0

)]−1(
B+

B0

)
,(5.1)

where

Λ =

(
Γ+ Γ12

Γ21 Γ0

)−1

=

(
Λ+ Λ12

Λ21 Λ0

)
.

Also, we have

W−(λ) = I +
(
C0 C+P + C0P1 − (Λ+B+ + Λ12B0)

∗) [λI −
(
A0 0
0 −A∗

+

)]−1

Γ−1
W−

.

(
B0

QB+ +Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)
,(5.2)

where

ΓW− =

(
Γ0 Γ21P + Γ0P1

QΓ12 +Q∗
1Γ0 Λ∗

+ +QΓ+P +Q1Γ21P +QΓ12P1 +Q∗
1Γ0P1

)
.

1234 M. A. PETERSEN AND A. C. M. RAN

Also, we recall from section 3 that the following Lyapunov equations hold:

B+C+ = Γ+A+ − Z+Γ+,(5.3)

B0C0 = Γ0A0 − Z0Γ0,(5.4)

B+C0 = Γ12A0 − Z+Γ12,(5.5)

B0C+ = Γ21A+ − Z0Γ21,(5.6)

A0P1 + P1A
∗
+ = (Λ21B+ + Λ0B0)(Λ+B+ + Λ12B0)

∗,(5.7)

A+P + PA∗
+ = (Λ+B+ + Λ12B0)(Λ+B+ + Λ12B0)

∗,(5.8)

Z∗
+Q+QZ+ = −(C+Λ+ + C0Λ21)

∗(C+Λ+ + C0Λ21),(5.9)

Z∗
0Q1 +Q1Z+ = −(C+Λ12 + C0Λ0)

∗(C+Λ+ + C0Λ21).(5.10)

These Lyapunov equations will be used extensively in what follows. The main asser-
tion that will be investigated in this section may be stated as follows.

Theorem 5.1. There is a one-to-one correspondence between the minimal fac-
torizations of U(λ) into two unitary factors and the set of minimal square spectral
factors. This correspondence may be described as follows. If

U(λ) = U1(λ)U2(λ)

is a minimal factorization with U1 and U2 being unitary factors, then

W (λ) =W+(λ)U1(λ)
−1

is a minimal square spectral factor. Moreover, any minimal square factor is obtained
in this way. More precisely, let

W+(λ) = I +
(
C+ C0

)(
λ−
(
A+ 0
0 A0

))−1(
Γ+ Γ12

Γ21 Γ0

)−1(
B+ B0

)

be a minimal realization and put

Y =

(
Z+ 0
0 −A∗

+

)
.

Then there is also a one-to-one correspondence between the set of invariant subspaces
of Y and the set of minimal square spectral factors.

These one-to-one correspondences may be given as follows. Let N× ⊕ N be a
Y -invariant subspace, and let U1 be given by

U1(λ) = I − ((C+Λ+ + C0Λ21)|N× (Λ12B0 + Λ+B+)
∗|N
) [

λI −
(
Z+|N× 0
0 −A∗

+|N
)]−1

·T−1

(
((C+Λ+ + C0Λ21)|N×)∗

((Λ12B0 + Λ+B+)
∗|N)∗

)
,(5.11)

where T is the unique solution of

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES 1235

T

(
Z+|N× 0
0 −A∗

+|N
)
+

(
(Z+|N×)∗ 0

0 (−A∗
+|N)∗

)
T

(5.12)

=

(
((C+Λ+ + C0Λ21)|N×)∗

((Λ12B0 + Λ+B+)
∗|N)∗

)(
(C+Λ+ + C0Λ21)|N× (Λ12B0 + Λ+B+)

∗|N
)
.

Then U1(λ) is a minimal left unitary factor of U(λ) and W (λ) = W+(λ)U1(λ) is a
minimal square spectral factor. In fact, any minimal square spectral factor is obtained
in this way.

Proof.

Step 1. An explicit formula for U(λ).

We use the formulas forW+(λ)
−1 andW−(λ) given in (5.1) and (5.2), respectively,

and Lyapunov equations (5.3)–(5.10) to give a formula for U(λ). In what follows, we
denote

Ã =

Z+ 0 B+C0 B+(C+P + C0P1 − (Λ+B+ + Λ12B0)
∗)

0 Z0 B0C0 B0(C+P + C0P1 − (Λ+B+ + Λ12B0)
∗)

0 0 A0 0
0 0 0 −A∗

+

 ,

C̃ =
(−(C+ C0

)
Λ
(
C0 C+P + C0P1 − (Λ+B+ + Λ12B0)

∗)) ,

and B̃ =

B+

B0

Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

 .

Then, we see that

U(λ) =W+(λ)
−1W−(λ) = I + C̃(λI − Ã)−1B̃.(5.13)

We have to ensure that the terms involving A0 and Z0 cancel as U(λ) is unitary on
the imaginary axis. We put

R =

I 0 Γ12 0
0 I Γ0 0
0 0 I 0
0 0 0 I

 ,

Ã14 = B+(C+P +C0P1− (Λ+B++Λ12B0)
∗), and Ã13 = B0(C+P +C0P1− (Λ+B++

Λ12B0)
∗). By using Lyapunov equations (5.4) and (5.5), we see that

1236 M. A. PETERSEN AND A. C. M. RAN

R−1ÃR =

I 0 −Γ12 0
0 I −Γ0 0
0 0 I 0
0 0 0 I

Z+ 0 B+C0 Ã14

0 Z0 B0C0 Ã13

0 0 A0 0
0 0 0 −A∗

+

I 0 Γ12 0
0 I Γ0 0
0 0 I 0
0 0 0 I

=

I 0 −Γ12 0
0 I −Γ0 0
0 0 I 0
0 0 0 I

Z+ 0 B+C0 + Z+Γ12 Ã14

0 Z0 B0C0 + Z0Γ0 Ã13

0 0 A0 0
0 0 0 −A∗

+

=

Z+ 0 0 Ã14

0 Z0 0 Ã13

0 0 A0 0
0 0 0 −A∗

+

 = Â.

Also, it is clear that

Ĉ = C̃R =
(−(C+ C0

)
Λ
(
C0 C+P + C0P1 − (Λ+B+ + Λ12B0)

∗))

·

I 0 Γ12 0
0 I Γ0 0
0 0 I 0
0 0 0 I

=
(−(C+ C0

)
Λ 0 C+P + C0P1 − (Λ+B+ + Λ12B0)

∗)

and

B̂ = R−1B̃ =

(
B+

B0

)
−
(
Γ12 0
Γ0 0

)
Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

 .

From Ã13 = B0(C+P + C0P1 − (Λ+B+ + Λ12B0)
∗) and Lyapunov equations (5.4),

(5.6), (5.7), and (5.8) we see that

B0C+P +B0C0P1 = (Γ21A+ − Z0Γ21)P + (Γ0A0 − Z0Γ0)P1

= Γ21A+P − Z0(Γ21P + Γ0P1) + Γ0A0P1

= −Γ21PA
∗
+ + Γ21(Λ+B+ + Λ12B0)(Λ+B+ + Λ12B0)

∗

−Z0(Λ21P + Λ0P1)− Γ0P1A
∗
+

+Γ0(Λ21B+ + Λ0B0)(Λ+B+ + Λ12B0)
∗

= −(Γ21P + Γ0P1)A
∗
+ − Z0(Γ21P + Γ0P1)

+{(Γ21Λ+ + Γ0Λ21)B+ + (Γ21Λ12 + Γ0Λ0)B0}(Λ+B+ + Λ12B0)
∗.

It is immediate that Ã13 = −(Γ21P + Γ0P1)A
∗
+ − Z0(Γ21P + Γ0P1).

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES 1237

Next, we put

S =

I 0 0 0
0 I 0 Γ21P + Γ0P1

0 0 I 0
0 0 0 I

 .

Then it is clear that

S−1ÂS =

I 0 0 0
0 I 0 −(Γ21P + Γ0P1)
0 0 I 0
0 0 0 I

Z+ 0 0 Ã14

0 Z0 0 Ã13 + Z0(Γ21P + Γ0P1)
0 0 A0 0
0 0 0 −A∗

+

=

Z+ 0 0 Ã14

0 Z0 0 0
0 0 A0 0
0 0 0 −A∗

+

 ,

ĈS =
(−(C+ C0

)
Λ 0 C+P + C0P1 − (Λ+B+ + Λ12B0)

∗)

·

I 0 0 0
0 I 0 Γ21P + Γ0P1

0 0 I 0
0 0 0 I

= (−(C+ C0

)
Λ 0

C+P + C0P1 − (Λ+B+ + Λ12B0)
∗ − (C+Γ12 + C0Γ0)(Γ21P + Γ0P1)),

and

S−1B̂ =

B+ −
(
Γ12 0

)
Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

B0 −
(
Γ0 Γ21P + Γ0P1

)
Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

.

Moreover, we see that

B0 −
(
Γ0 Γ21P + Γ0P1

)
Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)
= 0,

as
(
Γ0 Γ21P + Γ0P1

)
is the first row in ΓW− , so that

S−1B̂ =

B+ −
(
Γ12 0

)
Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

0

Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

 .

1238 M. A. PETERSEN AND A. C. M. RAN

So we may conclude, from the similarity transformations above, that (5.13) may
be rewritten as

U(λ) =W+(λ)
−1W−(λ)

= I + (−C+Λ+ − C0Λ21

C+P + C0P1 − (Λ+B+ + Λ12B0)
∗ − (C+Λ12 + C0Λ0)(Γ21P + Γ0P1))

·
[
λI −

(
Z+ Ã14

0 −A∗
+

)]−1

B+ −
(
Γ12 0

)
Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

(
0 I

)
Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

.

(5.14)

Here we note that σ(Z+) ∩ σ(−A∗
+) = ∅. So we are able to cancel the term

Ã14 and end up with a block diagonal main operator in the following way. From
Ã14 = B+(C+P + C0P1 − (Λ+B+ + Λ12B0)

∗) and Lyapunov equations (5.3), (5.5),
(5.7), and (5.8) we see that

B+C+P +B+C0P1 = Γ+A+P + Γ12A0P1 − Z+(Γ+P + Γ12P1)

= −Γ+PA
∗
+ + Γ+(Λ+B+ + Λ12B0)(Λ+B+ + Λ12B0)

∗

−Γ12P1A
∗
+ + Γ12(Λ21B+ + Λ0B0)(Λ+B+ + Λ12B0)

∗

−Z+(Γ+P + Γ12P1)

= −(Γ+P + Γ12P1)A
∗
+ − Z+(Γ+P + Γ12P1)

+(Γ+Λ+ + Γ12Λ21)B+(Λ+B+ + Λ12B0)
∗

+(Γ+Λ12 + Γ12Λ0)B0(Λ+B+ + Λ12B0)
∗

= −(Γ+P + Γ12P1)A
∗
+ − Z+(Γ+P + Γ12P1)

+B+(Λ+B+ + Λ12B0)
∗.

It is immediate that Ã14 = −(Γ+P + Γ12P1)A
∗
+ − Z+(Γ+P + Γ12P1). Now we apply

similarity with

V =

(
I Γ+P + Γ12P1

0 I

)

to the formula for U(λ) given in (5.14). First, we observe that

V −1

(
Z+ Ã14

0 −A∗
+

)
V =

(
Z+ 0
0 −A∗

+

)
.

Also, we have

(−(C+Λ+ + C0Λ21)

C+P + C0P1 − (Λ+B+ + Λ12B0)
∗ − (C+Λ12 + C0Λ0)(Γ21P + Γ0P1))V

=
(−(C+Λ+ + C0Λ21) −(Λ12B0 + Λ+B+)

∗) .

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES 1239

Instead of calculating

V −1

B+ −
(
Γ12 0

)
Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

(
0 I

)
Γ−1
W−

(
B0

−QB+ −Q∗
1B0 + (C+Λ+ + C0Λ21)

∗

)

in order to determine a suitable formula for U, we make use of Theorem 2.9 of [AG].
We note that U(λ) =W+(λ)

−1W−(λ) has unitary values and that a global pole pair
for U is ((−(C+Λ+ + C0Λ21) −(Λ12B0 + Λ+B+)

∗),
(
Z+ 0
0 −A∗

+

))
.

In order to apply [AG] we have to solve the equation

(
Z+ 0
0 −A∗

+

)∗(
H11 H∗

21

H21 H22

)
+

(
H11 H∗

21

H21 H22

)(
Z+ 0
0 −A∗

+

)

=

(
(C+Λ+ + C0Λ21)

∗(C+Λ+ + C0Λ21) (C+Λ+ + C0Λ21)
∗(Λ12B0 + Λ+B+)

∗

(Λ12B0 + Λ+B+)(C+Λ+ + C0Λ21) (Λ12B0 + Λ+B+)(Λ12B0 + Λ+B+)
∗

)
.

From Lyapunov equations (5.8) and (5.9) it is obvious that H22 = −P and H11 = −Q,
respectively. Next, we consider H21. By using (5.3), (5.4), (5.5), and (5.6) we have

H21Z+ −A+H21 = (Λ12B0 + Λ+B+)(C+Λ+ + C0Λ21)

= Λ12(B0C0Λ21 +B0C+Λ+) + Λ+(B+C+Λ+ +B+C0Λ21)

= Λ12(Γ0A0Λ21 − Z0Γ0Λ21 + Γ21A+Λ+ − Z0Γ21Λ+)

+Λ+(Γ+A+Λ+ − Z+Γ+Λ+ + Γ21A0Λ21 − Z+Γ12Λ21)

= (Λ12Γ0 + Λ+Γ12)A0Λ21 + (Λ12Γ21 + Λ+Γ+)A+Λ+ − Λ+Z+

= A+Λ+ − Λ+Z+.

So we can choose H21 = −Λ+, and therefore

H = −
(
Q Λ∗

+

Λ+ P

)
.

In this case, we have

U(λ) = I − (C+Λ+ + C0Λ21 (Λ12B0 + Λ+B+)
∗) [λI −

(
Z+ 0
0 −A∗

+

)]−1

(
Q Λ∗

+

Λ+ P

)−1(
(C+Λ+ + C0Λ21)

∗

Λ12B0 + Λ+B+

)
.(5.15)

Also, we see that (5.15) is a minimal realization of U(λ). In what follows, we put

S = −
(
Q Λ∗

+

Λ+ P

)
and Y =

(
Z+ 0
0 −A∗

+

)
.

Then it follows that

SY + Y ∗S =
(
(C+Λ+ + C0Λ21)

∗

Λ12B0 + Λ+B+

)(
C+Λ+ + C0Λ21 (Λ12B0 + Λ+B+)

∗).(5.16)

1240 M. A. PETERSEN AND A. C. M. RAN

Step 2. Factorizations of U.
Next, we obtain a minimal factorization of U(λ) into two unitary factors as

U(λ) = U1(λ)U2(λ).

The procedure is analogous to that in [R2]. Let S and Y be given as in the above.
Any subspace that is invariant under Y is of the form N× ⊕ N , where N× is Z+-
invariant and N is −A∗

+-invariant. This is an immediate consequence of the fact
that the spectra of Z+ and −A∗

+ are disjoint. Further, we are able to verify that
any Y -invariant subspace is S-nondegenerate. In other words, we must show that if
a ∈ N× ⊕ N and 〈Sa, b〉 = 0 for all b ∈ N× ⊕ N , then a = 0. Indeed, suppose that
(xy) ∈ N× ⊕N is such that

〈
S

(
x
y

)
, v

〉
=

〈(−Qx− Λ∗
+y

−Λ+x− Py

)
, v

〉
= 0 for all v ∈ N× ⊕N .

In particular, this holds for v = (x0) and for v = (
0
y). We deduce that

0 =

〈
S

(
x
y

)
,

(
x
0

)〉
= 〈−Qx, x〉 − 〈Λ∗

+y, x〉

and

0 =

〈
S

(
x
y

)
,

(
0
y

)〉
= 〈−Py, y〉 − 〈Λ+x, y〉.

Consequently, as Q < 0 and P > 0, unless x = 0 we have −〈Λ+x, y〉 = 〈Qx, x〉 < 0.
Similarly, unless y = 0 we have −〈Λ+x, y〉 = 〈Py, y〉 > 0. Hence it is clear that
x = y = 0, and as a result N× ⊕N is S-nondegenerate.

In [AG], it is asserted that there is a one-to-one correspondence between Z-
invariant subspaces which are S-nondegenerate and minimal factorizations of U into
two unitary factors. Since we have previously shown that any Z-invariant subspace
is S-nondegenerate, this is equivalent to a one-to-one correspondence between Z-
invariant subspaces and minimal factorizations of U into two unitary factors. More-
over, this one-to-one correspondence may be described as follows. Next, we suppose
that N× ⊕ N is a (Z+

0
0

−A∗
+
)-invariant subspace. Also, let π be the projection onto

N× ⊕N along [S(N× ⊕N)]⊥ . For U(λ) = U1(λ)U2(λ), we may express U1 and U2

and their inverses in terms of π in the following way:

U1(λ) = I − (C+Λ+ + C0Λ21 (Λ12B0 + Λ+B+)
∗)π
[
λI − π

(
Z+ 0
0 −A∗

+

)
π

]−1

· π
(
Q Λ∗

+

Λ+ P

)−1(
(C+Λ+ + C0Λ21)

∗

Λ12B0 + Λ+B+

)
(5.17)

and

U1(λ)
−1 = I +

(
C+Λ+ + C0Λ21 (Λ12B0 + Λ+B+)

∗)(Q Λ∗
+

Λ+ P

)−1

π

·
[
λI − π

(−Z∗
+ 0
0 A+

)
π

]−1

π

(
(C+Λ+ + C0Λ21)

∗

Λ12B0 + Λ+B+

)
.

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES 1241

Also, we have the minimal right unitary factor and its inverse given by

U2(λ) = I − (C+Λ+ + C0Λ21 (Λ12B0 + Λ+B+)
∗)(I − π)

·
[
λI − (I − π)

(
Z+ 0
0 −A∗

+

)
(I − π)

]−1

(I − π)

(
Q Λ∗

+

Λ+ P

)−1(
(C+Λ+ + C0Λ21)

∗

Λ12B0 + Λ+B+

)

and

U2(λ)
−1 = I +

(
C+Λ+ + C0Λ21 (Λ12B0 + Λ+B+)

∗)(Q Λ∗
+

Λ+ P

)−1

(I − π)

·
[
λI − (I − π)

(−Z∗
+ 0
0 A+

)
(I − π)

]−1

(I − π)

(
(C+Λ+ + C0Λ21)

∗

Λ12B0 + Λ+B+

)
,

respectively.
Step 3. The parametrization of W (λ).
Consider a minimal factorization of U into two unitary factors, U(λ) = U1(λ)U2(λ),

and put W (λ) = W+(λ)U1(λ). Clearly, W is a square spectral factor, i.e., Φ(λ) =
W (λ)W (−λ)∗. It remains to show that this factorization is minimal. Let us suppose
that U1 is obtained as in (5.9). Let A+ be an n+×n+ matrix. Because of analyticity
of W+ in C− we have

poles of W in C− = # poles of U1 in C− = dim N .
(Of course, as usual, multiplicities are counted in the above number of poles.) As
U(λ) = W+(λ)

−1W−(λ), we have for W also W (λ) = W−(λ)U2(λ)
−1. Thus, using

the fact that W− is analytic in C+, we have

poles of W in C+ = # poles of U
−1
2 in C+

= n+ − dim N ,
where we used the formulas above and the minimality of the factorization. Because of
Lemma 3.1, # poles of W in C0 = n0, where A0 is an n0 × n0 matrix. Furthermore,
by (3.7) δ(Φ) = 2n = 2n+ + 2n0, and hence W is a minimal square spectral factor if
and only if δ(W) = n++n0. As the McMillan degree δ(W) of W is the total number
of poles (multiplicities counted) of W , we see that

δ(W) = dimN + (n+ − dimN) + n0 = n+ + n0.

Thus W is a minimal square spectral factor.
Conversely, let W be a minimal square spectral factor, and put U1(λ) =

W+(λ)
−1W (λ) and U2(λ) = W (λ)−1W−(λ). Then U1(λ)U2(λ) = U(λ), and U1

and U2 are unitary valued for λ on the imaginary axis. Again it remains to show the
minimality of this factorization. To see this note that

poles of U1 in C− = # poles of W in C−,
zeros of U1 in C− = # zeros of W in C−,

and hence by unitarity of U1, δ(U1) = # poles of W in C− + # poles of U1 in C+ =
poles of W in C− + # zeros of U1 in C− = # poles of W in C− + # zeros of W
in C−. Likewise,

poles of U2 in C+ = # zeros of W in C+,

zeros of U2 in C+ = # poles of W in C+,

1242 M. A. PETERSEN AND A. C. M. RAN

and hence δ(U2) = # poles of W in C+ + # zeros of W in C+. So, we have δ(U1) +
δ(U2) = # zeros of W not in iR + # poles of W not in iR = 2δ(W)− 2n0 = 2n+ =
δ(U), by (5.15). So, the factorization of U, given above, is minimal.

6. Parametrization in terms of an algebraic Riccati equation. The con-
nection between stable square spectral factors and the solutions of algebraic Ric-
cati equations goes back to [W]. Also, because of the relationship between invariant
Lagrangian subspaces and Hermitian solutions of Riccati equations (see, e.g., [LR],
[S1], and [S2]) it is not surprising that the set of all square spectral factors can be
parametrized in terms of Riccati equations. In this context we refer also to [FP], [F1],
and [LMP]. The result closest in spirit to the one we determine below can be found
in [L].

Our analysis will proceed via a procedure analogous to that of [R2], where the
minimal square spectral factorization of a positive definite rational matrix function
was discussed. In that paper it is shown that for unitary U(λ) = W+(λ)

−1W−(λ)
there is a connection between the symmetric solution of a certain type of symmetric
algebraic Riccati equation and minimal unitary left divisors U1(λ), of U(λ) and hence
with minimal square spectral factors. In what follows, we will show that an analogous
result may be obtained in the positive semidefinite case. With notation as in the
previous sections, the result is as follows.

Theorem 6.1. Let a minimal realization of the left canonical spectral factor be
given by

W+(λ) = I +
(
C+ C0

)(
λ−
(
A+ 0
0 A0

))−1(
Γ+ Γ12

Γ21 Γ0

)−1(
B+

B0

)

and put

Y =

(
Z+ 0
0 −A∗

+

)
.

Furthermore, let U(λ) =W+(λ)
−1W−(λ), where W−(λ) is the right canonical spectral

factor. Consider the algebraic Riccati equation

Y K +KY ∗ = KL∗LK,(6.1)

where L =
(
C+Λ+ + C0Λ21 (Λ12B0 + Λ+B+)

∗). If K is a symmetric solution of
(6.1), then

U1(λ) = I − L(λI − Y)−1KL∗(6.2)

is a minimal unitary left divisor of U(λ), and consequently, W (λ) = W+(λ)U1(λ)
is a minimal square spectral factor. More precisely, if K solves (6.1), then im K is
Y -invariant, and hence it is of the form N×⊕N for some Z+-invariant subspace N×

and some −A∗
+-invariant subspace N . Then U1(λ) given by (6.2) is the same as the

unitary minimal left divisor given by (5.17).

Conversely, any minimal left unitary divisor of U(λ) is of the form (6.2) for some
solution K of (6.1).

Proof. First, we prove the converse. Let U1(λ) be a minimal left unitary divisor
of U(λ). Then U1 is given by (5.17) for some Z+-invariant subspace N× and some
−A∗

+-invariant subspace N . We remember from the previous section that π projects

MINIMAL SQUARE SPECTRAL FACTORS VIA TRIPLES 1243

onto N× ⊕N along (S(N× ⊕N))⊥. We represent Y : im π ⊕ ker π → im π ⊕ ker π
with respect to the decomposition im π ⊕ ker π in the form

Y =

(
Y11 Y12

0 Y22

)
.

In addition, we write L : im π ⊕ ker π → R
m as

L =
(
L1 L2

)
.

Finally, because im π and ker π are S-orthogonal we have (I − π∗)Sπ = 0. This
enables us to present S : im π ⊕ ker π → im π ⊕ ker π in the form

S =

(
S1 0
0 S2

)
.

Observe also that we can represent Y ∗ : im π∗⊕ker π∗ → im π∗⊕ker π∗ with respect
to the decomposition im π∗ ⊕ ker π∗ as

Y ∗ =
(
Y ∗

11 0
Y ∗

12 Y ∗
22

)
.

We are able to rewrite (5.16) in the form

Y S−1 + S−1Y ∗ = S−1L∗LS−1,

where, in particular, the (1,1)-entry is given by

Y11S
−1
1 + S−1

1 Y ∗
11 = S−1

1 L∗
1L1S

−1
1 .

If we put K = (S
−1
1
0

0
0), then K solves (6.1). In addition, (5.17) may be expressed in

different ways as

U1(λ) = I − Lπ(λI − πY π)−1πS−1L∗

and

U1(λ) = I − L1(λI − Y11)
−1S−1

1 L∗
1,

where πS−1 = πS−1π∗. Moreover, the latter expression may be written in an alter-
native form as

U1(λ) = I − L(λI − Y)−1S−1L∗.

The direct statement is obtained easily from the observation that ifK solves (6.1),
then im K is Y -invariant.

REFERENCES

[AG] D. Alpay and I. Gohberg, Unitary rational matrix functions, in Topics in Interpo-
lation Theory of Rational Matrix-Valued Functions, Oper. Theory Adv. Appl. 33,
Birkhäuser-Verlag, Basel, 1988, pp. 175–222.

[BGR] J.A. Ball, I. Gohberg, and L. Rodman, Interpolation of Rational Matrix Functions,
Oper. Theory Adv. Appl. 45, Birkhäuser-Verlag, Basel, 1990.

[BR1] J.A. Ball and A.C.M. Ran, Global inverse spectral problems for rational matrix func-
tions, Linear Algebra Appl., 86 (1987), pp. 237–382.

1244 M. A. PETERSEN AND A. C. M. RAN

[BR2] J.A. Ball and A.C.M. Ran, Left versus right canonical Wiener–Hopf factorization, in
Constructive Methods of Wiener–Hopf Factorization, Oper. Theory Adv. Appl. 21,
Birkhäuser-Verlag, Basel, 1986, pp. 9–38.

[BGK] H. Bart, I. Gohberg, and M.A. Kaashoek, Minimal Factorization of Matrix and Op-
erator Functions, Oper. Theory Adv. Appl. 1, Birkhäuser-Verlag, Basel, 1979.

[BGKvD] H. Bart, I. Gohberg, M.A. Kaashoek, and P. van Dooren, Factorization of transfer
functions, SIAM J. Control Optim., 18 (1980), pp. 675–696.

[C] D.J. Clements, Rational spectral factorization using state-space methods, Systems Con-
trol Lett., 20 (1993), pp. 335–343.

[CG] D.J. Clements and K. Glover, Spectral factorization by Hermitian pencils, Linear
Algebra Appl., 122-124 (1989), pp. 797–846.

[FMP] A. Ferrante, G. Michaletzky, and M. Pavon, Parametrization of all minimal square
spectral factors, Systems Control Lett., 21 (1993), pp. 249–254.

[FP] L. Finesso and G. Picci, A characterization of minimal spectral factors, IEEE Trans.
Automat. Control, AC27 (1982), pp. 122–127.

[F1] P.A. Fuhrmann, The algebraic Riccati equation–A polynomial approach, Systems Control
Lett., 5 (1985), pp. 369–376.

[F2] P.A. Fuhrmann, On the characterization and parametrization of minimal spectral fac-
tors, J. Math. Systems Estim. Control, 5 (1995), pp. 383–444.

[FG] P.A. Fuhrmann and A. Gombani, On a Hardy space approach to the analysis of spectral
factors, Internat. J. Control, 71 (1998), pp. 277–357.

[GK] I. Gohberg and M.A. Kaashoek, An inverse problem for rational matrix functions and
minimal divisibility, Integral Equations Operator Theory, 10 (1987), pp. 437–465.

[GLR] I. Gohberg, P. Lancaster, and L. Rodman, Matrices and Indefinite Scalar Products,
Oper. Theory Adv. Appl. 8, Birkhäuser-Verlag, Basel, 1983.

[L] L. Lerer, The matrix quadratic equation and factorization of matrix polynomials, in The
Gohberg Anniversary Collection, Vol. I, Oper. Theory Adv. Appl. 40, Birkhäuser-
Verlag, Basel, 1989, pp. 279–324.

[LR] P. Lancaster and L. Rodman, Existence and uniqueness theorems for algebraic Riccati
equations, Internat. J. Control, 32 (1980), pp. 285–309.

[LMP] A. Lindquist, G. Michaletzky, and G. Picci, Zeros of spectral factors, the geometry
of splitting subspaces, and the algebraic Riccati inequality, SIAM J. Control Optim.,
33 (1995), pp. 365–401.

[LP1] A. Lindquist and G. Picci, A geometric approach to modelling and estimation of linear
stochastic systems, J. Math. Systems Estim. Control, 1 (1991), pp. 241–333.

[LP2] A. Lindquist and G. Picci, Forward and backward semimartingale representations for
stationary increment processes, Stochastics, 15 (1985), pp. 1–50.

[R1] A.C.M. Ran, Minimal factorizations of self-adjoint rational matrix functions, Integral
Equations Operator Theory, 5 (1982), pp. 850–869.

[R2] A.C.M. Ran, Minimal square spectral factors, Systems Control Lett., 26 (1994), pp.
621–634.

[R3] A.C.M. Ran, Semidefinite Invariant Subspaces, Stability and Applications, Brügemann,
Den Burg-Texel, 1984.

[R4] A.C.M. Ran, Unitary solutions of a class of algebraic Riccati equations and factorization,
Linear Algebra Appl., 162-164 (1992), pp. 521–540.

[RR1] A.C.M. Ran and L. Rodman, Stability of invariant Lagrangian subspaces I, in Topics in
Operator Theory, Oper. Theory Adv. Appl. 32, Birkhäuser-Verlag, Basel, 1988, pp.
181–218.

[RR2] A.C.M. Ran and L. Rodman, Stability of invariant maximal semidefinite subspaces I,
Linear Algebra Appl., 62 (1984), pp. 51–86.

[RR3] A.C.M. Ran and L. Rodman, Stable invariant Lagrangian subspaces: Factorization of
symmetric rational matrix functions and applications, Linear Algebra Appl., 137/138
(1990), pp. 576–620.

[Sa] L.A. Sahnovic, On the factorization of an operator valued transfer function, Soviet Math.
Dokl., 17 (1976), pp. 203–207.

[S1] M.A. Shayman, Geometry of the algebraic Riccati equation I, SIAM J. Control Optim.,
21 (1983), pp. 375–394.

[S2] M.A. Shayman, Geometry of the algebraic Riccati equation II, SIAM J. Control Optim.,
21 (1983), pp. 395–409.

[W] J.C. Willems, Least squares stationary optimal control and the algebraic Riccati equa-
tion, IEEE Trans. Automat. Control, AC16 (1971), pp. 621–634.

STRUCTURE AND PERTURBATION ANALYSIS OF TRUNCATED
SVDs FOR COLUMN-PARTITIONED MATRICES∗

ZHENYUE ZHANG† AND HONGYUAN ZHA‡

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1245–1262

Abstract. In this paper we study truncated SVDs for column-partitioned matrices. In particu-
lar, we analyze the relation between the truncated SVDs of a matrix and the truncated SVDs of its
submatrices. We give necessary and sufficient conditions under which a truncated SVD of a matrix
can be constructed from those of its submatrices. We then present perturbation analysis to show
that an approximate truncated SVD can still be computed even if the given necessary and sufficient
conditions are only approximately satisfied. We also apply our general results to a class of matrices
with the so-called low-rank-plus-shift structure.

Key words. singular value and singular vector, singular value decomposition, perturbation
analysis, block matrix

AMS subject classifications. 15A18, 65F15

PII. S0895479899357875

1. Introduction. In many applications it is desirable to compute a low-rank
approximation of a given matrix A ∈ Rm×n; see [6], for example, for a list of appli-
cation areas. In many cases the matrix A is rather large and/or sparse, and therefore
computational efficiency is of paramount importance. The theory of SVD provides
the following characterization of the best low-rank approximation of A in terms of
Frobenius norm ‖ · ‖F [4, Theorem 2.5.3]. (Similar results hold for general unitarily
invariant norms such as the spectral norm as well.)

Theorem 1.1. Let the SVD of A ∈ Rm×n be A = UΣV T with

Σ = diag(σ1, . . . , σmin{m,n}), σ1 ≥ · · · ≥ σmin{m,n} ≥ 0,

and U and V orthogonal. Then, for 1 ≤ k ≤ min{m,n},
min{m,n}∑
i=k+1

σ2
i = min{ ‖A−B‖2F | rank(B) ≤ k}.

And the minimum is achieved with bestk(A) ≡ Uk diag(σ1, . . . , σk)V
T
k , where Uk and

Vk are the matrices formed by the first k columns of U and V , respectively. Further-
more, bestk(A) is unique if and only if σk > σk+1.

∗Received by the editors June 23, 1999; accepted for publication (in revised form) by N. Higham
December 8, 2000; published electronically April 6, 2001.

http://www.siam.org/journals/simax/22-4/35787.html
†Department of Mathematics, Zhejiang University, Hangzhou, 310027, People’s Republic of China

(zyzhang@math.zju.edu.cn). The work of this author was supported in part by NSFC (project
19771073), Foundation for University Key Teacher of the Ministry of Education of China, the Spe-
cial Funds for Major State Basic Research Projects (G19990328), NSF grant CCR-9619452, the
Director, Office of Science, Office of Laboratory Policy and Infrastructure Management of the U.S.
Department of Energy under contract DE-AC-76SF00098. This research used resources of the Na-
tional Energy Research Scientific Computing Center, which is supported by the Office of Science of
the U.S. Department of Energy.

‡Department of Computer Science and Engineering, The Pennsylvania State University, Univer-
sity Park, PA 16802 (zha@cse.psu.edu). The work of this author was supported in part by NSF grant
CCR-9619452 and CCR-9901986.

1245

1246 ZHENYUE ZHANG AND HONGYUAN ZHA

In this paper, we call bestk(A) a truncated SVD of A, which is obtained by
truncating the finite sum expansion

A =

min{m,n}∑
i=1

σiuiv
T
i

up to and including the kth term, where we have written U = [u1, . . . , um] and
V = [v1, . . . , vn]. Algorithms for computing a (truncated) SVD, even in the case when
A is large and/or sparse are well established [1, 3, 4]. In this paper we are concerned
with an interesting issue which is motivated by some of the results developed in
[13] where we dealt with the relation between truncated SVDs of the so-called term-
document matrices and a special indexing method called latent semantic indexing
(LSI) in information retrieval.1 In this paper we will build on the results obtained in
[13] and study truncated SVDs of column-partitioned matrices in greater generality.

We observed that in some applications, the matrix A is naturally partitioned
into several block columns, i.e., A can be written as A = [A1, . . . , As], where Ai, i =
1, . . . , s, are block columns of A. In text categorization applications, for example, each
column of A represents a document in a given text corpus, and Ai consists of all the
documents in the text corpus that are about a particular topic i. For example, if we
have three categories: science, entertainment and sports, then A = [A1, A2, A3], where
A1 contains all the documents about science, A2 entertainment, and A3 sports. In a
similar situation when we consider dynamic information retrieval, A1 will represent
the documents from an old text corpus, and A2,. . . , As are document collections added
dynamically as new documents become available [11]. An important problem from
those applications is the following: we have computed a truncated SVD of the first few
of the Ai’s, say, bestk([A1, . . . , At]) for [A1, . . . , At] with some t < s, and the matrix
[A1, . . . , At] has been discarded, to save storage, for example, and is therefore no longer
available. How can we construct a truncated SVD of A from bestk([A1, . . . , At]) and
the remaining [At+1, . . . , As]? To answer this question we need to study the relation
between truncated SVDs of a matrix and those of its submatrices. It turns out that a
general theory can be developed and the question we are interested in can be answered
by certain special cases of the general theory. We should also mention that as far as
the truncated SVD of a matrix A is concerned one may be interested in either bestk(A)
or the range space of bestk(A), i.e., the subspace spanned by the first k left singular
vectors of A. The latter case happens, for example, in signal processing, when one is
interested in computing the signal subspace which is represented by the range space of
bestk(A) [8, 9]. In information retrieval applications one is interested in bestk(A) itself
in its factorized form bestk(A) = UkΣkV

T
k : for a given query vector q, qTbestk(A) is

used for ranking all the documents represented by the columns of A; see [2] for more
details. As we will show later in section 3, perturbation results for the range space and
row space of bestk(A) can be easily obtained from those for bestk(A), and therefore
throughout the rest of the paper we will concentrate on bestk(A) itself instead of the
range space and row space of bestk(A).

The rest of the paper is organized as follows. In section 2, we give necessary
and sufficient conditions that guarantee a truncated SVD of a column-partitioned
matrix A can be perfectly constructed from truncated SVDs of its submatrices. The
orthogonality of certain submatrices of A plays an important role in specifying those
conditions. We also relate the sufficient conditions to a class of matrices with the

1For a detailed discussion of LSI from the linear algebra point of view, see [2].

PERTURBATION ANALYSIS OF TRUNCATED SVDs 1247

so-called low-rank-plus-shift structure [8, 9, 12]. In section 3, we expand the results
in section 2 to the case where the necessary and sufficient conditions are only approx-
imately satisfied by the given matrix A. We show that a truncated SVD of A can be
approximately constructed from truncated SVDs of its submatrices. Along the way,
we prove some novel perturbation bounds for the truncated SVD of a matrix that are
of their own interest. The perturbation analysis for matrices with low-rank-plus-shift
structure is carried out in some detail, and an improved perturbation bound is also
derived.

2. Necessary and sufficient conditions. As mentioned in section 1, we are
interested in finding conditions on a column-partitioned matrix A = [A1, . . . , As] such
that a truncated SVD of A can be constructed from those of the Ai’s. It is not
difficult to see that certain information about the original matrix A will be lost if we
rely solely on using the truncated SVDs of the Ai’s. Therefore, in general, we cannot
expect to reconstruct a truncated SVD of A perfectly from those of the Ai’s. The goal
of this section is to find conditions under which this can be done. We first present a
general result which gives the necessary and sufficient condition for a matrix and its
perturbation to have the same truncated SVDs.

Note. Throughout the rest of the paper, we will use the following conventions:
the singular values of a matrix are indexed in ascending order, i.e., for a matrix
B ∈ Rm×n,

σ1(B) ≥ σ2(B) ≥ · · · ≥ σmin{m,n}(B)

whenever bestk(B) is mentioned for a matrix B, it is implicitly assumed that σk(B) >
σk+1(B) so that bestk(B) is uniquely defined. We consider only the spectral norm
and write ‖ · ‖ for ‖ · ‖2. We also use span(A) to denote the linear subspace spanned
by the columns of A.

Theorem 2.1. Let A = B + C. Then bestk(A) = bestk(B) if and only if the
following three conditions are satisfied:

CTbestk(B) = 0, bestk(B)CT = 0, σk(B) > σk+1(A).

Proof. We first deal with the only if part of the proof which is rather straightfor-
ward. Since

(A− bestk(A))Tbestk(A) = 0,

it follows from bestk(A) = bestk(B) that

(A− bestk(B))Tbestk(B) = 0.

Substituting A with B +C and using the equality (B − bestk(B))Tbestk(B) = 0, we
obtain

CTbestk(B) = 0.

We can similarly show that bestk(B)CT = 0. Furthermore, the inequality σk(B) >
σk+1(A) follows from σk(A) = σk(B) and σk(A) > σk+1(A).

Now we prove the if part. Let the SVD of B and C be

B = [U1, U2]

[
Σ1

Σ2

]
[V1, V2]

T , C = QDGT ,

1248 ZHENYUE ZHANG AND HONGYUAN ZHA

respectively, where Σ1 ∈ Rk×k and the matrices are partitioned conformally. Then
bestk(B) = U1Σ1V1. Now the two conditions CTbestk(B) = 0 and bestk(B)CT = 0
imply that

UT
1 C = 0, CV1 = 0.

Let the SVD of U2Σ2V
T
2 + C be

U2Σ2V
T
2 + C = Ũ2Σ̃2Ṽ

T
2 .

It is readily verified that ŨT
2 U1 = 0 and Ṽ T

2 V1 = 0. Therefore,

A = B + C = [U1, Ũ2]

[
Σ1

Σ̃2

]
[V1, Ṽ2]

T

gives the SVD of A. Since σmin(Σ1) = σk(B) > σk+1(A), it follows that σmin(Σ1) >
σmax(Σ̃2), and therefore

bestk(A) = U1Σ1V1 = bestk(B),

completing the proof.
Remark. We notice that the inequality σk(B) > σk+1(A) together with the

two orthogonality conditions CTbestk(B) = 0 and bestk(B)CT = 0 implies that
σmin(B) > σmax(C). Therefore, it is not necessary that C be zero in order for a per-
fect reconstruction of a truncated SVD of A to occur. To say it in a more interesting
way (as will be demonstrated later in section 3), in order to have a good approximate
reconstruction of a truncated SVD of A it is not necessary that C be small in norm.

Now we are ready to consider the case where A is partitioned in various block-
column forms. We partition A as A = [A1, A2], where Ai ∈ Rm×ni , i = 1, 2. First, we
look at the two truncated SVDs bestk(A) and bestk([A1, 0]).

Corollary 2.2. Let A = [A1, A2]. Then

bestk(A) = bestk([A1, 0])

if and only if the following two conditions are satisfied:

AT2 bestk(A1) = 0, σk(A1) > σk(A).

Proof. Write A = [A1, 0] + [0, A2]. It is easy to see that bestk([A1, 0]) =
[bestk(A1), 0], and therefore, bestk([A1, 0])[0, A2]

T = 0. The result now follows from
Theorem 2.1.

Now we look at the case where we have computed bestk1(A1), and A1 has already
been discarded. We then add A2, and we want to reconstruct bestk(A) based on
bestk1(A1) and A2.

Corollary 2.3. Let A = [A1, A2] and k1 ≤ n1. Then

bestk(A) = bestk([bestk1(A1), A2])

if and only if the following two conditions are satisfied:

(A1 − bestk1(A1))
Tbestk([bestk1(A1), A2]) = 0, σk([bestk1(A1), A2]) > σk+1(A).

PERTURBATION ANALYSIS OF TRUNCATED SVDs 1249

Proof. We write

A = [A1, A2] = [bestk1(A1), A2] + [A1 − bestk1(A1), 0].

It is easy to see that

[bestk1(A1), A2][A1 − bestk1(A1), 0]
T = 0,

and therefore the second condition of Theorem 2.1 is automatically satisfied. The
result then follows directly from Theorem 2.1

We finally consider the case that we have computed bestk1(A1) and bestk2(A2),
and both A1 and A2 were discarded. We want to compute bestk(A) using what we
have, i.e., bestk1(A1) and bestk2(A2).

Corollary 2.4. Let A = [A1, A2], k1 ≤ n1, and k2 ≤ n2. Then

bestk(A) = bestk([bestk1(A1),bestk2(A2)])

if and only if the following two conditions are satisfied:

[A1 − bestk1(A1), A2 − bestk2(A2)]
Tbestk([bestk1(A1),bestk2(A2)]) = 0,

σk([bestk1(A1),bestk2(A2)]) > σk+1(A).

Proof. The proof is similar to that of Corollary 2.3 and therefore is
omitted.

Remark. The conditions listed in both Corollary 2.3 and Corollary 2.4 seem to
be rather complicated. In some situations, however, we may be able to verify some
stronger but simpler conditions. For example,

(A1 − bestk1(A1))
TA2 = 0(2.1)

implies the condition

(A1 − bestk1(A1))
Tbestk([bestk1(A1), A2]) = 0,

and the two equalities

(A1 − bestk1(A1))
TA2 = 0, (A2 − bestk2(A2))

TA1 = 0(2.2)

imply the condition

[A1 − bestk1(A1), A2 − bestk1(A2)]
Tbestk([bestk1(A1),bestk2(A2)]) = 0.

A class of matrices which satisfies (2.2) will be given in Theorem 2.7. Roughly speak-
ing, we can interpret the condition in (2.1) as follows: for a perfect reconstruction
to occur, what is added, i.e., A2, should be orthogonal to what is discarded, i.e.,
A1 − bestk1(A1). The conditions in (2.2) have a similar interpretation.

Now we show an interesting application of Corollary 2.4.
Corollary 2.5. The equality bestk(A) = bestk([bestk1(A1),bestk2(A2)]) holds

if and only if for any ti ≥ ki, i = 1, 2,

bestk(A) = bestk([bestt1(A1),bestt2(A2)]).

1250 ZHENYUE ZHANG AND HONGYUAN ZHA

Proof. We just need to prove the only if part. Let Ãi = bestti(Ai), i = 1, 2. It
is easy to verify that bestki(Ãi) = bestki(Ai) since ti ≥ ki, i = 1, 2. Now we need to
show that

bestk([Ã1, Ã2]) = bestk([bestk1(Ã1),bestk2(Ã2)]).

Using Corollary 2.4, we need to first verify that

[Ã1 − bestk1(Ã1), Ã2 − bestk1(Ã2)]
Tbestk([bestk1(Ã1),bestk2(Ã2)]) = 0.

Since span{Ãi−bestki(Ãi)} ⊂ span{Ai−bestki(Ai)}, the above equality follows from
the given condition. Next the inequality

σk([bestk1(A1),bestk2(A2)]) ≤ σk([bestt1(A1),bestt2(A2)])

follows from a general inequality about the monotonicity of singular values established
in [10].

The results in Corollaries 2.4 and 2.5 can be generalized to the cases where A =
[A1, . . . , As]. We just state the case for Corollary 2.4.

Corollary 2.6. Let A = [A1, . . . , As] with Ai ∈ Rm×ni , and ki ≤ ni, i =
1, . . . , s. Then

bestk(A) = bestk([bestk1(A1), . . . ,bestks(As)])

if and only if, for i = 1, . . . , s, we have

(Ai − bestki(Ai))
Tbestk([bestk1(A1), . . . ,bestks(As)]) = 0,

and

σk([bestk1(A1), . . . ,bestks(As)]) > σk+1(A).

As an application of the results established in the above corollaries, we consider a
special class of matrices that possess the so-called low-rank-plus-shift structure. This
class of matrices arises naturally in applications such as array signal processing and
LSI in information retrieval [8, 9, 12]. Specifically, a matrix A has the low-rank-plus-
shift structure if ATA is a low-rank perturbation of a positive multiple of the identity
matrix (cf. (2.3)). We now show that matrices with low-rank-plus-shift structure
satisfy the sufficient conditions of Corollary 2.4.2

Theorem 2.7. Let A = [A1, A2] ∈ Rm×n with A1 ∈ Rm×n1 and A2 ∈ Rm×n2 .
Assume that

ATA = X + σ2I,(2.3)

where X is positive semidefinite with rank(X) = k. Partition X as X = (Xij)
2
i,j=1

with Xii ∈ Rni×ni and let rank(Xii) = ki, i = 1, 2. Then

(A1 − bestk1(A1))
TA2 = 0, (A2 − bestk2(A2))

TA1 = 0.(2.4)

Furthermore,

bestk(A) = bestk([bestk1(A1),bestk2(A2)]).

2A similar result was also proved in [13].

PERTURBATION ANALYSIS OF TRUNCATED SVDs 1251

Proof. For i = 1, 2, we have ATi Ai = Xii+σ2I with Xii positive semidefinite and
rank(Xii) = ki. In addition, we can write the SVD of Ai in the following form:

Ai = Ui diag(Σi, σI)V
T
i = [Ui1, Ui2] diag(Σi, σI)[Vi1, Vi2]

T ,

where Vi is orthogonal, and

Σi = (Di + σ2I)1/2, Di = diag(µ
(i)
1 , . . . , µ

(i)
k1
)

with µ
(i)
1 ≥ · · · ≥ µ

(i)
k1

> 0. Hence

bestki(Ai) = Ui1ΣiV
T
i1 , Ai − bestki(Ai) = σUi2V

T
i2 ,

and we now need only to show UT
12A2 = 0 and UT

22A1 = 0. To this end, consider the
symmetric positive semidefinite matrix

[
V1

V2

]T
(ATA− σ2I)

[
V1

V2

]
=

D1 0 Σ1U
T
11U21Σ2 Σ1U

T
11U22Σ2

0 Σ1U
T
12U21Σ2 Σ1U

T
12U22Σ2

D2 0
0

 ,

where for the last matrix in the above equation, blank denotes block matrix elements
by symmetry. Since a principal submatrix of a positive semidefinite matrix is still
positive semidefinite, we obtain

UT
12U21 = 0, UT

11U22 = 0, UT
12U22 = 0,

and the rank of the matrix

Ã =

[
D1 Σ1U

T
11U21Σ2

(Σ1U
T
11U21Σ2)

T D2

]

equals k. Hence it follows from

BTB = diag(V11, V21)(Ã+ σ2I) diag(V T
11, V

T
21),

where B = [bestk1(A1),bestk2(A2)], that

σk([bestk1(A1),bestk2(A2)]) > σ = σk+1(A).

The result of the theorem now follows from Corollary 2.4.
Remark. By definition, the ranks k1 = rank(X11) and k2 = rank(X22) must

satisfy k1 ≤ k, k2 ≤ k, and k ≤ k1 + k2 ≤ 2k. It is also easy to find examples for
which k1 + k2 = k or k1 + k2 = 2k. In some cases, it is possible to find a permutation
P such that AP ≡ [A1, A2] will have Ai with ki, i = 1, 2, that are smaller than those
of A. For example, let

A =

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 .

1252 ZHENYUE ZHANG AND HONGYUAN ZHA

It is easy to verify that k = 2. If we take the first two columns as A1 and the last two
columns as A2, we have k1 = k2 = 2. However, if we take the middle two columns
as A1 and the first and last columns as A2, we have k1 = k2 = 1. This example
motivates the following question: Is it always possible to find a permutation P such
that a partition of AP = [A1, A2] with A1 and A2 having about the same column
dimensions will give k1 + k2 < 2k? The answer turns out to be no. In the following
we show that we can find a class of matrices A satisfying

ATA− σ2I = X

with X positive semidefinite such that for any permutation AP = [A1, A2] we will
have k1 = k2 = k, provided the column dimensions of A1 and A2 are not smaller
than k. To see this, let Y ∈ Rk×n be a matrix any k columns of which are linearly
independent. Let

CTC = Y TY + σ2I

be the Cholesky decomposition of Y TY + σ2I. Set A = QC, where Q is an arbitrary
orthogonal matrix. Then it is easy to see that for any permutation P , a partition of
AP = [A1, A2] with column dimensions of A1 and A2 at least k will have k1 = k2 = k.

3. Perturbation analysis. In the previous section we give necessary and suffi-
cient conditions for perfectly reconstructing a truncated SVD of a matrix from those
of its submatrices. In this section, we consider the case when these conditions are no
longer satisfied and the reconstruction will not be perfect. We will perform pertur-
bation analysis to bound the difference between a truncated SVD of a matrix, say,
bestk(A), and the reconstruction obtained from the truncated SVDs of its subma-
trices, say, bestk(B). It was mentioned in section 1 that in some applications one
may also be interested in comparing the range spaces of bestk(A) and bestk(B) in-
stead of ‖bestk(A) − bestk(B)‖. The following proposition shows that a bound on
the angle between the two range spaces can be readily obtained once a bound on
‖bestk(A)− bestk(B)‖ is available.

Proposition 3.1. Let Θ be the angle between the range spaces of bestk(A) and
bestk(B). Then

‖ sinΘ‖ ≤ ‖bestk(A)− bestk(B)‖/σk(A).

Proof. Let bestk(A) = U1ΣAV T
1 , where ΣA = diag(σ1(A), . . . , σk(A)), and let

bestk(B) = Q1ΣBGT
1 . Writing bestk(A) = bestk(B) + E gives

‖ sinΘ‖ = ‖(I −Q1Q
T
1)U1‖

= ‖(I −Q1Q
T
1)bestk(A)V1Σ

−1
A ‖

= ‖(I −Q1Q
T
1)EV1Σ

−1
A ‖

≤ ‖E‖/σk(A).

We can similarly give an upper bound on the sine of the angle between V1 and
G1.

In view of the result in Proposition 3.1, we will concentrate on deriving pertur-
bation bounds for ‖bestk(A) − bestk(B)‖ with the understanding that a bound on
the range spaces can be obtained via Proposition 3.1. We first give a general result
concerning perturbation bounds of truncated SVDs. The perturbation bound is so

PERTURBATION ANALYSIS OF TRUNCATED SVDs 1253

derived that we get back the result of Theorem 2.1 when the necessary and sufficient
conditions of Theorem 2.1 are satisfied.

Theorem 3.2. Let A = B + C ∈ Rm×n, and for some k < min{m,n} we have
σk+1(A) < σk(B). Then

‖bestk(A)− bestk(B)‖ ≤ ‖A‖(‖bestk(B)CT ‖+ ‖CTbestk(B)‖)
σ2
k(B)− σ2

k+1(A)
+ ‖Pbestk(BT)C

T ‖,

where Pbestk(BT) is the orthogonal projector onto the subspace span{bestk(BT)}.
Proof. Let the SVD of B be

B = UΣV T = [U1, U2] diag(Σ1,Σ2)[V1, V2]
T

with Σ1 ∈ Rk×k and bestk(B) = U1Σ1V
T
1 . Write

C̃ ≡ UTCV =

[
C11 C12

C21 C22

]
(3.1)

with C11 ∈ Rk×k, and let

UTAV = Σ+ C̃ = QDGT ≡
[

Q11 Q12

Q21 Q22

] [
D1

D2

] [
G11 G12

G21 G22

]T
(3.2)

be the SVD of UTAV with Q11, D1, and G11 all k-by-k matrices. Then we have

‖∆‖ = ‖bestk(A)− bestk(B)‖

=

∥∥∥∥∥
[

Q11

Q21

]
D1

[
G11

G21

]T
−
[

Σ1

0

]∥∥∥∥∥
=

∥∥∥∥
[

Q11

Q21

]
[D1, 0]−

[
Σ1

0

]
[G11, G12]

∥∥∥∥
=

∥∥∥∥
[

Q11D1 − Σ1G11 −Σ1G12

Q21D1 0

]∥∥∥∥ .

From (3.2) we have

Σ1G11 + [C11, C12]

[
G11

G21

]
= Q11D1,

Σ2G21 + [C21, C22]

[
G11

G21

]
= Q21D1.

It follows that

‖∆‖ =

∥∥∥∥
[

C11G11 + C12G21 −Σ1G12

C21G11 + (Σ2 + C22)G21 0

]∥∥∥∥
=

∥∥∥∥UAV T

[
0 −G12

G21 0

]
+

[
C11

C21

]
[G11, G12]

∥∥∥∥
≤ ‖A‖‖G12‖+

∥∥∥∥
[

C11

C21

]∥∥∥∥ ,

(3.3)

1254 ZHENYUE ZHANG AND HONGYUAN ZHA

where we have used ‖G12‖ = ‖G21‖. On the other hand from the equalities

(Σ + C̃)G = QD, (Σ + C̃T)Q = GD

and those in (3.1) and (3.2), we obtain

Σ1G12 + [C11, C12]

[
G12

G22

]
= Q12D2,

Σ1Q12 + [CT
11, C

T
21]

[
Q11

Q21

]
= G12D2.

Therefore,

Σ2
1G12 +Σ1[C11, C12]

[
G11

G21

]
= Σ1Q12D2 = G12D

2
2 − [CT

11, C
T
21]

[
Q11

Q21

]
D2,

and we have

(σ2
k(B)− σ2

k+1(A))‖G12‖ ≤ ‖Σ2
1G12 −G12D

2
2‖

≤ ‖[CT
11, C

T
21]‖‖D2‖+ ‖Σ1[C11, C12]‖.

Recall that ‖D2‖ = σk+1(A) < σk(B). Furthermore,

‖Σ1[C11, C12]‖ = ‖Σ1U
T
1 CV ‖ = ‖V T

1 (bestk(B))TC‖ ≤ ‖CTbestk(B)‖
and

‖[CT
11, C

T
21]‖ = ‖V T

1 CTU‖ = ‖V T
1 CT ‖ = ‖Pbestk(BT)C

T ‖ ≤ ‖bestk(B)CT ‖/σk(B).

We obtain

‖G12‖ ≤ (‖bestk(B)CT ‖+ ‖CTbestk(B)‖)/(σ2
k(B)− σ2

k+1(A)).

Substituting the above into (3.3) completes the proof.
Remark. For standard perturbation results for the singular subspaces of matrices,

the reader is referred to [7].
Parallel to the development in section 2, we consider the case where A is parti-

tioned into two block columns A = [A1, A2]. Again we first consider dropping A2 and
comparing bestk(A) with bestk([A1, 0]).

Corollary 3.3. Let A = [A1, A2] and σk(A1) > σk+1(A). Then

‖bestk(A)− bestk([A1, 0])‖ ≤ ‖A‖
σ2
k(A1)− σ2

k+1(A)
‖AT2 bestk(A1)‖.

Proof. Write A = [A1, 0] + [0, A2]. It is easy to see that bestk([A1, 0])[0, A2]
T = 0

and P[A1,0]T [0, A2]
T = 0. The result now follows from Theorem 3.2.

We now derive a bound on the difference between bestk(A) and the reconstruction
based on bestk1(A1) and A2.

Corollary 3.4. Let A = [A1, A2] with σk([bestk1(A1), A2]) > σk+1(A). Then

‖bestk(A)− bestk([bestk1(A1), A2])‖ ≤ ‖A‖η
σ2
k([bestk1(A1), A2])− σ2

k+1(A)
,

PERTURBATION ANALYSIS OF TRUNCATED SVDs 1255

where

η = ‖(A1 − bestk1(A1))
Tbestk([bestk1(A1), A2])‖ ≤ ‖(A1 − bestk1(A1))

TA2‖.

Proof. Again we write

A = [A1, A2] = [bestk1(A1), A2] + [A1 − bestk1(A1), 0] ≡ B + C.

It is easy to see that

BCT = 0, Pbestk(BT)C
T = 0.

The result now is a direct consequence of Theorem 3.2.
We finally look at the most general case and bound the difference between bestk(A)

and bestk([bestk1(A1),bestk2(A2)]).
Corollary 3.5. Let A = [A1, A2]. If σk([bestk1(A1),bestk2(A2)]) > σk(A),

then ‖bestk(A)− bestk([bestk1(A1),bestk2(A2)])‖ is no greater than

‖A‖η
σ2
k([bestk1(A1),bestk2(A2)])− σ2

k+1(A)
,

where

η = ‖[A1 − bestk1(A1), A2 − bestk2(A2)]
Tbestk([bestk1(A1),bestk2(A2)])‖

≤ max{‖(A1 − bestk1(A1))
Tbestk2(A2)‖, ‖(A2 − bestk2(A2))

Tbestk1(A1)‖}.

Proof. The proof is similar to that of Corollary 3.4, and therefore the proof is
omitted.

Remark. It is easy to see that each of the corollaries following Theorem 2.1 is a
direct consequence of the corresponding corollaries established above.

Now we return to matrices with low-rank-plus-shift structure, and we consider the
case where the structural constraints imposed by the low-rank-plus-shift structure are
only approximately satisfied. It turns out that the way this approximation is specified
has direct impact on the perturbation bounds we can derive. In the following we
prove two theorems, one giving an O(

√
ε) perturbation bound and the other an O(ε)

perturbation bound. The difference in the assumptions for the derivation of these
two results is rather subtle, but it gives rise to qualitatively different results. We will
elaborate on this later with some illustrative examples.

To derive the perturbation bounds, we first need two technical lemmas which were
proved in [13]. The two results, especially the first one, are of their own interest as
well.

Lemma 3.6. Assume the equality

[
A BT

B C

]
= X + E

holds for some symmetric matrix E and symmetric positive semidefinite matrix X.
Then we have

‖B‖ ≤
√
(‖A‖+ ‖E‖)(‖C‖+ ‖E‖).

1256 ZHENYUE ZHANG AND HONGYUAN ZHA

Lemma 3.7. Let the symmetric matrix Z be partitioned as

Z =

[
A BT

B C

]
.

Then ‖Z‖ ≤ max{‖A‖, ‖C‖}+ ‖B‖.
Theorem 3.8. Let A = [A1, A2] ∈ Rm×n. Assume that for some integer k <

min{m,n} there exists ε ≥ 0 satisfying3

λj(A
TA− σ2I) > 3ε+ η, j ≤ k,

|λj(ATA− σ2I)| ≤ ε, j > k,

where η = 2
√‖ATA− σ2I‖ε+ ε2 = O(

√
ε). Define ki such that

λj(A
T
i Ai − σ2I) > ε, j ≤ ki,

|λj(ATi Ai − σ2I)| ≤ ε, j > ki,

for i = 1, 2. Then

‖bestk(A)− bestk([bestk1(A1),bestk2(A2)])‖ ≤ ‖A‖η
σ2
k(A)− σ2

k+1(A)− η
.

Proof. Define X ≡ ATA − σ2I. By the eigendecomposition of ATA and the
assumptions on its eigenvalues, we can write X = Y + E, where Y TE = 0, and Y is
positive semidefinite with rank(Y) = k, ‖E‖ ≤ ε, and

λk(Y) = λk(X) > 3ε+ η.

On the other hand, using the column partition of A, we can write

X =

[
AT1 A1 − σ2I AT1 A2

AT2 A1 AT2 A2 − σ2I

]
.

Now for i = 1, 2, write the SVD for Ai as follows:

Ai = [Ui1, Ui2] diag(Σi1,Σi2)[Vi1, Vi2]
T ,

where Σi1 = diag(σi1, . . . , σi,ki) and Σi2 = diag(σi,ki+1, . . . , σi,mi). By definition the
integers ki are chosen such that

σ2
ij − σ2 > ε, j ≤ ki,

|σ2
ij − σ2| ≤ ε, j > ki,

for i = 1, 2, i.e., λj(A
T
i Ai − σ2I) > ε for j ≤ ki and |λj(ATi Ai − σ2I)| ≤ ε for j > ki.

It is easy to see that ki ≤ k since σij ≤ σj(A).
Next we write A = BWT ≡ [B1, B2]W

T , where

B1 = [U11Σ11, U21Σ21], B2 = [U12Σ12, U22Σ22],

3We assume that the eigenvalues of a matrix X are ordered in nonincreasing order λ1(X) ≥ · · · ≥
λn(X).

PERTURBATION ANALYSIS OF TRUNCATED SVDs 1257

and

W =

[
V11 0 V12 0
0 V21 0 V22

]
.

Without loss of generality, we assume that W is orthogonal. (Otherwise replace W
and B2 by [W,W⊥] and [B2, 0], respectively.) Define

∆ = bestk(A)− bestk([bestk1(A1),bestk2(A2)]).

It can be verified that

bestk[bestk1(A1),bestk2(A2)] = bestk[B1, 0]W
T , bestk(A) = bestk(B)WT ,

‖∆‖ = ‖bestk(B)− bestk([B1, 0])‖.
Now in order to apply Corollary 3.3, we need to verify that the condition σk(B1) >
σk+1(B) holds, and we also need to derive a lower bound on σk(B1)

2−σ2
k+1(B) and an

upper bound on ‖BT
2 B1‖. (Notice that ‖BT

2 bestk(B1)‖ ≤ ‖BT
2 B1‖.) The derivation

is done in the following three steps.
(1) We apply Lemma 3.6 twice to obtain an upper bound on ‖BT

2 B1‖. It is easy
to see that both BTB−σ2I and BT

2 B2−σ2I can be written as the sum of a symmetric
positive semidefinite matrix and a symmetric matrix with norm no greater than ε.
Applying Lemma 3.6 to

BTB − σ2I =

[
BT

1 B1 − σ2I BT
1 B2

BT
2 B1 BT

2 B2 − σ2I

]

gives

‖BT
2 B1‖ ≤

√
(‖BT

1 B1 − σ2I‖+ ε)(‖BT
2 B2 − σ2I‖ε)

≤
√
(‖X‖+ ε)(‖BT

2 B2 − σ2I‖ε).
Applying Lemma 3.6 to

BT
2 B2 − σ2I =

[
Σ2

12 − σ2I Σ12U
T
12U22Σ22

Σ22U
T
22U12Σ12 Σ2

22 − σ2I

]

yields

‖Σ12U
T
12U22Σ22‖ ≤ (‖Σ2

12 − σ2I‖+ ε)(‖Σ2
22 − σ2I‖+ ε) ≤ 4ε2,

where we have used ‖Σ2
i2 − σ2I‖ ≤ ε. By Lemma 3.7, we obtain ‖BT

2 B2 − σ2I‖ ≤ 3ε
and hence

‖BT
2 B1‖ ≤ 2

√
‖X‖ε+ ε2 ≡ η.

(2) We now derive a lower bound on σk(B1)
2 − σ2

k+1(B). Write

BTB − σ2I =

[
BT

1 B1 − σ2I
BT

2 B2 − σ2I

]
+

[
BT

1 B2

BT
2 B1

]
.

Using perturbation bounds for eigenvalues, we have

λk(X) = λk(B
TB − σ2I) ≤ λk(diag(B

T
1 B1 − σ2I,BT

2 B2 − σ2I)) + η.

1258 ZHENYUE ZHANG AND HONGYUAN ZHA

The inequality λk(X) > 3ε+ η implies that

λk(B
T
1 B1 − σ2I) > ‖BT

2 B2 − σ2I‖

because ‖BT
2 B2 − σ2I‖ ≤ 3ε. Thus

|σ2
k(B1)− σ2

k(A)| = |λk(BT
1 B1 − σ2I)− λk(X)| ≤ ‖BT

1 B2‖ ≤ η.

It follows that

σ2
k(B1)− σ2

k+1(B) ≥ σ2
k(A)− η − σ2

k+1(A) ≥ ε+ η > 0.

(3) Finally, by Corollary 3.3, we have

‖∆‖ ≤ ‖B‖‖BT
1 B2‖

σ2
k(B1)− σ2

k+1(B)
≤ ‖A‖η

σ2
k(A)− σ2

k+1(A)− η
,

completing the proof.
A natural question to ask is whether the bound derived in Theorem 3.8 is tight

or not. In the following, we provide an example for which the bound in Theorem 3.8
is achievable.

Example 1. Let s be small, and for any σ > s, define

c1 =
√
1 + σ2 + s2, c2 =

√
σ2 + s2, c3 =

√
σ2 + s2, ε = c21s

2.

Let A = [A1, A2] with

A1 =
1√

1 + s2

[
D

sDJ

]
, A2 =

1√
1 + s2

[−sDJ
D

]
, where J =

 1

1
1

 ,

and D = diag(c1, c2, c3). It follows that

A =
1√

1 + s2

[
D

D

] [
I −sJ
sJ I

]
.

It can be verified that

λ1,2(A
TA− σ2I) = 1 + s2 > ε > |λj(ATA− σ2I)|, j ≥ 3,

λ1(A
T
i Ai − σ2I) = 1 + s2(1 + σ2 − s2) > ε ≥ |λj(ATi Ai − σ2I)|, j ≥ 2,

for i = 1, 2. Hence k = 2, and k1 = k2 = 1. A simple computation shows that

bestk(A) =
c1√
1 + s2

[e1, e3][e1 − se6, se3 + e4]
T ,

bestk1(A1) =
1√

1 + s2
[ce1 + sc3e6, 0, 0], bestk1(A1) =

1√
1 + s2

[−sc3e3 + c1e4, 0, 0],

where the ei’s are the canonical unit vectors. So we have

bestk([bestk1(A1),bestk2(A2)]) = [bestk1(A1),bestk2(A2)]

PERTURBATION ANALYSIS OF TRUNCATED SVDs 1259

and

‖bestk(A)− [bestk1(A1),bestk2(A2)]‖ = sc1√
1 + s2

=

√
ε

1 + s2
= O(

√
ε).

We now impose another set of conditions on the perturbation E so that an
O(ε) bound can be derived. Before we proceed, some motivations for imposing
those conditions are in order: recall that we have always implicitly assumed that
σk(B) > σk+1(B) whenever we discuss bestk(B) for a given matrix B. If the matrix
B is perturbed by an amount of order O(ε), it makes sense to impose the constraint
that σk(B)− σk+1(B) > ε. This constraint is roughly the same as

λk(B
TB − σ2I) > ε ≥ |λj(BTB − σ2I)|

for j > k if B has the low-rank-plus-shift structure. If we impose this constraint
on A = [A1, A2], i.e., substituting B with A = [A1, A2], we are no longer free to
choose arbitrary ki ≤ k for the rank of the truncated SVD of the submatrix Ai. The
integers ki will be automatically determined so that σki(Ai) is much greater than those
smallest singular values σj(Ai) for j > ki. As mentioned in the proof of Theorem 3.8,
we always have ki ≤ k. In the example given above, ki < k and the perturbation
bound O(

√
ε) is shown to be achievable. In the following theorem we will show that

an O(ε) perturbation bound is also possible if k1 = k2 = k.
Theorem 3.9. Let A = [A1, A2]. If there exists ε < σ2 and integer k such that

λk(A
TA− σ2I) > ε ≥ |λj(ATA− σ2I)|

for j ≥ k + 1, and λk(A
T
i Ai − σ2I) > ε, i = 1, 2, then

‖(A1 − bestk(A1))
TA2‖ ≤ η1, ‖(A2 − bestk(A2))

TA1‖ ≤ η2,(3.4)

and

‖bestk(A)− bestk([bestk1(A1),bestk2(A2)])‖ ≤ ‖A‖η
λmax − ε

,(3.5)

where

ηi =

(
σ + 2‖A‖+ 2‖A‖3

λk(ATi Ai − σ2I)

)
ε

σ +
√

σ2 − ε
, i = 1, 2,

η = max{η1, η2} =
(
σ + 2‖A‖+ 2‖A‖3

λmin

)
ε

σ +
√

σ2 − ε
,

λmax = max
i=1,2

λk(A
T
i Ai − σ2I), λmin = min

i=1,2
λk(A

T
i Ai − σ2I).

Proof. We will use Corollary 3.5 to prove the theorem. Since

σk([bestk(A1),bestk(A2)]) ≥ max
i=1,2

σk(Ai),

1260 ZHENYUE ZHANG AND HONGYUAN ZHA

it follows that (denoting ∆ = σ2
k([bestk(A1),bestk(A2)])− σ2

k+1(A))

∆ ≥ maxi=1,2(σ
2
k(Ai)− σ2)− (σ2

k+1(A)− σ2)

= maxi=1,2 λk(A
T
i Ai − σ2I)− λk+1(A

TA− σ2I)

≥ λmax − ε.

Therefore the result (3.5) holds provided we can establish (3.4). To prove (3.4) we
will construct a matrix Ã which is close to A so that the inequality ‖Ã−A‖ ≤ η holds
and its partitioned blocks Ã1 and Ã2 with Ã = [Ã1, Ã2] satisfy

(Ã1 − bestk(Ã1))
T Ã2 = 0, (Ã2 − bestk(Ã2))

T Ã1 = 0.

Theorem 3.2 will then be used to estimate ‖bestk(Ãi) − bestk(Ai)‖. To this end,
denote λj = λj(A

TA− σ2I) and define

Λ1 = diag(λ1, . . . , λk), Λ2 = diag(λk+1, . . . , λn).

Then the eigendecomposition of ATA− σ2I and the SVD of A can be written as

ATA− σ2I = V diag(Λ1,Λ2)V
T , A = U diag(

√
Λ1 + σ2I,

√
Λ2 + σ2I)V T ,

respectively, for some orthogonal matrices U and V . Let

E = U diag(0, σI −
√
Λ2 + σ2I)V T .

It can be verified that ‖E‖ ≤ ε/(σ +
√

σ2 − ε) ≡ τ , and the matrix

Ã ≡ A+ E = U diag(
√
Λ1 + σ2I, σI)V T

has the low-rank-plus-shift structure. Now partition

E = [E1, E2], Ã = [Ã1, Ã2]

conformally with the partition of A. Then ‖Ei‖ ≤ τ . Since

ATA− σ2I = ÃT Ã− σ2I + Ẽ, Ẽ = V diag(0,Λ2)V
T = (Ẽi,j)

2
i,j=1,

it can be verified that ATi Ai − σ2I = ÃTi Ãi − σ2I + Ẽii, and we have

λk(Ã
T
i Ãi − σ2I) ≥ λk(A

T
i Ai − σ2I)− ‖Ẽii‖

≥ λk(A
T
i Ai − σ2I)− ε > 0.

It follows that rank(ÃTi Ãi − σ2I) = k. By Theorem 2.7, we have

(Ã1 − bestk(Ã1))
T Ã2 = 0, (Ã2 − bestk(Ã2))

T Ã1 = 0.

Let ∆i = bestk(Ãi)− bestk(Ai)− Ei; then we have

‖∆i‖ ≤ ‖bestk(Ãi)− bestk(Ai)‖+ ‖Ei‖.
It follows from Theorem 3.2 that

‖bestk(Ãi)− bestk(Ai)‖ ≤
(
1 +

2‖Ãi‖‖Ai‖
σ2
k(Ai)− σ2

k+1(Ãi)

)
‖Ei‖

=

(
1 +

2‖A‖2
σ2
k(Ai)− σ2

)
‖Ei‖,

PERTURBATION ANALYSIS OF TRUNCATED SVDs 1261

and therefore

‖∆i‖ ≤
(
2 +

2‖A‖2
λk(ATi Ai − σ2I)

)
τ.

Here we have used ‖Ai‖ ≤ ‖A‖, ‖Ãi‖ ≤ ‖Ã‖ ≤ ‖A‖, and σk+1(Ãi) = σ. Since

Ai − bestk(Ai) = Ãi − bestk(Ãi) + ∆i,

we have

‖(A1 − bestk(A1))
TA2‖ = ‖∆T

1 A2 − (Ã1 − bestk(Ã1))E2‖
≤ ‖A2‖‖∆1‖+ σk+1(Ã1)‖E2‖
≤ (σ + 2‖A‖+ 2‖A‖3/λk(AT1 A1 − σ2I))τ = η1.

We can similarly prove ‖(A2−bestk(A2))
TA1‖ ≤ η2. Therefore (3.4) holds, completing

the proof.
Remark. Notice that the condition λk(A

T
i Ai−σ2I) > ε implies that k1 = k2 = k.

In order for the perturbation bound to be of order O(ε), λmin needs to be of order
O(1) provided λmax � ε.

Example 2. Now we construct a class of matrices that satisfy the conditions
of Theorem 3.9. For any orthonormal matrices U1 and V1 with k columns, let Λ =
diag(λ1, . . . , λk), where λi � σ2 > 0 for i = 1, . . . , k. Let

D1 = (Λ
√
Λ2 + εI)−1(Λ2 − (σ2 − ε)I), D2 =

√
I −D2

1, U2 = [U1, U
⊥
1][D1, D2]

T ,

where U⊥
1 is any orthonormal matrix of k columns that is orthogonal to U1. Define

A1 = U1ΛV T
1 , A2 = U2

√
Λ2 + εIV T

1 .

It follows that

X = [A1, A2]
T [A1, A2]− σ2I =

[
AT1 A1 − σ2I AT1 A2

AT2 A1 AT2 A2 − σ2I

]

=

[
AT1 A1 − σ2I AT1 A1 − σ2I + ε

AT2 A1 AT2 A1

]
=

[
AT2 A2 − σ2I AT2 A2 − σ2I
AT2 A2 − σ2I AT2 A2 − σ2I

]
−
[

ε 0
0 0

]
.

Hence,

λj(X) ≥ 2(λj − σ2 + ε)� ε, j ≤ k,

|λj(X)| ≤ ε, j > k,

and by definition k1 = k2 = k.
Remark. For the case where k1 < k and k2 < k, if we replace bestk1(A1) and

bestk2(A2) by bestk(A1) and bestk(A2), respectively, the error

‖∆‖ = ‖bestk(A)− bestk[bestk(A1),bestk(A2)]‖
may still be O(

√
ε). For example, in Example 1, we have

best2[best2(A1),best2(A2)] = best2[best1(A1),best1(A2)].

Therefore,

‖best2(A)− best2[best2(A1),best2(A2)]‖ =
√

ε

1 + s2
.

1262 ZHENYUE ZHANG AND HONGYUAN ZHA

Acknowledgments. Part of this work was done while both authors were visiting
the National Energy Research Scientific Computing Center, Lawrence Berkeley Na-
tional Laboratory. The authors wish to thank Dr. Horst Simon for his hospitality and
support. The authors also want to thank the anonymous referees for their comments
and suggestions that greatly improved the presentation of the paper.

REFERENCES

[1] M. Berry, Large scale singular value computations, Internat. J. Supercomputer Appl., 6 (1992),
pp. 13–49.

[2] M.W. Berry, S.T. Dumais, and G.W. O’Brien, Using linear algebra for intelligent informa-
tion retrieval, SIAM Rev., 37 (1995), pp. 573–595.

[3] J. Cullum, R. A. Willoughby, and M. Lake, A Lanczos algorithm for computing singular
values and vectors of large matrices, SIAM J. Sci. Statist. Comput., 4 (1983), pp. 197–215.

[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University
Press, Baltimore, 1989.

[5] B.N. Parlett, The Symmetric Eigenvalue Problem, Classics Appl. Math. 20, SIAM, Philadel-
phia, 1998.

[6] H. Simon and H. Zha, Low-rank matrix approximation using the Lanczos bidiagonalization
process, SIAM J. Sci. Comput., 21 (2000), pp. 2257–2274.

[7] P. Wedin, Perturbation bounds in connection with the singular value decomposition, BIT, 12
(1972), pp. 99–111.

[8] G. Xu and T. Kailath, Fast subspace decomposition, IEEE Trans. Signal Process., 42 (1994),
pp. 539–551.

[9] G. Xu, H. Zha, G. Golub, and T. Kailath, Fast algorithms for updating signal subspaces,
IEEE Trans. Circuits Systems I Fund. Theory Appl., 41 (1994), pp. 537–549.

[10] H. Zha and H.D. Simon, On updating problems in latent semantic indexing, SIAM J. Sci.
Comput., 21 (1999), pp. 782–791.

[11] H. Zha and H. Simon, A subspace-based model for latent semantic indexing in information
retrieval, in Proceedings of Interface ’98, Berkeley, Springer-Verlag, New York, 1998, pp.
315–320.

[12] H. Zha, O. Marques, and H. Simon, Large-scale SVD and subspace-based methods for in-
formation retrieval, in Proceedings of Irregular ’98, Lecture Notes in Comput. Sci. 1457,
Springer-Verlag, New York, 1998, pp. 29–42.

[13] H. Zha and Z. Zhang, Matrices with low-rank-plus-shift structure: Partial SVD and latent
semantic indexing, SIAM J. Matrix Anal. Appl., 21 (1999), pp. 522–536.

REAL HAMILTONIAN POLAR DECOMPOSITIONS∗

CORNELIS V. M. VAN DER MEE† , ANDRÉ C. M. RAN‡ , AND LEIBA RODMAN§

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1263–1273

Abstract. For a given real invertible skew-symmetric matrix H, we characterize the real 2n×2n
matrices X that allow an H-Hamiltonian polar decomposition of the type X = UA, where U is a
real H-symplectic matrix (UTHU = H) and A is a real H-Hamiltonian matrix (HA = −ATH).

Key words. polar decomposition, Hamiltonian matrices, skew-Hamiltonian matrices, symplec-
tic matrices

AMS subject classifications. 15A23, 47B50

PII. S0895479899362788

1. Introduction. It is well known that every square matrix X allows a polar
decomposition X = UA, where U is unitary and A is self-adjoint, and the proof of
this fact is straightforward. When unitarity and self-adjointness are required to hold
with respect to the indefinite scalar product [x, y] = 〈Hx, y〉 with H an invertible
self-adjoint matrix, the theory of the H-polar decompositions X = UA, where U
is H-unitary (i.e., [Ux,Uy] = [x, y] for all vectors x, y) and A is H-self-adjoint (i.e.,
[Ax, y] = [x,Ay] for all vectors x, y), is much more complicated and has been developed
in [2, 3, 4]. Introducing the H-adjoint X [∗] of X by X [∗] = H−1X∗H with X∗ the
usual adjoint (so that U is H-unitary if and only if U is invertible and U−1 = U [∗],
and A is H-self-adjoint if and only if A[∗] = A), an H-polar decomposition of a matrix
X exists if and only if there exists an H-self-adjoint matrix A satisfying

X [∗]X = A2, KerX = KerA,(1.1)

where the symbol Ker denotes the null space of a matrix. The H-unitary factor U
is then constructed as an H-unitary extension (a so-called Witt extension) of the H-
isometry V : ImA→ ImX satisfying Xy = V Ay for every vector y. An H-polar de-
composition of a given matrix X need not always exist, X may have many “nonequiv-
alent” H-polar decompositions, and there exist various interesting subclasses of H-
polar decompositions. Moreover, there exists a fairly complete stability theory for
H-polar decompositions [6].

The situation is quite different for Hamiltonian polar decompositions, introduced
below. Dealing exclusively with real matrices, we fix an invertible 2n×2n real matrix
H such that H = −HT . Without loss of generality we may assume that

H =

[
0 I
−I 0

]
.

∗Received by the editors October 28, 1999; accepted for publication (in revised form) by P. Van
Dooren October 9, 2000; published electronically April 6, 2001.

http://www.siam.org/journals/simax/22-4/36278.html
†Dipartimento di Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy

(cornelis@krein.unica.it). The work of this author was partially supported by INDAM and MURST.
‡Divisie Wiskunde en Informatica, Faculteit Exacte Wetenschappen, Vrije Universiteit, De Boele-

laan 1081a, 1081 HV Amsterdam, The Netherlands (ran@cs.vu.nl).
§Department of Mathematics, The College of William and Mary, Williamsburg, VA 23187-8795

(lxrodm@math.wm.edu). The work of this author was partially supported by NSF grant DMS
9800704 and by a Faculty Research Assignment grant from the College of William and Mary.

1263

1264 C. V. M. VAN DER MEE, A. C. M. RAN, AND L. RODMAN

A real 2n × 2n matrix X is called H-Hamiltonian if HX = −XTH, and H-skew-
Hamiltonian if HX = XTH. Denoting X [∗] = H−1XTH, we see that X is H-
Hamiltonian if and only if X [∗] = −X, and H-skew-Hamiltonian if and only if X [∗] =
X. Defining a real matrix U to be H-symplectic if UTHU = H or, equivalently,
U [∗] = U−1, and H-antisymplectic if UTHU = −H or, equivalently, U [∗] = −U−1,
we can in principle study four different polar decomposition problems for a given real
2n×2nmatrixX, namely, we can study the problem of representing suchX in the form
X = UA, where U is H-symplectic (or H-antisymplectic) and A is H-Hamiltonian
(or H-skew-Hamiltonian). In this article we will limit ourselves to H-Hamiltonian
polar decompositions only, i.e., to representations of X of the type X = UA, where U
is H-symplectic and A is H-Hamiltonian.

All matrices in sections 1 and 2 are assumed to be real.
The following result is immediate. For the sake of completeness we present a

short proof.
Theorem 1.1. A real 2n× 2n matrix X has an H-Hamiltonian polar decompo-

sition if and only if there exists an H-Hamiltonian matrix A such that A2 = −X [∗]X
and KerA = KerX.

Proof. The necessity is clear: if X = UA is an H-Hamiltonian polar decomposi-
tion, then

X [∗]X = A[∗]U [∗]UA = A[∗]A = −A2,

and KerA = KerX holds as well. Conversely, if an H-Hamiltonian matrix A exists
with the properties as described in the theorem, then there exists an invertible map
U0 : ImA → ImX defined by the equality U0Ay = Xy for every y ∈ R

2n. Letting
[x, y] = 〈Hx, y〉 be the skew-symmetric scalar product induced by H, we now have

[U0Ax,U0Ay] = [Xx,Xy] = [X [∗]Xx, y] = [−A2x, y]

= [A[∗]Ax, y] = [Ax,Ay], x, y ∈ R
2n.

In other words, U0 is an H-isometry. By a version of Witt’s theorem (see Theorem
4.2 of [3]), U0 can be extended to an H-symplectic linear transformation U on the
whole of R

2n. Thus, we obviously have an H-Hamiltonian polar decomposition X =
UA.

The following result recently proved in [1] greatly simplifies the problem of char-
acterizing the real matrices X having an H-Hamiltonian polar decomposition.

Theorem 1.2. Every H-skew-Hamiltonian matrix is a square of an H-Hamiltonian
matrix. Moreover, for every H-skew-Hamiltonian matrix A there exists an H-symplectic
matrix U such that

U−1AU =

[
B 0
0 BT

]
(1.2)

for some matrix B. Furthermore, B can be chosen in a real Jordan form.
Every matrix of the form X [∗]X is obviously H-skew-Hamiltonian. The converse

is also true, as stated in the following result. Proposition 1.3 is to be contrasted with
the corresponding results for the symmetric (in the real case) or Hermitian (in the
complex case) indefinite scalar products (see [6]): There the three classes of matrices
A for which A = A[∗], or A = X [∗]X for some X, or A = X [∗]X for some X such that
KerX = KerA, are all different.

REAL HAMILTONIAN POLAR DECOMPOSITIONS 1265

Proposition 1.3. Let A be H-skew-Hamiltonian. Then there exists a matrix X
such that A = X [∗]X and KerA = KerX.

Proof. By Theorem 1.2 we may (and do) assume that

H =

[
0 I
−I 0

]
, A =

[
B 0
0 BT

]

for some matrix B. We then let

X =

[
C 0
0 G

]
,

where C and G are such that B = GTC. Then the equality A = X [∗]X is easily
verified.

To ensure the condition KerA = KerX we need KerC = KerB and KerG =
KerBT . To this end, write the singular value decomposition B = UDV , where U and
V are real orthogonal and D is diagonal with nonnegative entries, and put C =

√
DV ,

G = (U
√
D)T .

Analogously one proves that for every H-skew-Hamiltonian matrix A there exists
X such that A = −X [∗]X and KerA = KerX.

Proposition 1.4. Every invertible 2n × 2n matrix X has an H-Hamiltonian
polar decomposition.

Proof. By Theorem 1.2, there exists an H-Hamiltonian matrix A such that A2 =
−X [∗]X. Since X is invertible, the condition KerA = KerX is trivially satisfied. By
Theorem 1.1, we are done. As a matter of fact, the H-symplectic factor is given by
U = XA−1.

There are examples of matrices that do not have any H-Hamiltonian polar de-
compositions.

Example 1.5. Let

H =

[
0 I2
−I2 0

]

be 4× 4, where I2 stands for the identity matrix of order 2. The matrix

W =

0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0

is H-skew-Hamiltonian, so by Proposition 1.3 there exists X such that W = −X [∗]X
and KerW = KerX, for example,

X =

0 −1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .

On the other hand, a direct verification shows (see below) that there is no H-
Hamiltonian square root V of W such that

KerV = KerW.(1.3)

1266 C. V. M. VAN DER MEE, A. C. M. RAN, AND L. RODMAN

By Theorem 1.1, X has no H-Hamiltonian polar decomposition.
To verify that there is no H-Hamiltonian square root V of W with the property

(1.3), assume that V is one. Being H-Hamiltonian, V must be of the form

V =

[
E F
G −ET

]
,

where F and G are symmetric 2 × 2 matrices. Condition (1.3) implies that V must
have a first and a last (fourth) column consisting of zeros. Thus, V must have the
form

V =

0 −p q 0
0 0 0 0
0 0 0 0
0 r p 0

for some p, q, r ∈ R. But then V 2 = 0, a contradiction with V 2 = W .
The main result in [1], i.e., Theorem 1.2, allows us to write a short paper. The

main result on the characterization of the real matrices X allowing an H-Hamiltonian
polar decomposition is stated and proved in section 2. The final section 3 is devoted
to a comparison of the main result to existing results on K-polar decomposition for
the invertible self-adjoint matrix K = iH.

2. Main result. To formulate and prove our main result, we need canonical
forms for H-Hamiltonian and H-skew-Hamiltonian matrices, where H is a fixed real
invertible skew-symmetric matrix. We will state these forms only to the extent
in which they are needed in our proofs. For the complete canonical forms for H-
Hamiltonian and H-skew-Hamiltonian matrices, as well as for pairs of matrices with
related symmetries, see, e.g., [5, 7].

Lemma 2.1.
(a) Let A be H-skew-Hamiltonian. Then there exists an invertible real matrix S

such that Ã = S−1AS and H̃ = STHS have the following form:

Ã =
k⊕
j=1

(
Jj ⊕ (Jj)

T
)
,

H̃ =

k⊕
j=1

[
0 Ipj
−Ipj 0

]
,

where Jj is a real Jordan block of size pj×pj corresponding either to a real eigenvalue
or to a pair of nonreal complex eigenvalues.

(b) Let A be H-Hamiltonian. Then there exists an invertible real matrix S such
that Ã = S−1AS and H̃ = STHS have the following form:

Ã = Ã0 ⊕

 k⊕
j=1

J2pj (0)

⊕

 �⊕
j=k+1

(
J2pj+1(0)⊕−J2pj+1(0)T

)

 ,

H̃ = H̃0 ⊕

 k⊕
j=1

εjF2pj

 ⊕

 �⊕
j=k+1

[
0 I2pj+1

−I2pj+1 0

]
 ,

REAL HAMILTONIAN POLAR DECOMPOSITIONS 1267

where Ã0 is invertible, Jq(0) stands for the q × q nilpotent (upper triangular) Jordan
block, εj are signs ±1, and

F2p =

1
−1

. .
.

1
−1

is the 2p× 2p skew-symmetric matrix with zeros off the trailing diagonal.
We now state our main result.
Theorem 2.2. Let X be a real matrix and H a real skew-symmetric invertible

matrix. Then there exists an H-Hamiltonian polar decomposition of X if and only
if the part of the canonical form of (X [∗]X,H), as presented in Lemma 2.1(a), cor-
responding to the zero eigenvalue of X [∗]X, can be represented in the block diagonal
form

(diag (Br)
m
r=0, diag (Gr)

m
r=0),

where
(i) B0 is the zero matrix of order 2k0 and

G0 =

[
0 Ik0
−Ik0 0

]
,

(ii) m = m1 +m2, and for each r = 1, . . . ,m1 we have

Br =

[
Jkr (0) 0

0 Jkr (0)T

]
, Gr =

[
0 Ikr
−Ikr 0

]
,(2.1)

while for r = m1 + 1, . . . ,m1 +m2 we have

Br =

Jkr (0) 0 0 0

0 Jkr−1(0) 0 0
0 0 Jkr (0)T 0
0 0 0 Jkr−1(0)T

 ,

Gr =

[
0 I2kr−1

−I2kr−1 0

]
,(2.2)

(iii) and, denoting the corresponding basis in Ker (X [∗]X)2n ⊆ R
2n in which the

form (i), (2.1), (2.2) is achieved by {er,j}m,�rr=0,j=1, where �0 = 2k0, �r = 2kr
for r = 1, . . . ,m1, and �r = 4kr − 2 for r = m1 + 1, . . . ,m2, we have

KerX = span {er,1 + εrer,2kr | r = 1, . . . ,m1}
+span {er,1, er,4kr−2 | r = m1 + 1, . . . ,m2}

+span {e0,j}2k0j=1(2.3)

for some numbers εr = ±1.
Note that there may be more than one way to divide the part of the canonical

form of (X [∗]X,H) corresponding to the zero eigenvalue of X [∗]X into blocks of the

1268 C. V. M. VAN DER MEE, A. C. M. RAN, AND L. RODMAN

form (i), of the form (2.1), and of the form (2.2). Also, for some bases in which
the form (i), (2.1), (2.2) is achieved the formula (2.3) may be valid, and for some
other bases in which the form (i), (2.1), (2.2) is achieved the formula (2.3) may not
be valid. Theorem 2.2 says that a necessary and sufficient condition for existence of
an H-Hamiltonian polar decomposition of X is that there is a suitable division of
the part of the canonical form of (X [∗]X,H) corresponding to the zero eigenvalue of
X [∗]X into the blocks of the forms (i), (2.1), and (2.2), and there is a suitable basis
in which this division is achieved so that (2.3) is valid.

Proof. First of all we show that the proof can be reduced to the case when X [∗]X
is nilpotent.

By Lemma 2.1 we may let

X [∗]X = S−1

[
Z1 0
0 Z0

]
S, H = ST

[
H1 0
0 H0

]
S,

where Z1 is invertible and Z0 is nilpotent. Replacing X by S−1XS and H by STHS,
we see that we may assume without loss of generality that

X [∗]X =

[
Z1 0
0 Z0

]
, H =

[
H1 0
0 H0

]
,

with Z1 invertible and Z0 nilpotent and Zi being Hi-skew Hamiltonian for i = 0, 1.
So, for the sake of the present argument, we shall assume that this is the case. Then

(X [∗]X)n =

[
Zn1 0
0 0

]
.

We see that

R
2n = Im (X [∗]X)n ⊕Ker (X [∗]X)n.(2.4)

Note also KerX ⊆ Ker (X [∗]X)n. Define X̃ as follows: X̃x = 0 for x ∈ Im (X [∗]X)n,
while X̃x = Xx for x ∈ Ker (X [∗]X)n. It follows that

Ker X̃ = Im (X [∗]X)n ⊕KerX(2.5)

with respect to decomposition (2.4). Indeed, the inclusion ⊇ in (2.5) is obvious in
view of the definition of X̃. For the opposite inclusion, let x + y ∈ Ker X̃, where
x ∈ Im (X [∗]X)n, y ∈ Ker (X [∗]X)n. Then clearly y ∈ Ker X̃, and hence y ∈ KerX
by the definition of X̃. Note also the equality

X̃ [∗]X̃ =

[
0 0
0 Z0

]
.(2.6)

To verify (2.6), first note that because of (2.5), X̃ [∗]X̃ has the form

[
0 ?
0 ?

]
,

and the H-skew-Hamiltonian property of X̃ [∗]X̃ implies that in fact

X̃ [∗]X̃ =

[
0 0
0 ?

]
,

REAL HAMILTONIAN POLAR DECOMPOSITIONS 1269

the question marks denoting irrelevant parts of matrices. For every x, y ∈ Ker (X [∗]X)n

we have

〈X̃ [∗]X̃x, y〉 = 〈H−1X̃THX̃x, y〉,
which in view of the definition of X̃ is equal to

−〈HXx, X̃H−1y〉 = −〈HXx,XH−1y〉 = 〈X [∗]Xx, y〉.
Therefore, the lower right block of X̃ [∗]X̃ must be Z0, as claimed by equality (2.6).

Now assume that X has an H-Hamiltonian polar decomposition X = UA. Then
A commutes with X [∗]X = −A2, and since Z1 and Z0 have disjoint spectra it follows
that A is block diagonal:

A =

[
A1 0
0 A0

]
.

Hence Z0 = −A2
0. Put

Ã =

[
0 0
0 A0

]
;

then it follows that −Ã2 = X̃ [∗]X̃, while Ker Ã = Ker X̃, since KerA = KerX. We
conclude that if X admits an H-Hamiltonian polar decomposition, then so does X̃.
Conversely, assume that X̃ has an H-Hamiltonian polar decomposition. Then

X̃ [∗]X̃ =

[
0 0
0 Z0

]
= −B2

for some H-Hamiltonian B such that KerB = Ker X̃. The latter property ensures
that with respect to the H-orthogonal decomposition (2.4), B has the form

B =

[
0 ?
0 ?

]
,

and the H-Hamiltonian property of B ensures that B = O ⊕ B0 for some B0. The
matrix B0 is actually such that H0B0 = −BT0 H0 and {0} ⊕ KerB0 = KerX. Let
B1 be any H1-Hamiltonian matrix such that Z1 = −B2

1 , which exists by [1]. Put
A = B1 ⊕B0; then A is H-Hamiltonian, A2 = −X [∗]X, and KerA = KerX. Thus, if
X̃ admits an H-Hamiltonian polar decomposition, then so does X. We have shown
that X admits an H-Hamiltonian polar decomposition if and only if X̃ does, and
X̃ [∗]X̃ is nilpotent. Moreover, the conditions of Theorem 2.2 are satisfied for X if and
only if they are satisfied for X̃. So we may indeed assume in the remainder of the
proof that X [∗]X is nilpotent.

To prove necessity, assume that X = UA for an H-symplectic U and an H-
Hamiltonian A. Bringing the pair (A,H) into canonical form (see Lemma 2.1(b)) and
considering separately each orthogonal summand corresponding to the eigenvalue zero
of A, we can assume that either

A = J2p(0), H = εF2p

with respect to some basis e1, . . . , e2p or

A =

[
J2p−1(0) 0

0 −J2p−1(0)T

]
, H =

[
0 I2p−1

−I2p−1 0

]

1270 C. V. M. VAN DER MEE, A. C. M. RAN, AND L. RODMAN

with respect to some basis e1, . . . , e4p−2.
In the former case take the square of A. Consider the vectors

fi = (−1)i−1 1√
2

(e2i−1 + e2i)

together with the vectors

gi = (−1)i−1 ε√
2

(e2i−1 − e2i)

for i = 1, . . . , p. Observe that these are real vectors and that −A2 with respect to
the basis given by {f1, . . . , fp; gp, . . . , g1} has the form Jp(0)⊕Jp(0)T . Moreover, the
matrix H with respect to this basis has the form[

0 I2p−1

−I2p−1 0

]
.

Finally, the kernel of A, and hence of X, is given by KerA = span {e1} = span {f1 +
εg1}.

In the latter case, take as a basis

e1,−e3, . . . , (−1)p−1e2p−1; e2,−e4, . . . , (−1)pe2p−2;

e2p,−e2p+2, . . . , (−1)p−1e4p−2; e2p+1,−e2p+3, . . . , (−1)pe4p−3,

in this order. With respect to this basis (−A2, H) has the form (2.2), and, moreover,
KerA = span {e1, e4p−2}, which proves necessity.

To prove sufficiency, we argue as in the proof of Theorem 4.4 in [2]. As observed
above, we may assume that X is such that X [∗]X is nilpotent. Let us assume that
the pair (X [∗]X,H) is in the form as described in this theorem with respect to some

basis {er,j}m,�rr=0,j=1, where l0 = 2k0, lr = 2kr (r = 1, . . . ,m1), and lr = 4kr − 2
(r = m1 + 1, . . . ,m). We shall produce for each block (Br, Gr) a matrix Ar such that
GrAr = −ATr Gr and −A2

r = Br, and finally KerAr = KerX ∩ span {er,j}�rj=1, where
KerX is given by (2.3).

For the block (B0, H0) this is trivial: take A0 = B0 = 02k0×2k0 , the zero matrix
of order k0. Thus we have only to consider the blocks (Br, Hr) with r ≥ 1. First
consider such a block of type (2.2). Let S be a matrix with the vectors

er,1, er,kr+1,−er,2,−er,kr+2, . . . , (−1)krer,kr−1, (−1)krer,2kr−1, (−1)kr−1er,kr ;

er,2kr , er,3kr ,−er,2kr+1, er,3kr+1, . . . , (−1)krer,3kr−2, (−1)krer,4kr−2, (−1)kr−1er,3kr−1

(2.7)

as its columns, in this order. Then

S−1BrS = −
[
J2kr−1(0) 0

0 −J2kr−1(0)T

]2
. STGrS = Gr.

Put

Ar = S

[
J2kr−1(0) 0

0 −J2kr−1(0)T

]
S−1.

Then −A2
r = Br and

KerAr = span {er,1, er,4kr−2} = KerX ∩ span {er,j}�rj=1.

REAL HAMILTONIAN POLAR DECOMPOSITIONS 1271

Next, consider a block Br of type (2.1). Let S be the matrix with the following vectors
as its columns:

1√
2

(er,1 + εrer,2kr),
1√
2

(er,1 − εrer,2kr),− 1√
2

(er,2 + εrer,2kr−1),

− 1√
2

(er,2 − εrer,2kr−1), . . . , (−1)kr−1 1√
2

(er,kr + εrer,kr+1),

(−1)kr−1 1√
2

(er,kr − εrer,kr+1).(2.8)

It is assumed that the vectors appear in S in the same order. Then

S−1BrS = −J2kr (0)2 , STGrS = εrF2kr .

Let Ar = SJ2kr (0)S−1. Then A2
r = −Br and

KerAr = span {er,1 + εrer,2kr} = KerX ∩ span {er,j}�rj=1,

as desired.
The proof of Theorem 2.2 shows that the signs εr coincide with the signs εj in the

canonical form of (A,H) corresponding to the blocks (J2pj (0), εjF2pj) as in Lemma
2.1(b); here A is the H-Hamiltonian matrix in an H-Hamiltonian polar decomposition
X = UA of X.

3. Comparison with existing polar decompositions. Hamiltonian polar
decompositions can be compared with the polar decompositions studied in [2, 3, 4].
To do so, note that an H-Hamiltonian polar decomposition X = UA gives rise to
the iH-polar decomposition (in the terminology of [2]) iX = U(iA). Here iA is iH-
self-adjoint and U is H-symplectic, therefore also iH-unitary. Denoting by [∗] the
iH-adjoint operation we have (iX)[∗](iX) = X [∗]X (note that the definition of [∗]

given in section 1 coincides with iH-adjoint operation for real matrices:

H−1XTH = (iH)−1X∗(iH)

for real X). Since by Theorem 1.2, X [∗]X can be put in the form (1.2), it is clear that
the partial multiplicities of X [∗]X occur only in pairs and that the signs in the iH-
sign characteristic of (iX)[∗](iX) = X [∗]X corresponding to each pair of multiplicities
associated with a real eigenvalue of (iX)[∗](iX) = X [∗]X are opposite. Compare the
canonical form of H-skew-Hamiltonian matrices; see Lemma 2.1(a).

In what follows we shall denote by Qk the k × k matrix with zeros everywhere
except on the south-west/north-east diagonal, where there are ones.

Combining the observation above with the necessary and sufficient conditions
(obtained in [2]) for the existence of an iH-polar decomposition of iX, we obtain the
following result.

Theorem 3.1. Let X be a real 2n × 2n matrix and H a real skew-symmetric
invertible 2n × 2n matrix. Then there exists an iH-polar decomposition of iX if
and only if the part of the canonical form of (X [∗]X, iH) corresponding to the zero
eigenvalue of X [∗]X can be represented in the form

(diag (Bj)
m
j=0, diag (Gj)

m
j=0),

where

1272 C. V. M. VAN DER MEE, A. C. M. RAN, AND L. RODMAN

(i) B0 is the zero matrix of order 2k0 and G0 = Ik0 ⊕−Ik0 ,
(ii) m = m1 +m2, and for each j = 1, . . . ,m1 we have

Bj =

[
Jkj (0) 0

0 Jkj (0)

]
, Gj =

[
Qkj 0

0 −Qkj

]
,(3.1)

while for j = m1 + 1, . . . ,m1 +m2 we have

Bj =

Jkj (0) 0 0 0

0 Jkj−1(0) 0 0
0 0 Jkj (0) 0
0 0 0 Jkj−1(0)

 ,

Gj =

Qkj 0 0 0

0 Qkj−1 0 0
0 0 −Qkj 0
0 0 0 −Qkj−1

 ,(3.2)

(iii) and, denoting the corresponding basis in Ker (X [∗]X)2n ⊆ C
2n in which the

form (i), (3.1), (3.2) is achieved, by {er,j}m,�rr=0,j=1, where �0 = 2k0, �r = 2kr
for r = 1, . . . ,m1, and �r = 4kr − 2 for r = m1 + 1, . . . ,m2 we have

KerX = span {er,1 + er,kr+1 | r = 1, . . . ,m1}
+span {er,1, er,2kr | r = m1 + 1, . . . ,m2}

+span {e0,j}2k0j=1.

The clarifications made after Theorem 2.2 apply to Theorem 3.1 as well.
It is easily verified that the conditions of Theorem 3.1 are necessary for the exis-

tence of an H-Hamiltonian polar decomposition of X. Theorem 2.2 shows that they
are also sufficient. We indicate (omitting many details) how one can derive Theorem
2.2 directly from Theorem 3.1. First write (X [∗]X, iH) in canonical form as in Theo-
rem 2.1 of [2] for F = C and take the complex conjugate of (2.2) and (2.3) of [2]. This
leads to real Jordan blocks with opposite signs, and hence they can be arranged in
pairs having opposite signs. Further, the condition in Theorem 4.4 of [2] on the neg-
ative eigenvalues of X [∗]X to guarantee the existence of an (iH)-polar decomposition
of X turns out to be superfluous. Next, writing (X [∗]X, iH) in canonical form as in
Theorem 2.1 of [2] for F = C with consecutive real Jordan blocks of equal size and
opposite sign and letting σj1, . . . , σ

j
kj

(j = 1, . . . , α) stand for the first k1 + · · · + kα
columns of the complex matrix S that transforms (X [∗]X, iH) to the canonical form,
we obtain the part of the canonical form of (X [∗]X,H) according to Lemma 2.1(a) if
we let the columns of the new S be the vectors

ρ1j − εjτ jkj , ρ2j − εjτ
j
kj−1, . . . , ρ

kj
j − εjτ j1 ,

ρ1j + εjτ
j
kj
, ρ2j + εjτ

j
kj−1, . . . , ρ

kj
j + εjτ

j
1 ,

where j = 1, . . . , α and ρjr and τ jr are the real and imaginary parts of σjr , and we arrive
at a direct derivation of Theorem 2.2 from Theorem 3.1. We have omitted in the
above discussion consideration of Jordan blocks corresponding to nonreal eigenvalues
of X [∗]X.

REAL HAMILTONIAN POLAR DECOMPOSITIONS 1273

Corollary 3.2. A real matrix X has an H-Hamiltonian polar decomposition
with respect to a real invertible skew-symmetric matrix H if and only if iX has an
iH-polar decomposition (over the field of complex numbers).

REFERENCES

[1] H. Fassbender, D. S. Mackey, N. Mackey, and H. Xu, Hamiltonian square roots of
skew-Hamiltonian matrices, Linear Algebra Appl., 287 (1999), pp. 125–159.

[2] Yu. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, and L. Rodman,
Polar decompositions in finite dimensional indefinite scalar product spaces: General
theory, Linear Algebra Appl., 261 (1997), pp. 91–141.

[3] Yu. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, and L. Rodman,
Extensions of isometries in finite-dimensional indefinite scalar product spaces and polar
decompositions, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 752–774.

[4] Yu. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, and L. Rodman,
Polar decompositions in finite dimensional indefinite scalar product spaces: Special
cases and applications, in Recent Developments in Operator Theory and Its Applica-
tions, Oper. Theory Adv. Appl. 87, I. Gohberg, P. Lancaster, and P. N. Shivakumar,
eds., Birkhäuser, Basel, 1996, pp. 61–94. Erratum in Integral Equations Operator The-
ory, 27 (1997), pp. 497–501.

[5] D. Ž. Djoković, J. Patera, P. Winternitz, and H. Zassenhaus, Normal forms of ele-
ments of classical real and complex Lie and Jordan algebras, J. Math. Phys., 24 (1983),
pp. 1363–1374.

[6] C. V. M. van der Mee, A. C. M. Ran, and L. Rodman, Stability of self-adjoint square
roots and polar decompositions in indefinite scalar product spaces, Linear Algebra Appl.,
302/303 (1999), pp. 77–104.

[7] R. C. Thompson, Pencils of complex and real symmetric and skew matrices, Linear Algebra
Appl., 147 (1991), pp. 323–371.

DATA FITTING PROBLEMS WITH BOUNDED UNCERTAINTIES
IN THE DATA∗

G. A. WATSON†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1274–1293

Abstract. An analysis of a class of data fitting problems, where the data uncertainties are
subject to known bounds, is given in a very general setting. It is shown how such problems can
be posed in a computationally convenient form, and the connection with other more conventional
data fitting problems is examined. The problems have attracted interest so far in the special case
when the underlying norm is the least squares norm. Here the special structure can be exploited
to computational advantage, and we include some observations which contribute to algorithmic
development for this particular case. We also consider some variants of the main problems and show
how these too can be posed in a form which facilitates their numerical solution.

Key words. data fitting, bounded uncertainties, robustness, minimum norm problems, separa-
ble matrix norms

AMS subject classifications. 15A06, 15A60, 65F30, 65K05, 41A65

PII. S0895479899356596

1. Introduction. Let A ∈ Rm×n, b ∈ Rm arise from observed data, and for
given x ∈ Rn, define

r = Ax− b.

Then a conventional fitting problem is to minimize ‖r‖ over x ∈ Rn, where the norm
is some norm on Rm. This involves an assumption that A is exact, and all the errors
are in b, which may not be the case in many practical situations; the effect of errors in
A as well as b has been recognized and studied for many years, mainly in the statistics
literature. One way to take the more general case into account is to solve the problem

minimize ‖E : d‖ subject to (A+ E)x = b+ d,(1.1)

where the matrix norm is one on (m×(n+1)) matrices. This problem, when the matrix
norm is the Frobenius norm, was first analyzed by Golub and Van Loan [10], who used
the term total least squares and developed an algorithm based on the singular value
decomposition of [A : b]. Since then, the problem has attracted considerable attention:
see, for example, [18], [19].

While the formulation (1.1) is often satisfactory, it can lead to a solution in which
the perturbations E or d are quite large. However, it may be the case that, for exam-
ple, A is known to be nearly exact, and the resulting correction to A may therefore be
excessive. In particular, if bounds are known for the size of the perturbations, then
it makes sense to incorporate these into the problem formulation, and this means
that the equality constraints in (1.1) should be relaxed and satisfied only approxi-
mately. These observations have motivated new parameter estimation formulations
where both A and b are subject to errors, but in addition, the quantities E and d are
bounded, having known bounds. This idea gives rise to a number of different, but

∗Received by the editors May 25, 1999; accepted for publication (in revised form) by L. El Ghaoui
December 5, 2000; published electronically April 6, 2001.

http://www.siam.org/journals/simax/22-4/35659.html
† Department of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland (gawatson@

maths.dundee.ac.uk).

1274

DATA FITTING WITH BOUNDED UNCERTAINTIES 1275

closely related, problems and algorithms and analysis for problems of this type based
on least squares norms are given, for example, in [1], [2], [3], [4], [5], [8], [9], [15], [17].

The general problem (1.1) is amenable to analysis and algorithmic development
for a wide class of matrix norms, known as separable norms, a concept introduced by
Osborne and Watson [13]. The main purpose of this paper is to show how problems
with bounded uncertainties also can be considered in this more general setting. In
particular, it is shown how such problems can be posed in a more computationally
convenient form. As well as facilitating their numerical solution, this enables connec-
tions with conventional data fitting problems to be readily established. Motivation
for extending these ideas beyond the familiar least squares setting is provided by the
important role which other norms can play in more conventional data fitting contexts.

We continue this introductory section by defining separable norms and by intro-
ducing some other necessary notation and tools. We first introduce the concept of the
dual norm. Let ‖.‖ be a norm on Rm. Then for any v ∈ Rm, the dual norm is the
norm on Rm defined by

‖v‖∗ = max
‖r‖≤1

rT v.(1.2)

The relationship between a norm on Rm and its dual is symmetric, so that for any
r ∈ Rm,

‖r‖ = max
‖v‖∗≤1

rT v.(1.3)

Definition 1.1. A matrix norm on m × n matrices is said to be separable if
given vectors u ∈ Rm and v ∈ Rn, there are vector norms ‖.‖A on Rm and ‖.‖B on
Rn such that

‖uvT ‖ = ‖u‖A‖v‖∗B ,
‖uvT ‖∗ = ‖u‖∗A‖v‖B .

Most commonly occurring matrix norms (operator norms, orthogonally invariant
norms, norms based on an lp vector norm on the elements of the matrix treated as an
extended vector in Rm×n) are separable. A result which holds for separable norms
and will be subsequently useful is that

‖Mv‖A ≤ ‖M‖‖v‖B ;(1.4)

see, for example, [13] or [20].
Another valuable tool is the subdifferential of a vector norm, which extends the

idea of the derivative to the nondifferentiable case. A useful characterization of the
subdifferential (for ‖.‖A) is as follows.

Definition 1.2. The subdifferential or set of subgradients of ‖r‖A is the set

∂‖r‖A = {v ∈ Rm : ‖r‖A = rT v, ‖v‖∗A ≤ 1}.(1.5)

If the norm is differentiable at r, then the subdifferential is just the unique vector
of partial derivatives of the norm with respect to the components of r.

The main emphasis of this paper is on problems which address the effects of worst
case perturbations. This gives rise to problems of min-max type. In section 2, we
consider problems where separate bounds on ‖E‖ and ‖d‖A are assumed known, and
in section 3, we consider a similar problem except that a single bound on ‖E : d‖ is
given. In both cases, the matrix norm is assumed to be separable. In section 4, some
variants of the original problems are considered, and finally, in section 5 we consider
a related class of problems which are of min-min rather than min-max type.

1276 G. A. WATSON

2. Known bounds on ‖E‖ and ‖d‖A. Suppose that the underlying problem
is such that we know bounds on the uncertainties in A and b so that

‖E‖ ≤ ρ, ‖d‖A ≤ ρd,
where the matrix norm is a separable norm, as in Definition 1.1. Then instead of
forcing the equality constraints of (1.1) to be satisfied, we wish to satisfy them approx-
imately by minimizing the A-norm of the difference between the left- and right-hand
sides, over all perturbations satisfying the bounds. This leads to the problem

min
x

max
‖E‖≤ρ, ‖d‖A≤ρd

‖(A+ E)x− (b+ d)‖A.(2.1)

Therefore x minimizes the worst case residual, and this can be interpreted as per-
mitting a more robust solution to be obtained to the underlying data fitting problem:
for an explanation of the significance of the term robustness in this context, in the
least squares case, see, for example, [9], where a minimizing x is referred to as a robust
least squares solution. Another interpretation of the problem being solved is that it
guarantees that the effect of the uncertainties in the data will never be overestimated,
beyond the assumptions made by knowledge of the bounds.

We now show that (2.1) can be restated in a much simpler form as an uncon-
strained problem in x alone.

Theorem 2.1. For any x, the maximum in (2.1) is attained when

E = ρuwT , w ∈ ∂‖x‖B ,
d = − ρdu,

where u = r
‖r‖A

if r �= 0, otherwise u is arbitrary but ‖u‖A = 1. The maximum

value is

‖r‖A + ρ‖x‖B + ρd.

Proof. We have for any E, d such that ‖E‖ ≤ ρ, ‖d‖A ≤ ρd,
‖(A+ E)x− (b+ d)‖A = ‖r + Ex− d‖A

≤ ‖r‖A + ρ‖x‖B + ρd.

Now let E and d be as in the statement of the theorem. Then

‖E‖ = ρ, ‖d‖A = ρd,

and further

‖(A+ E)x− (b+ d)‖A = ‖r + ρ‖x‖Bu+ ρdu‖A
= ‖r‖A + ρ‖x‖B + ρd.

The result follows.
An immediate consequence of this result is that the problem (2.1) is solved by

minimizing with respect to x

‖Ax− b‖A + ρ‖x‖B ,(2.2)

and it is therefore appropriate to analyze this problem. In particular, we give condi-
tions for x to be a solution and also conditions for that solution to be x = 0. Both

DATA FITTING WITH BOUNDED UNCERTAINTIES 1277

results are a consequence of standard convex analysis, as is found, for example, in
[14].

Theorem 2.2. The function (2.2) is minimized at x if and only if there exists
v ∈ ∂‖Ax− b‖A, w ∈ ∂‖x‖B such that

AT v + ρw = 0.(2.3)

Theorem 2.3. Let there exist v ∈ ∂‖b‖A so that

‖AT v‖∗B ≤ ρ.
Then x = 0 minimizes (2.2).

Proof. For x = 0 to give a minimum we must have v ∈ ∂‖b‖A so that (2.3) is
satisfied with ‖w‖∗B ≤ 1. The result follows.

2.1. Connections with least norm problems. We will next establish some
connections between solutions to (2.2) and solutions to traditional minimum norm
data fitting problems. In [9], coincidence of solutions in the least squares case is said
to mean that the usual least squares solution may be considered to be robust.

Consider the least norm problem

minimize ‖Ax− b‖A.(2.4)

Then x is a solution if and only if there exists v ∈ ∂‖Ax− b‖A such that
AT v = 0.

If x = 0 solves (2.4), then clearly it also solves (2.2). (Note that we can take w = 0 in
(2.3).) Otherwise, if ‖.‖A is smooth, solutions to (2.2) and to (2.4) can coincide only
if b ∈ range(A) (since otherwise v is unique). In this case, let x = A+b be any solution
to Ax = b and let y = (AT)+c denote the minimum A-norm solution to AT y = c.
Then if x minimizes (2.2), (2.3) is satisfied with w ∈ ∂‖x‖B and ‖v‖∗A ≤ 1, otherwise
v is unrestricted. Because

v = − ρ(AT)+w,
it follows that we must have

ρ ≤ 1

‖(AT)+w‖∗A
.

In other words, A+b �= 0 is also a solution to (2.2) only if b ∈ range(A) and

ρ ≤ max
w∈∂‖A+b‖B

1

‖(AT)+w‖∗A
.

For example, if both norms are least squares norms, then this condition is

ρ ≤ ‖A+b‖2
‖(AAT)+b‖2 .

Note that if x = A+b is the minimum B-norm solution to Ax = b, then it imme-
diately solves (2.2), and so there must exist w such that this inequality is satisfied
independently of ρ.

1278 G. A. WATSON

The case when ‖.‖A is nonsmooth is more complicated.
Example 2.1. Let A = [1, 1]T , b = (1, 2)T , ‖.‖A = ‖.‖1, ‖.‖B = ‖.‖∞. (This

corresponds to the separable norm being the sum of moduli of the components.) Then
(2.4) is solved by any x, 1 ≤ x ≤ 2. Further x = 1 is a solution to (2.2) provided that
0 < ρ < 2.

To summarize, we can augment Theorem 2.3 by the following, which can be
interpreted as a generalization of a result of [9].

Theorem 2.4. If b ∈ range(A) and x = A+b is any solution to Ax = b, then
provided that

ρ ≤ max
w∈∂‖A+b‖B

1

‖(AT)+w‖∗A
,

A+b also minimizes (2.2).
We can also prove the following, which connects Theorems 2.3 and 2.4.
Theorem 2.5. Let b ∈ range(A), and x = A+b satisfy Ax = b. Then

max
w∈∂‖A+b‖B

1

‖(AT)+w‖∗A
≤ min
v∈∂‖b‖A

‖AT v‖∗B .

Proof. Let v ∈ ∂‖b‖A, w ∈ ∂‖A+b‖B be otherwise arbitrary. It follows by
definition of A+ and (AT)+ that

AA+b = b,

AT (AT)+w = w.

Thus

bT (A+)TAT v = bT v = ‖b‖A,(2.5)

and

bT (A+)TAT (AT)+w = bT (A+)Tw = ‖A+b‖B .(2.6)

Now

‖AT v‖∗B‖(AT)+w‖∗A = max
‖c‖B≤1

cTAT v. max
‖d‖A≤1

dT (AT)+w

≥ (A
+b)TAT v

‖A+b‖B .
bT (A+)TAT (AT)+w

‖AA+b‖A
= 1,

using (2.5) and (2.6). The result follows.
A consequence of the above results is that if b ∈ range(A) and

max
w∈∂‖A+b‖B

1

‖(AT)+w‖∗A
min

v∈∂‖b‖A

‖AT v‖∗B ,

then any point in the convex hull of {0, A+b} is a solution.

DATA FITTING WITH BOUNDED UNCERTAINTIES 1279

2.2. Methods of solution. From a practical point of view, it is obviously of
importance to efficiently solve (2.1) (or, equivalently, (2.2)) in appropriate cases.

Let

f(x) = ‖Ax− b‖A + ρ‖x‖B .
Most commonly occurring norms are either smooth (typified by lp norms, 1 < p <∞)
or polyhedral (typified by the l1 and l∞ norms). If the norms in the definition of f are
smooth, then derivative methods are natural ones to use. A reasonable assumption
in most practical situations is that b /∈ range(A), so that x = 0 would then give the
only derivative discontinuity. If x = 0 is not a solution, then f is differentiable in a
neighborhood of the solution, and once inside that neighborhood, derivative methods
can be implemented in a straightforward manner. Theorem 2.3 tells us when x = 0
is a solution; the following theorem gives a way of identifying a descent direction at
that point in the event that it is not. It applies to arbitrary norms.

Theorem 2.6. Assume that

‖AT v‖∗B > ρ for all v ∈ ∂‖b‖A,
and let v̂ ∈ ∂‖b‖A, ĝ ∈ ∂‖AT v̂‖∗B be such that

ĝTAT v̂ = min{gTAT v : v ∈ ∂‖b‖A}.
Let d = −ĝ. Then d is a descent direction for f at x = 0.

Proof. Let the stated conditions be satisfied, and let d be defined as in the
statement of the theorem. By theorem 2.3, x = 0 is not a solution. For d to be a
descent direction at x = 0, the directional derivative of f at x = 0 in the direction d
must be negative, that is,

max
v∈∂‖b‖A,‖w‖∗

B
≤1
dTAT v + ρdTw < 0.

Let v ∈ ∂‖b‖A, ‖w‖∗B ≤ 1 be otherwise arbitrary. Then
dTAT v + ρdTw = −ĝTAT v + ρdTw

≤ −ĝTAT v̂ + ρ, since ‖d‖B ≤ 1
= −‖AT v̂‖∗B + ρ

< 0.

The result follows.
If ‖.‖A is smooth, then v̂ is unique, and the construction of d using this result is

straightforward. If the norm on E is the norm given by

‖E‖ =

∑

i,j

|Eij |p

1/p

or

‖E‖ = max
‖x‖q=1

‖Ex‖p,

then f becomes

f(x) = ‖Ax− b‖p + ρ‖x‖q,

1280 G. A. WATSON

where 1/p + 1/q = 1. In fact, the minimization of f for any p, q satisfying 1 <
p, q < ∞ can be readily achieved by derivative methods, using Theorem 2.6 to get
started. Indeed, it is normally the case that second derivatives exist and can easily
be calculated so that Newton’s method (damped if necessary) can be used following
a step based on Theorem 2.6. The Hessian matrix of f is positive definite (because f
is convex), so that the Newton direction is a descent direction away from a minimum.
Some numerical results are given in [21].

For polyhedral norms (typified by l1 and l∞ norms), the convex objective function
(2.2) is a piecewise linear function. Therefore, it may be posed as a linear programming
problem, and solved by appropriate methods.

Arguably, the most interesting case from a practical point of view is the special
case when both ‖.‖A and ‖.‖B are the least squares norm, so that

f(x) = ‖Ax− b‖2 + ρ‖x‖2.(2.7)

This case has particular features which greatly facilitate computation, and Chan-
drasekaran et al. [1], [3] exploit these in a numerical method. In contrast to the
problems considered above, which involve a minimization problem in Rn, special fea-
tures of the l2 case can be exploited so that the problem reduces to one in R. When
(2.7) is differentiable, (2.3) becomes

‖r‖−1
2 AT r + ρ‖x‖−1

2 x = 0

or

(ATA+ αI)x = AT b,

where

α =
ρ‖r‖2
‖x‖2 .

Let the singular value decomposition of A be

A = U

[
Σ
0

]
V T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal and Σ = diag{σ1, . . . , σn} is the
matrix of singular values in descending order of magnitude. Let

[
b1
b2

]
= UT b,

where b1 ∈ Rn and b2 ∈ Rm−n. It will be assumed in what follows that A has rank
n, and further that x = 0 is not a solution (which means, in particular, that b1 �= 0)
and b /∈ range(A) (which means that b2 �= 0). From Theorem 2.3, we require that

ρ <
‖AT b‖2
‖b‖2 =

‖Σb1‖2
‖b‖2 .(2.8)

Then it is shown in [3] that α satisfies the equation

α = g(α),(2.9)

DATA FITTING WITH BOUNDED UNCERTAINTIES 1281

where

g(α) =
ρ
√
‖b2‖22 + α2‖(Σ2 + αI)−1b1‖22
‖Σ(Σ2 + αI)−1b1‖2 .

This can be rearranged as

G(α) = 0,(2.10)

where

G(α) = bT1 (Σ
2 − ρ2I)(Σ2 + αI)−2b1 − ρ2‖b2‖22

α2
.

It is also shown in [3] that (2.8) is both necessary and sufficient for (2.10) to have
exactly one positive root α∗. In addition, G′(α∗) > 0. Different methods can be used
for finding α∗ in this case. One possibility which is suggested by (2.9) is the simple
iteration process

αk = g(αk−1), k = 1, . . . ,(2.11)

and it is of interest to investigate whether or not this is likely to be useful. It turns
out that this method is always locally convergent, as the following result shows.

Theorem 2.7. Let

ρ <
‖Σb1‖2
‖b‖2 .(2.12)

Then (2.10) has exactly one positive root α∗ and (2.11) is locally convergent to α∗.
Proof. Let ρ satisfy (2.12). Then (2.10) has a unique positive root α∗. Differen-

tiating G(α) gives

G′(α) = −2bT1 (Σ2 − ρ2I)(Σ2 + αI)−3b1 + 2
ρ2‖b2‖22
α3

,

and so

α∗G′(α∗) = 2bT1 Σ
2(Σ2 − ρ2I)(Σ2 + α∗I)−3b1,(2.13)

using G(α∗) = 0. Now g(α) and G(α) are related by

G(α) =

(
1−

(
g(α)

α

)2
)
‖Σ(Σ2 + αI)−1b1‖22,

and so

G′(α∗) =
2(1− g′(α∗))

α∗ ‖Σ(Σ2 + α∗I)−1b1‖22,(2.14)

using g(α∗) = α∗. Thus

g′(α∗) = 1− α∗G′(α∗)
2‖Σ(Σ2 + α∗I)−1b1‖22

.(2.15)

1282 G. A. WATSON

Table 1
Simple iteration: stack loss data.

ρ = 0.0001 ρ = 0.01 ρ = 0.05 ρ = 0.5 ρ = 1.0 ρ = 2.0
n αn αn αn αn αn αn

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.000033 0.003348 0.016738 0.167379 0.334759 0.669517
3 0.000033 0.003500 0.020728 0.620634 2.169373 7.781285
4 0.003507 0.021731 1.826895 8.554021 22.998133
5 0.003508 0.021985 3.935491 11.606395 25.307605
6 0.022050 5.192151 11.922507 25.549150
7 0.022066 5.466537 11.949293 25.573871
8 0.022070 5.509046 11.951529 25.576395
9 0.022071 5.515242 11.951715 25.576653
10 5.516138 11.951731 25.576679
11 5.516267 11.951732 25.576682
12 5.516285
13 5.516288

Substituting from (2.13) gives

g′(α∗) = 1− bT1 Σ
2(Σ2 − ρ2I)(Σ2 + α∗I)−3b1
bT1 Σ

2(Σ2 + α∗I)−2b1

= 1− bT1 Σ
2(Σ2 + α∗I)−2b1 − (α∗ + ρ2)bT1 Σ

2(Σ2 + α∗I)−3b1
bT1 Σ

2(Σ2 + α∗I)−2b1

=
(α∗ + ρ2)bT1 Σ

2(Σ2 + α∗I)−3b1
bT1 Σ

2(Σ2 + α∗I)−2b1
> 0.

It follows using (2.15) and G′(α∗) > 0 that

0 < g′(α∗) < 1,

and the result is proved.
Indeed, simple iteration seems to be remarkably effective, and in problems tried,

it converged in a satisfactory way from α = 0 and other less obvious starting points.
For example, for the stack loss data set of Daniel and Wood [6] (m = 21, n =
4), performance for different values of ρ is shown in Table 1, where the iteration is
terminated when the new value of α differs from the previous one by less than 10−6.

Another example is given by using the Iowa wheat data from Draper and Smith
[7] (m = 33, n = 9). The performance of simple iteration in this case is shown in
Table 2.

Although simple iteration is in some ways suggested by the above formulation, of
course higher order methods can readily be implemented, such as the secant method
or Newton’s method. Actual performance will depend largely on factors such as the
nature and size of the problem and the relative goodness of starting points.

3. A known bound on ‖E : d‖. Suppose now that the underlying problem is
such that we know upper bounds on the uncertainties in A and b, in the form

‖E : d‖ ≤ ρ,
where ρ and the (separable) matrix norm are given. Consider the problem of deter-
mining

min
x

max
‖E: d‖≤ρ

‖(A+ E)x− (b+ d)‖A,(3.1)

DATA FITTING WITH BOUNDED UNCERTAINTIES 1283

Table 2
Simple iteration: Iowa wheat data.

ρ = 0.0001 ρ = 0.01 ρ = 0.05 ρ = 0.5 ρ = 1.0 ρ = 2.0
n αn αn αn αn αn αn

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.001084 0.108417 0.542085 5.420855 10.841710 21.683420
3 0.108602 0.546694 5.872607 12.606823 28.410850
4 0.546733 5.909318 12.878252 30.238701
5 5.912295 12.919596 30.716282
6 5.912536 12.925885 30.839779
7 5.912556 12.926841 30.871628
8 5.912557 12.926986 30.879837
9 12.927008 30.881951
10 12.927012 30.882496
11 30.882637
12 30.882673
13 30.882682
14 30.882685

where the A-norm on Rm is defined by the particular choice of separable norm (or vice
versa). This problem and variants have been considered, for example, by El Ghaoui
and Lebret [8], [9], where the matrix norm is the Frobenius norm, so that both the A-
and B-norms are least squares norms. Arguing as in Theorem 2.1 gives the following
result.

Theorem 3.1. For any x, the maximum in (3.1) is attained when

[E : d] = ρuwT , w ∈ ∂‖[xT : − 1]T ‖B ,(3.2)

where u = r
‖r‖A

if r �= 0, otherwise any vector with ‖u‖A = 1. The maximum value is

‖r‖A + ρ‖[xT : − 1]T ‖B .(3.3)

The problem (3.1) is therefore equivalent to the problem of minimizing with re-
spect to x

‖Ax− b‖A + ρ‖[xT : − 1]T ‖B .(3.4)

Standard convex analysis then gives the following result.
Theorem 3.2. The function (3.4) is minimized at x if and only if there exists

v ∈ ∂‖Ax− b‖A, u ∈ ∂‖[xT : − 1]T ‖B such that

AT v + ρu1 = 0,(3.5)

where u1 denotes the first n components of u.

3.1. Connection with least norm problems. As before, it is of interest to
establish connections with the corresponding least norm problems. If x = 0 solves
(2.4), then it will also minimize (3.4) for monotonic norms ‖.‖B . (‖.‖B is a monotonic
norm on Rn+1 if ‖c‖B ≤ ‖d‖B whenever |ci| ≤ |di|, i = 1, . . . , n.) If x = 0 does
not solve (2.4), then just as before when ‖.‖A is smooth, solutions to this problem
and (3.1) cannot coincide unless b ∈ range(A). In that case, as in section 2.1 let
x = A+b denote a solution to Ax = b, and let y = (AT)+c denote the minimum
A-norm solution to AT y = c. For a solution to (3.4), there must exist v, ‖v‖∗A ≤ 1
(otherwise unrestricted) so that

AT v + ρu1 = 0,

1284 G. A. WATSON

where u1 consists of the first n components of u ∈ ∂‖[(A+b)T ,−1]T ‖B . Therefore,

v + ρ(AT)+u1 = 0,

and so

ρ ≤ 1

‖(AT)+u1‖∗A
.

In other words the solutions will coincide if b ∈ range(A) and

ρ ≤ max
u∈∂‖[(A+b)T ,−1]T ‖B

1

‖(AT)+u1‖∗A
.(3.6)

Note that if ‖.‖B is smooth, then u is unique. For example, when both norms are
least squares norms, this gives

ρ ≤
√
‖A+b‖22 + 1
‖(AAT)+b‖2 ,

as given in [9]. The situation when ‖.‖A is not smooth is, of course, once again more
complicated. Consider again Example 2.1 where ρ > 0 is arbitrary. Recall that (2.4)
is solved by any x, 1 ≤ x ≤ 2: the unique solution to the problem of minimizing (3.4)
is x = 1.

3.2. Connection with total approximation problems. The nature of the
bound in (3.1) means that there is a connection to be made with the total approxi-
mation problem (1.1). It is known [13], [20] that a minimum value of (1.1) coincides
with the minimum of the problem

minimize ‖[A : b]z‖A subject to ‖z‖B = 1,(3.7)

the smallest β-generalized singular value of the matrix [A : b]. In particular, if the
vector norms are least squares norms, then this is just the smallest singular value of
[A : b]. An x = xT at a minimum of (1.1) is obtained from a z = zT at a minimum
of (3.7) by scaling so that

zTT = α[xTT ,−1],

whenever (zT)n+1 �= 0. (No zT with (zT)n+1 �= 0 corresponds to nonexistence of a
solution to (1.1).) It is known also that a minimizing pair E, d is given by

[ET : dT] = − [A : b]zTwTT , where wT ∈ ∂‖zT ‖B .

Define

AT = A+ ET , bT = b+ dT ,

and consider the problem

min
x

max
‖E: d‖≤ρ

‖(AT + E)x− (bT + d)‖A,(3.8)

DATA FITTING WITH BOUNDED UNCERTAINTIES 1285

or equivalently,

min
x
‖ATx− bT ‖A + ρ‖[xT ,−1]T ‖B .

Then bT ∈ range(AT), with ATxT = bT , and so if ‖.‖A is smooth, xT is a solution to
this problem provided that

ρ ≤ max
u∈∂‖[xT

T
,−1]T ‖B

1

‖(ATT)+u1‖∗A
,(3.9)

as a consequence of the previous analysis. For example, when both norms are least
squares norms, this gives (see also [9])

ρ ≤
√
‖xT ‖22 + 1

‖(ATT)+xT ‖2
.

For the least squares case, El Ghaoui and Lebret [8] suggest using robust methods
in conjunction with total approximation to identify an appropriate value of ρ. The
idea is first to solve the total approximation problem. Then (3.8) is constructed from
the total approximation solution and solved with ρ set to ρT , the minimum value in
(3.7), that is,

ρT =
‖AxT − b‖A
‖[xTT , − 1]T ‖B

.

Of course if ρT does not exceed the right-hand side of (3.9), there is nothing to solve.

3.3. Methods of solution. For the special case of (3.4) when the norms ‖.‖A
and ‖.‖B are (possibly different) lp norms, we have

f(x) = ‖Ax− b‖p + ρ‖[xT : −1]T ‖q.(3.10)

When 1 < p, q <∞, then derivative methods may again be used. Let us again make
the (reasonable) assumption that there is no x which makes ‖Ax − b‖p = 0, so that
‖Ax − b‖p is differentiable for all x. Then in contrast to the earlier problem, since
the second term cannot be identically zero, f is differentiable for all x. We can easily
compute first and second derivatives of f , and so Newton’s method, for example,
can be implemented. A line search in the direction of the Newton step will always
guarantee descent, because f is convex, so eventually we must be able to take full
steps and get a second order convergence rate. Some numerical results are given in
[21]. For polyhedral norms occurring in (3.4), linear programming techniques may be
used.

Now consider the special case when p = q = 2. An analysis similar to that
given in section 2.2 can be given in this case, leading to a similar numerical method.
This particular problem is considered by El Ghaoui and Lebret [8], [9]. The main
emphasis of those papers is on structured perturbations, which is a harder problem,
and an exact solution to that problem is obtained. For the present case, the method
suggested is similar to that given for the problem of section 2 by Chandrasekaran
et al. in [1], [3].

Let A have singular value decomposition as before and have full rank. Assume
also that b /∈ range(A). Then optimality conditions are

‖r‖−1
2 AT r + ρ‖[xT : −1]T ‖−1

2 x = 0

1286 G. A. WATSON

or

(ATA+ αI)x = AT b,

where

α =
ρ‖r‖2

‖[xT : −1]T ‖2 .

It can be shown as before that α satisfies the equation

α = h(α),

where

h(α) =
ρ
√
‖b2‖22 + α2‖(Σ2 + αI)−1b1‖22√
‖Σ(Σ2 + αI)−1b1‖22 + 1

.

This can as before be rearranged as

H(α) = 0,

where

H(α) = G(α) + 1

with G(α) defined as in (2.10). It is easily seen that H(α) has at least one positive
root for any ρ > 0. As in [3], it may be shown that H(α) in fact has exactly one
positive root, α̂, with

H(α̂) > 0.

Note that here there is no restriction on ρ except that it should be positive. Consider
the simple iteration process

αk = h(αk−1), k = 1,(3.11)

Theorem 3.3. The iteration scheme (3.11) is locally convergent to α̂.
Proof. We can first show that

α̂H ′(α̂) = 2bT1 Σ
2(Σ2 − ρ2)(Σ2 + α̂)−3b1 + 2.(3.12)

We can then show that h(α) and H(α) are related by

H(α) =

(
1−

(
h(α)

α

)2
)
(1 + C(α)2),

where

C(α) = ‖Σ(Σ2 + αI)−1b1‖2.
Thus

H ′(α̂) =
2(1− h′(α̂))

α̂
(1 + C(α̂)2),

DATA FITTING WITH BOUNDED UNCERTAINTIES 1287

using h(α̂) = α̂. Thus

h′(α̂) = 1− α̂H ′(α̂)
2(1 + C(α̂)2)

.(3.13)

Substituting from (3.12) gives

h′(α̂) = 1− bT1 Σ
2(Σ2 − ρ2)(Σ2 + α̂)−3b1 + 1

1 + C(α̂)2

=
bT1 (Σ

2(Σ2 + α̂I)−2 − Σ2(Σ2 − ρ2)(Σ2 + α̂)−3)b1
1 + C(α̂)2

= (ρ2 + α̂)
bT1 Σ

2(Σ2 + α̂I)−3b1
1 + C(α̂)2

.

It follows using (3.13) and H ′(α̂) > 0 that

0 < h′(α̂) < 1,

and the result is proved.
The performance of simple iteration in this case is, of course, similar to the same

method applied in the previous situation. Other methods like the secant method, or
Newton’s method, are more complicated but can give potentially better performance.

4. Some modifications. There are different ways in which additional infor-
mation may be incorporated into the problems of the last two sections, resulting in
appropriate modifications of these problems. For example, some components of A or
b may be exact, in which case the corresponding components of E or d will be zero.
The bounds may take different forms and may be on submatrices of E rather than E
itself. Also the perturbation matrices may have known structure, which we want to
preserve. Examples of all these possibilities are considered in this section.

4.1. Exact columns and rows. Some problems are such that some of the
columns and possibly rows of A are known to be exact (see, for example, [3]). A
treatment can be given for both the problems of sections 2 and 3, and we will demon-
strate only for those of section 2; the appropriate requirements for the problems of
section 3 are obvious. We begin by considering the case when certain columns only
of A are known to be exact. In that case (following suitable reordering of columns if
necessary) the general problem is to minimize

min
x

max
‖E‖≤ρ, ‖d‖A≤ρd

‖(A1 : A2 + E)x− (b+ d)‖A,(4.1)

where A1 ∈ Rm×(n−t), A2 ∈ Rm×t, and the (separable) matrix norm is one defined
on m × t matrices. We can partition x as xT = (xT1 , x

T
2)
T , with x2 ∈ Rt. Then

arguing as in Theorem 2.1, we have the following.
Theorem 4.1. For any x, the maximum in (4.1) is attained when

E = ρuwT , w ∈ ∂‖x2‖B ,
d = − ρdu,

where u = r
‖r‖A

if r �= 0; otherwise u is arbitrary, but ‖u‖A = 1. The maximum value
is

‖r‖A + ρ‖x2‖B + ρd.

1288 G. A. WATSON

Therefore, the problem is solved by minimizing with respect to x

‖Ax− b‖A + ρ‖x2‖B .(4.2)

Now consider the case when some columns and rows of A are exact. This corre-
sponds to the requirement to perturb only a submatrix of A. Assume this to be the
lower right-hand s× t submatrix. An appropriate problem is then to minimize

min
x

max
‖E‖≤ρ, ‖d‖A≤ρd

∥∥∥∥
[
A1 A2

A3 A4 + E

] [
x1

x2

]
− (b+ d)

∥∥∥∥
A

,(4.3)

where A2 and A4 have t columns, A3 and A4 have s rows, and the matrix norm is
a separable norm on s × t matrices. Unfortunately, the separable norm is defined in
terms of two vector norms ‖.‖A on Rs and ‖.‖B on Rt, and ‖.‖A as used in (4.3)
is on Rm. We get around this potential conflict by assuming that ‖.‖A is defined
for any length of vector; we will also assume that the introduction of additional zero
components does not change the value of the norm.

The attainment of the maximum in (4.3) is not quite so straightforward as before.
However, we can prove the following result.

Theorem 4.2. Let r = Ax − b, let r1 denote the first m − s components of r,
and let r2 denote the last s components. Let x solve the problem

minimize ‖r2‖A + ρ‖x2‖B subject to r1 = 0.(4.4)

Then x solves (4.3).
Proof. Arguing as in previous results, an upper bound for the maximum (subject

to the constraints) in (4.3) is

‖r‖A + ρ‖x2‖B + ρd.
Now define the set

X = {x ∈ Rn : r1 = 0}.
For any x ∈ X, define

E = ρu2w
T , w ∈ ∂‖x2‖B ,

d = − ρdu,
where u ∈ Rm has first (m − s) components zero, and last s components forming
the vector u2 with u2 =

r2
‖r‖A

if r �= 0; otherwise u2 ∈ Rs is arbitrary except that
‖u2‖A = 1.

Then ‖E‖ = ρ, ‖d‖ = ρd, and∥∥∥∥
[
A1 A2

A3 A4 + E

] [
x1

x2

]
− (b+ d)

∥∥∥∥
A

=

∥∥∥∥r +
[
0
E

]
x2 − d

∥∥∥∥
A

=

∥∥∥∥r +
[

0
ρu2w

T

]
x2 + ρdu

∥∥∥∥
A

=

∥∥∥∥r + ρ

[
0
u2

]∥∥∥∥x‖B + ρdu‖A
= ‖r + ρu‖x‖B + ρdu‖A
= ‖r‖A + ρ‖x2‖B + ρd.

DATA FITTING WITH BOUNDED UNCERTAINTIES 1289

The result is proved.
Of course the set X may be empty. In that case, while the problem (4.3) is still

well defined, it is not clear that a matrix E and a vector d can be defined such that
the maximum in the problem is attained. That being the case, there is no obvious
equivalent simpler problem.

4.2. Bounded columns of E. Suppose that the columns of E are individually
bounded so that

‖Eei‖A ≤ ρi, i = 1, . . . , n,

where ei is the ith unit vector, and consider the problem of finding

min
x

max
‖Eei‖A≤ρi,i=1,...,n

‖(A+ E)x− b‖A.(4.5)

As for Theorem 2.1, we can prove the following result.
Theorem 4.3. For any x, the maximum in (4.5) is attained when

Eei = ρiθiu, i = 1, . . . , n,

where θi = sign(xi), and where u = r
‖r‖A

if r �= 0; otherwise u is arbitrary but

‖u‖A = 1. The maximum value is

‖Ax− b‖A +

n∑
i=1

ρi|xi|.

Even in the least squares case, this objective function is not normally differen-
tiable, being a combination of a least squares norm and a weighted l1 norm. It can
be reposed as a smooth constrained optimization problem, and solved by standard
techniques.

4.3. Structured problems. In some applications, the perturbation matrices
have known structure, as in the following problem considered by El Ghaoui and Lebret
[9]. Given A0, . . . , Ap ∈ Rm×n, b0, . . . , bp ∈ Rm, determine

min
x∈Rn

max
‖δ‖≤ρ

∣∣∣∣∣
∣∣∣∣∣
(
A0 +

p∑
i=1

δiAi

)
x−

(
b0 +

p∑
i=1

δibi

)∣∣∣∣∣
∣∣∣∣∣
A

,(4.6)

where ‖.‖A is a given norm on Rm and ‖.‖ is a given norm on Rp. Define for any
x ∈ Rn,

ri = Aix− bi, i = 0, . . . , p,

M = [r1, . . . , rp] ∈ Rm×p,

F =MTM, g =MT r0, and h = rT0 r0.

Consider the maximum in (4.6), which will be attained at the solution to the problem

maximize ‖r0 +Mδ‖A subject to ‖δ‖ = ρ,

assuming that δ maximizing ‖r0 +Mδ‖A exceeds ρ in norm. Because the functions
involved are convex, necessary conditions for a solution can readily be given: these
are that there exists v ∈ ∂‖r0 +Mδ‖A, w ∈ ∂‖δ‖, λ ∈ R such that

MT v − λw = 0, ‖δ‖ = ρ.

1290 G. A. WATSON

Using these conditions, it is easily seen that

‖r0 +Mδ‖A = vT r0 + λρ.

Therefore, an equivalent (in a sense dual) problem is

maximize vT r0 + λρ subject to

MT v − λw = 0, ‖δ‖ = ρ,

v ∈ ∂‖r0 +Mδ‖A,

w ∈ ∂‖δ‖.

Consider the special case when both norms are least squares norms. Then

MT v − λw =
MT (r0 +Mδ)

‖r0 +Mδ‖2
and so the necessary conditions can be written

(τI − F)δ = g, ‖δ‖2 = ρ,

where τ = λ‖r0 +Mδ‖2/ρ. Further,

‖r0 +Mδ‖2 = λρ + vT r0

=
ρ2τ

‖r0 +Mδ‖2 +
(r0 +Mδ)T r0
‖r0 +Mδ‖2 .

Thus

‖r0 +Mδ‖22 = ρ2τ + h+ δT g

= ρ2τ + h+ gT (τI − F)−1g,

provided that τI − F is nonsingular. A way of solving this problem based on those
results is given by El Ghaoui and Lebret [9]. They also consider the problem when ‖.‖
is the Chebyshev norm. Extending the ideas to more general norms, however, does
not look straightforward.

5. A min-min problem. The problems (2.1) and (3.1) are examples of min-max
problems: minimization is carried out with respect to x over all allowed perturbations
in the data. This is justified if the emphasis is on robustness. However, from other
considerations it may be sufficient to minimize with respect to x while simultaneously
minimizing with respect to the perturbations. This gives rise to a min-min problem,
as considered (least squares case) in [2], [3], [5]. In this final section, we will briefly
consider this problem. Again there are two versions, consistent with those treated in
sections 2 and 3. To illustrate the ideas involved, we will consider finding

min
x

min
‖E:d‖≤ρ

‖(A+ E)x− (b+ d)‖A.(5.1)

DATA FITTING WITH BOUNDED UNCERTAINTIES 1291

In contrast to the min-max case, here we are seeking to find a solution x which gives
the smallest possible error over allowable perturbations.

Again the problem can be replaced by an equivalent unconstrained optimization
problem.

Theorem 5.1. Let ρ be small enough that

ρ‖[xT : − 1]T ‖B ≤ ‖r‖A for all x ∈ Rn.(5.2)

Then (5.1) is equivalent to the problem of minimizing with respect to x

‖Ax− b‖A − ρ‖[xT : − 1]T ‖B .(5.3)

Proof. Let (5.2) be satisfied and let x be arbitrary. Let ‖E : d‖ ≤ ρ with E, d
otherwise arbitrary. Then

‖(A+ E)x− (b+ d)‖A = ‖r + (Ex− d)‖A
≥ ‖r‖A − ‖E : d‖‖[xT : −1]T ‖B
≥ ‖r‖A − ρ‖[xT : − 1]T ‖B .

Now fix

[E : d] = − ρuwT , w ∈ ∂‖[xT : −1]T ‖B ,

where u = r
‖r‖A

, r �= 0; otherwise u is arbitrary with ‖u‖A = 1. Then ‖E : d‖ = ρ,

and further

‖(A+ E)x− (b+ d)‖ = ‖r − ρu‖[xT : 1]T ‖B‖A
= ‖r‖A − ρ‖[xT : − 1]T ‖B ,

using (5.2). The result follows.
There are two important differences between (5.3) and (3.4): first, the relationship

leading to (5.3) requires a condition on ρ, and second, the resulting problem is not a
convex problem. The nonconvexity of (5.3) is interpreted in [2] as being equivalent
to using an “indefinite” metric, in the spirit of recent work on robust estimation and
filtering: see, for example, [11], [12], [16].

The condition (5.2) is satisfied if

ρ ≤ ‖[A : b]z‖A‖z‖B ,

that is, if ρ does not exceed ρT (see section 3.2). If ρ = ρT , then

min
x
{‖Ax− b‖A − ρT ‖[xT : − 1]T ‖B} = 0,

attained at x = xT . Indeed if ρ is set to any local minimum of (3.7), with value ρT ,
then the corresponding point xT generated from the local minimizer zT is a stationary
point of (5.1), as the following argument shows.

Necessary conditions for x to solve (3.7) are that there exist v ∈ ∂‖[A : b]zT ‖A,
w ∈ ∂‖zT ‖B , and a Lagrange multiplier λ such that

[A : b]T v − λw = 0.

1292 G. A. WATSON

Multiplying through by zTT shows that λ = ρT , and so

[A : b]T v − ρTw = 0.

Now the relationship zT = α[xTT , − 1] implies that sign(α)v ∈ ∂‖AxT − b‖A and
sign(α)w ∈ ∂‖[xT ,−1]T ‖B . In other words, there exist v ∈ ∂‖AxT − b‖A, w ∈
∂‖[xT ,−1]T ‖B such that

AT v − ρw1 = 0,

where w1 denotes the first n components of w. It follows from standard convex
analysis that xT is a stationary point of the problem of minimizing

‖Ax− b‖A − ρT ‖[xT : − 1]T ‖B .
A similar treatment can be given if (5.1) is replaced by the related problem of

finding

min
x

min
‖E‖≤ρ

‖(A+ E)x− b‖A.

Provided that ρ is small enough that

ρ‖x‖B ≤ ‖Ax− b‖A for all x ∈ Rn,
then this is equivalent to the problem of finding

min
x
{‖Ax− b‖A − ρ‖x‖B}.

An algorithm is given in [2] for solving the least squares case of this problem. It
has similarities to the algorithms given before, involving the solution of a nonlinear
equation for α and a linear system for x. Indeed it is clear that many of the ideas which
apply to min-max problems carry over to problems of the present type. However, we
do not consider that further here.

6. Conclusions. We have given an analysis in a very general setting of a range
of data fitting problems, which have attracted interest so far in the special case when
least squares norms are involved. While this case is likely to be most useful in practice,
consideration of other possibilities can be motivated by the valuable role that other
norms play in a general data fitting context. The main thrust of the analysis has been
to show how the original problems may be posed in a simpler form. This permits the
numerical treatment of a wide range of problems involving other norms, for example,
lp norms. We have also included some observations which contribute to algorithmic
development for the important least squares case.

Acknowledgment. I am grateful to the referees for helpful comments which
have improved the presentation.

REFERENCES

[1] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, Efficient algorithms for
least squares type problems with bounded uncertainties, in Recent Advances in Total
Least Squares Techniques and Errors-in-Variables Modeling, S. Van Huffel, ed., SIAM,
Philadelphia, 1997, pp. 171–180.

DATA FITTING WITH BOUNDED UNCERTAINTIES 1293

[2] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, Parameter estimation in the
presence of bounded modeling errors, IEEE Signal Process. Lett., 4 (1997), pp. 195–197.

[3] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, Parameter estimation in
the presence of bounded data uncertainties, SIAM J. Matrix Anal. Appl., 19 (1998), pp.
235–252.

[4] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, An efficient algorithm for a
bounded errors-in-variables model, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 839–859.

[5] S. Chandrasekaran, M. Gu, A. H. Sayed, and K. E. Schubert, The degenerate bounded
errors-in-variables model, SIAM J. Matrix Anal. Appl., to appear.

[6] C. Daniel and F. S. Wood, Fitting Equations to Data, Wiley, New York, 1971.
[7] N. R. Draper and H. Smith, Applied Regression Analysis, Wiley, New York, 1966.
[8] L. El Ghaoui and H. Lebret, Robust solutions to least squares problems with uncertain data,

in Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling,
S. Van Huffel, ed., SIAM, Philadelphia, 1997, pp. 161–170.

[9] L. El Ghaoui and H. Lebret, Robust solutions to least-squares problems with uncertain
data, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 1035–1064.

[10] G. H. Golub and C. F. Van Loan, An analysis of the total least squares problem, SIAM J.
Numer. Anal., 17 (1980), pp. 883–893.

[11] B. Hassibi, A. H. Sayed, and T. Kailath, Recursive linear estimation in Krein spaces–Part
I: Theory, IEEE Trans. Automat. Control, AC-41 (1996), pp. 18–33.

[12] P. Khargonekar, and K. M. Nagpal, Filtering and smoothing in an H∞ setting, IEEE
Trans. Automat. Control, AC-36 (1991), pp. 151–166.

[13] M. R. Osborne and G. A. Watson, An analysis of the total approximation problem in
separable norms, and an algorithm for the total l1 problem, SIAM J. Sci. Statist. Comput.,
6 (1985), pp. 410–424.

[14] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[15] A. H. Sayed and S. Chandrasekaran, Estimation in the presence of multiple sources of

uncertainties with applications, in Proceedings of the Asilomar Conference, Pacific Grove,
CA, 1998, pp. 1811–1815.

[16] A. H. Sayed, B. Hassibi, and T. Kailath, Inertia conditions for the minimization of
quadratic forms in indefinite metric spaces, in Operator Theory: Advances and Applica-
tions, I. Gohberg, P. Lancaster, and P. N. Shivakumar, eds., Birkhauser, Basel, 1996, pp.
309–347.

[17] A. H. Sayed, V. H. Nascimento, and S. Chandrasekaran, Estimation and control in the
presence of bounded data uncertainties, Linear Algebra Appl., 284 (1998), pp. 259–306.

[18] S. Van Huffel, ed., Recent Advances in Total Least Squares Techniques and Errors-in-
Variables Modeling, in Proceedings of the 2nd International Workshop on Total Least
Squares and Errors-in-Variables Modeling, Leuven, 1996, SIAM, Philadelphia, 1997.

[19] S. Van Huffel and J. Vandevalle, The Total Least Squares Problem: Computational As-
pects and Analysis, Frontiers Appl. Math. 9, SIAM, Philadelphia, 1991.

[20] G. A. Watson, Choice of norms for data fitting and function approximation, Acta Numer.
7, 1998, pp. 337–377.

[21] G. A. Watson, Solving data fitting problems in lp norms with bounded uncertainties in the
data, in Proceedings of the Dundee Conference, Numerical Analysis 1999, D. F. Griffiths
and G. A. Watson, eds., Chapman and Hall/CRC Res. Notes Math. 420, Boca Raton,
FL, 2000, pp. 249–265.

	SJMAEL_V22_i1_p0001.pdf
	SJMAEL_V22_i1_p0020.pdf
	SJMAEL_V22_i1_p0033.pdf
	SJMAEL_V22_i1_p0041.pdf
	SJMAEL_V22_i1_p0056.pdf
	SJMAEL_V22_i1_p0066.pdf
	SJMAEL_V22_i1_p0086.pdf
	SJMAEL_V22_i1_p0106.pdf
	SJMAEL_V22_i1_p0114.pdf
	SJMAEL_V22_i1_p0145.pdf
	SJMAEL_V22_i1_p0155.pdf
	SJMAEL_V22_i1_p0173.pdf
	SJMAEL_V22_i1_p0195.pdf
	SJMAEL_V22_i1_p0213.pdf
	SJMAEL_V22_i1_p0230.pdf
	SJMAEL_V22_i1_p0242.pdf
	SJMAEL_V22_i1_p0258.pdf
	SJMAEL_V22_i1_p0276.pdf
	SJMAEL_V22_i1_p0282.pdf
	SJMAEL_V22_i1_p0306.pdf
	SJMAEL_V22_i2_p0323.pdf
	SJMAEL_V22_i2_p0342.pdf
	SJMAEL_V22_i2_p0358.pdf
	SJMAEL_V22_i2_p0364.pdf
	SJMAEL_V22_i2_p0376.pdf
	SJMAEL_V22_i2_p0392.pdf
	SJMAEL_V22_i2_p0413.pdf
	SJMAEL_V22_i2_p0430.pdf
	SJMAEL_V22_i2_p0453.pdf
	SJMAEL_V22_i2_p0472.pdf
	SJMAEL_V22_i2_p0479.pdf
	SJMAEL_V22_i2_p0501.pdf
	SJMAEL_V22_i2_p0527.pdf
	SJMAEL_V22_i2_p0533.pdf
	SJMAEL_V22_i2_p0554.pdf
	SJMAEL_V22_i2_p0569.pdf
	SJMAEL_V22_i2_p0574.pdf
	SJMAEL_V22_i2_p0580.pdf
	SJMAEL_V22_i2_p0602.pdf
	SJMAEL_V22_i2_p0617.pdf
	SJMAEL_V22_i2_p0627.pdf
	SJMAEL_V22_i3_p0647.pdf
	SJMAEL_V22_i3_p0666.pdf
	SJMAEL_V22_i3_p0682.pdf
	SJMAEL_V22_i3_p0714.pdf
	SJMAEL_V22_i3_p0726.pdf
	SJMAEL_V22_i3_p0752.pdf
	SJMAEL_V22_i3_p0772.pdf
	SJMAEL_V22_i3_p0793.pdf
	SJMAEL_V22_i3_p0819.pdf
	SJMAEL_V22_i3_p0824.pdf
	SJMAEL_V22_i3_p0837.pdf
	SJMAEL_V22_i3_p0853.pdf
	SJMAEL_V22_i3_p0874.pdf
	SJMAEL_V22_i3_p0895.pdf
	SJMAEL_V22_i3_p0912.pdf
	SJMAEL_V22_i3_p0925.pdf
	SJMAEL_V22_i3_p0948.pdf
	SJMAEL_V22_i3_p0965.pdf
	SJMAEL_V22_i3_p0971.pdf
	SJMAEL_V22_i4_p0973.pdf
	SJMAEL_V22_i4_p0997.pdf
	SJMAEL_V22_i4_p1014.pdf
	SJMAEL_V22_i4_p1027.pdf
	SJMAEL_V22_i4_p1038.pdf
	SJMAEL_V22_i4_p1058.pdf
	SJMAEL_V22_i4_p1079.pdf
	SJMAEL_V22_i4_p1089.pdf
	SJMAEL_V22_i4_p1095.pdf
	SJMAEL_V22_i4_p1112.pdf
	SJMAEL_V22_i4_p1126.pdf
	SJMAEL_V22_i4_p1136.pdf
	SJMAEL_V22_i4_p1153.pdf
	SJMAEL_V22_i4_p1175.pdf
	SJMAEL_V22_i4_p1190.pdf
	SJMAEL_V22_i4_p1204.pdf
	SJMAEL_V22_i4_p1222.pdf
	SJMAEL_V22_i4_p1245.pdf
	SJMAEL_V22_i4_p1263.pdf
	SJMAEL_V22_i4_p1274.pdf

